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Autologistic regression is one of the most popular statistical tools to predict spatial phenomena in several
applications including epidemic diseases detection, species occurrence prediction, earth observation and
business management. In general, autologistic regression divides the space into a two-dimensional grid, where
the prediction is performed at each cell in the grid. The prediction at any location is based on a set of predictors
(i.e., features) at this location and predictions from neighboring locations. In this paper, we address the problem
of building efficient autologistic models with multinomial (i.e., categorical) prediction and predictor variables,
where the categories represented by these variables are unordered. Unfortunately, existing methods to build
autologistic models are designed for binary variables in addition to being computationally expensive (i.e., do
not scale up for large-scale grid data such as fine-grained satellite images). Therefore, we introduce RegRocket;
a scalable framework to build multinomial autologistic models for predicting large-scale spatial phenomena.
RegRocket considers both the accuracy and efficiency aspects when learning the regression model parameters.
To this end, RegRocket is built on top of Markov Logic Network (MLN), a scalable statistical learning framework,
where its internals and data structures are optimized to process spatial data. RegRocket provides an equivalent
representation of the multinomial prediction and predictor variables using MLN where the dependencies
between these variables are transformed into first-order logic predicates. Then, RegRocket employs an efficient
framework that learns the model parameters from the MLN representation in a distributed manner. Extensive
experimental results based on two large real datasets show that RegRocket can build multinomial autologistic
models, in minutes, for 1 million grid cells with 0.85 average F1-score.

CCS Concepts: « Mathematics of computing — Factor graphs; Probabilistic reasoning algorithms; «
Computing methodologies — Learning in probabilistic graphical models; Distributed algorithms;

Additional Key Words and Phrases: Multinomial Spatial Regression, Autologistic Models, Markov Logic
Networks, First-order Logic, Factor Graph

ACM Reference Format:

Ibrahim Sabek, Mashaal Musleh, and Mohamed F. Mokbel. 2019. RegRocket: Scalable Multinomial Autologistic
Regression with Unordered Categorical Variables Using Markov Logic Networks. ACM Trans. Spatial Algorithms
Syst. x, x, Article xx (October 2019), 27 pages. https://doi.org/0000001.0000001

Authors’ addresses: Ibrahim Sabek, University of Minnesota, Department of Computer Science and Engineering, Minnesota,
USA, email:sabek@cs.umn.edu; Mashaal Musleh, University of Minnesota, Department of Computer Science and Engineering,
Minnesota, USA, email:musle005@cs.umn.edu; Mohamed F. Mokbel, Qatar Computing Research Institute, Hamad Bin
Khalifa Research Complex, Doha, Qatar , University of Minnesota, Minnesota, USA, email:mmokbel@hbku.edu.qa.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2374-0353/2019/10-ARTxx $15.00

https://doi.org/0000001.0000001

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.


https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

xX:2 Ibrahim Sabek, Mashaal Musleh, and Mohamed F. Mokbel

1 INTRODUCTION

Autologistic regression [3, 6, 26] is an important statistical tool for predicting and analysing spatial
phenomena in many scientific domains (e.g., Earth observations [28, 59], Epidemiology [13, 32, 47],
Ecology [1, 44], Agriculture [19, 23], Archeology [24] and Management [5, 34]). Unlike standard
logistic regression [2, 8] that assumes predictions of spatial phenomena over neighbouring locations
are completely independent of each other, autologistic regression takes into account the spatial
dependence between neighbouring locations while building and running the prediction model
(i.e., neighbouring locations tend to systematically affect each other [53]). Typically, autologistic
regression divides the geographical space (e.g., the whole world) by a two-dimensional grid, where
each grid cell is represented with a variable indicating the prediction of the spatial phenomena in
that grid cell, and a set of predictor variables (i.e., features) that help predicting the value of this
prediction variable. Then, the prediction problem at any grid cell is formulated as: Given a set of
predictors defined over this cell along with a set of observed or predicted values at neighbouring
cells, estimate the value of the prediction variable at this cell. For example, ornithologists would use
autologistic regression to predict the existence of a certain bird species in a given location based
on two predictors such as the number of bird observers and the observing duration in this cell,
along with the predictions at neighbouring locations [50]. Meteorologists would need to predict
the hurricane strength at a certain area based on the wind direction at this area as a predictor and
the hurricane level at neighbouring areas. Epidemiologist would need to measure the infection
level of a disease (e.g., Ebola) in a certain country based on the preventive care level at this country
(i.e., predictor) and the infection levels of surrounding countries.

Myriad applications require the autologistic regression model to be built over large multinomial
(i-e., categorical) spatial data. Examples of these applications include multinomial brain [37] and
satellite images [51] analysis. In these applications, the prediction and/or predictor variables in
the regression model are multinomial, which means that the value of any variable comes from a
set of possible values (i.e., domain values). However, existing methods for autologistic regression
(e.g., see [4, 26, 33, 56]) face two main limitations. The first limitation is that these methods are
specifically designed for autologistic models with binary prediction and predictor variables (i.e.,
each variable takes either 0 or 1) only, and hence are not applicable for the multinomial case [58].
The second limitation is that these methods are prohibitively computationally expensive for large
grid data, e.g., fine-grained satellite images [36, 59], and large spatial epidemiology datasets [31].
For example, it could take about week to infer the model parameters using the training data of only
few gigabytes [26]. As a means of dealing with such scalability issues, existing techniques tend
to sacrifice their accuracy through two simplified strategies: (1) Use only a small sample of the
available training data, and (2) Only allow individual pairwise dependency between neighbouring
cells. For example, if a prediction cell variable C; depends on two neighbouring cells C; and Cs,
then existing methods assume that C; depends on each of them individually, and hence define two
pairwise dependency relations (Cy, Cz) and (Cy, Cs). Both approaches lead to significant inaccuracy
and invalidate the use of autologistic regression for predicting spatial phenomena of current
applications with large-scale training data sets.

In this paper, we introduce RegRocket; a scalable framework, which overcomes the above men-
tioned two limitations, for building autologistic models with multinomial prediction and predictor
variables. RegRocket does not need to sample training data sets. It can support the prediction over
grids of 1 million cells in few minutes. Moreover, RegRocket allows its users to define high degrees of
dependency relations among neighbours, which opens the opportunity for capturing more precise
spatial dependencies in regression. For example, for the case where a prediction cell variable C;
depends on two neighbouring cells C, and Cs, RegRocket is scalable enough to be able to define
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a ternary dependency relation (Cy, C,, C3), which gives much higher accuracy than having two
independent binary relations.

RegRocket overcomes the first limitation by extending the standard multinomial logistic regres-
sion [12, 29, 30] to include spatial dependencies among prediction variables. We refer to this as
multinomial autologistic regression. To overcome the second limitation, RegRocket exploits Markov
Logic Networks (MLN) [11] (a scalable statistical learning framework) to learn the multinomial
autologistic regression parameters in an accurate and efficient manner. Then, RegRocket aims to pro-
vide an equivalent first-order logic [16] representation to dependency relations among neighbours
in autologistic models. This is necessary to accurately express the autologistic models using MLN.
RegRocket transforms each neighbouring dependency relation into a predicate with bitwise-AND
operation on all variables involved in this relation. For example, a ternary dependency relation
between neighbouring variables Cy, C, and Cs is transformed to C; C,  Cs. This simple logical
transformation allows non-expert users to express the dependency relations within autologistic
models in a simple way without needing to specify complex models in a tedious detail.

RegRocket proposes an efficient framework that learns the model parameters over MLN in a dis-
tributed manner. It employs a spatially-indexed learning graph structure, namely factor graph [57],
along with an efficient weights optimization technique based on gradient descent optimization [63].
RegRocket represents the MLN bitwise-AND predicates using the spatially-indexed factor graph.
Then, RegRocket runs multiple instances of learning algorithms in parallel, where each instance
handles the learning process over exactly one factor graph partition. At the end, the obtained results
from all learning instances are merged together to provide the final autologistic model parameters.
Using the proposed framework, RegRocket converges to the optimal model parameters of large
prediction grids (e.g., 1 million cells) in just few minutes.

RegRocket is the successor of TurboReg [42], from which it is distinguished by: (1) Providing a
new MLN representation along with its theoretical foundation for multinomial autologistic models,
unlike TurboReg that considers binary autologistic regression models only. The MLN representation
of RegRocket can be considered as a generalization of its counterpart in TurboReg. (2) Adapting the
MLN transformer, factor graph constructor, and model parameters learner modules of TurboReg to
efficiently implement the new MLN representation of the multinomial case. (3) Providing experi-
mental study of the different system settings in terms of running time, and prediction accuracy
while employing the MLN-based multinomial autologistic models.

We experimentally evaluate RegRocket using two real datasets of the daily distribution of bird
species [50], and the land cover distribution of Minnesota, USA [35, 54]. We compare the accuracy
and scalability of the built autologistic models over each dataset using the basic RegRocket and
two generalized variations of RegRocket, that consider higher neighbouring interactions between
predictions, with a state-of-the-art open-source autologistic model computational method, namely
ngspatial [25]. Our experiments show that RegRocket is scalable to large-scale autologistic models,
while achieving a high-level of accuracy in estimating the model parameters.

The rest of this paper is organized as follows: Section 2 gives a brief background of autologistic
models, both binary and multinomial, and the MLN framework. Section 3 describes how multinomial
autologistic regression is modeled using MLN. Section 4 gives an overview of the RegRocket system
architecture. Section 5 describes how the first-order logic predicates are generated for multinomial
autologistic models. Section 6 provides details about the spatially-indexed factor graph structure.
Section 7 illustrates the details of the weights learning phase. Section 8 provides the experimental
analysis of RegRocket. Section 9 covers the related work, while Section 10 concludes the paper.
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Fig. 1. An Example on Multinomial Autologistic Regression.

2 PRELIMINARIES

This section provides a brief discussion about the autologistic models (Section 2.1) and Markov
Logic Networks (MLN) (Section 2.2).

2.1 Autologistic Regression

Binary Models. Binary autologistic regression builds a regression model that predicts the value
of a binary random variable (i.e., prediction variable that takes either 0 or 1) at a certain location
based on a set of binary predictors (i.e., features that help in the prediction process) at the same
location and a set of observed predictions from variables at neighbouring locations (i.e., spatial
dependence). Formally, binary autologistic models assume a set of n binary prediction variables
Z ={z1,....2n} (e, z; € {0,1}) at n locations £ = {Iy,...,I,}, and a set of m predictor variables
X (i) = {x1(i), ..., xm(i)} where the value of each predictor variable x;(i) is a function of location
l; (e.g., a predicator about the existence of water which could have a different value for each
location), and each location /; has a set of neighbouring locations N;. Given a specific location [;,
the conditional probability of prediction variable z; given the values of current predictors X and
the neighbouring prediction variables Zx, can be estimated as follows [3, 26, 42]:

Pr(z; =11 X(i),2Zn,)
logp( S 01 X(). Zn) JZ:"BJXJ l)+r]k€Zlek (1)

where the weights f = {f, ..., fm} and 1 form the model parameters 6 = {f, n}. As shown in
Equation 1, for each prediction variable z;, there are two types of regression terms: predictor-based
terms {fB;x;(i) | j = 1,..,m}, and neighbour-based terms {nzy | k € N;}. Note that the values of ¢
are shared among all locations £.
Multinomial Models. Binary autologistic models can be extended to the case of multinomial
(i.e., categorical) predictions and predictors. In this case, each prediction variable z; has r possible
outcomes D, = {A1,As,...,A,}, and each predictor variable x;(i) has q possible domain values
Z)xj(,-) = {t1,t3,...,t4}. Since the variables are not binary, the model in Equation 1 is no longer
valid for the multinomial case. Our approach to obtain the appropriate model for a prediction
variable with r possible outcomes is to build r — 1 independent binary models, in which one
outcome is chosen as a pivot and then the other r — 1 outcomes are separately regressed against
the pivot outcome. Eventually, the probability of predicting the pivot outcome is calculated based
on these built r — 1 binary models (i.e., 1 — 3., Pr(outcome is 1) where p is the pivot outcome).
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Such approach is already implemented in classical multinomial logistic regression [12, 29, 30], yet,
without considering the spatial dependence (i.e., neighbour-based regression terms).

In the generated binary models, each multinomial prediction variable zg will be represented with
r binary random variables zg(d) 01 A Ry » Where zg(A) indicates whether the prediction
value at location Igis A or not. In addition, each multinomial predictor xg(i) will be represented as a

set of (r 1)q binary random variables xé Bi) A R Pt Rx® > Where A is a non-pivot

outcome to be predicted at location lgand ¢ is a possible domain value of xg(i). The variable xé IZ(i)
represents a binary predictor (i.e., xé IE(z’) 0 1) in the autologistic regression model that is built
for the binary prediction variable zg(1). Assuming the pivot outcome of prediction variable zg is A,

the r 1 conditional probabilities corresponding to zg given the values of current predictors and
the neighbouring predictions can be estimated as follows:

BI®A) 1 ® o M B AR

o8 I T @ W g o LN RO I 128 (5)
B®) 1 ® o Jo B_As B

108 IREIm T ® R18 8 X () - &Zmz w2 () o
MREm ) 1 ® o Ag 1 B Ag 1 B,

log Frmom T ® 5 818 Bg" ' xg (D) Mg 1 &21(S)

E® LA
As shown in Equation 2, each binary predictor xé g(i) is associated with one weight ﬂé ® More-
over, in contrast to Equation 1 which has one weight n for the whole neighbour-based regression
terms, the multinomial autologistic model defines a weight ) g for each possible pair of variables
(zm(A) zr(s)), where zg(A) and zg(s) correspond to the predictions of a non-pivot outcome A at loca-
tion Iy (i.e., A % P )and any outcome s at each neighbouring location k m(e.,s Rg)-
The main reason for having multiple n weights is to capture more precise spatial dependencies
among neighbouring predictions compared to the one weight in traditional binary models. The
objective of our work is to build multinomial autologistic models that achieve both high prediction
accuracy and low running time by learning the values of model parameters 0 B n , where
B ﬁfl B ﬁgg "% and 1  4Ya A Nig, g > from previous observations (i.e., training data)
of predictions and predictors at locations , in a scalable and efficient manner. Note that the total
number of weights to be learned in  and  are mq(r 1) and r(r 1), respectively.
Assumptions. In general, prediction and predictor variables can be either binary, multinomial,
or continuous. However, we focus only on binary and multinomial variables. The extension to
continuous case is out of scope of this paper.
Example. Figure 1 shows a numerical example of multinomial autologistic regression. In this
example, we have a 4 x 4 grid (i.e., 16 cells), where each cell Ighas a prediction variable zg with three
possible outcomes (i.e, ® 0 1 2 ), and one binary predictor variable x; (i) (ie, ®m® 01).
Assuming the prediction outcome 0 as pivot, each location i has 3 binary prediction variables
z%(0) zg(1) zg(2) , and 4 binary predictor variables xl1 %(3i) xf °3i) xi (i) xf (i) . As a result, we
have 4 predictor-based and 6 neighbour-based weights. These weights are trained by observations
from all locations except /34 which is unknown (i.e., needs to be predicted). The example also
shows the calculations to predict the value of z14 using the learned parameters. The probabilities of
the three possible outcomes of zg are first calculated, and then the outcome corresponding to the
highest probability is selected as the prediction value.
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Fig. 2. Translating First-order Logic Predicates into A Factor Graph in MLN.

2.2 Markov Logic Networks

Markov Logic Network (MLN) has recently emerged as a powerful framework to efficiently learn
parameters of data models with complex dependencies and distributions [7, 11, 39]. MLN combines
probabilistic graphical models (e.g., factor graphs [57]) with first-order logic [16] to perform
probabilistic learning based on logic constraints, where the logic handles model complexities and
the probability handles uncertainty. MLN has been successfully applied in a wide span of data
intensive applications including knowledge bases construction [48], machine learning models [9],
and genetic analysis [43]. The success stories in such applications motivate us to explore MLN in
computing the parameters of models with spatial dependencies such as autologistic regression.

2.2.1 Modeling with MLN. Any model can be represented with MLN, only if it has two main

properties: (1) the model can be represented as a set of p binary random variables v R
(vm 0 1). (2) the dependencies between model variables  can be described with a set of
weighted constraints fi  fz defined over them, where these weights Wi WR

are the model parameters that need to be learned. The constraints describe how the values of
variables  correlate with each other. A model with these two properties can exploit MLN to learn
the weights  that maximize the probability of satisfying the model constraints

Example. Assume a model of two variables ugzmm and vsmezw, where ugmay denotes whether a
person is a professor or not, and ugxgrr denotes whether a person teaches or not. We can define a
constraint that "if a person is a professor then she teaches, and vice versa". In this case, MLN learns
a weight w that maximizes the probability of uxgxy and usxezw having the same value (i.e., either
g 1 and vggawm 1 or ugmaw 0 and g 0).

2.2.2  First-order Logic. MLN employs first-order logic predicates [16] (e.g., conjunction, disjunction
and implication) to represent the model constraints. For example, the constraint defined over uggxg
and umeesw can be represented as a bitwise-AND predicate uggmm  vmaxsw - Efficient logic programming
frameworks were proposed to express and generate first-order logic predicates on a large-scale
such as DDlog [48] and XLog [46].

2.2.3  Factor Graph. To learn the values of weights  associated with predicates (i.e., constraints),
MLN translates these predicates into an equivalent probabilistic graphical model, namely factor
graph [57], which has weights  as the parameters of its joint probability distribution. By doing
that, the problem of learning weights  is reduced into the problem of learning the joint distribution
of this factor graph. A factor graph is a bipartite graph that represents each model variable
v and constraint f as a node, and there is an edge between any constraint node f and
each variable node v that appears in f.

Figure 2 shows an example of translating three bitwise-AND logical predicates (fi, f2, and f3)
defined over a model of four variables (v, v;, v3 and vy) into a factor graph.
Probability Distribution. The full joint distribution of variables  in a factor graph  can be
estimated in terms of the constraints (i.e., predicates)  and their weights = with a log-linear
model [11] as follows:
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Fig. 3. MLN Representation of A Multinomial Autologistic Model (logical predicates and their factor graph).

Pr(V =v) == exp (Z wlfl(v)) (3)

where C is a normalization constant, f;(v) is the value of whether the i-th constraint is satisfied
or not, and w; is its weight. Scalable optimization techniques have been proposed to efficiently
learn the values of weights ‘W in factor graph, such as gradient descent optimization [27, 60, 63].

3 MULTINOMIAL AUTOLOGISTIC REGRESSION VIA MARKOV LOGIC NETWORK

In this section, we describe how MLN is exploited to efficiently solve the multinomial autologis-
tic regression problem. We start by discussing the MLN-based model for the basic multinomial
autologistic regression in Equation 2 (Section 3.1). Then, we extend this model in case of more
complicated multinomial autologistic regression scenarios (Section 3.2).

3.1 MLN-based Multinomial Autologistic Model

To represent a multinomial autologistic model using MLN, RegRocket extends the MLN-based
binary autologistic model in TurboReg [42] to support the multinomial case. TurboReg represents
all binary autologistic regression terms, whether predictor-based or neighbour-based, as a set of
weighted bitwise-AND logical predicates (i.e., weighted MLN constraints). In RegRocket, we follow
the same approach of mapping from regression terms to logical predicates, however, with two main
modifications. The first modification is to apply this mapping on each regression term defined
in the r — 1 binary regression models of the multinomial case (Equation 2). For each prediction
variable z;(1) corresponding to a non-pivot possible outcome A at location [;, each predictor-based
regression term ﬁ’1 xh *!(i) has an equivalent bitwise-AND predicate defined over z;(1) and xA L)

(ie., z;(A) A x]/.1 t(z)) with weight [J’J“ Similarly, each neighbour-based regression term 1, szx(s)
has an equivalent bitwise-AND predicate defined over z;(A) and zx (s) with weight 7, ;. Recall that
all prediction and predictor variables in Equation 2 are binary, and hence, it is valid to provide
equivalent logical predicates to them. The second modification is to define a constant predicate
of value 1 and weight 0 for any prediction variable z;(p) corresponding to a pivot outcome p at
location ;. The theoretical foundation of the proposed MLN-based multinomial autologistic model
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is described in the Appendix A. Note that, using the proposed model, the autologistic regression
parameters § S n are translated into a set of weights ~ of MLN constraints (i.e., proposed
equivalent bitwise-AND predicates), and hence learning the autologistic model parameters 60
becomes equivalent to learning the values of ~ in MLN (See section 2.2.3).
Example. Figure 3 shows an example of translating a multinomial autologistic regression model
into an equivalent MLN. This example defines a model with multinomial prediction of 3 possible
outcomes 0 1 2 (i.e., three binary prediction variables 2zg(0) zg(1) zx(2) at each location Iy
where the pivot outcome is 0, and one multinomial predictor of 2 domain values 0 1 (i.e., four
binary predictor variables xl1 °3i) xf °(i) xl1 L) xf (i) at each location Ig). The model is built
for two neighbouring locations [; I . We first translate the autologistic model into a set of 16
bitwise-AND predicates and 2 constant predicates along with 4 predictor-based weights f5;
110 fo 11 1 12 1 and 6 neighbour-based weights n 110 711 712 20 21 N22 - Then, these
predicates are translated into a factor graph which can be used to learn the weights $; and 7. Note
that duplicate predicates that come from neighbouring variables are removed to avoid redundancy
(e.g., the neighbouring variables z;(2) and z,(2) have two equivalent z;(2) z2(2) and z2(2) z;(2)
neighbour-based predicates, respectively, however, we keep only one of them).

3.2 Generalized Multinomial Autologistic Models

Some applications assume models with more generalized neighbour-based regression terms

narG(zr, (s)  z®g(s)) ki kx ms Dgy (i.e., complex spatial dependence), where the
regression term has a function defined over neighbouring prediction variables G(zg, (s) 2y, (s)),
and not just their sum as in Equation 2 (e.g., Ecology [45] and Mineral Exploration [21]). Existing
methods can not compute autologistic models with generalized regression terms because of their
prohibitively expensive computations, such as high-order matrix multiplications [26]. In contrast,
the MLN-based multinomial autologistic model can be easily extended to find an equivalent combi-
nation of first-order logic predicates [16] for any generalized regression term, as long as the function
G(zm,(s) 2wy (s)) holds logical semantics. For example, if the prediction variable z;(1) at location
I; has a generalized regression function G(z2(2) z3(2)) over neighbours z;(2) and z3(2) which
constraints the value of z;(1) to be 1 only if both values of z,(2) and z3(2) are 1 at the same time,
then RegRocket would translate this into an equivalent bitwise-AND predicate z1(1) 2z2(2) z3(2).
As another example, if G(z2(2) z3(2)) constraints the value of z;(1) to be 1 only if either z,(2) or
z3(2) is 1, then it can be translated into a predicate z;(1) (z2(2) 2z3(2)) that has a combination
of bitwise-AND and bitwise-OR. Our experiments show that handling generalized regression terms
using the MLN-based model increases the learning accuracy while not affecting the scalability
performance (See Section 8).

4 OVERVIEW OF REGROCKET

Figure 4 depicts the system architecture of RegRocket. It includes three main modules, namely, MLN
Transformer, Factor Graph Constructor, and Weights Learner, described briefly as follows:

MLN Transformer. This module receives the autologistic regression model from a RegRocket user
and generates a set of bitwise-AND and constant predicates of an equivalent MLN. It employs
an efficient logic programming framework, called DDlog [48], to produce predicates in a scalable
manner. Details are in Section 5.

Factor Graph Constructor. This module prepares the input for the Weights Learner module by
building a spatially-indexed factor graph out of the generated predicates. The factor graph is
partitioned using a flat grid index, where each grid cell has a graph index for its factor graph part.
Details are in Section 6.
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Weights | _  indexed Factor Graph
Learner ~ Factor Graph Constructor

L—> Final Weights (B, n)

Fig. 4. RegRocket System Architecture.

#Schema Declaration

z?(@key locld bigint, @key outcomeld bigint, value numeric).

x?(@key locld bigint, @key featureld bigint, @key inDomainld bigint, value numeric).
neighbour(locld1 bigint, outcomeldl bigint, locld2 bigint, outcomeld2 bigint).

#Derivation Rules

z(locld, outcomeld) ~ x(locld, featureld, inDomainld):- z(locld).

z(locldl, outcomeldl) ™ z(locld2, outcomeld2) :- neighbour(locld1, outcomeldl, locld2, outcomeld2).
@weight(0) 1 :-z(locld, outcomeld), outcomeld = 0.

Fig. 5. Example of Using DDlog to Generate Bitwise-AND Predicates for Multinomial Autologistic Model.

Weights Learner. This is the main module in RegRocket which efficiently learns the weights that
are encoded in the spatially-indexed factor graphs. These weights represent the autologistic model
parameters. It takes the built factor graph along with learning configurations (e.g., number of
learning epochs) as input, and produces the final values of weights 6 = {f, }. In this module,
RegRocket provides a scalable variation of gradient descent [63] technique, that is highly optimized
for learning the autologistic model parameters. Details are in Section 7.

5 MLN TRANSFORMER

The first step in RegRocket is to generate a set of equivalent logical predicates for the different
regression terms in the autologistic model. However, this step is challenging in two cases. The first
case is when the model has a large number (e.g., millions) of prediction variables Z and/or predictor
variables X, which results in generating a large number of neighbour-based and predictor-based
predicates at the end. The number of prediction variables could explode in case of having large
2-dimensional grid (e.g., a 50005000 grid) and too many possible outcomes D, (e.g., 50 outcomes)
for each cell prediction. Similarly, there could be a large number of predictor variables due to a
large number of synthetic features, each with too many possible domain values Dy ;). The second
case is when the model has very complicated generalized regression terms, which are translated
into predicates with a large number of combinations of first-order logic symbols (e.g., bitwise-AND,
bitwise-OR, and imply).

To remedy this challenge, RegRocket uses DDlog [48], a DBMS-based logic programming frame-
work, to generate equivalent predicates for any autologistic model in a scalable manner. DDlog
takes advantage of the scalability provided by DBMS when generating a large number and/or
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Variables Index of C,

Graph Layer

l |1| 1 I(II 0)§(|,ﬂz,1)§(|:ﬂz,o)l

Predicates Index of C;

Neighbourhood Layer

Fig. 6. Example of Spatially-indexed Factor Graph.

combinations of predicates. It provides users with a high-level declarative language to express
logical predicates using few template rules. These rules are then translated into SQL queries and
applied against the database relations of variables (e.g., Z and X) to instantiate the actual set of
predicates. DDlog has been widely adopted in many applications due to its usability and efficiency
(e.g., knowledge bases [48] and data cleaning [40]).

Example. Figure 5 shows an example of using DDlog to express the bitwise-AND predicates of
the multinomial autologistic model in Figure 3. DDlog has two types of syntax; schema declaration
and derivation rules. Schema declaration defines the relational schema of variables that appear
in predicates. For example, prediction and predictor variables are stored in relations z? and x?,
respectively, where any row in each relation corresponds to one binary variable. In case of z?,
each row (i.e., variable) stores location ID, outcome ID and the to-be-predicted value of a binary
prediction variable in the attributes locId, outcomeld and value, respectively. Similarly, in case of
x?, each row stores location ID, feature ID, possible domain value ID, and the input value of a binary
predictor variable in attributes locId, featureld, inDomainld and value, respectively. Note that
variable relations are differentiated from normal relations with a question mark at the end of their
names. Derivation rules are templates to instantiate predicates. In this example, the first derivation
rule is a template for bitwise-AND predicates coming from predictor-based regression terms (i.e.,
f1, f5. fo, fios fi5 f16, fi7 and fis in Figure 3), where the body of rule (i.e., right side after symbol
":-") specifies that a predicate is defined over any z and x only if they have the same location id
(i.e., selection criteria). During execution, this rule is translated into a hash join between relations
z and x with selection predicate over id. Similarly, the second derivation rule is a template for
predicates corresponding to neighbour-based regression terms (i.e., f, f3, f5, fo» f7, fs» f11, f12, and
f13 in Figure 3), where a predicate is defined for each individual pair of neighbouring predication
variables. Finally, the third derivation rule defines the constant predicates (i.e., predicates of value 1
and weight 0) over prediction variables of pivot outcome 0 (i.e., f; and fi4). Note that the first two
derivation rules are not associated with the @weight tag because the weights associated with their
predicates (i.e., f and n) are still unknown and will be learned later.
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6 FACTOR GRAPH CONSTRUCTOR

Figure 6 depicts the organization of a spatially-indexed factor graph for the predicates that are
generated in Figure 3. The index is composed of two main layers, namely, neighbourhood layer and
graph layer, described as follows:

6.1 Neighbourhood Index Layer

The neighbourhood index layer is basically a two-dimensional index on the given factor graph.
There is already a rich literature on two-dimensional index structures, classified into two categories:
Data-partitioning index structures (e.g., R-tree [20]) that partition the data over the index and
space-partitioning index structures (e.g., Quadtrees [14]) that partition the space. In RegRocket
we decided to go with the Grid Index [38] as an example for space-partitioning data structures
because it aligns with the nature of spatial phenomena that are predicted over grids. Having said
this, RegRocket can accommodate other two-dimensional index structures as a replacement of our
grid index. Each grid cell in the neighbourhood layer keeps a graph index for its factor graph part.
Figure 6 gives an example of a neighbourhood index layer as a 2-cells grid (i.e., C; and C;), where
C; contains the factor graph part corresponding to predicates in locations [; and I, and C; holds
predicates in locations I3 and Is. RegRocket takes the grid resolution as input from the user.

6.2 Graph Index Layer

Each cell in the two-dimensional neighbourhood grid points to two indexes of variables and
predicates. Together, these two indexes form the factor graph part in this cell.

Variables Index. This index contains all predication and predictor variables that exist in the grid
cell. Each node in the index corresponds to one variable, and points to a list that has three types of
information (1) location as a first element in list, (2) value (i.e., 1 or 0) as a second element in the
list and (3) predicates that this variable appears in, which are stored as a set of pairs in the rest of
list. Each pair consists of a pointer to a predicate in the predicates index, and the weight associated
with this predicate. Figure 6 shows the details of variable z;(0) in the variables index.

Predicates Index. This index contains all predicates that are defined over variables in this grid
cell. Each node in the index corresponds to one predicate and has a list of pointers to variables that
appear in this predicate. Figure 6 shows the details of predicate fi3 in the predicates index. In the
case of predicates with variables in two different cells, we replicate these predicates in each cell.

7 WEIGHTS LEARNER

This is the most important module in RegRocket, which takes the spatially-indexed factor graph
along with learning configurations from the user and returns the final weights 6  f n of the
multinomial autologistic model.

Main Idea. A typical solution to efficiently learn the weights ~ of any MLN model is to provide
an approximate log-likelihood function for the full joint distribution in Equation 3 as follows [27]:

X

log Pr( V) wifa(v) logC (4)
1

Equation 4 provides an objective function to optimize when learning the weights of the
model. As shown in [27], we can estimate the gradient of any weight wgas follows:

o logpPr( v) fa(v) E[fa(v)] ®)
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Algorithm 1 Function LEARNWEIGHTS (FactorGraphCells C, Learninglnstances S, LearningEpochs
E, StepSize a)

1: f Random,n Random

2 e % /* Num. of Learning Epochs Per Instance®/

3: while e # 0 do

4 foralls 12 S doin parallel

5 forallc C do in parallel

6 ®  Variables index in cell ¢

7: ®  Predicates index in cell ¢

8 for each ug x do

9 UPDATEWEIGHTS (U8, R, R, @) (Algorithm 2)

10: Nend for u

X 1ﬁ|2| K 17X
11: B g7 i
12: e

13: end while
14: return S and n

where E[ fg(v)] is the expected value of whether the i-th constraint (i.e., predicate) is satisfied
or not. Equation 5 can direct how to incrementally converge to the weights that maximize the
satisfaction of the MLN model. For example, by applying Equation 5 on the training data, if the
gradient value of weight wgis positive, then the current assignment of variables in fg(v) increases
the satisfaction of the MLN model, and hence the corresponding weight wg should be rewarded
(i.e., should be increased), otherwise it should be punished (i.e., should be decreased). However,
estimating the value of E[ fg(v)] is known to be computationally-expensive in MLN models and
requires approximate inference algorithms [27, 49].

As a result, instead of contrasting the satisfied value of the i-th predicate fx(v) against its
expectation value E[ fz(v)] (Equation 5), RegRocket contrasts the estimated prediction value of the
autologistic model (Equation 2) where this predicate belongs to against the corresponding observed
prediction from the training data. This approximation has been shown in a recent MLN-based
application [48] to converge to the weights that maximize the satisfaction of the MLN model as
long as there is no predicate whose observed value is unknown in the training data, which is
the case of our regression models. In addition, this approximation is efficient-to-compute as the
prediction is estimated by a direct substitution in Equation 2 (i.e., no need for approximate inference
algorithms). As an example, to estimate the gradient value of the weight ﬁé B of the predicate

zg(A) xé &(i), RegRocket uses the following two items: (1) the estimated prediction value Zg(1,,)
based on the current value of xé m(i), and (2) the observed value of zg(1,) from the training data. If

the estimated prediction Zg(A,) is similar to the observed prediction zg(4,,), then the weight ﬁé B
should be rewarded, otherwise it should be punished. To that end, we adapt a variation of the
gradient descent optimization [63] that punishes and rewards weights using the proposed gradient
approximation. The details of algorithms that implement this idea are described below.

LEARNWEIGHTS Algorithm. Algorithm 1 depicts the pseudo code for our scalable weights learner
that takes the following four inputs: the spatially-partitioned factor graph C, the number of learning
instances S that can run in parallel, the number of learning iterations E needed to converge to
the final values of weights, and the step size a which is a specific parameter for the optimization
algorithm 2 that will be described later. The algorithm keeps track of the current best values of
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Algorithm 2 Function UPDATEWEIGHTS (Variable v, VariablesIndex , PredicatesIndex , StepSize

a)
1: if v is not a prediction variable for a pivot outcome, and belongs to the training data then
2 In [v]location, g 1 /* Gradient Value */
3 Zg(Ay)  Prediction of outcome A, at lyusing S and n (Equation 2)
4: if [v].value # Zx(A,) then
5 g -1
6 end if
7 if v is any predictor variable xé” R (i) (i) then
8: ﬂé” R ﬂé“ R a g /* Gradient Descent on ﬂé” Hox
: else
10: for each ﬂé” B B do
11 ﬁé” B ﬂé” B g /* Gradient Descent on ﬁé” Boxy
12: end for
13: end if
14: if v is prediction variable zg(A,,) then
15: for each p [v] do
16: if p is a neighbour-based predicate then
17: Zn(sw)  Prediction of outcome sy at neighbour Iy in p using f and 5
18: if [ug].value # Zg(sg) then
19: g -1
20: else
21: g 1
22: end if
23: i, B N, R + @ g/* Gradient Descent on ) g, */
24: end if
25: end for
26: end if
27: end if

weights through variables: § and 7, initialized by random values. The algorithm then starts by
computing the number of learning epochs that can be handled per each learning instance and stores
it in a variable e. Note that e represents the actual number of learning epochs that run sequentially
because different learning instances execute in parallel. Each of these learning instances then starts
to process one learning epoch in parallel (i.e., S learning epochs are running simultaneously). In
such learning epoch, we learn an optimal instance of weights fig and ng, where these values are
incrementally learned from variables in the factor graph using UpDATEWEIGHTS function (Line 9
in Algorithm 1)(details of this function are described in Algorithm 2). To reduce the learning
latency, we process the variables from different factor graph partitions in parallel (Lines 5 to 10 in
Algorithm 1). After all learning instances finish their current learning epoch, we set the values of
and n with the average of the obtained weights from these instances (Line 11 in Algorithm 1) and
then proceed to another learning epoch with the new weights. We repeat this process e times and
then return the final values of weights.

UPDATEWEIGHTS Algorithm. Algorithm 2 gives the pseudo code for our weights optimizer that
applies the gradient descent optimization [63] technique to incrementally update the values of
weights given a certain variable v (either non-pivot prediction or predictor) from the training data.

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.



xx:14 Ibrahim Sabek, Mashaal Musleh, and Mohamed F. Mokbel

Assume the outcome that appears in v is A,,. Similarly, in case v is a predictor variable, assume
the possible domain value in v is ;. The main idea is to punish or reward current weights based
on their performance in correctly estimating the prediction value zg(A,,) at location Iy where the
variable v belongs to.

The algorithm takes the following inputs: a variable v that belongs to the training data, the
variables  and predicates indexes in the grid cell containing v (i.e., graph index), and a step size
a that controls the amount of punishing/rewarding during the optimization process. The algorithm
keeps track of the current status of whether weights need to be punished or rewarded through a
variable g, where it takes either 1 in case of rewarding or 1 in case of punishing, and is initialized
by 1. The algorithm starts by estimating the prediction 7Zx(4,) at location g that contains v based on
the current values of f and 5 using Equation 2. If the estimation Zg(4,,) never matches the observed
prediction value from the training data, then we set the status g to 1 (i.e., the associated weight
with current variable v needs to be punished), otherwise the status remains rewarding. In case
v is a predictor variable xé“ R (i), we only update its associated weight ﬂé“ B by evaluating the
gradient descent equation using the current values of g and « (Line 8 in Algorithm 2) and jump to
the end of algorithm. In case v is the prediction variable zg(1,) itself, we apply the gradient descent
optimization on all weights § associated with its predictors (Lines 10 to 12 in Algorithm 2), and on
all weights 1 associated with the neighbouring predicates (Lines 15 to 25 in Algorithm 2) as well.
Complexity. The complexity of the two aforementioned algorithms can be estimated as
O(%M&?W) where nr is the number of prediction variables, mg(r 1) is the number
of predictor variables, C is the number of factor graph partitions, E is the number of learning epochs
and S is the number of learning instances. This complexity can be further approximated to be
O(% Cm;ﬂ). Note that we assume having SC working threads to process C factor graph partitions
in each of the S learning instances in parallel.

8 EXPERIMENTS

In this section, we experimentally evaluate the accuracy and scalability of RegRocket in build-
ing multinomial autologistic models (i.e., learning their weights). To the best of our knowledge,
RegRocket is the first end-to-end system that supports multinomial autologistic regression (see
Section 9). As a result, we compare the performance of RegRocket with multinomial models built on
top of a state-of-the-art binary autologistic regression package, namely ngspatial [25]. Specifically,
we compare our performance with multinomial models built on top of the most accurate algorithm
in ngspatial that employs Bayesian inference using Markov Chain Monte Carlo (MCMC) [26]. In
addition, we extensively investigate the performance of different variations of RegRocket under
different grid size (Section 8.2), learning epoch (Section 8.3), optimization (Section 8.4), factor graph
partitioning (Section 8.5) and parallelism (Sections 8.6) configurations.

8.1 Experimental Setup
8.1.1 Datasets. All experiments in this section are based on the following two grid datasets:

MNLandCover dataset, which represents the land cover distribution in Minnesota state
and is compiled from the USGS National Land Cover [54] and Multi-Resolution Land Cover
Consortium [35] data repositories. Figure 7(a) depicts the land cover distribution in Minnesota,
where each grid cell is either crops (yellow color), forest (green color) or others (blue color).
Thus, we generate a multinomial (i.e., categorical) prediction variable at each grid cell, where
each variable takes one of these three possible values. As shown in a recent study [52], the
land cover prediction is influenced by three factors; the elevation and slope of the ground as
well as the distance to nearby roads. Based on this study, we also generate three multinomial

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.



RegRocket: Scalable Multinomial Autologistic Regression with Unordered Categorical Variables Using Markov Logic Networks ~ Xx:15

(a) MNLandCover Dataset (b) Ebird Dataset

Fig. 7. Datasets Used in Experiments.

predictors corresponding to these factors based on the elevation [10] and transportation [55]
datasets of Minnesota at each grid cell. Each predictor takes one value out of 11 possible
values. We generate six versions of this dataset with different grid sizes, ranging from 1000
to 1 million cells, to be used during most of our experiments.

Ebird dataset [50], which is a real dataset of the daily distribution of a certain bird species,
namely Barn Swallow, over North America. Each grid cell holds a predication of the bird
existence in the cell or not (i.e., binary prediction). Figure 7(b) shows the Ebird data distri-
bution, where blue dots refer to cells with bird existence. We generate six versions of this
dataset with different grid sizes, ranging from 250 to 84000 cells, to be used during most of
our experiments. This dataset has three multinomial predictors at each grid cell including
bird observers, observing duration, and the spatial area covered by observers. Each predictor
takes one value out of 3 possible values.

8.1.2  Parameters. Unless otherwise mentioned, Table 1 shows the settings of both MNLandCover
and Ebird datasets. We select the 250k and 84k variations of MNLandCover and Ebird, receptively,
to be used by default. In each dataset, we divide the cells in each grid into training and testing sets,
where we randomly select 20% of cells for testing and keep the rest for training. All training and
testing cells have ground truth predictions (i.e., no missing values). During the testing phase, we
use the following three inputs to perform the prediction at any testing cell: (1) the learned model
parameters, (2) the values of the predictors at this cell, and (3) the ground truth predictions at the
neighbours of this cell. Table 2 also shows the default learning configurations that are used with
RegRocket. In most of the experiments, we run three variations of our system: the basic RegRocket
that has pairwise neighbourhood relationships (i.e., neighbourhood degree of 1), and other two
generalized variations with 4-ary and 8-ary neighbourhood relationships (i.e., neighbourhood
degrees of 4 and 8), referred to as RegRocket-4 and RegRocket-8, respectively (See Section 3.2).
In RegRocket-4, each predication has a bitwise-AND predicate over the vertical and horizontal
neighbours surrounding it (i.e., neighbours that share edges with this location only). Similarly,
in RegRocket-8, each predication has a bitwise-AND predicate over the whole 8 neighbours (i.e.,
neighbours that share points with this location). Note that the neighbourhood relationships are
pre-specified and fixed during both the training and testing phases. Table 3 shows the total number
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Parameter MNLandCover Ebird Dataset
Dataset
Grid Training Size 200000 cells 67200 cells
Grid Testing Size 50000 cells 16800 cells
Number of Predictors 3 3
Number of Possible Predictor Values || 11 3
Number of Possible Prediction Values || 3 2
Table 1. Default Dataset-specific Parameters.
’ Parameter H Default Value ‘

Learning Epochs E 1000

Neighbourhood Degree D 1,4,8

Step Size o 0.001

Number of Threads 7

Factor Graph Partitions C 200

Table 2. Default Learning-specific Parameters.

[ Grid Size [[ RegRocket [ RegRocket-4 | RegRocket-8 | [ Grid Size [| RegRocket | RegRocket-4 | RegRocket-8 |

1k 70k 66 8k 66 7k 250 3 2k 2 4k 23k
4k 280k 267 7k 267 4k 1k 13k 9 8k 9 7k
15k 105m 1m 998 5k 3 5k 45 5k 34 7k 34 5k
60k 42m 4m 39m 5k 65k 49 7k 49 4k
250k 17 5m 16 7m 16 5m 21k 273k 209k 208 7k
1m 70m 66 9m 66 7m 84k 109m 838 8k 837 6k

Table 3. Number of Predicates for the MNLandCover (Left) and Ebird (Right) datasets.

of predicates that are generated for both datasets when using the basic RegRocket, RegRocket-4 and
RegRocket-8 during our experiments.

8.1.3 Environment. We run all experiments on a single machine with Ubuntu Linux 14.04, 8
quad-core 3.00 GHz processors, 64GB RAM, and 4TB hard disk.

8.1.4  Metrics. We use the total running time of learning weights as a scalability evaluation metric.
To measure the model accuracy, we use the following three metrics to evaluate the prediction
quality of each outcome A (i.e., category):

Precision (Prec.): the number of correctly predicted cells with the outcome A over the total
number of predicted cells with the outcome A.
Recall (Rec.): the number of correctly predicted cells with the outcome A over the total

number of testing cells that are actually labelled with the outcome A from the ground truth.
(RRX R )
M XX

To handle the multinomial case, we calculate these three metrics for each outcome, and then
report the average of each metric over the total number of outcomes.

F1-score (F1): the harmonic mean of precision and recall for the outcome A as 2

8.2 Effect of Grid Size

In this section, we compare the performance, both accuracy and scalability, of basic RegRocket
and two generalized variations RegRocket-8 and RegRocket-4 with ngspatial, while scaling up the
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Grid  Metric || ngspatial RegRocket RegRocket- RegRocket- Grid  Metric || ngspatial RegRocket RegRocket- RegRocket-
Size 4 8 Size ! 8
Prec. 0.498 0.746 0.872 0.731 Prec. 0.551 0.846 0.847 0.858
1k Rec. 0.491 0.757 0.837 0.763 250 Rec. 0.951 0.966 0.976 0.985
F1 0.476 0.653 0.708 0.683 F1 0.698 0.902 0.907 0.917
Prec. 0.667 0.803 0.808 0.933 Prec. 0.503 0.801 0.876 0.883
4k Rec. 0.601 0.834 0.856 0.871 1k Rec. 0.981 0.986 0.965 0.961
F1 0.606 0.742 0.704 0.782 F1 0.665 0.884 0.918 0.921
Prec. 0.671 0.804 0.906 0.962 Prec. 0.477 0.865 0.916 0.901
15k Rec. 0.741 0.832 0.898 0.903 35k  Rec. 0.977 0.991 0.992 0.985
F1 0.635 0.721 0.841 0.834 F1 0.641 0.924 0.952 0.941
Prec. N/A 0.822 0.913 0.976 Prec. N/A 0.885 0.875 0.912
60k Rec. N/A 0.821 0.919 0.919 5k Rec. N/A 0.984 0.986 0.984
F1 N/A 0.678 0.736 0.798 F1 N/A 0.932 0.927 0.947
Prec. N/A 0.864 0.932 0.967 Prec. N/A 0.864 0.866 0.895
250k  Rec. N/A 0.893 0.912 0.915 21k Rec. N/A 0.984 0.991 0.991
F1 N/A 0.839 0.781 0.806 F1 N/A 0.921 0.924 0.941
Prec. N/A 0.878 0.929 0.961 Prec. N/A 0.889 0.929 0.919
im Rec. N/A 0.908 0.931 0.895 84k Rec. N/A 0.991 0.993 0.991
F1 N/A 0.859 0.868 0.873 F1 N/A 0.937 0.956 0.954

Table 4. Effect of Grid Size on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

prediction grid size. In each experiment, either accuracy or scalability, we report the average of 5
different runs (we follow the same approach in all the experiments in the paper).

Table 4 shows the precision, recall and F1-score values for each algorithm while scaling the grid
size from 1k to 1 million cells in case of MNLandCover dataset, and from 250 to 84k cells in case of
Ebird one. In all grid sizes, RegRocket and its variants RegRocket-8 and RegRocket-4 were able to
significantly achieve better precision, recall and F1-score results than ngspatial. Specifically, in both
datasets, RegRocket variants have an average precision of 0.87, recall of 0.92, and F1-score of 0.85,
while ngspatial has an average precision of 0.56, recall of 0.79, and F1-score of 0.62. This indicates
the efficiency of RegRocket in representing multinomial autologistic regression models. Note that
the ngspatial results are incomplete after a grid size of 15k cells in case of the MNLandCover
dataset, and 3.5k cells in case of the Ebird one, because of a failure in satisfying the memory
requirements needed for its internal computations. We can also observe that the F1-score achieved
by any RegRocket variation in both datasets is at least 0.65, which happens in the MNLandCover
dataset with 1k cells, and can reach up to 0.95 at some cases. In general, the accuracy for small
datasets tend to be lower than large ones due to the small number of grid cells used to train the
model. As we can see from the table, the basic RegRocket has at maximum 20% lower F1-score
than both RegRocket-4 and RegRocket-8. The reason for that is the basic RegRocket captures less
accurate neighbourhood dependencies than both of them. Note that RegRocket-4 and RegRocket-8
have very close accuracy results in some cases. This happens when the significant information
between neighbourhoods with degrees 8 and 4 is very little, which makes the accuracy in the two
cases are pretty similar.

Figures 8(a) and 8(b) depict the running time performance of each algorithm while using the
same grid sizes in Table 4. We can observe that the three RegRocket variants and ngspatial have
an average running time of 14 minutes and 8 hours, respectively. This means that RegRocket is at
least 34 times faster than ngspatial. The poor performance of ngspatial comes from two reasons:
(1) although ngspatial relies on parallel processing in its sampling, prior estimation and parameters
optimization steps, it runs a centralized approximate Bayesian inference algorithm [26]. In contrast,
RegRocket is a fully distributed framework. (2) ngspatial requires estimating a prior distribution for
each predictor variable, and hence it suffers from a huge latency before starting the actual learning
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Fig. 8. Effect of Grid Size on Scalability.

Num. of Metric RegRocket RegRocket-4  RegRocket-8

RegRocket RegRocket-4  RegRocket-8 ‘ ‘NumA of Metric

Epochs Epochs
Prec. 0.815 0.883 0.906 Prec. 0.849 0.899 0.909
100 Rec. 0.845 0.864 0.854 100 Rec. 0.845 0.835 0.825
F1 0.772 0.732 0.715 F1 0.847 0.866 0.865
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
1000 Rec. 0.893 0.912 0.915 1000 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.961 0.954
Prec. 0.881 0.931 0.966 Prec. 0.909 0.919 0.919
10k Rec. 0.866 0.909 0.915 10k Rec. 0.925 0.935 0.995
F1 0.826 0.785 0.795 F1 0.917 0.927 0.955

Table 5. Effect of Learning Epochs on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

process. Note that the ngspatial curve is incomplete for grids with sizes more than 15k cells in case
of the MNLandCover dataset, and 3.5k cells in case of the Ebird one as in Table 4. We also find
that in case of datasets with large grids (e.g., 1 million cells in the MNLandCover dataset), both
RegRocket-4 and RegRocket-8 achieve lower latency overhead than basic RegRocket. For example,
at 1 million case, RegRocket-4 and RegRocket-8 variations are two times faster on average. This is
because increasing the neighbourhood degree leads to producing less number of predicates (See
Table 3), and hence less number of factor graph nodes to process, which makes the weights learning
process faster. In this experiment, the performance of the three RegRocket variations are almost
similar in case of small grid sizes (i.e., the average accuracy difference between the three variations
is less than 20 seconds). However, the difference becomes significant in the case of large grid sizes
(average of 600 seconds difference for grid size of 1 million cells). This shows that RegRocket is
efficient when scaling up the grid size regardless of the neighbourhood degree. Note that both
figures 8(a) and 8(b) follow a log-scale.

8.3 Effect of Learning Epochs E

In this section, we evaluate the performance, both accuracy and scalability, of basic RegRocket,
RegRocket-4 and RegRocket-8, while having three different values of learning epochs. In the following
experiments, we fix the grid size in both datasets to the default values.

Table 5 shows the values of accuracy metrics for the three variations of RegRocket while changing
the number of epochs from 100 to 10k. The results show an interesting observation that all variations
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Fig. 9. Effect of Learning Epochs on Scalability.

Step  Metric Step  Metric || RegRocket RegRocket-4 RegRocket-8

RegRocket RegRocket-4  RegRocket-8 ‘

Size Size
Prec. 0.829 0.921 0.966 Prec. 0.914 0.909 0.929
0.0001 Rec. 0.816 0.789 0.915 0.0001 Rec. 0.993 0.998 0.995
F1 0.782 0.825 0.875 F1 0.952 0.951 0.961
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
0.001 Rec. 0.893 0.912 0.915 0.001 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.956 0.954
Prec. 0.819 0.871 0.926 Prec. 0.879 0.909 0.899
0.01  Rec. 0.806 0.838 0.875 0.01  Rec. 0.985 0.985 0.985
F1 0.756 0.745 0.795 F1 0.929 0.945 0.941
Prec. 0.779 0.861 0.916 Prec. 0.779 0.884 0.879
0.1 Rec. 0.766 0.828 0.865 0.1 Rec. 0.985 0.895 0.895
F1 0.676 0.745 0.785 F1 0.871 0.889 0.887

Table 6. Effect of Optimization Step Size on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

of RegRocket can rapidly converge to their optimal values of weights (i.e., number of learning epochs
1000 only). The rapid convergence happens because weights are shared among all locations which
makes their values updated multiple times using the gradient descent optimization in each epoch. As
a result, RegRocket just needs a small number of epochs for weights convergence. In general, basic
RegRocket needed a higher number of epochs (i.e., 10k), compared to RegRocket-4 and RegRocket-8,
to achieve higher accuracy. This matches our performance hint that generalized variations such as
RegRocket-4 and RegRocket-8 could be more efficient than the basic RegRocket.

Figures 9(a) and 9(b) show the running time for the different variations given the same setup
in Table 5. In general, RegRocket with all variations is extremely efficient because of the parallel
processing of learning epochs in RegRocket. However, we observe that RegRocket-8 significantly
outperforms RegRocket-4 and RegRocket. It is at least 40% and 25% faster than both of them in
the MNLandCover and Ebird datasets, respectively. Note that Figure 9(a) follows a log-scale, but
Figure 9(b) is not.

8.4 Effect of Optimization Step Size «

In this section, we evaluate the performance, both accuracy and scalability, of the different variations
of RegRocket while varying the value of the step size « that is used during the execution of gradient
decent optimization (See Section 7). We use the same datasets used in the previous experiments.
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Fig. 10. Effect of Optimization Step Size on Scalability.

Num. of Metric RegRocket RegRocket-4  RegRocket-8

RegRocket RegRocket-4 RegRacket—S‘ ‘NumA of Metric

Partitions Partitions
Prec. 0.945 0.962 0.971 Prec. 0.967 0.944 0.968
50 Rec. 0.894 0.931 0.912 50 Rec. 0.992 0.991 0.982
F1 0.852 0.877 0.914 F1 0.979 0.967 0.975
Prec. 0.913 0.954 0.961 Prec. 0.923 0.941 0.937
100 Rec. 0.891 0.923 0.931 100 Rec. 0.971 0.981 0.983
F1 0.843 0.812 0.861 F1 0.946 0.961 0.959
Prec. 0.864 0.932 0.967 Prec. 0.889 0.929 0.919
200 Rec. 0.893 0.912 0.915 200 Rec. 0.991 0.993 0.991
F1 0.839 0.781 0.806 F1 0.937 0.959 0.953
Prec. 0.782 0.812 0.815 Prec. 0.674 0.789 0.792
300 Rec. 0.734 0.831 0.821 300 Rec. 0.782 0.712 0.812
F1 0.689 0.701 0.712 F1 0.724 0.748 0.802

Table 7. Effect of Number of Factor Graph Partitions on Accuracy for the MNLandCover (Left) and Ebird
(Right) datasets.

Table 6 depicts the effect of increasing the value of step size from 0.0001 to 0.1. In general, the
accuracy of all RegRocket variations decreases by increasing the step size in both datasets. We also
observe that the highest prediction accuracy tends to saturate in most cases at value 0.001. The
main reason behind this is that large step sizes lead to large updates while optimizing the weights
and hence they cannot smoothly converge to the optimal values. We conclude that the step size
should be kept relatively small on average in RegRocket. However, this comes with higher latency
as in Figures 10(a) and 10(b) that show the corresponding running times. For example, decreasing
the step size from 0.01 to 0.001 in the MNLandCover dataset incurs 26% additional latency overhead
while running RegRocket-4.

8.5 Effect of Number of Factor Graph Partitions C

In this section, we evaluate the performance, both accuracy and scalability, of the different variations
of RegRocket while varying the number of factor graph partitions C (See Section 6.1) from 50 to
300. We use the same datasets used in the previous experiments with the default configurations.
Table 7 shows the effect of increasing the number of factor graph partitions on the precision, recall
and F1-score values. We observe that the F1-score values decrease when increasing the number of
partitions because the number of predicates that are replicated among partitions increases. This

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.



RegRocket: Scalable Multinomial Autologistic Regression with Unordered Categorical Variables Using Markov Logic Networks ~ XX:21

2601 RegRocket A ‘ RegRocket A
240g RegRocket-4 é — 24 RegRocket-4 é ]
RegRocket-8 RegRocket-8
G 220 ¢ 1 $ 225
@ 200 | ®
£ 180 ¢t N £ 2
g 160 | 1 g
F 140 | £ F 18y
120 ¢ ] 16
100 : : : :
50 100 200 300 50 100 200 300
Factor Graph Partitions Factor Graph Partitions
(a) MNLandCover Dataset (b) Ebird Dataset
Fig. 11. Effect of Number of Factor Graph Partitions on Scalability.
800 i " RegRocket [ 240 i ‘ " " RegRocket [
700 RegRocket-4 mm - 200 | N RegRocket-4 mm
: 5 RegRocket-8 . RegRocket-8 =3
g 600 | 1 ]
] o 160 |
c 500 | e
= = 120 |
qE; 400 QE’
"o | " ol @ @
r 40
100 ] SN0 SD SHNG S NG O 20 | | ]| {N—_—
12 3 45 6 7 8 12 3 45 6 7 8
Number of Threads Number of Threads
(a) MNLandCover Dataset (b) Ebird Dataset

Fig. 12. Effect of Number of Threads on Scalability.

results in more iterations to update the weights as in shown in Algorithm 2 (Lines 15 to 25), which
makes the weights suffer from an over-fitting issue, and hence the accuracy decreases. For example,
in both datasets, when increasing the number of partitions from 200 to 300, the F1-scores in case of
RegRocket, RegRocket-8 and RegRocket-4 decrease by 17%, 10% and 11%, respectively, on average.

Figures 11(a) and 11(b) depict the running time for the different variations of RegRocket given
the same setup in Table 7. Increasing the number of partitions leads to more parallelism, and
hence the running time starts to decrease. However, increasing the number of partitions after a
certain threshold (e.g., 200) makes the running time overhead to handle the predicates replication
significant, and hence the whole running time slightly increases again. For example, in both datasets,
the average F1-score decrease is 30% in all variations when changing the number of partitions
from 100 to 200. After that, the F1-score starts to increase due to the replication overhead. In our
experiments, we choose the number of partitions to be 200 in order to balance between the accuracy
and the running time.
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8.6 Effect of Number of Threads

Figures 12(a) and 12(b) show the effect of increasing the number of threads from 1 to 8 on the three
variations of RegRocket for both datasets. These threads are used to parallelize the work in the
weights learner module of RegRocket. As expected, the performance of all variations significantly
improves by increasing the number of threads. For example, the running time of the basic RegRocket
using 8 threads is at least 4 times faster than using 1 thread in the MNLandCover dataset. This
shows the ability of RegRocket to scale up with system threads. Note that the performance difference
between 7 and 8 threads is almost the same because all cores are exploited in both cases.

9 RELATED WORK

In this section, we first provide an overview of existing theoretical models and computational
methods of autologistic regression. Then, we briefly mention other related spatial regression models.
Autologistic Theoretical Models. There are two main theoretical models of autologistic regres-
sion: (1) Traditional model [3] simply estimates the logistic function of the predication probability
at any location as a linear combination of predictors at this location and the predictions of its neigh-
bours. However, this model incurs prediction biasing in case of sparse training data. (2) Centered
model [6] is similar to the traditional model, however, the model parameters are normalized to
avoid the biased cases. This adds more complexity when learning the model parameters. Other
than TurboReg [42], the predecessor of RegRocket, all existing implementations of both traditional
and centered autologistic models provide a trade-off between the running time complexity and
the accuracy of learning model parameters. In contrast, both RegRocket and TurboReg achieve the
performance efficiency while preserving the model accuracy at the same time.

Recent research has proposed an extension for spatio-temporal autologistic models [61, 62] (and
centered variants [15, 56]), which incorporates the temporal dependence between predictions at
the same location. However, this line of research is out of the scope of this paper.

Autologistic Computational Methods. A wide array of techniques that are capable of learning
the autologistic model parameters on a small scale (see [26, 58] for a comprehensive survey, and [25]
for open-source implementations). Learning the autologistic model parameters is much harder
than learning parameters of classical non-spatial regression models due to the spatial dependence
effect. Thus, the techniques are categorized into three main categories based on their methods of
approximation to the original parameters distributions: Pseudo likelihood estimation [4, 61](and
centered variants [26]), Monte Carlo likelihood estimation [17](and centered variants [26, 61]),
Bayesian inference estimation [5, 33] (and centered variants [25, 61]). TurboReg [42], conversely,
applies Markov Logic Networks (MLN) [11] to learn the autologistic regression parameters, yet, for
binary predication and predictor variables only. RegRocket, on the other hand, is the first framework
to support both multinomial prediction and predictor variables in the same autologistic model.
Other Spatial Regression Models. Autologistic models belong to the class of non-Gaussian spatial
modelling [22], in which the spatial dependence between predictions is conditionally modelled
through direct neighbours. However, there are three other classes: (1) linear spatial models [22],
(2) spatial generalized linear models [18] and (3) Gaussian Markov random field models [41], that
encode the spatial dependence through a distance-based covariance matrix. This matrix defines
how much the prediction in one location is affected by predictions in all other locations based on
their relative distances. Another main difference is that these spatial regression classes are mainly
developed for prediction of continuous variables, which is out of the scope of this paper.
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10  CONCLUSIONS

This paper has presented RegRocket, a scalable framework for building multinomial autologistic
regression models to predict spatial categorical data. RegRocket focuses on the autologistic models
that consist of prediction and predictor variables with unordered categories. RegRocket provides
an efficient modeling for the multinomial autologistic regression problem using Markov Logic
Network (MLN), which is a scalable statistical learning framework. RegRocket employs first-order
logic predicates, a spatially-partitioned factor graph data structure, and an efficient gradient descent-
based optimization technique to learn the autologistic model parameters. Experimental analysis
using real data sets shows that RegRocket is efficient, scalable and provides accurate capturing for
the multinomial autologistic regression problem.
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A THEORETICAL FOUNDATION OF REGROCKET USING MLN

THEOREM 1. Given an autologistic model defined over n locations L In with

n multinomial prediction variables z1  zm , each has r possible outcomes gy
A Ax , and are represented with a set of nr binary variables z1(A1) 8 (AR) ,

m weighted multinomial predictor variables (i)  x1(i)  xm (i) at each location i, each
has q possible domain values gy® t1  tq , and are represented with a set of mq(r 1)

weighted binary variables ,Bf‘ 1xf1 (i) ,Bé'x ! gxém ! g(i) , where Ay is a pivot outcome of
any multinomial prediction zg, and
r(r 1) neighbouring weightsn 1y, 2, Mg 1 Am

there is an equivalent Markov Logic Network (MLN) to this autologistic model, if and only if:

each predictor-based regression term ﬁé Mxé IXI(i) at location Ig has an equivalent bitwise-AND

predicate zg(A) xé Ix(i) with weight ﬁé B where A is not a pivot outcome (i.e., A £ Ay).

each neighbour-based regression term 1, gzg(s) at location Ig has an equivalent bitwise-AND
predicate zg(A)  zw(s) with weight n) g, where A is not a pivot outcome (i.e., A # Ag).

each prediction variable zg(Ag) at location Iy is associated with a constant predicate of value 1
and weight 0.

Proof. Based on the conditional probabilities of multinomial autologistic model in Equation 2, the
probability of predicting any possible non-pivot outcome A (i.e., A # Ag) at location Ig given the
predictor variables (i) at [y and the neighbouring prediction variables can be estimated as:

Pr(zm(d) 1 ¢w Pr(m(lm) 1 ¢ exp A ) nawz(s)  (6)
X 1K R B gX Ry

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.


https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection
https://catalog.data.gov/dataset/usgs-national-land-cover-dataset-nlcd-downloadable-data-collection
https://catalog.data.gov/dataset/usgs-national-transportation-dataset-ntd-downloadable-data-collectionde7d2
https://catalog.data.gov/dataset/usgs-national-transportation-dataset-ntd-downloadable-data-collectionde7d2

xX:26 Ibrahim Sabek, Mashaal Musleh, and Mohamed F. Mokbel

where ¢g (i) w - As a result, the probability of predicting the pivot outcome Ay at
location Ig can be calculated as follows:

Pr(z(lg) 1 ¢w) 1 Pr(z(d) 1 ¢g)
A R A#r
X
1 Pr(za) 1 du)exp g v () 2w (s)
A omg AR X 1K Ri® K X R
1
B AN AN, .
1 exp R g () N w2 (s)
A mg AR 1K W@ X X R
(7)
From equations 6 and 7, the probability distribution of any outcome prediction zg(A) is:
X
v R g @
X X
S u A# g
IXLIZ‘XIZI,N
Pr(Z|Z|(/1) 1 ¢N) ! B RgR#AK P MR gym fa ¥ ® R gE Ry .2 ®) (8)
1
A Az

X

1 Xp pa RS ® 170,508 ()
KR B ¥ Xy

e
N Ry N#AR K1K

Now, assume a model that consists of nr  nmq(r 1) binary random variables

z1(A1) zm(Am) xfl L) xég ! g(i) , coming from nr prediction and nmq(r 1) predictor vari-
ables over all locations . In addition, in case A # Ag, assume a set of constraints F x
are defined over variables , where constraints Fgat location Iz consist of two subsets of constraints.
The first subset consists of mq(r 1) bitwise-AND predicates zg(4) xé IZ(i) with S weights (each
predicate corresponds to a predictor-based regression term). The second subset consists of 7(r  1)sg
bitwise-AND predicates zg(1) zg(s) with n weights (each corresponds to a neighbour-based
regression term) where sy is the size of neighbouring locations g of location Ig Finally, in case
A g at each location Iz assume one constant predicate of value 1 with weight 0. Based on
these assumptions, the model satisfies the two main properties in Section 2.2.1 that are needed to
represent it using MLN, and hence its joint probability distribution over  is estimated based on
Equation 3 as follows:

X KX
& exp o B m(za(d) xp (i)
ngl 1D g wgw
Pr ) nanfia(al) z(s) A+ g ©)
BIN w(AM) &g g
1

X

where f) m( ) and f; m( ) represent functions to evaluate the bitwise-AND predicates zg(1) xé Ix(i)
and zg(4) zw(s), respectively, and return either 1 or 0 as output. Note that in the case of pivot
outcome Ag, we have a constant predicate of value 1 with weight 0, and hence its probability
becomes IZ% exp(0(1)) E%, where C is the normalization constant of the model.
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Based on Equation 9, the conditional probability distribution of any prediction variable zg(1) at
location Iy given the predictor variables (i) at Iz and its neighbouring prediction variables

X
(i.e., ow (i) » ) can be estimated as:

X
4 ex AN 1 x5
g €XP BB X 2 R’( X (i)
Prize(d) 1 ¢ mefir(l z(s) A#g (10)
g ®y
IZ% A Az

where the normalization constant C is calculated over all possible outcomes of zg, to ensure the
probability value of any outcome [0 1], as follows:

X
C exp P am(1 xg (i) mufan(l z(s))  exp(0)
K g AR X1K Rig® K g Ry
X
1 exp M ham(1 xg (i) mewfan(l z(s)
DO P EX X1K Hig® X gX B

Since all variables are binary, the evaluation of f) gand f) g can be represented as a mathematical

multiplication (i.e., the value of f) g(1 xé Ix(i)) is xé Ix(i) and the value of f) g(1 zw(s)) is zx(s)). As
a result, the joint probability distribution of zg(A) from Equation 10 becomes:

X

e o RO @
M E® R
A# Ay
X
Prza(] 1 exp i ) 7, (%)
r(ZQ( ) 1 ¢®) B RgB#AR 1K Rig® K xX Xy (11)
. ! A w
1 exp pRER® 7, % ()
N Kg XA X1x Rg® B e By

which is the same probability distribution of the autologistic model defined in Equation 8. This

means that the assumed model at the beginning, which can be represented with MLN, is equivalent
to the multinomial autologistic model.
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