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Abstract

We argue that any proposed quantum theory of gravity with non-trivial cobordism
classes in the space of configurations belongs to the Swampland. The argument is
based on the assumption that there are no global symmetries in a consistent theory
of quantum gravity. The triviality of the cobordism classes requires the existence of
certain stringy defects that trivialize the potential cobordism classes. We provide evi-
dence for this conjecture by identifying those defects demanded by this argument that
could preserve supersymmetry, and predict the existence of new non-supersymmetric

defects in string theory.
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One of the main lessons of the second superstring revolution is that all known string the-

ories are connected by a web of dualities. As a result of this discovery, we have come to

think of string theory as a single theory of quantum gravity rather than many different,

independent theories. It is important to note, however, that many of these dualities involve

compactification. For example, while it doesn’t appear that Type IIA and Type IIB are



equivalent theories in 10 dimensions, T-duality relates their compactifications on S* from 10
to 9 dimensions. As another example, ITA compactified to 6 dimensions on K3 is equivalent
to the heterotic theories compactified on 7%, even though they are not currently expected
to be related in 10 dimensions.

In what sense, then, does this mean that string theory is a unique theory of quantum
gravity? The precise thing to say is that string dualities suggest the uniqueness of string
theory defined on fully compact space, leaving only time noncompact. In fact, there is
another sense in which string theory is not unique in infinite space, which is the presence of
a landscape of vacua for compactifications to d > 3 dimensions. Because it would require
infinite energy to change the moduli throughout all of space, different choices of moduli
define superselection sectors, which could equally well be thought of as different theories of
quantum gravity. However, this is not the language normally used, and for a good reason,
since localized regions can fluctuate between different moduli at a finite energy cost. Thus, it
is not the bulk theory which is non-unique, but merely the boundary conditions at inﬁnity

Motivated by the example of a moduli space of vacua, we can ask whether, say, IIA
and IIB in 10 dimensions are connected in the above sense, in that there could exist a
finite energy domain wall between the two. This is a stronger notion of connectedness than
that given by T-duality, since though the 10 dimensional Type II theories are connected
in the moduli space of their compactifications on S, they are at infinite distance from
each other. As we will show in Section [5| any domain wall between ITA and IIB would
necessarily break all supersymmetry. Since many of the ideas we have developed in string
theory rely on supersymmetry, it is possible that we would have missed the existence of
such non-supersymmetric configurations, whose construction may require harnessing non-
perturbative corrections in non-supersymmetric situations.

To analyze this stronger notion of connectedness, we are led to consider the cobordism
of quantum gravity. What we mean by this is the following. Consider the collection of
all configurations of a theory of quantum gravity with D large spacetime dimensions. We
can define an equivalence relation on this collection by declaring two configurations to be
equivalent if they are connected as above by finite energy domain walls. We will write QQG-D
for the set of equivalence classes. In fact, Q9P carries an abelian group structure, coming
from stacking theories, as we will discuss in Section [2| and so we will call this group the

cobordism group of quantum gravity with D large dimensions.

I Even if one fixes the amount of supersymmetry, it has been suggested that in some cases each different
choice of the topology is connected by allowed processes in string theory, such as the conjecture of Reid [1]
that all Calabi-Yau threefolds are connected by geometric transitions.



In order to justify the term “cobordism” for this group, suppose our theory of quan-
tum gravity with D large dimensions arises as the compactification of a theory in d total
dimensions, compactified on a space of dimension k = d— D (as in the case of string compact-
ifications). Then we can replace Q9% with QkQG, where QSG denotes the cobordism groups
of k-dimensional compactification spaces, since a nontrivial cobordism between two com-
pactification spaces behaves as a domain wall between the two D-dimensional theories, and
vice versa. If quantum gravity only made sense on smooth manifolds, then this would agree
with the usual mathematical notion of cobordism of smooth manifolds with some specified
geometric structure. While quantum gravity makes sense on spaces much more general than
smooth manifolds, including singular spaces and non-geometric backgrounds, the notion of
cobordism of quantum gravitational backgrounds should still make sense. Indeed, the more

QG.D make no reference to the geometry (or

physically well motivated cobordism groups 2
lack thereof) of the internal dimensions. However, for the rest of this paper, we will use the
notation QSG as opposed to Q9GP since we will be comparing to results from the study of
cobordisms of the manifolds used in string compactifications.

In this paper, we argue that the presence of a nontrivial cobordism group QgG signals an
inconsistency of the d-dimensional theory, and thus places it in the Swampland. In particular,
we will argue that, were a theory of quantum gravity to have a nontrivial cobordism group
QgG # 0, then there would be a global (d — k — 1)-form symmetry [2|, with charges labeled
by classes

[M] € Q€.

Since we believe that all theories of quantum gravity arising from compactifications of string
theory are free from any global symmetry, this implies that any theory in the string landscape
has QSG = 0. In fact, in the context of AdS/CFT, the absence of global symmetries in the
bulk can be established on more rigorous grounds [3], and so in that context the condition
QRS = 0 should follow as well.

There is one caveat to this argument, which is that in sufficiently low dimension, global
symmetries do seem to be allowed in quantum gravity. One class of examples are the string
worldsheets, viewed as 2d quantum gravitational theories, where global symmetries are plen-
tiful. In fact, in these cases, there exist nontrivial cobordism invariants [4], which can be
used to differentiate distinct types of string worldsheets, and thus show the non-uniqueness
of 2d quantum gravity theories. If we were to be conservative (and avoid the special prop-
erties of low dimensional quantum gravity), then we would restrict ourselves to claiming
only that QEG should vanish for k£ > 3, and indeed this is the restriction for the black hole



argument in Sectionto apply. However, it is not clear to what extent we should consider
low dimensional theories like the string worldsheet as part of the landscape of target space
string theory, and so we will assume for the rest of this paper that all global symmetries are
indeed forbidden in the string landscape.

The condition QgG = 0 implies the existence of a number of objects in string theory,
some known and some currently unknown. In particular, it implies that for any valid com-
pactification of string theory (or any quantum gravity theory) on a k-dimensional space,
there is a compactification on a (k + 1)-dimensional space that has our original compactifi-
cation as its boundary. Viewing the bulk of this (k + 1)-dimensional compactification as a
(d — k — 1)-dimensional defect, we see that the vanishing of cobordism groups implies the
existence of certain defects in string theory. These defects do not have to be independent
dynamical objects; for example, they could involve junctions of dynamical branes, or smooth
manifolds on which some other structure degenerates. As we will see, these defects include
many of the known objects in string theory, including D-branes and O-planes. However, for
some examples, the required defects are not currently known in string theory. In all of those
examples where we cannot identify the required defect, we can show that they must break all
supersymmetry, and so using topological arguments we are able to predict that consistency
of quantum gravity requires certain non-supersymmetric defects to exist in string theory!ﬂ
In a sense this is a quantum gravitational analog of the recent insights into the dynamics of
non-supersymmetric QFT’s gained using topological arguments.

From the perspective of the D-dimensional macroscopic spacetime, the condition of triv-
iality of cobordism groups is equivalent to saying that it should be possible to create, with
finite energy, a void in the space, where the (D — 1)-dimensional space ends on a (D — 2)-
dimensional boundary. In particular we predict that in our universe we should be able to
create finite-energy bubbles whose interior are forbidden regions (i.e., do not exist)! Of
course, by putting domain walls back to back, this also implies that we can obtain any other
allowed gravitational theory inside the bubble as Well

This paper is organized as follows. In Section , we define the cobordism groups QSG. In
Section|3| we argue from black hole physics and the absence of global symmetries in quantum
gravity that QSG = 0, and discuss how this condition can be used to predict structure in

a theory of quantum gravity. In Section [4] we examine the vanishing of cobordism groups

2 The alternative, that string theory does in fact have some global symmetries, is theoretically possible
but is in tension with a great deal of evidence from many sources.

3Whether these bubbles would be hidden behind event horizons depends on the size of the bubble and
the tension of the domain wall.



in some restricted approximations to string theory. In Section [5| we discuss some of the
new non-supersymmetric defects in string theory, predicted by the condition of vanishing

cobordism groups. Finally, in Section @We conclude with some ideas for future work.

2 Definition of Cobordism

Cobordism can refer to a number of increasingly refined mathematical objects, but at its most
basic form, cobordism is an equivalence relation between smooth manifolds more general than
diffeomorphism. While two diffeomorphic manifolds are equivalent on the point-set level,
two manifolds that are cobordant are related by a sequence of allowed topology-changing
operations, and so is the natural notion of equivalence in order to describe the connectedness
of quantum gravity as discussed in the introduction. In this section, we define what we mean

by the cobordism groups QSG of quantum gravity.

2.1 Cobordism Groups of Quantum Gravity

Suppose we have a quantum gravity theory defined in d spacetime dimensions, and we are
considering compactifications of the theory to D = d—k dimensions. If we are in the situation
where the internal dimensions are geometric, this compactification can be described by some
compact k-dimensional manifold M* on which the theory is compactified, and our notion of
cobordism reduces to the usual mathematical notion of cobordism. Since we may have more
general notions of k-dimensional backgrounds of quantum gravity, we need a more general
definition.

As discussed above, we would like to say that two k-dimensional backgrounds M, N
of quantum gravity are cobordant, M ~ N, if they are related by a sequence of allowed
topology-changing processes. If we place no restrictions at all on what topology changes are
allowed, than all backgrounds are trivially related to all other backgrounds, simply because
we have been too general about what we mean by “topology change.” The relevant notion
of “allowed topology change” for quantum gravity is clear: we should only include those
topology changing processes that are dynamically allowed in our theory. Thus, at a rough

level, we define the cobordism groups
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A cobordism of compactification spaces serves as a domain wall.

where we say two backgrounds M, N are cobordant if we can transition from one to the other
by a sequence of dynamically allowed processes in quantum gravity. From the perspective
of the D-dimensional theory, this process serves as a domain wall between the two different

theories, given by compactification on M and N.

So far, we have only defined QgG as a set. In order to define a group structure, we

consider the disjoint union of two k-dimensional backgrounds, M; LI Ms, and define
[Mﬂ + [Mg] — [Ml L Mg]

That this additive structure is abelian follows from the fact that there is no notion of the
ordering of a disjoint union. What we mean by “compactification on the disjoint union” is
really just two separate theories of quantum gravity in D-dimensions, namely the theories
given by compactification on M; and M, respectively. In particular, in our definition (1),
we do not require that the k-dimensional backgrounds be connected. However, suppose that
we are in the situation that the disjoint union M; LI M5 can be connected to some other

background N by a dynamical process, i.e., suppose we have M; LI My ~ N. Then we have
[Mi] + [Mo] = [My U Ms] = [N,

and so the group structure encodes the possibility for two separate backgrounds to collide



and join. From the perspective of the D-dimensional theory, this would behave as a domain
wall between the pair of theories defined by compactification on M; and M, and the theory
defined by compactification on N.

™~

A cobordism from a disjoint union.

The remaining pieces of data needed to define a group structure are a zero element and
inverses. Formally, we may define the zero element to be compactification on the “empty
background,” which simply means that we have the absence of any (d — k)-dimensional

theory. If for some background M we have

then this means that there is a dynamical process by which M may disappear. From the
perspective of the D-dimensional theory, this process would behave as a domain wall at
the edge of spacetime, with nothing beyond. Finally, for inverses, we note that by holding
M fixed in time, we obtain a (trivial) cobordism from M to itself. By folding the time in
half, we may alternatively view this as a process by which the disjoint union of M and an

appropriate orientation-reversal M join and disappear into nothing, and so we have

[M] + [M] = 0.



Thus, the set QSG defined in is indeed an abelian group.

A cobordism to the empty manifold.

One alternative perspective on QEG follows from considering the spacetimes W traced
out by the dynamical processes connecting, say, M and N as noncompact (k4 1)-dimensional
backgrounds in their own rights. If we choose a fibering W — R, for some choice of Euclidean
time s, then we should have that for s =& —oo we have that W — M x R, while for s — 400
we have W — N x R. In this situation, we have that

OW = MU N,

which matches more closely onto the usual mathematical notion of cobordism. We note that
while M, N, and the internal k-dimensions of W are allowed to be non-geometric, we are
requiring the Euclidean time s to still be geometric in a sense. In this language, we would

say that the cobordism class of a background M vanishes,

if there exists some noncompact (k + 1) dimensional background W, such that M = OW.
Thus, the condition that QSG = 0 can equivalently be stated as the condition that for
any k-dimensional compact background of quantum gravity, there must exist a (k + 1)

dimensional noncompact background for which it is the boundary. From the perspective



of the D-dimensional macroscopic space, this would mean that we expect every quantum

gravitational theory to have a D — 1-dimensional domain wall that it can end on.

3 Cobordism Invariants in Quantum Gravity

In this section we review why global symmetries should be absent in a quantum theory
of gravity, and why this implies the vanishing of cobordism classes defined in the previous
section. We also clarify the notion of apparent cobordism groups and their predictive power

for the existence of topologically non-trivial defects.

3.1 Conserved Charges and Black Holes

In this section, we review the well-known argument that the process of black hole formation
and evaporation should violate the conservation of any supposed global charge in a theory
of quantum gravity. The basic argument goes as follows. Suppose that we had a particle
carrying the conserved charge, and a large uncharged black hole. We can imagine throwing
the particle into the black hole, and waiting for it to evaporate. However, since the early
Hawking radiation depends only on the geometry of the black hole event horizon, the Hawk-
ing radiation cannot be sensitive to the global charge, and so the charge must remain in the
black hole until the end of evaporation. Thus, there are two possibilities. The first is that
the conservation of charge is violated, in which case we are done. The second is that the
charge remains behind at the end of evaporation in a Planckian remnant. However, since
the initial charge was arbitrary, we may thus form an arbitrarily large number of distinct
remnants, which signals a sickness of the theory [5].

Though this argument is not airtight (it only works for continuous symmetries in particu-
lar), it provides good intuition as to why quantum gravity should be free of global symmetries.
In particular, it is easy to see where the above argument fails for gauged symmetries: since
a charge for a gauge symmetry must be attached to field lines, when it falls into a black
hole the field lines remain to pierce the horizon, and so the Hawking radiation can indeed
be sensitive to the charge contained within. Put differently, for a gauged symmetry, you can
measure the charge inside the black hole from outside the event horizon by using Gauss’s
law.

Now, we consider what the above argument looks like if the particle we threw into the
black hole were a gravitational soliton, in a similar sense to those discussed in [6]. What we

mean by this is the following. Suppose MP* is a consistent compactification for our theory.



! l N Black
~ Hole

A gravitational soliton formed from M falls into a black hole.

We can imagine forming the connected sum R¥# M, defined by cutting out a small ball in
R¥ and in M, and gluing the spherical boundaries together in a standard and smooth Way
This manifold looks like flat, empty space away from a small region, and so M may serve as

a (d — k — 1)-dimensional defect in our theory. Thus, we get a map

k-manifolds

C t, closed
{ OMIPACE, €05 } - {(d — k- 1)—defects} .

Now, we may ask whether there are any conserved (d — k — 1)-form charges associated to
the gravitational solitons formed this way. This would mean an invariant of M* that doesn’t
change under time evolution by a (k + 1)-dimensional spacetime. This is exactly what we
mean by a nontrivial cobordism invariant in Q,?G. Thus, classes in Q,?G label charges carried
by the corresponding defects. The question, then, is whether these charges are global or
gauged.

The key for us is that the connected sum R¥# M is indistinguishable from empty space
away from a localized region. Thus, running the above argument and throwing these defects
into a black brane (or a black hole obtained by wrapping them on a toroidal geometry of
dimension (d—k—1)), we would expect for their charges to be violated by black brane (black
hole) evaporation, since we cannot determine the total charge from outside the horizon. Thus,
we conclude that these charges are global, not gauged, and thus their presence should be

inconsistent with quantum gravity just as any other global charges are inconsistentﬁ

4To do this precisely, we would need to specify the metric and all the dynamical fields throughout this
gluing process. Since we are only considering global/topological aspects, we will suppress this technicality.
5 We note in passing that the symmetry group in this case would be

(QkQG)V = Hom (QkQG, U(l)) ,

10



3.2 Apparent Cobordism Groups

While in principle, the statement that
Q¢ — o,

could be checked itself in quantum gravity, in practice we are faced with the fact that we
don’t have a full, non-perturbative description of string theory that makes it clear what are
and aren’t allowed backgrounds and dynamical processes, especially when it comes to the
types of global issues captured by cobordism. Thus, the approach we will take in this paper
is one of approximation. Rather than attempt to compute the full-fledged groups QSG for
known string theories, we instead restrict ourselves to much simpler cobordism groups an
that involve turning off many fields and ignoring the possibility of singular or non-geometric
backgrounds. We then indeed find nontrivial cobordism groups, and we need to know what
to do with them.

What a non-vanishing cobordism group of an approximation to a consistent theory is
telling us is that the approximation is inconsistent, and that we need to include new in-
gredients if we want to understand the full theory. Since the presence of a non-vanishing
cobordism group implies the existence of a global symmetry, there are two possibilities for
the full theory.

e The first possibility is that this symmetry is actually broken in the full theory. In
terms of cobordism, this means that there exist defects that break the symmetry,
which we may use to produce new cobordisms between classes that were not previously
connected. By including some of these defects, we may refine our approximation. The
cobordism for the refined approximation receives a map from the original cobordism,

Qgﬁ N an+defects’

by mapping onto those manifolds which do not include defects. We say that classes in

the kernel of this map are killed in the full theory.

e The second possibility is that this symmetry is actually gauged in the full theory. In

terms of cobordism, this means that if we have a k-manifold M, then the full theory

but we do not need to make any reference to the symmetry group, since the notion of conserved charge is
more closely related to the physics of black hole evaporation in any case.

11



is actually inconsistent when placed on M unless
[M] =0 e Q2

which is to say that the total charge on a compact manifold must vanish. In this
case, we may refine our approximation by including the some of the gauge fields for
this symmetry. The cobordism for the refined approximation maps into the original

NQ(}—l-ga 1ge fields N(Q(}
Q]{? Qk’ ?

by forgetting the gauge field. We say that classes in the cokernel of this map are
co-killed in the full theory.

In both cases, we may refine our approximation, and hopefully come closer to the exact
theory. However, while adding additional ingredients can remove apparent cobordism classes,
it can also produce new ones, and indeed, we only expect to see vanishing cobordism groups

at the end of the day when we are able to consider a full, exact theory of quantum gravity.

f Defect

New defects may kill otherwise nontrivial cobordism classes.

4 Examples

In this section, we apply the condition

12



to string theory, following the approach described in Section First, we explain how
completeness of the spectrum for p-form gauge fields is a special case of the condition Qgﬁ =
0, and thus how the existence of D-branes can be explained by cobordism. Next, we turn
to the symmetry group of spacetime itself, and examine the cobordism of spin manifolds
as a first approximation to the cobordism of string theory. Finally, we discuss a number of
small refinements, in the form of M-theory on nonorienttable manifolds, nontrivial F-theory
compactifications of Type IIB, and the appearance of string structures in heterotic string
theory. Moreover, we can interpret the examples found in [7] as the statement that Type 1T
orientifolds kill the generators of the appropriate cobordism groups that take into account

the symmetries (—1)f% and the orientifold €.

4.1 p-Form Gauge Fields and D-Branes

In this section, we will argue that the condition of completeness of the spectrum for a p-form
U(1) gauge field is a special case of the vanishing of Q?G, and that the required defects are
simply the magnetic monopole branes. Of course, it is already well-known that completeness
of the spectrum for abelian gauge symmetries follows from absence of global symmetries [3][8],
and so this section is merely a rewriting of known facts in the language of cobordism.

In order to argue that vanishing of cobordism implies the existence of D-branes, we
consider the cobordism of orientecﬁ manifolds that carry a p-form U(1) gauge field A, with
field strength F,;; = dA,. This cobordism group is given by

Qz‘o,Uu)p _ Qriented k-manifolds M* /Cobordism,
with a p-form gauge field A,

the cobordism groups of oriented manifolds with a p-form U(1) gauge field A. There is a

cobordism invariant
S0,U(1),
Q: Y sz QM A,) = /M Fpi1, (2)

which measures the total magnetic flux of F},;; through M. That this is a cobordism invariant
follows from the Bianchi identity df,;; = 0.
The logic of Section tells us that there must be a (d—p—2)-form symmetry in theories

SWe restrict to oriented manifolds in order to define the charge l} We could extend our discussion to
theories defined on nonorientable manifolds provided that A, is a p-form twisted by the orientation bundle
of our manifold, such as the M-theory C-field [13].

13



of quantum gravity with p-form gauge fields A,. This symmetry is well known, and is given
by shifting the magnetic dual potential gd_p_g by a closed (d — p — 2)-form. The charged
defect under this symmetry is just a localized magnetic flux of F},;, which we identify as
the result of taking the connected sum of RP™! with a unit of magnetic flux on SP*1, as in
Section

What would it mean to break this symmetry, or equivalently, to kill this cobordism class?
This would mean that there is some (d — p — 3)-defect whose worldvolume is linked by a
(p+ 1)-manifold with unit magnetic flux. This is just the definition of a magnetic monopole,
and so we have reduced the statement that the cobordism invariant () should be killed to
the statement that there must exist magnetic monopoles for Fj,y;. In particular, we now
have that the condition QSG = 0 plus the existence of R-R gauge fields implies the existence
of D-branes in Type II string theory.

4.2 Spin Cobordism

As a first approximation to the full cobordism groups of string theory, we will imagine
turning off all gauge fields (the most basic properties of which are covered in Section ,
and use only the fact that string theory includes fermions. Thus, we consider manifolds with
a choice of spin structure, i.e., oriented manifolds with a chosen trivialization of the second
Steifel-Whitney classe ws = 0. The cobordism of spin manifolds is described by the spin
cobordism groups Qipin, which are given in the range 0 < k < 8 below [9]. The last row
of the table lists the generators, where pt™ is the positively-oriented point, S; is the circle
with the periodic spin structures, and K3 is the Kummer surface. We only stop at k = 7 for
convenience, and indeed there are more nonzero cobordism groups for £ > 8, which should

have implications for string theory as well, and which are listed in Appendix

ko 1 2 3 4 5 6 7
QP 7 Zy Zy 0 Z 0 0 0
Gens |ptt S} Sy xS, — K3 — — —

14



4.2.1 String Theories on K3

As an illustrative example, we will start by considering the implications of the group

U =17,
generated by K3. By the reasoning in Section this means that any theory of quantum
gravity with fermions has a potential (d — 5)-form symmetry, with charges labeled by Z,
under which K3 has unit charge. In order to describe this symmetry, we will use the fact
that a complete cobordism invariant of oriented 4-manifolds M is given by the signature
o(M), defined as the signature of the intersection form on the middle cohomology. Rokhlin’s

theorem states that for a spin 4-manifold M, we have
o(M)=0 mod 16,

and indeed we have
o(K3) = —16.

By the Hirzebruch signature theorem, we have

o) =3 [ min)

where .
Suppose we now define the current
J, —i* (R)—;*tr(R/\R)
TR TV Pe |

This is a (d — 4)-form, and satisfies d x J,, = 0. Thus, J,, generates a (d — 5)-form U(1)

symmetry, which is normalized so that K3 has (negative) unit charge, since we have

1 1
Ty = — K3) = —o(K3) = —1.
/Kg*“ 48/Kgpl( )= 17

Since we have now identified a potential global symmetry in quantum gravity theories
with fermions, we may now ask what happens to this symmetry in each of the different string

theories.

15



e M-theory (and Type ITA): We claim that part of this U(1) symmetry is broken even
by smooth manifolds in M-theory (and by extension in Type IIA), because while we
have written down the cobordism of oriented manifolds with spin structure, we know
[13] that M-theory makes sense on nonorientable manifolds with ws = 0, otherwise
known as manifolds with pin™ structure. Since we have not allowed nonorientable
manifolds in our description of spin cobordism, they may serve as defects that kill off
classes which are not the boundary of any orientable manifold with spin structure.
In particular, since a nonorientible 4-manifold M only has a Zs-fundamental class
[M] € HY(M;Zy) = Z5, we may only define the integral

/ *‘]IH S ZQ,
M

modulo two. Thus, we might expect that spin 4-manifolds M with
[M] € 22 C 7= Q"™
are killed off in pin™ cobordism. Indeed, we have that the map
(Qipin _ Z) . <Q4Pm+ _ Zm) 7

is given by multiplication by eight, and so has kernel 2Z C Z = Q™. This means that
smooth pin™ serve as defects to explicitly break U(1) to Zs, which is then extended to
a larger Z,q symmetry. Put differently, pin* manifolds produce instantons that only
preserve conservation of U(1) charge modulo two, but also allow for charge fractional-
ization to 1/8 the previous unit of charge. Of course, there is now the question as to
what happens to this new Z4 global symmetry, which we address in Section the
upshot is that this symmetry is exactly killed by known defects in M-theory.

e Type IIB: We defer a detailed description of the class of K3 in Type IIB to Section
but we can say that since K3 is a perfectly valid background for type IIB string
theory, this symmetry must be broken, not gauged. What we will find is that, while
conservation of the signature is broken by nontrivial F-theory compactifications, a
combination of the signature and the topology of the elliptic fibration seems to be
conserved by known processes, and so this example leads to one of our main predictions

for a new, non-supersymmetric defect in string theory.
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e Heterotic: The U(1) symmetry coming from Qipin = Z is gauged in heterotic string
theory. What this means is that there is a dynamical 6-form Ag in heterotic string
theory, together with a coupling of the form

SD/Aﬁ/\*Jm: /A6/\tr(R/\R).

38472
If we take Ag = 24B , a multiple of the magnetic dual of the B-field, then we do indeed

have the term

~ 1 ~ 1 ~
s

in the heterotic action. This is to say that K3 carries 24 units of fivebrane charge,
and thus it would be inconsistent to compactify heterotic string theory on K3, as is
well-known. Of course, there is also a well-known workaround, which is to cancel the
fivebrane charge by adding either fivebranes or gauge field instantons, but this takes
us away from cobordism without singularities and with gauge fields turned off, so we
will not discuss this new class of K3 with gauge field flux in this section, though we
will come back to it in Section One final note (discussed in more detail in Section
is that the coupling in actually implies that with gauge fields turned off,
heterotic string theory can only be defined on manifolds with a trivialization of the

class A = p1/2, which is also known as a string structure. We have a map
(Qitring _ 0) N (Qipin _ Z) :

and since Q"™ vanishes, we indeed see that all the nontrivial classes in Q3P are
co-killed by including the gauge field B.

4.2.2 String Theories on S}

We now turn to the implications of the group
Q§pin - Z27

generated by the non-bounding spin structure on S', namely the periodic spin structure S;.
This cobordism group signals the potential for a (d — 2)-form symmetry, with charge labeled

by Zy. Since S; is a consistent background for all known string theories, we expect this
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symmetry to always be broken, i.e., we expect there to be backgrounds for all known string
theories which have S; as their boundary. We now investigate to what extent this is true

within known examples.

e M-theory and Type ITA: As for the class of K3, we will see in Section that the
class of S; is also killed by considering nonorientable manifolds, and in particular we
have that S; is the boundary of the Mobius strip as a pin™ manifold, which we may
view as a defect in the orientation structure. However, there is another way to kill this
class that we will discuss here, because we would like to be able to apply T-duality to
kill the class of S; in Type IIB. This alternative way is an orientifold background (for
Type ITA), and is given by

R 1

ZXSP’ (X,)Y)—= Q- (-X,Y), (4)

where () is worldsheet parity. In other words, an O8-plane wrapped on the circle S; at

X =0 is the 7-brane that kills the class of S; in Type ITA. Note that the “boundary”

compactification we mean is at X — oo, not at X = 0, since we view the O8-plane as

part of the bulk. For M-theory, we may form the same background, except we would

call the defect a Hotava-Witten wall wrapped on S;.

e Type IIB: We may apply T-duality to the ITA background to obtain a IIB back-
ground that kills the class of S; for Type IIB, and which is given by the orientifold

background
R x S,

7 (X,Y) = Q(=1)fr . (=X, -Y),

where (—1) is the target-space fermion number of the left-moving modes. This
background contains two O7-planes at X = 0,Y = 0,7. Thus, in Type IIB, the
class of S; is killed by two O7-planes. We note further that this background is Sen’s
limit of the compactification of F-theory on %K 3 given by an elliptic fibration over the
hemisphere %(CIP’I. We will see in Section that the trivialization of this cobordism
class is a result of passing from spin cobordism to the spin® cobordism allowed by

F-theory, and indeed the map
(Q?Pin — ZQ) N <Q§pinc _ O) :
shows that the class of S; is killed by generalizing to spin® cobordism.
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e Heterotic: For heterotic string theory on S;, we do not know of a mechanism by
which this class is killed.

On final note from this section is the for M-theory and Type II string theory, we may
take the defects that Kkill S;, wrap them on an additional S;, and obtain defects that kill
S; X S;. Thus, for these theories, we will not discuss the class of S; X 5’; independently. For

heterotic string theory, we do not know how to kill the class of S} x S}.

4.2.3 String Theories on pt*

The final nonzero cobordism group Qipin for k < 8 is
QP =7,

which is generated by the class of pt™, the positively oriented point. Speaking of “com-
pactifications on pt™” is just a way of describing the decompactified theory, since we have
M = M x pt*™ for any manifold M. Nevertheless, the presence of this cobordism group
implies a potential (d — 1)-form symmetry of quantum gravity in d spacetime dimensions,

with charges labeled by Z. The current that generates this symmetry is simply
J 1= *x1 = VOl,

the volume form. While it may seem silly to discuss this as a symmetry, it fits neatly into
the pattern discussed above, and in fact this is the class most closely related to the question
of whether, say, Type IIA and IIB admit a finite energy domain wall.

As for the case of S;, we know that the known string theories are, by definition, consistent

when compactified on pt*, and so this class should always be killed.

e M-theory and Type ITA: To kill the class of pt™ in M-theory, we need to identify a
domain wall at the end of the world for M-theory. The Horava-Witten wall is exactly
such an object, and shows that this class is killed in M-theory. For Type IIA, we
have the O8-plane as a domain wall at the end of the world, which is just the Hotava-
Witten wall wrapped on the M-theory circle. We might worry that killing this class
automatically kills all the other classes in M-theory, since if we have W with OW = ptt,
then for any closed M*, we have that

OW x M)=0W x M =ptT x M = M,
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and so M* would already by a boudnary. If this logic were accurate, it would render
our statement that QgG = 0 for £ > 0 in M-theory much less powerful, since it would
follow from Q(?G = 0. However, this is not the case. In particular, as we will see in
section M-theory can be defined on more general pin™ manifolds, which are defined
by the vainishing of w,. It is not true that the product of two pin™ manifolds is pin™,

since we have
W2 (M X N) = wz(M) +w1(M)w1(N) + WQ(N),

and so if both M and N are pin™ but nonorientable, then M x N will not be pin*. In
terms of the Horava-Witten wall, this manifests in the fact that the modes living on
the wall form a chiral theory in ten dimensions, and so it is inconsistent to wrap the

Horava-Witten wall on a nonorientable manifold.

Type IIB: While we expect that the class of pt™ in Type IIB is killed by a domain
wall at the end of the world, we do not know any such object in string theory. One
objection to such a domain wall might be that Type IIB is chiral, and thus shouldn’t
admit a boundary wall. This reasoning is flawed. Of course, if a theory has a chiral
anomaly, then it cannot admit a boundary wall, but there is no a-priori reason that
a non-anomalous, chiral theory cannot have a boundary wall. In particular, consider
the string worldsheet as a theory of (1 + 1)-dimensional gravity in the presence of a
B-field. This theory still has D-branes, which from the perspective of the worldsheet
are boundary walls. But because of the nonzero B-field, the worldsheet theory is
chiral, and thus provides an example of a chiral theory of quantum gravity with a
boundary. Boundaries for more dramatically chiral 2-dimensional theories have also

been constructed in the context of asymmetric orbifolds [10].

We should also note that one potential way to construct a boundary wall for Type 1IB
would be to use a domain wall between IIB and ITA, since we could place this domain
wall parallel to a IIA O8-plane and obtain a domain wall from IIB to nothing. The
existence of a domain wall between IIB and ITA has been suggested in [11], where the
authors considered the mathematically precise definition of Type II orientifolds in the
context of twistings of K-theory, and found that there was a natural Z, parameter

that controlled whether a given background was IIB or ITA.

Heterotic: Just as we do not know how to kill the class of S; in heterotic string
theory, we also do not know how to kill the class of pt*. The same comments about

boundaries of chiral theories above apply here as well.
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4.3 M-Theory on Nonorientable Manifolds

In this section, we consider a refinement of our description of the cobordism of M-theory,
from spin cobordism to pin™ cobordism. The key observation that makes this possible is that
M-theory has parity symmetry, and so may be defined on nonorientable manifolds. In order
to define spinors on a nonorientable manifold, we need to make a choice about the algebra

between reflections and fermion parity. In particular, there are two possibilities, namely
P’=1, P*=(-1F,

where P denotes parity. These two possibilities are respectively the notions of pin* and pin~
structures [12], defined by the vanishing of wy and wy+w? of the tangent bundle respectively.
For M-theory, the relevant structure is pin™ structure 7] [13]. The pin™ cobordism groups
QP"" are given in the range 0 < k < 9 below [9] [14]. The last row lists the generators,
where pt is the unoriented point, K B is the Klein Bottle, viewed as a twisted S; bundle over
St with either spin structure, RP" is the real projective space, and HP" is the quaternionic
projective space. As for spin cobordism, there are additional nontrivial cobordism groups
for k > 8, which may be found in Appendix[A]

k 0o 1 2 3 4 5 6 7 8
QEinJr Z2 0 ZQ ZQ ZlG 0 0 O Zg X Z32
Gens | pt — KB KB X S; RP* — — — HP? RPS

As discussed above, the Hotava-Witten wall kills the class of the point. We may view the
Horava-Witten wall as the first example of an M-theory orientifold plane MO9, namely as M-
theory on the quotient R/Z,. We have further M-orientifolds, given by the MO5-plane and
MO1-plane, which are defined by M-theory on the quotients R®/Z, and R®/Z, respectively
[15, [16]. These defects exactly kill the classes of RP* and RIP® respectively, and so the only
remaining classes are the Klein bottle, the product of the Klein bottle and S;, and HP?2.

We now discuss the class of HIP?2. We claim, so long as we turn off all gauge fields, that
HIP? is not a consistent background for M-theory, and so the Z, symmetry arising from this
class is gauged in M-theory, just as the symmetry arising from the class of K3 is gauged
in heterotic string theory. In order to see this, we recall that there is a tadpole cancelation
condition [17] for M-theory on 8-manifolds with Sp(1) - Sp(2) structure [18] (such as HP?),
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given by
1
Nara + §G3(X) = Is(X),

where

p2(R) = (p1(R)/2)°
I3(X) :/X 13

We have that |

I (HP?) = 3

and so as long as G4 = 0, we cannot form a consistent compactification of M-theory on HIP?.
Finally, we have the classes of the Klein bottle and its product with S;. For these
classes, we can say at least that they must be killed, since we know they are consistent
compactifications of M-theory [19]. However, we do not know by what mechanism they are
killed in the full theory. We will discuss these classes more in Section [5] One thing we should
note is that while fully geometric backgrounds of Type ITA can see the class of M-theory on
KB x S;, since this is just IIA on K B, the class of M-theory on K B is realized in IIA as
an orbifold of S;, where we have turned on a Wilson line for the symmetry (—1)f% of Type

1A [19].

4.4 F-Theory Compactifications of Type IIB

In this section, we discuss how the more general compactifications of Type IIB string theory
arising from F-theory refine our notion of cobordism for IIB. In Section we saw that the
circle S; is killed in IIB by the background,

RXS;

7 (X,Y) = Q(-1)fr . (=X, -Y),

a particular orbifold limit of the compactification of F-theory on %K 3,

T? ——

which gives a compactification of IIB on CP! = 152, Even away from this orbifold point,

this is a compactification of IIB that kills S;, and indeed we might have expected that

22



F-theory would explain how to kill 5’;, since in spin cobordism we have

StxT? = (51" =9 (%m) :

which is exactly this compactification of F-theory.

However, there is still a puzzle, since we know that S; is not the boundary of the unique
spin structure on the hemisphere. The resolution is that allowing nontrivial elliptic fibrations
in F-theory forces us to generalize from spin cobordism to spin® cobordism. A spin® structure
is defined as a choice of a lift of wy from Zs-cohomology to Z-cohomology. We denote this

lift as 2¢;. If we further choose a spin® connection A¢, this notation agrees with the standard

Fqpe 1
/ AT —/ we mod 2.
2 27T 2 N2

With this in mind, we may place a half unit flux of F4c over each hemisphere, which will

formula

produce an additional factor of (—1) for fermions moving around the equator, and so the
flux of the spin® connection kills S; in spin® cobordism.
In order to see why a spin® structure is the relevant structure for F-theory compactifica-

tions of Type IIB, suppose we have an elliptic fibration
X
B

of X over some base B. Now, suppose we have a spinor ®¥x on the total space X of the

T2 —>

fibration. Locally in the base and away from singular fibers, we may write

x = Pp @ e = hp @ (dz)"?,

using the fact that spinors on 72 are given by sections of a square root K;/f of the canonical
bundle. Thus, on the base and away from singular fibers, we see that spinors in the total

space descend to spinors in the base valued in a line bundle L such that
L* = H;°(T?).

In order to extend this definition over the singular fibers, we note that while neither spinors

on the base nor the line bundle L are well defined, the notion of spinor valued in L still
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makes sense, since we may identify it with the notion of spinor on the total space. Thus,
we see that the base naturally carries a spin® structure, where the integral lift of wq(B)
is given by 2¢;(L) = ¢;(L?). In fact, we can see more. Since the condition of preserving
supersymmetry is that the total space X is Calabi-Yau, i.e., Kx = 0, we then have that to

preserve supersymmetry, we must have
KX = 201(L> + KB =0.

Now, the spin® cobordism groups are given below for 0 < k < 6 [9] (see Appendixfor a
more complete table). In the last row, we list the generators, where E is the Enriques surface
(with unique torsion class x € H?*(E;Z)), H is the hyperplane class for the appropriate
complex projective space, and we have given two choices of basis for Q"™ = Z x Z For
each generator, we have specified the class 2¢; as an element of H?(—;Z), since different

choices of lift can correspond to different cobordism classes.

k] o 1 2 3 4 5
QP Z 0 y/ 0 ZxZ 0
(E,z),(CP? H) or

Gens |ptt — (CP',2H) - -
(CIF)I X C]P)l, 2H1 + 2H2)7 (C]P)2, 3H>

We do not know of a mechanism by which the first two classes, pt* and (CP',2H), are
killed in Type IIB. We already discussed what it would mean to kill the class of pt™ in
Section and we will discuss both classes further in Section

4.4.1 F-theory on Calabi-Yau Threefolds

In this section, we discuss the group

QP = 7Z x 7.

7 The first choice is what naturally appears in the twisted Atiyah-Hirzebruch spectral sequence, while the
second consists of supersymmetric backgrounds.
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There are two natural integral cobordism invariants of spin® 4-manifolds, given by the integral
of (2¢1)? and the signature o. For the generators (F,z) and (CP?, H), these take the values

/ =0, o(E)=-8,
B

H?*=1, o(CP?) =1.
CP?

Since these classes form a basis, we see that there is a relation

/X (201)% = o(X) mod 8,

but that the characteristic numbers are otherwise unconstrained, and form complete cobor-
dism invariants. Thus, we may express the supersymmetric generators in terms of (E,z)

and (CP?, H) just by calculating their invariants. We have

/ (2H, 4+ 2H,)> =8, o(CP! x CP') =0,
CP! xCP?

/ (3H)*=9, o(CP?) =1.
CP?
((C]P)l X CP172H1+2H2) - 1 8 (E,ZE)
(CP?,3H) \1 9/ \(cpxH))’
1
det 8 =1,

19

this is an invertible transformation between two integral bases. The final piece of structure

in Q°P"™ we should note is that that class of K3 with 2¢; = 0 is given by 2(FE, z), as can be

seen by matching cobordism invariants.

Thus, we have

and since

Now, since we have Q"™ =£ 0, we expect a potential 5-form symmetry of Type IIB string
theory, with charges labeled by Z x Z. This extends the potential U(1) symmetry we saw
in spin cobordism. What is the fate of this symmetry group in Type IIB string theory? We

claim that part of it, at least, is broken by known defects. In order to see this, we recall the
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example of F-theory on a K3-fibered Calabi-Yau threefold Cj5,

K3——=CY,

|

CP!

There are several possibilities for the base B of this elliptic fibration, and for particular
choices of the moduli, we have B = F,, for —12 < n < 12, where F,, is the del Pezzo surface.

However, these compactifications are all connected [20] 21| via transitions involving the
E-string CF'T. An easy way to see this is to fiber the duality between F-theory on K3 and
heterotic string theory on 72 in order to view this compactification as heterotic string theory

on
T? ——~ 7 3
CP!
If we use Egx Eg heterotic string theory, then the parameter n labeling the different del Pezzo
surfaces is identified with the division of the 24 required gauge instantons as (12 —n, 12+ n)
between the first and second Fg. Of course, these heterotic backgrounds are connected. In
the M-theory description, this corresponds to shrinking an instanton to zero size, pulling it
off the wall as a fivebrane, and allowing it to move across and dissolve in the other wall. In
terms of Type IIB, this corresponds to blowing up F,, at a point followed by blowing down
a curve.

Thus, we have learned that the process of blowing up a point is a dynamical process
in Type IIB string theory compactified on a 4-manifold. Since blowing up is equivalent
topologically to taking a connected sum with CP2, we see that the process of blowing up
kills some class represented by CP2. In fact, because this process preserves supersymmetry,
we know that we will have

21 = KBZ(X) = Kx —e,

where e is the exceptional divisor. Thus, we see that the class which is killed is
(CP%,—H) = —(CP*, H),

which leaves only a single Z in cobordism, generated by (£, x). Further, we have for the

26



supersymmetric classes
(E,z) = (CP' x CP',2H, +2H,) = (CP? 3H) mod (CP?, H),

in cobordism, and so all the supersymmetric backgrounds are connected in cobordism by the
process of blowing up and down.

We do not know how to kill this remaining class by known processes in Type IIB. However,
we note that one representative is given by the product of two copies of the generator
(CP',2H) of Q5P™ = 7Z. Thus, if this class is killed by some defect with spatial dimension 6
that may be consistently wrapped on an additional (CP!,2H), then we will have also killed
the class of the product. We will discuss this class more in Section

4.5 Heterotic String and String Cobordism

Finally, in this section, we discuss how the constraint

pi(R) —p(F)

dH =
2 )

in heterotic string theory modifies the cobordism groups in the case that the gauge field F
vanishes. In this case, as discussed in Section this implies that the class A = p;/2
defined on a spin manifold must vanish for allowed backgrounds of heterotic string theory.
In mathematics, given a manifold with spin structure, a choice of trivialization of the class A
is referred to as a string structure, and so we consider the cobordism groups Qimng of string
manifolds, which are given in the range 0 < k < 8 below [22] (see Appendix for a more
complete table). We have generators S; and S%,,where H subscript denotes the fact that

there is a unit of H-flux (alternatively, a unit of framing).

ko 1 2 3 4 5 6 7
e\ 7 Ly Ly Loy 00 Zy 0
Gens |ptt S} S) xS, Sy — — SyxSy —

We do not know how the first three classes of pt™, S;, and S; X 5’; are killed. Note that
by duality, heterotic string theory on S; x S} is equivalent to IIB on (CP',2H), another

class which we didn’t know how to kill. However, it is possible to kill the class of S%; [23] and
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indeed this class is killed by the fivebrane of heterotic string theory, which is surrounded by

an S% with one unit of H-flux.

5 New Predictions

Throughout Section we identified a number of examples of classes represented by consistent
string backgrounds that are not killed by any mechanism of which we know in string theory.
Thus, the condition QgG = 0 predicts the existence of a number of new objects in string
theory that have not been constructed to our knowledge. We record these classes by the
remaining number of large dimensions, as well as the dualities between them, in Figure
We make no claim as to completeness, and indeed there are some easily identified classes
(such as M-theory on the Mobius strip) that we do not list since they fall outside of the very
restrictive cobordism groups we considered in Section 4] where we have turned off gauge
fields and ignored cobordism with singularities. We do not omit them to imply that they
are killed by known objects in string theory, but because we have not computed the correct

cobordism groups to discuss them.

What are we to make of these so-far unkilled classes? As we will argue more precisely
below, any defect that kills any one of the classes listed in Figure [1] must necessarily break
all supersymmetry. While we have a good understanding of the supersymmetric defects in
string theory, we have a much less complete picture of which non-supersymmetric defects
exist, and so we view this as a prediction of new non-supersymmetric defects which kill all
the classes in Figure Since such a defect would have an otherwise nontrivial boundary,
its presence can be detected from far away, as discussed below, and so at least a topological

piece of the predicted defect must be stable against decay.

5.1 Violation of Supersymmetry

In this section, we argue that all the predicted defects that we have not been able to identify
(which kill the classes listed in Figure must necessarily break all supersymmetry. In order
to do this, we note that compactification on all the classes in Figureyield quantum gravity
theories of two types. The first are theories in dimensions d = 10, 9, 8, or 6 with (potentially
chiral) /' = 1 supersymmetry. The second are theories in dimensions d = 10 or 6 with chiral
N = (2,0) supersymmetry. What we will argue is that a domain wall at the end of the

world for any of these theories must break all supersymmetry; since a defect in the higher
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Dimension 10

Type IIB on pt™*

Heterotic Eg x Eg or Spin(32)/Z, on ptt

Dimension 9

Heterotic on S;

M-theory on KB

Dimension 8

Heterotic on S} x S} «— Type IIB on (CP*',2H)
M-theory on KB x S;

Dimension 6

Type IIB on (CP! x CP!,2H, + 2H,) <— Heterotic on K3
or Type IIB on (K3,0)

Figure 1: Remaining cobordism classes.

dimensional theory would yield such a domain wall, it must also break all supersymmetry.

First of all, we note that the presence of a domain wall must break at least part of the
d-dimensional supersymmetry, since it breaks translation symmetry in the perpendicular
direction. However, it does preserve (d — 1)-dimensional Poincare invariance, and so we may
ask that it preserve some amount of supersymmetry in (d — 1)-dimensions. For the N' =1
theories in d = 10, 9, 8, or 6, we note that dimensional reduction to (d —1) =9, 8, 7, or 5
yields N = 1 supersymmetry in the lower dimensional theory, and so there is no intermediate
(d—1)-dimensional supersymmetry between preserving all the d-dimensional supersymmetry
and preserving none of it, and so these defects must break all supersymmetry.

For the d = 10 or 6 dimensional theories with A" = (2,0) supersymmetry, the reduction
to (d — 1) = 9 or 5 dimensions yields (d — 1)-dimensional N/ = 2 supersymmetry, and so
there seems to be the possibility of breaking only half the (d—1)-dimensional supersymmetry.
However, this is not the case. Suppose the two supercharges in d-dimensions are (1 and ).
Since in these cases the (d—1)-dimensional Lorentz group acts faithfully on the d-dimensional

spinor representations, if we are the preserve N’ = 1 supersymmetry in (d — 1)-dimensions,
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then we must preserve some linear combination

Q = aQq + Q.

However, since 1, 2 have the same chirality, @) is thus also a well defined (1, 0) supercharge
in d = 10 or 6 dimensions, which we argued above may not be preserved by the domain

wall. Thus the defects for classes with N/ = (2,0) supersymmetries must also break all

supersymmetry.

5.2 Properties of Predicted Defects

Now that we have argued that the condition Q?G = 0 predicts a number of new defects in
string theory, the natural next question is what properties the required defects must have.
For example, must they couple to gauge fields? Must they carry additional dynamical modes
on their worldvolumes? In general, we cannot say much more besides what is immediately
implied by the condition that they must be linked by a geometry which is otherwise nontrivial
in cobordism.

One important mathematical consequence of this fact is that the predicted defects carry
a topological charge, which we claim is in some sense “gauged”. Indeed, suppose we have a
defect which kills off the generator of an apparent cobordism group Q?E = D, for 2 <n <
00. We can then define a Z, topological charge, which we claim must vanish on any closed
manifold. Indeed, suppose we attempt to place a number m of the new defect at points on a
closed (k + 1)-dimensional manifold. Cutting out small open neighborhoods of the defects,
we obtain a (k + 1)-manifold without defects, whose boundary is given by m copies of the
generator of Qgﬁ = Z,. This is only possible if m =0 mod n, and thus the Z,, topological
charge must vanish on any closed manifold. One example of this is heterotic string theory on
K3 with 24 fivebranes, which serve as defects to kill off ngng = Zo4 as discussed in Section
4.0l

While this topological charge is “gauged” in the sense that the total charge must vanish
on a closed manifold, we are not claiming that the predicted defects come with new dynamical
gauge fields. One way to resolve this potential tension is to recall from Section why we

expect any conserved charge in quantum gravity to be gauged. The key point was that for

8Note that this argument doesn’t work for A" = (1,1) supersymmetry in d = 10 or 6 dimensions, since
say Q = @1 + Q2 being composed of two irreducible representations of the spinor group do not lead to
translations perpendicular to the wall. Indeed this combination of supercharges is preserved by the Type
ITA O8-plane.
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gauged charges, we can measure the total charge inside a black hole by measuring the flux of
the gauge field through the horizon. While a defect killing off an apparent cobordism group
QSE may not couple to an independent gauge field, if we imagine throwing this defect into a
black hole, we can still detect its presence from outside the black hole, since the horizon will
now realize a nonzero class in Q?E For example, the defect killing Type IIB on (CP',2H) is
a non-supersymmetric junction of 24 (p,q) 7-branes, which does not couple to a new gauge
field in Type IIB, but whose presence inside a black hole could be inferred from counting

the number of 7-branes piercing the horizon.

A non-supersymmetric junction of 24 (p, q) 7-branes.

6 Conclusion

In this paper, we have argued that the triviality of the cobordism groups of quantum gravity
follows from the absence of global symmetries, and thus QgG = () is a consistency condition
on allowed theories of quantum gravity. Though we have only taken some first steps towards
analyzing the cobordism groups of the most general allowed backgrounds in string theory,
we have already seen that this condition places highly nontrivial constraints on the allowed
objects in string theory, and in particular predicts the existence of a number of new non-
supersymmetric defects. It would be very interesting to perform a similar analysis that
takes into account more of the features of string theory. One simple extension would be to
include the M-theory C-field and the induced m¢ structure [13], as the appropriate cobordism
groups have been recently computed [24]. Another natural extension would be to compute
the cobordism groups including the new predicted defects. This could potentially result in

new cobordism classes, which would then need to be killed off by yet more defects! This cycle
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could in principle continue until we converge at the correct definition of quantum gravity

which would in particular have an = 0.
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A Table of Cobordism Groups

Here, we present a more complete table of the cobordism groups used throughout this paper
for reference, up to k = 10. The spin and spin® cobordism groups were initially computed
in [9). The pin* cobordism groups were computed in [14], and the string cobordism groups
n [22]. Good overviews of the calculation of these groups and their roles in physics can be
found in [12] 25] 26].

ko 1 2 3 4 5 7 8 9 10
QP 7 Zy Zy O Z 0 0o oz 73 7
QP 1 Zy 0 Zy Zy Zig 0 0 0 ZyxZgy 0 73
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