Towards Large-Scale Hunting for Android Negative-Day Malware

Lun-Pin Yuan Wenjun Hu Ting Yu
Penn State University Palo Alto Networks Inc. Qatar Computing Research Institute
lunpin@psu.edu whu@ paloaltonetworks.com tyu@hbku.edu.qa

Peng Liu
Penn State University
pliu@ist.psu.edu

Abstract

Android malware writers often utilize online malware scan-
ners to check how well their malware can evade detection, and
indeed we can find malware scan reports that were generated
before the major outbreaks of such malware. If we could iden-
tify in-development malware before malware deployment, we
would have developed effective defense mechanisms to pre-
vent malware from causing devastating consequences. To this
end, we propose Lshand to discover undiscovered malware
before day zero, which we refer to as negative-day malware.
The challenge includes scalability and the fact that malware
writers would apply detection evasion techniques and submis-
sion anonymization techniques. Our approach is based on the
observation that malware development is a continuous pro-
cess and thus malware variants inevitably will share certain
characteristics throughout its development process. Accord-
ingly, Lshand clusters scan reports based on selective features
and then performs further analysis on those seemingly benign
apps that share similarity with malware variants. We imple-
mented and evaluated Lshand with submissions to VirusTotal.
Our results show that Lshand is capable of hunting down
undiscovered malware in a large scale, and our manual analy-
sis and a third-party scanner have confirmed our negative-day
malware findings to be malware or grayware.

1 Introduction

Imagine, if you were an Android malware writer developing a
zero-day malware, what would you do to check how well your
malware can evade malware detection? One very convenient
and convincing means is to anonymously submit the malware
to online malware scanners and check the scan reports. In
fact, it has been reported that some in-development malware
were found on VirusTotal before their major outbreaks. For
example, the very first known LeakerLocker sample could
date back to November 2016 when it was submitted to Virus-
Total [38], but not until July 2017 did security experts find it
widespread. In addition, not just one malware sample but a

USENIX Association

Sencun Zhu
Penn State University
szhu@cse.psu.edu

trace of evolving malware samples did malware writers leave
on online scanners during the continuous submit-and-revise
process. However, no signature was available on day zero
(the time that such a threat is known to public) because the
development case was not identified even though the malware
was given malware labels at its early stage. Belated signatures
could cause devastating consequences [33], and unfortunately
it usually takes more than six months to generate well-crafted
signatures [6]. If the ongoing development of malware had
been identified and studied earlier, its breakout would not
be as devastating as it had become. Therefore, our goal is to
find Android malware before day zero, which we refer to as
Android Negative-Day Malware.

We propose Lshand (abbreviated from Large Scale
Hunting for Android Negative-Days) to discover potential
negative-day Android malware development cases (Neg-Day
cases). Lshand faces the following challenges. First, with
regard to binary, there is no obvious indication of malware de-
velopment or kin relations among Neg-Day malware samples
when detection-evasive techniques (e.g., dynamic-loading and
obfuscation techniques such as [9, 14,16, 19,30,41,43,44])
were applied to malware samples. Second, with regard to
submitters, anonymization techniques may prevent us from
inferring or linking the identities of submitters. We have ob-
served many cases where a careful malware writer may submit
malware samples from different anonymous identities (e.g.,
submitting samples from different sockpuppet accounts or
with no account via free proxies or tor-network) and sign
different malware samples with different keys. Third, with
regard to scalability, online scanners constantly receive an
enormous number of submissions (e.g., during January 2016,
VirusTotal received 1.34M Android-related brand-new sub-
missions that were never seen before). It is not practical to
perform detailed analysis on each malware sample every time
we observe a new one.

Lshand is designed carefully to overcome the above chal-
lenges. The key observation is that malware development is a
continuous process, and malware variants will inevitably share
certain characteristics throughout the development process.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 533

Accordingly, our first principle is to process malware sub-
missions based on similarity. However, as nowadays malware
writers can easily leverage existing automated obfuscation
tools, our second principle is to select features that are not
likely to be obfuscated (e.g., set of permissions, contacted
hosts, numbers of components). Finally, to be a practical solu-
tion, our third principle is that Lshand must be efficient, and is
capapble of processing a large number of submissions within
a reasonable time. Lshand, in a nutshell, consists of a Data
digestor, a Report clusterer, an AMDT (Android Malware
Development Trace) extractor, and a Neg-Day alerter (Fig. 1).
To be brief, Lshand clusters malware reports (structural text
format), and only if necessary it classifies malware samples
(in binary) based on similarity and maliciousness.

We implemented and evaluated Lshand upon a snapshot of
submission-stream towards VirusTotal during January 2016,
which contains 1.3 million Android-related first-seen submis-
sions from 3,852 different submitter identities (SIDs). Lshand,
ran by a single thread on a desktop, took only an hour before
giving us 10 Neg-Day cases. These 10 Neg-Day cases include
48 malware samples that were given no malware labels by
any of the 62 scanner engines on VirusTotal by January 2016.
In the end, according to submission rescans, our manual anal-
ysis, and scan results from Palo Alto Networks WildFire [29],
we have confirmed that 100% of these 48 Neg-Day malware
are actually malware. We also deployed Lshand over a more
recent dataset dumped during May 2018, and Lshand hunted
down 15 Neg-Day cases that include malware samples with
zero malware labels. We have manually confirmed that 80%
of these 15 Neg-Day cases are actually malware or grayware.

With regard to finding Android malware at their devel-
opment stage, AMDHunter [17] is a strongly related work.
However, unlike AMDHunter, which relies on the strong as-
sumption that variants of the same malware development are
submitted from the same SID, Lshand focuses on finding
Neg-Day cases that were knowingly submitted from differ-
ent accounts (e.g., sockpuppet accounts or no account), from
different IPs (e.g., via proxies or via tor-network), or from
decorated SIDs (e.g., knowingly submit benign apps in hope
of confusing AMDHunter). Section 7 includes more details
about the differences between Lshand, AMDHunter, and other
related work. We make the following contributions.

* To the best of our knowledge, Lshand is the first malware
hunting system that is capable of hunting down Android
Neg-Day malware from multiple anonymous submitter
identities through the analysis of submission records
available on online scanners.

* We designed and implemented Lshand to overcome the
following three challenges: lack of malware relations
with regard to binaries, lack of development evidence
with regard to identities, and scalability.

» We evaluated Lshand with two datasets. Lshand hunted

534 22nd International Symposium on Research in Attacks, Intrusions and Defenses

down 10 Neg-Day cases from the submission records of
VirusTotal during Jan. 2016 and 15 Neg-Day cases from
records during May 2018. Our results show that Lshand
is efficient and accurate.

2 Background and Motivating Example

Android malware detection has been heavily studied in re-
cent years (e.g., [2,3,7,10, 15,20, 21, 23, 24, 27, 36, 37]).
Although previous work has established significant detection
capability, there are limitations when facing new challenges.
Once a novel detection method is published, malware writ-
ers can knowingly evade the detection logic by leveraging,
for example, code-loading (e.g., [30,43]) and sandbox de-
tection (e.g., [26]). Furthermore, malware writers can use
malware-development tools (e.g., [19]) to embed detection-
evasive modules. Wei et al. [41] and Suarez-Tangil et al. [35]
detailed the trend of malware evolution and evasive tech-
niques. Other related work regarding malware development
includes [9, 14, 16,40,44].

We consider LeakerLocker [31] as a motivating example.
Only after it sleeps for a while and checks non-sandbox ar-
tifacts, it loads dynamic code. Hence, its first VirusTotal re-
port [38] only had one malware label from one scan engine.
Fig. 2 illustrates an example of what information about Leak-
erLocker one can obtain from a VirusTotal scan report. The
information in Fig. 2 is open to public except the submitter
identity, which is only available to VirusTotal premium users.

While researchers use online malware scanners as partial
ground truth (e.g., [34,41]), malware writers also use them
as convenient and convincing oracles to test malware variants
and evasive techniques (e.g., [19]). Via public-API or web
interface, a malware writer can submit up to four malware
samples per minute to VirusTotal (exceeding this rate will
cause empty JSON or reCAPTCHA depends on channel). It
has been reported that a set of in-development malware were
found on VirusTotal; for example, the very first LeakerLocker
sample dated back to November 2016 [38], but its outbreak
did not happen until August 2017.

In practice, Android malware writers often repackage a
popular app or a handy utility app in order to lure innocent
users to install or distribute the malware. In LeakerLocker’s
example, some variants impersonate Call Recorder, and oth-
ers impersonate WallPapers HD Blur. Consequently, each
group demonstrates a set of shared characteristics (e.g., Call
Recorder variants share 16 permissions, 13 activities, and 3
services, and Wall Papers HD Blur variants share 18 permis-
sions, 8 activities, and 3 services). Based on this observa-
tion, Lshand hunts malware development traces by examining
shared characteristics.

USENIX Association

Expert Analysis

Figure 1: LSHAND Workflow Overview

Metadata
First seer: 2016-11-23 23:11:39 UTC
Detection Ratio: 17/62
HMalware Labels

ag) Ny
FCompression Information
tBehavioral Information
“Submitier [dentity

i
-File name: dB2330e1d84c2866a0121093cha. .
-File size: 3.9 MB (4074758 bytes)

-Sedeep: 93304:ZRBH/M[3edD20QC3STAM ...
-Tags: apk, androed, dyn-calls, dyn-class

Dynarmic Loaded Classes: =
[Contacted URL: iin /155 9467

Figure 2: A Digested Report for a LeakerLocker variant

3 Problem Statement

We are specifically interested in answering the following re-
search question: how can we find potential Android Neg-Day
malware in a large scale from online malware scanners? The
challenges include the followings. First, with regard to mal-
ware binaries, there is no obvious indication of malware devel-
opment or kin relations among or between Neg-Day malware
samples. Second, with regard to submitters, there may not
be evidence such as submitter identity that can help us with
inferring or linking malware writers. Third, it is not realistic
to perform detail analysis on every newly received malware
samples submitted to an online scanner.

3.1 Attack Model

Our attack model includes a careful malware writer who does
not want to leave obvious traces but does need online mal-
ware scanners for up-to-date analysis of a newly developed
malware. We assume that a careful writer has two objectives
detection evasion and submission anonymization, and we
assume that the malware writer will keep continuing the de-
velopment process in a submit-and-revise fashion.
Regarding detection evasion, we assume that a malware
writer would apply techniques such as package name obfus-
cation, class name obfuscation, method and variable name
obfuscation, inter-component interaction injection, dataflow-
analysis evasive code injection, native code and bytecode
injection, dummy and benign methods injection, and dropper
payload loading. However, trying to be less suspicious just

USENIX Association

like a regular app, evasion techniques such as incrementally
adding large number of dummy Activities, dummy Services,
and irrelevant files on the malware are not considered (in other
words, numbers of activities, services, and files stay similar).

Regarding submission anonymization, we assume that a
malware writer would submit malware samples anonymously
from different free accounts (or no account) via different
free proxies (or tor-network) throughout the continuous de-
velopment process. In addition, a malware writer can submit
many irrelevant apps in hope of decorating his profile as if
the submitter was benign. However, trying to keep a low pro-
file, we assume that a malware writer will not submit more
than on-average 100 newly developed samples per-day, per-
account, and per-proxy. We will justify in Section 5 that this
assumption is realistic by submission statistics.

3.2 Definitions

Since Neg-Day hunting is a relatively new research topic, we
would like to define terms to avoid confusion.

Digested Report: The outcome of preprocessing a scan re-
port from online malware scanner is a digested report, and it
includes only necessary fields, including submission times-
tamps, submitter identity, malware labels, package informa-
tion, compression information, and behavioral information
(malware sample binary is not included). Fig. 2 shows an
digested report example.

Submitter Identity (SID): An SID is a unique identifier
that specifies a submitting individual or a submitting organi-
zation; however, an individual or organization may correspond
to one or more SIDs. SID on VirusTotal is a hash value cal-
culated based on account profile, or based on IP-port profile
if no account is presented. In most online malware scanners,
SID information is available only to premium users.

Malware Label: In a malware scan report, each scan en-
gine may list multiple informative labels, including malware
family (e.g., leakerlocker, svpeng, slocker), malicious func-
tionality (e.g., ransom, trojan, dropper), suspiciousness (e.g.,
dangerous, high confidence malware, potentially unsafe), non-
malicious characteristics (e.g., adware, riskware, potentially
unwanted), and some other information (e.g., downloader,
obfuscated, xor-crypt).

Development Trace (DT): A DT implies a development
of an app. A DT is represented by a chronological sequence
of digested reports that share certain features. A DT may

22nd International Symposium on Research in Attacks, Intrusions and Defenses 535

include digested reports that are sourced from different SIDs.
We say two samples are “kins” to each other if they were put
into the same DT. Unlike variants of a malware family (e.g.,
LeakerLocker), if there are two different fake apps (e.g., Call
Recorder and WallPaper HD Blur), we consider them as two
different DTs.

Android Malware DT (AMDT): An AMDT implies a de-
velopment of an Android malware. Essentially, an AMDT
is a DT; however, unlike DTs, an AMDT includes at least
one malware indicator, a digested report that has a sufficient
number of malware labels. Based on needs, one can define
different sufficiency metrics; in this paper, we use detection
ratio r (i.e., the ratio of engines that reported malware labels).

Negative-Day AMDT case (Neg-Day case): A Neg-Day
case implies a potential development case of a Neg-Day mal-
ware. Essentially, a Neg-Day case is an AMDT; however,
unlike AMDTs, a Neg-Day case includes at least one recent
submission that has no malware labels (i.e., r = 0). Since
this seemingly benign sample has evaded detection from all
scanning engines, terrible harm could be done once it is dis-
tributed. Hence, detecting such a Neg-Day case with benign
samples is our goal.

4 LSHAND Design

4.1 Design Overview

Lshand’s design is based on our key observation that malware
writers tend to test their in-development malware through
online malware scanners. We assume that a malware devel-
opment is a continuous process; hence, malware writers in-
evitably will leave development traces online, and malware
variation will demonstrate certain shared or similar character-
istics. However, finding AMDT is challenging because mal-
ware writers could always apply evasion and anonymization
techniques. Hence, our design follows the following prin-
ciples: first, we process malware submission based on sim-
ilarity; second, we select features that are not likely to be
obfuscated. For scalability reason, our third principle is that
we analyze scan reports (specifically, digested reports), and
only if necessary we analyze malware binaries.

Lshand, in a nutshell, consists of a Data digestor, a Report
clusterer, an AMDT extractor, and Neg-Day alerter (Fig. 1).
Lshand’s workflow is as follows. Lshand’s Data digestor looks
for Android-related first-seen submissions, and then produces
digested reports. For each digested report, Lshand’s Report
clusterer deduces its DTs. From DTs, Lshand’s AMDT ex-
tractor extracts AMDTSs. From AMDTs, Lshand’s Neg-Day
alerter verifies potential Neg-Day cases and raises alarms. In
our design, report clusterer is the module that identifies kin
relation among malware samples, and Neg-Day alerter is the
module that identifies the development evidence.

536 22nd International Symposium on Research in Attacks, Intrusions and Defenses

4.2 Data Digestor

Data digestor finds Android-related first-seen submissions
and generates corresponding digested reports. By first-seen
submissions, we mean those submissions whose samples were
never processed by the selected online malware scanner. We
only focus on first-seen submissions, because re-submissions
cannot imply malware development.

Data digestor learns whether or not a submission is
Android-related by checking malware labels (if there is any
“android” or android-related label), package information (if
there is any Android application components), and compres-
sion information (if there is any “apk”, “dex”, or “android”
tag). Data digestor learns whether or not a submission is first-
seen by checking “last-seen” or “last-scan” timestamps in
the submission metadata (both should be slightly greater or
equal to the submission timestamps), or by checking the exis-
tence of previous scan reports (reports with the same file hash
should not exist). Upon getting an Android-related first-seen
submission, Data digestor parses the output information and
produces a digested report (as shown in Fig. 2).

4.3 Report Clusterer

For each digested report, Report clusterer finds the correspond-
ing DTs by clustering digested reports along with existing
DTs. We say two samples are kins if two samples belong to
the same DT. This approach is based on our observation that
kin malware variants often bear some similarity or character-
istics even though some contents could be obfuscated. Here
we detail our design choices, including feature extraction and
clustering scheme.

4.3.1 Feature Extraction

We cannot directly use the informative knowledge in the di-
gested reports, because malware writers may have applied
obfuscation. Rather, Lshand extracts features that are less
likely to be obfuscated or manipulated. We split our features
into the following categories: submission timestamps, pack-
age information, compression information, and behavioral
information. Note that Lshand does not take malware labels
as part of the features, because Neg-Day submissions may
receive no labels whatsoever.

Submission Timestamps: We consider malware develop-
ment a continuous submit-and-revise process, hence the
chronological gap between two kin submissions will not be
large. If two similar submissions are faraway apart in time,
then they are less likely to be developed by the same malware
writer, as it is more likely to be a new development case of
different malware writers who are trying to gain benefits from
a previously known malware. Submission timestamps are is-
sued by online malware scanner, so malware writers cannot
manipulate them (note that file and certificate timestamps can
be manipulated to such as 1980-00-00 and 2107-15-19).

USENIX Association

Package Information: Lshand examines structural infor-
mation and permission information of a package. For struc-
tural information, although class names and file names can
be obfuscated, we can still count the numbers of Activities,
Services, and other files by types (we consider 26 different
file types, including mp3, png, and dex). Hence, Lshand has
1+ 1426 = 28 numerical features. Lshand will not be af-
fected by name obfuscation because names are not used as
features. As for permissions, besides predefined permissions
in Android framework, developers can define app-specific
or device-specific permissions. Upon 399.9K digested re-
ports, we split 22K known permissions into 56 categories
(e.g., network, storage, camera, c2dm). For each category,
Lshand counts the number of related permissions listed in
the digested reports. In summary, Lshand has 28 + 56 = 84
package-related features in total.

Compression Information: Lshand examines file tags and
uncompressed file size of a submitted sample. Most online
malware scanners provide tags for file types (e.g., “apk”,

LEIY

“jar”, “android”) and tags for characteristics (e.g., “dyn-class”,
“via-tor”, “check-gps”). Lshand considers 21 tags as fea-
tures, where each feature is represented by either true or false
whether or not the tag appears in the digested report. As for
uncompressed file size, Lshand treats it as one feature (hence
21+ 1 features in total). Uncompressed file size is essential
because simply using package-related features and tags is not
enough to accurately deduce DTs. Our experiments showed
that, without uncompressed file size, apps with similar struc-
tural information and similar file tags will be wrongly put
together. With uncompressed file size, in contrast, we have
had better clustering results. Since uncompressed size does
not have impact on malware scanners’ judgement, it is often
not malware writers’ concern to obfuscate. Therefore, un-
compressed size often stays similar from one malware kin to
another malware during a development.

Behavioral Information: Contacted URLs, accessed files,
sent SMS, and inter-process communication could be avail-
able in the digested reports if the selected online malware
scanner(s) provides sandbox analysis. While most strings can
be obfuscated in the package, certain strings cannot be obfus-
cated at runtime. For example, contacted hosts (domain and
IPs) and inter-app intents (actions and components) cannot
be obfuscated (but parameters and contents can still be obfus-
cated). Hence, Lshand extracts contacted hostnames and IP
from HTTP(s) communication and intented actions and com-
ponents from intent communication. There are many ways to
represent strings in the feature space. Although it is an option
to apply complex string comparison methods which are accu-
rate but slow, Lshand simply counts alphanumeric (i.e., a-z
and 0-9) n-grams, where n = 1 in our current implementation;
for example, “google.com” has numeric feature “3” for the
character “0”. Lshand has 36 features for contacted hosts and
for inter-app intents; therefore 36 + 36 = 72 behavioral fea-

USENIX Association

tures in total. Note that it is also optional to use (n > 1)-grams
for a more fine-grained feature set.

4.3.2 Clustering Scheme

In order to produce accurate results, we carefully studied
clustering models, weighted features, and distance thresholds.
However, note that since our ultimate goal is to hunt down
Neg-Day cases, we tune Report clusterer with only AMDTSs
rather than DTs in general; whether or not a benign DT is
accurate is not a major concern.

Clustering Model: We consider malware development a
continuous process, so AMDTs will demonstrate progressive
evolution of a malware. As such, Lshand leverages incre-
mental density-based clustering model. Under this clustering
model, clusters are formed by merging observations (feature-
based representation of digested reports), and the linkage
distance between two clusters is defined by the euclidean dis-
tance between the two nearest observations (single-linkage).
If the linkage distance between two clusters is smaller than a
given quality threshold <, then the two clusters will be merged
into one. We do not consider the other linkage approaches
(e.g., complete linkage and average linkage) because they are
not suitable for progressive evolution (where a malware vari-
ant demonstrates similarity with a few previous variants rather
than with the entire development), and we do not consider
k-clustering model because we do not know how many DTs
are out there. There are a few density-based clustering models
that are applicable to our research problem, but for scalability
reason we implemented an incremental density-based cluster-
ing model, whose time complexity is O (n x (m+n)), where
n is the number of new observations, and m is the number
of old observations (hence O (nz) from scratch or O (m) for
an incremental step). Discussion on optimizing clustering
algorithm for malware analysis can be found in [4,8,32].

Weighted Features: We assign different weights to fea-
tures because different features could vary in different scale
throughout its development. For example, features in package
information (e.g., number of Activities and permissions) shall
be very similar if not the same, whereas features in submission
timestamps and features in compression information (e.g., un-
compressed size and tags) can be different every time. The
resulting DTs will be problematic if Lshand treats these fea-
tures equally. Hence, Lshand puts less weight on features in
timestamps and in compression information, but more weight
on features in package information (Table 1). Another factor
of assigning weights to features is how thorough the analysis
can be provided by the selected online scanners (for example,
we put light weights on behavioral features because VirusTotal
does not always apply behavioral analysis to Android sub-
missions). To determine weights, we collected 50 confirmed
AMDTs and conducted an empirical study. We repeatedly
tuned weights and ran experiments until we reached a state

22nd International Symposium on Research in Attacks, Intrusions and Defenses 537

Table 1: Weighted Features

| Category [Feature | # | Weight |
Timestamps || submission timestamps 1 | medium
Package # of Activities 1 heavy
Package # of Services 1 heavy
Package # of file by types 26 | medium
Package # of Permissions by categories | 56 | heavy
Compression || file tags and labels 21 | medium
Compression || uncompressed size 1 | medium
Behavioral || contacted URLs 36 light
Behavioral inter-app communication 36 light

where AMDTSs were formed only by true kin observations
and as many observations in each AMDT as possible.

Clustering Threshold: Quality threshold < is an important
parameter in density-based clustering models (some may use
the term density distance €). If 7 is too large, a cluster would
wrongly include outsider observations that otherwise should
not be included, and if T is too small, a cluster would not
include kin observation that otherwise should be included
(or equivalently, split one AMDT into smaller AMDTSs). In
this research, we consider having outsider observations much
more destructive than having one AMDT split into smaller
AMDTs. The reason is that our ultimate goal is to provide mal-
ware analysts with Neg-Day cases for comprehensive analysis
so that they can craft signatures that can detect undiscovered
malware; however, contrary to our goal, outsider observations
could cost malware analysts more time to conduct inaccurate
analysis. To determine T, we conducted an empirical study
upon 50 confirmed AMDTs. We first set a large t and then
tuned T down until we reached a state where we have no
outsider observations.

4.4 AMDT Extractor

Lshand extracts AMDTSs from DTs. However, AMDT extrac-
tor is not just a noise filter. Besides extracting AMDTs, it also
updates digested reports in seemingly benign DTs, and it also
removes digested reports that are no longer useful in AMDTs.

Extract AMDTs from DTs: An AMDT essentially isa DT
with at least one malware indicator, a digested report that
has sufficient number of malware labels. Depending on label
availability from the selected online malware scanner, one
may opt to use different metrics for determining malware
indicators. In our implementation, Lshand simply checks de-
tection ratio r (e.g., 30 out of 62 engines) rather than analyze
label semantics (e.g., differentiate “malware” and “riskware™).
Checking detection ratio r has an advantage that it does not
require prior knowledge of existing labels, hence it is generic
to engine-specific labels and flexible to newly-defined labels.
It is a common practice to consider a submission suspicious
when there are many engines reported it with malicious or
suspicious labels regardless of label semantics (note that the

538 22nd International Symposium on Research in Attacks, Intrusions and Defenses

LeakerLocker example [38] was given only suspicious labels
and no malicious labels).

Update digested reports in benign DTs: Previously seem-
ingly benign digested reports could become malware indica-
tors once the scan engines are patched, and once a digested
report becomes a malware indicator, a DT becomes an AMDT.
Hence, for each seemingly benign DT, Lshand needs to sub-
mit rescan requests for those seemingly benign samples that
do not have recent digested reports. Note that updating mal-
ware labels will not merge or split DTs, because Lshand does
not consider malware labels as clustering features.

Remove digested reports from AMDTs: The growth in the
number of digested reports is enormous, and it will not be
scalable if Lshand keeps all the digested reports and process
all of them repeatedly. However, Lshand cannot simply dis-
card ancient digested reports. By ancient, we mean that the
submission timestamp of a digested report is so far away from
current timestamp that the distance between two weighted
timestamp features has exceeded the quality threshold © (in
other words, ancient digested report will no longer affect clus-
tering results). We cannot simply discard ancient digested
reports because ancient digested reports could become mal-
ware indicators someday, and discarding malware indicators
may cause AMDTs to become DTs. Rather, Lshand discards
two kinds of digested reports: first, ancient digested reports
that are prior to any malware indicator in the same AMDT
(hence no AMDT will become DT); second, digested reports
in an ancient DT that will not be clustered with any new
digested reports.

4.5 Neg-Day Alerter

Neg-Day alerter verifies Neg-Day cases by examine mali-
ciousness and similarity. On one hand, Lshand skips those
AMDTs that are already known to be malicious, because
we are particularly interested in Neg-Day cases that nobody
knows they are malicious. On the other hand, Lshand looks
for package-level similarity as evidence of development (even
though some correlation can be derived from digested reports,
certificate and binary and GUI correlation are not yet assured).
In the end, if a sample from an AMDT passes both malicious-
ness test and similarity test (that is, not malicious but similar),
Lshand will raise a Neg-Day alert to malware analysts with a
Neg-Day case. Note that Neg-Day alerter only checks binary
only when necessary.

Maliciousness Test: Since we are interested in Neg-Day
samples that nobody knows they are malicious, only when a
sample is not obviously malicious will Lshand proceed to the
next step. To examine the maliciousness of a new sample in
an AMDT, Lshand checks reports, signatures, and binaries:
first, Lshand examines the digested report and will proceed
if there are very few malware labels (e.g., r = 0); second, Ls-
hand examines its certificate and will proceed if the certificate
is not publicly known to be benign (white-list certificates);

USENIX Association

third, Lshand checks its binaries by using third-party binary-
level Android malware classifiers (e.g., MaMaDroid [24] and
Drebin [3]), and will proceed if the results are benign (specif-
ically, Lshand trains classifiers with publicly known malware
and publicly known benign apps). If a sample passes all the
above tests, Lshand will then test whether the sample is simi-
lar to its AMDT.

Similarity Test: Different from Report clusterer which com-
pares feature-space similarity, here we compare signature and
binary similarity among malware samples within an AMDT.
If a new sample does not show similarity at this stage (hence
it is not a new variant but an outsider who coincidentally
has similar features), then Lshand needs to label it as an out-
sider and remove it from the AMDT. We say a new sample
has passed the similarity test if any of the following com-
parisons show similarity: in certificate comparison Lshand
checks whether or not the information in the signing certifi-
cate (e.g., public key and serial number) is the same as that
in the other samples in the AMDT, and in binary compar-
ison Lshand checks whether or not the control call graph
or GUI-callback methods has similar characteristics to the
other samples in the AMDT by using repackaging classi-
fiers (e.g., ViewDroid [45]) and malware classifiers (e.g., Ma-
MabDroid [24] and Drebin [3]). Specifically, for each AMDT
Lshand trains the classifier with malware indicators of the
AMDT and publicly known benign apps, and Lshand consid-
ers a sample to be similar to its AMDT if the classifier reports
the sample “malicious”, which is the case that the sample is
closer to the malware indicators than to the other irrelevant
apps in the feature space (different from the maliciousness
test where we compare binary features with known malware).

5 Accuracy Evaluation

5.1 Dataset and DT Statistics

Our evaluation was conducted upon submissions to VirusTotal.
Since neither do we nor VirusTotal have a solid ground truth
for recent submissions, we test Lshand upon old submission-
stream captured during January 2016 (detection ratio is de-
noted as r,), but then we evaluate Lshand with the re-scan
results that were produced during May 2018 (detection ratio
is denoted as r}). Even after two years, we consider these
re-secan results as partial ground truth rather than complete
ground truth because it is possible that some malicious sam-
ples are still not discovered. During January 2016, VirusTotal
received 1,345K Android-related first-seen submissions from
3,852 different submitter identities (SIDs). The HTML-based
reports totally used 154 GB storage space, whereas the di-
gested reports took only 8.3 GB.

Subset Selection: We do not need to consider every single
submission, as we can exclude premium users that are not
anonymous. Table 2 and 3 show the statistics of SID-to-peak-
rate and SID-to-monthly-rate. If we consider terminal-based

USENIX Association

Table 2: SIDs and Peak Rate
[Peak Rate || <4/min | < 60/min | < 120/min | Unlimited |
of SIDs 3,364 3,750 3,788 3,852
of subs 5,318 14,309 19,837 1,345,696

Table 3: Clusterng Statistics
[Monthly Rate (p)]| <3100 | < 12400 | < 24800 | Unlimited |
of SIDs 3,837 3,841 3,843 3,852
of subs 58,765 92,603 125,267 | 1,345,256
of observ. 21,800 49,205 62,773 371,187

of clusters 14,266 32,986 38,236 85,139
Time Used || 01:01:36 | 4:59:58 | 07:51:07 | 291:28:12

Note that the difference between the number of submissions and the number
of observations comes from the fact that our Lshand evaluation does not
consider submissions that have missing information and submissions that
have a small number of application components (i.e., < 5 activities and
services counted together).

non-premium submissions (i.e., peak rate < 4/min), then we
only need to worry about 5,318 submissions from 3,364 SIDs.
Nevertheless, to test the scalability of our approach, we relax
this constraint to submission peak rate under 120 submissions
per minute (19,837 submissions from 3,788 SIDs), or alterna-
tively 3,100 submissions per month (58,765 submissions from
3,837 SIDs) assuming malware writers will keep their SIDs
low profile. In our dataset, the latter subset is a superset of the
former subset, and hence we consider the submission-subset
of SIDs that have no greater than 3,100 submission per month
(denoted as p < 3100) a sufficiently large hunting ground.
This statistics justifies our assumption in Section 3 that a mal-
ware writer will not submit more than on-average 100 new
malware samples per-day, per-account, and per-proxy.

DT Statistics: Table 3 also shows the time usage from
scratch (there was no pre-built cluster, and clusters were built
up incrementally on a single thread). For the recommended
dataset-subset of p < 3,100, Lshand spent an hour in clus-
tering DTs on a single thread. Although we state that the
submission-subset of p < 3,100 is sufficient, our approach is
certainly computational feasible to higher rates (a more scal-
able alternative approach is discussed in Section 6). Table 4
shows the resulting DT statistics. We can see that 1,005 DTs
out of 14,226 DTs were submitted from multiple SIDs.

Table 4: Development Trace Statistics

#of DTs to # of DTs to
Intervals || [a,b) of SIDs | [a,b) of reports
1 13,261 12,650
[2, 10) 983 1,499
[10, 10%) 19 108
[107, 10%) 3 9
| MAX || 194 | 562 |

22nd International Symposium on Research in Attacks, Intrusions and Defenses 539

5.2 AMDT Accuracy Analysis

Lshand extracted AMDTSs from the recommended submission-
subset of p < 3,100. Each AMDT has at least five digested
reports and at least one malware-indicating digeseted report u
that has detection ratio r], > 30/62 by May 2018. The reason
why we did not evaluate low detection-ratio DTs is twofold:
first, we are focusing on checking AMDT rather than clusters
in general; second, we have better partial ground truth when
ri, is higher.

Baseline Selection: We compare Lshand AMDTs with
AMDTs from Ssdeep-based clustering method SSDC [39],
because SSDC is similar to our work in the way that it re-
quires only the metadata to produce AMDTs. Ssdeep has
been leveraged in several work that aims to cluster malware
(e.g., SSDC and Graziano et. al [13]). These work requires
only the Ssdeep values available in VirusTotal scan reports:
two samples that have homologies will have common byte
sequences in their Ssdeep values, and two Ssdeep values can
imply how homologous the two corresponding samples are.

Oracle Setup: We built an oracle for comparing AMDTs
of different approaches in binary-level. The oracle consists
of Android malware classifers MaMaDroid [24] and Drebin
reimplementation [28], and it considers a sample to be affili-
ated to its AMDT if and only if (1) the sample is similar to
the other samples in the same AMDT, and (2) the sample is
verified malicious by recent partial ground truth we gathered
by May 2018 (unlike Neg-Day alerter which looks for benign
samples using partial ground truth by Jan. 2016). For each
AMDT, the oracle gives us a correlation score S; calculated
with Eq. 1. The training details is stated as follows. We care-
fully verified an outsider malware set and an outsider benign
set, where malware set includes 362 malware (r}, > 30/62)
that each has few kins (|kins| < 2), and benign set includes
631 apps (r), = 0/62) that each has few kins (|kins| < 2). For
similarity test upon an AMDT, we split AMDT samples into
two halves based on the detection ratio], and we trained
the classifiers with the high-ratio half and outsider benign set
to verify the low-ratio half. For maliciousness test upon an
AMDT, we trained the classifiers with outsider malware set
and outsider benign set to verify the samples. Note that, we
tried to include some other tools, but each of them failed to
dissect a large portion of our dataset, either because its design
was not for the latter Android app framework (e.g., View-
Droid [45]), or because it took too much time and eventually
timed out (e.g., Asteroid [11]).

of affiliated kin samples

Correlation score S; =
of samples

(D

of samples in the correlation level y

of all samples in column x
cell,, = 2)
|-# of AMDTs in the correlation level yJ
of all AMDTs in column x

540 22nd International Symposium on Research in Attacks, Intrusions and Defenses

Table 5: Accuracy of different AMDT sets

SSDC | Lshand | Lshand
p=3,100 || AMDT | AMDT | NegDay

of samples 1,532 1,698 253

of AMDTs 68 56 10

Perfect || 85.51% | 99.16% | 100.00%

(100%) || 79.41% | 96.43% | 100.00%
Excellent || 3.59% | 0.00% 0.00%
(90-100%) || 2.94% | 0.00% 0.00%
Good || 2.81% | 0.00% 0.00%
(80-90%) || 441% | 0.00% 0.00%
Fair || 0.00% | 0.00% 0.00%
(70-80%) || 0.00% | 0.00% 0.00%
Problematic || 0.00% | 0.48% 0.00%
(60-70%) || 0.00% | 1.79% 0.00%
Bad || 8.09% | 0.36%* | 0.00%
(0-60%) || 13.24% | 1.79%* | 0.00%

| hours per revision || 168.84 | 207.81 | 1626 |

* False negatives were mistakenly introduced by the oracle; we have verified
this cluster a perfect cluster. Hour-per-revision is calculated based on the
highest file-timestamp in an apk.

Table 6: SID Statistics of Neg-Day Cases
| Neg Days [[Jan 2016 | May 2018 |

of samples 253 256
#of DTs 10 15
of DTs with 1 SID 1 3
of DTs with [2, 10) SIDs 8 5
of DTs with [10, =) SIDs 1 7
| Maximum#of SIDs || 25 | 4 |

AMDT Results: Table 5 shows our accuracy evaluation.
For presentation purpose, we split the correlation scores into
six levels (i.e., perfect, excellent, good, fair, problematic, and
bad), and each table cell is calculated with Eq. 2 (i.e., upper
scores represent the percentage among all samples, whereas
lower scores represent the percentage among all AMDTS). For
example, an AMDT with five affiliated kins and three unaffil-
iated samples has correlation score 5/8 = 62.5%, and hence
this AMDT is Problematic. This one AMDT (out of 56) with
eight samples (out of 1,698) contributes to the Problematic
cell 0.48%-1.79% in Table 5. We can see that Lshand out-
performs SSDC in terms of providing accurate AMDTSs: not
only did Lshand provide more accurate AMDTSs (99.16% vs
85.51%), but also it did provide more samples in total (1,698
vs 1,532). In addition, Lshand produced less Bad AMDTs.
Note that our AMDT results were given by AMDT extractor
before attested by Neg-Day alerter.

5.3 Hunting Negative-Day Malware

Our prey is Neg-Day cases, which are AMDTs with seem-
ingly benign submissions. We evaluate Lshand with an old
submission-stream snapshots, but we also deploy Lshand for
a more recent submission-stream snapshot.

USENIX Association

5.3.1 Submission-stream of January 2016

Lshand hunted down 10 Neg-Day cases from the submission-
subset where p < 3,100 subs/month. Each Neg-Day case
includes at least one seemingly benign digested report u that
has detection ratio r, = 0/62, at least one malware-indicating
digested report v that has r, > 3/62, and at least five samples
in total. Table 6 shows that nine (out of 10) Neg-Day cases
were submitted from multiple SIDs. Among these 10 Neg-
Day cases, Lshand identified 49 potential Neg-Day Android
malware (r, = 0/62 by Jan 2016). In addition, 96 (out of 253)
samples have the tag "xorcrypt” (sample is xor-encrypted),
and 55 samples have obfuscated class name.

Table 5 shows our Neg-Day accuracy evaluation. A score
of 100% is attested by the same oracle that was trained by
the selective outsider datasets by May 2018. To be more con-
vincing, we also manually verified these Neg-Day cases. We
submitted rescan requests to VirusTotal, studied the rescan re-
ports, and verified potential AMDT evidences (e.g., malware
labels, Ssdeep values, certificates, permissions, components,
and names if not obfuscated). Our manual verification aligns
with our oracle’s evaluation: every Neg-Day cases are in-
deed homologous and malicious. All 48 potential Neg-Day
malware (r,, = 0/62 by Jan. 2016) have become malicious
(r,, > 0/62 by May 2018). The average detection ratio for
these 253 submissions was F, = 4.31/62 by Jan. 2016 and
has become 7, = 32.06/62 by May 2018. Malware labels
for these 10 Neg-Day cases include Dnotua, Dowgin, Ewind,
Huer, Jiagu, Rootnik, SmsPay, SmsReg, and Triada. Based on
this evaluation, we conclude that Lshand is capable of hunting
down Neg-Day Android malware. Yet, note that since we do
not have ground truth for false negatives, we think that there
still could be some undiscovered Neg-Day cases in DTs.

5.3.2 Submission-stream of May 2018

We also deployed Lshand for more recent data which was
captured during May 2018. We fed Lshand’s report clusterer
the same features, weights, and thresholds; however, we fed
Lshand’s AMDT extractor a different set of parameters in
order to narrow down possible Neg-Day cases due to the
limited computational and personnel resource we have.

During May 2018, Lshand hunted down 15 Neg-Day cases
with totally 256 samples (114 samples have r, = 0/62 by
May 2018). Table 6 shows that 12 out of 15 Neg-Day cases
were submitted from multiple SIDs. We asked the same oracle
for automatic judgment and got 96.77% similarity score but
31.25% maliciousness score. Without recent data in the train-
ing set, the evaluation oracle failed to judge maliciousness
due to concept drift [1, 18]. Hence, we manually analyzed
the latest sample in each Neg-Day cases that were reported
benign (r], = 0/62).

In our manual analysis, we submitted 15 samples to Palo
Alto Networks WildFire [29] for behavior scanning, and we
checked samples with JEB decompiler (it is possible that we

USENIX Association

missed the malicious part in some cases). By the time we
wrote this paper, we have confirmed that 12 out of 15 Neg-
Day cases (80%) are malware, but VirusTotal and 62 engines
failed to identify these variants. Their malware labels include
SLocker, Triada, Trojan, riskware, downloader, and potentially
unwanted. One may argue some listed labels are not truely
malicious, but please recall that the maliciousness of a Neg-
Day malware is often underestimated (e.g., LeakerLocker had
only one suspicious label [38]), and it is not Lshand’s job but
malware analysts’ job to tell its true maliciousness.

5.3.3 False-Positive Case Study

Lshand relies on the assumptions that malware development
is a continuous submit-and-revise process. However, it is not
always true. In the results of May 2018, we got two (out of 15
Neg-Day cases) inevitable false positive cases that violate our
assumptions, and both cases are apps (54 apps in total) created
by Appbyme [5], an online DIY app-creation platform for non-
programmer users with a variety of templates and resources.
We consider them false positive cases because their latest kins
are not actually malicious. These two cases show that Lshand
will be inaccurate in judging apps from such a platform.

The reason that Lshand reported Appbyme is threefold:
first, the after-creation apps were structurally similar (they
share the same set of 81 activities, 9 services, 28 permissions,
and they all contains more than 1700 files) because of similar
selections on templates and resources even though these apps
were from different non-programmer users; second, one of
their malware-indicating kin is malicious (labels include Ad-
ware, Malware-HighConfidence, PUA, and TencentProtect,
an anti-cheat system monitor); third, the latest kin seems not
malicious. For confirmation, we submitted these malware in-
dicators to Palo Alto Networks WildFire, and the results are
that the malware indicators are indeed malicious, but the latest
benign apps are indeed benign. In Lshand’s point of view, the
latest benign Appbyme apps do look like variants of the mali-
cious Appbyme apps. After all, these apps are developed by
the same proxy developer using the same set of templates and
resources. Since the development was not a submit-and-revise
process, it becomes Lshand’s limitation.

6 Limitations and Discussions

6.1 What are the limitations?

Our goal is to hunt down potential Neg-Day cases based on a
few assumptions (Section 3), and the limitations are the fol-
lowing cases that violate our assumptions. First, we assume
malware development is a continuous submit-and-revise pro-
cess, and hence Lshand cannot accurately judge an app devel-
opment if the development case involves no submission for re-
vision (thus no scan reports) or if the development is done on a
proxy app-creation platform (see the above false-postive case

22nd International Symposium on Research in Attacks, Intrusions and Defenses 541

study). Second, we assume malware writers never incremen-
tally add a large number of dummy components or dummy
files, and hence Lshand cannot accurately judge a malware
once adding dummy components become automated (see the
below discussion). In addition to the above limitations, there
are two requirements: first, the scan reports from the selected
online malware scanner must be comprehensive; second, fea-
ture weights and distance thresholds must be studied because
information availability may differ across different selected
online malware scanners.

6.2 Can we learn weight and threshold?

In our current implementation, we tune the weights and thresh-
olds based on our confirmed AMDTs. Nevertheless, this
process can be robust and automatic by applying machine
learning techniques (e.g., [25,42]). Specifically, we can learn
weights and thresholds from unobfuscated same-certificate
AMDTs, which can be derived by collecting malware samples
that have high detection ratio (r > 30), overlapping compo-
nents (> 5), and the same certificate. However, we did not
incorporate the automation of weights and thresholds into our
current implementation because we do not have an AMDT
dataset that is large and convincing enough to learn from, as
we only have two month-long submission snapshots. If we
focus on unobfuscated same-certificate AMDTs that have at
least five kin samples and were compiled within seven days
from submission (based on the most recent file-timestamp),
then we have 24 AMDTs from January 2016 based on the
rescans submitted in 2018 (on average 21.99 hours per re-
vision), and 11 AMDTs from May 2018 (7.87 hr/revision).
During this research, we also have discovered 16 unobfus-
cated multi-certificate AMDTs, that each has at least five kin
samples but no more two kin samples sharing the same certifi-
cate, compiled in January 2016 (34.32 hr/revision). We plan
to incorporate the automation in the future when we acquire
more data.

6.3 Is there a way to evade Lshand?

Lshand bases its hunting skills mainly on clustering tech-
niques, and thus Lshand is vulnerable to manipulation upon
features. We came up with two evasion approaches. First,
a malware writer can knowingly incrementally adds a large
number of dummy components into a malware, so that the
kin malware samples could end up in different DTs because
of the enlarged distance in feature space. Second, a malware
writer can develop a malicious module with only necessary
components and then embed this module into a fake app that
is far away in feature space (hence the product malware could
be in a different DT).

Although Lshand is not fully evasion-resilient, the outcome
of the above evasion techniques can be limited because of
the following reasons. First, malware writers cannot easily

542 22nd International Symposium on Research in Attacks, Intrusions and Defenses

predict our Neg-Day results unless they deploy the same al-
gorithms with the same variables and collect the same set of
samples. Second, either above evasion techniques has draw-
backs making them less compelling to malware writers: on
one hand, incrementally adding a large number of dummy
components will make the latter variants more suspicious
to malware analysts and malware classifiers; on the other
hand, the development of a small malicious module can still
be detected and it is much easier to craft effective malware
signatures from a small codebase.

6.4 Can Lshand be more scalable?

To be more scalable, Lshand is equipped with a multi-phase
clustering option, and the idea is based on the map-reduce
concept. To be brief, digested reports are split based on se-
lective information (e.g., SID or timestamps), then digested
reports are clustered into development subtraces, and then
development subtraces are clustered into DTs. In our im-
plementation, features for subtraces are aggregated from the
digested reports by taking the mean value of features from the
latest few reports. Compared to the single-phase clustering ap-
proach that took 291 hours in clustering 371,187 observations
(p =unlimited), our two-phase clustering implementation took
93 hours for the same set of observation (note that clusterers
were executed sequentially without parallelization).

However, since features are aggregated, multi-phase cluster-
ing approach may incorrectly filter out more AMDT samples
(false negatives) than single-phase clustering approach. In-
deed, two-phase approach reported 56 AMDTs with 1,622
samples (76 less samples than its single-phase approach),
and the portion of perfect clusters is 99.14%-96.43%. A sim-
ple workaround to reduce false negatives is to set different
threshold 1; at different phase i. For example, setting T > 14
could reduce false negatives but it could also incorrectly re-
port benign samples (false positives). Indeed, two-phase two-
threshold approach reports 58 AMDTs with 1,799 samples,
and the portion of perfect clutser is 86.83%-89.66%.

7 Related Work

Many research on Android malware countermeasures (e.g.,
[9,14,16,19,26,30,35,40,41,43,44]) against Android malware
detection (e.g-, [2,3,7,10,15,20,21,23,24,27,36,37]) has
been studied, but only a few focus on detecting malware
development (e.g., [17]) or detecting a variant of a malware
family (e.g., [12, 13]).

AMDHunter [17] aims to find Android malware develop-
ment; however, AMDHunter has some critical flaws. First,
AMDHunter tracks malware development cases by profiling
SIDs (assuming an SID is more malicious if its submissions
demonstrate little diversity and little repetition), and hence a
malware writer can easily evade AMDHunter by submitting

USENIX Association

samples from multiple SIDs or decorated SIDs (e.g., repeat-
edly submit a variety of apps). Second, AMDHunter highly
depends on the trends of detection ratio (assuming malware
development will demonstrate decreasing trends which is not
true for LeakerLocker), and hence a malware writer can eas-
ily evade AMDHunter by submitting detectable variants of
known malware. In contrast, Lshand leverages neither SID
profiles nor trends of detection ratio, and hence not only is
Lshand capable of hunting down Neg-Day cases from multi-
ple SIDs (Table 6), but also did Lshand find more Neg-Day
samples in the five common Neg-Day cases in the overlapped
dataset (January 2016).

RevealDroid [12] and Graziano et. al [13] each solves a
similar research problem. RevealDroid [12] aims to efficiently
and accurately detect-and-identify malware family, but Re-
vealDroid is not as scalable as Lshand, because it requires
all malware samples to be dissected. The author stated that
RevealDroid spent 3.5 days in analyzing 9,731 apps, and most
of the execution time was spent on extracting features from
samples. Graziano et. al [13] aims to mine malware intel-
ligence from public dynamic analysis sandboxes; however,
their work focuses on unobfuscated and unpacked Windows
PEs, and thus some of their “most effective” features (e.g.,
filename edit distance) could be easily obfuscated.

Graziano et. al [13] and SSDC [39] also aim to detect-and-
identify malware family based on Ssdeep rather than malware
dissection. Ssdeep-based solutions require only the Ssdeep
values: two samples that have homologies will have common
byte sequences in their Ssdeep values, and two Ssdeep values
can imply how homologous the two corresponding samples
are. Although Ssdeep seems very convenient, there are a few
reasons why we avoid using Ssdeep in Lshand: first, obfusca-
tion and compression may mess up Ssdeep triggers, so two
kin obfuscated APKs may have mismatched Ssdeep values;
second, even when decompressed, repackaged fake apps will
still demonstrate matched Ssdeep values with benign apps and
cause false classification; third, fuzzyhash-based clustering
for malware has already been studied and considered problem-
atic [22]. The downside of Lshand compared to Ssdeep-based
solutions is that Lshand focuses only on Android malware;
nevertheless, the idea in Lshand can be extended to different
malware types by importing different features and classifiers.

8 Conclusion

We propose Lshand that is capable of hunting down 10 Neg-
Day cases (with 253 samples) from January 2016 and 12 Neg-
Day cases (with 256 samples) from May 2018. Our results
show that Lshand is efficient and accurate in hunting down
Neg-Day malware samples that were given no malware label
on VirusTotal.

USENIX Association

Acknowledgments

The work of Zhu was partially supported through NSF CNS-
1618684 and ARO W911NF-17-5-0002. Peng Liu was sup-
ported by ARO W911NF-13-1-0421 (MURI), NSF CNS-
1814679, and ARO W911NF-15-1-0576.

References

[1] TESSERACT: Eliminating experimental bias in mal-
ware classification across space and time. In 28th
USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, 2019. USENIX Association.

[2] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen,
and Vaibhav Rastogi. Droidnative: Automating and
optimizing detection of android native code malware
variants. Computers and Security, 65:230 — 246, 2017.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner,
Hugo Gascon, and Konrad Rieck. Drebin: Effective
and explainable detection of android malware in your
pocket. In NDSS. The Internet Society, 2014.

[4] Ulrich Bayer, Paolo Milani Comparetti, Clemens
Hlauschek, Christopher Kriigel, and Engin Kirda. Scal-
able, behavior-based malware clustering. In NDSS,
2009.

[5] Beijing Infinite Effect Media Information Technology
Co., Ltd. Appbyme, an online creation platform of diy
mobile applications., 2012. http://appbyme . com/.

[6] David Braue. Security tools taking too long
to detect new malware, analysis warns, 2015.
https://www.cso.com.au/article/566738/
security-tools-taking-too-long-detect-new
-malware-analysis-warns/.

[71 Gerardo Canfora, Francesco Mercaldo, and Cor-
rado Aaron Visaggio. An hmm and structural entropy
based detector for android malware. Comput. Secur.,
61(C):1-18, August 2016.

[8] Sanjay Chakraborty and N. K. Nagwani. Analysis and
study of incremental DBSCAN clustering algorithm.
CoRR, abs/1406.4754, 2014.

[9] Melissa Chua and Vivek Balachandran. Effectiveness
of android obfuscation on evading anti-malware. In
Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy, CODASPY 18,
pages 143-145, New York, NY, USA, 2018. ACM.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 543

http://appbyme.com/
https://www.cso.com.au/article/566738/security-tools-taking-too-long-detect-new
https://www.cso.com.au/article/566738/security-tools-taking-too-long-detect-new
-malware-analysis-warns/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

544

Ali Feizollah, Nor Badrul Anuar, Rosli Salleh,
Guillermo Suarez-Tangil, and Steven Furnell. Andro-
dialysis: Analysis of android intent effectiveness in mal-
ware detection. Computers and Security, 65:121 — 134,
2017.

Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and
Saswat Anand. Automated synthesis of semantic mal-
ware signatures using maximum satisfiability. In NDSS
Symposium 2017, San Diego, CA, 2017.

Joshua Garcia, Mahmoud Hammad, and Sam Malek.
Lightweight, obfuscation-resilient detection and family
identification of android malware. In Proceedings of the
40th International Conference on Software Engineering,
ICSE 18, pages 497497, New York, NY, USA, 2018.
ACM.

Mariano Graziano, Davide Canali, Leyla Bilge, Andrea
Lanzi, and Davide Balzarotti. Needles in a haystack:
Mining information from public dynamic analysis sand-
boxes for malware intelligence. In 24th USENIX Se-
curity Symposium (USENIX Security 15), pages 1057—
1072, Washington, D.C., 2015. USENIX Association.

Mahmoud Hammad, Joshua Garcia, and Sam Malek.
A large-scale empirical study on the effects of code
obfuscations on android apps and anti-malware products.
In Proceedings of the 40th International Conference on
Software Engineering, ICSE * 18, pages 421-431, New
York, NY, USA, 2018. ACM.

W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han.
Migdroid: Detecting app-repackaging android malware
via method invocation graph. In 2014 23rd International
Conference on Computer Communication and Networks
(ICCCN), pages 1-7, Aug 2014.

Wenjun Hu, Xiaobo Ma, and Xiapu Luo. Protecting
android apps against reverse engineering. Protecting
Mobile Networks and Devices: Challenges and Solu-
tions, page 155, 2016.

Heqing Huang, Cong Zheng, Junyuan Zeng, Wu Zhou,
Sencun Zhu, Peng Liu, Suresh Chari, and Ce Zhang. An-
droid malware development on public malware scanning
platforms: A large-scale data-driven study. In Proceed-
ings of the 2016 IEEE International Conference on Big
Data (Big Data), BIG DATA ’16, Washington, DC, USA,
2016. IEEE Computer Society.

Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi
Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo
Cavallaro. Transcend: Detecting concept drift in mal-
ware classification models. In 26th USENIX Security
Symposium (USENIX Security 17), pages 625-642, Van-
couver, BC, 2017. USENIX Association.

22nd International Symposium on Research in Attacks, Intrusions and Defenses

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Jinho Jung, Chanil Jeon, Max Wolotsky, Insu Yun, and
Taesoo Kim. AVPASS: Leaking and Bypassing An-
tivirus Detection Model Automatically. In Black Hat
USA Briefings (Black Hat USA), Las Vegas, NV, July
2017.

Dongwoo Kim, Jin Kwak, and Jaecheol Ryou. Dwroid-
dump: Executable code extraction from android appli-
cations for malware analysis. International Journal of
Distributed Sensor Networks, 11(9):379682, 2015.

Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. Barecloud: Bare-metal analysis-based evasive
malware detection. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 287-301, San Diego,
CA, 2014. USENIX Association.

Yuping Li, Sathya Chandran Sundaramurthy, Alexan-
dru G. Bardas, Xinming Ou, Doina Caragea, Xin Hu,
and Jiyong Jang. Experimental study of fuzzy hashing
in malware clustering analysis. In 8th Workshop on
Cyber Security Experimentation and Test (CSET 15),
Washington, D.C., 2015. USENIX Association.

Arvind Mahindru and Paramvir Singh. Dynamic permis-
sions based android malware detection using machine
learning techniques. In Proceedings of the 10th Inno-
vations in Software Engineering Conference, ISEC "17,
pages 202-210, New York, NY, USA, 2017. ACM.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andri-
otis, Emiliano De Cristofaro, Gordon Ross, and Gianluca
Stringhini. Mamadroid: Detecting android malware by
building markov chains of behavioral models. In NDSS
Symposium 2017, San Diego, CA, 2017.

M. Marszaek and C. Schmid. Spatial weighting for
bag-of-features. In 2006 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2118-2125, June 2006.

N. Miramirkhani, M. P. Appini, N. Nikiforakis, and
M. Polychronakis. Spotless sandboxes: Evading mal-
ware analysis systems using wear-and-tear artifacts. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 1009-1024, May 2017.

A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu.
Context-aware, adaptive, and scalable android malware
detection through online learning. IEEE Transactions
on Emerging Topics in Computational Intelligence,
1(3):157-175, June 2017.

Annamalai Narayanan, Mahinthan Chandramohan, Li-
hui Chen, and Yang Liu. Context-aware, adaptive, and
scalable android malware detection through online learn-
ing. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, 1(3):157-175, 2017.

USENIX Association

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

USENIX Association

Palo Alto Networks. Wildfire malware analysis.
https://www.paloaltonetworks.com/products/
secure-the-network/wildfire.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,
Christopher Kruegel, and Giovanni Vigna. Execute this!
analyzing unsafe and malicious dynamic code loading
in android applications. In NDSS Symposium 2014, San
Diego, CA, 2014.

Ford Qin. Leakerlocker mobile ran-
somware threatens to expose user infor-
mation, 2017. http://blog.trendmicro.
com/trendlabs-security-intelligence/
leakerlocker-mobile-ransomware-threatens
—expose-user—information/.

Konrad Rieck, Philipp Trinius, Carsten Willems, and
Thorsten Holz. Automatic analysis of malware behavior
using machine learning. Journal of Computer Security,
19:639-668, 2011.

James Scott. Signature based malware detection is dead.
The Cyber Security Think Tank, Institute for Critical
Infrastracture Technology, 2017.

Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and
Yiying Zhang. Learning from big malwares. In Proceed-
ings of the 7th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys 16, pages 12:1-12:8, New York, NY,
USA, 2016. ACM.

Guillermo Suarez-Tangil and Gianluca Stringhini. Eight
years of rider measurement in the android malware
ecosystem: Evolution and lessons learned. arXiv
preprint arXiv:1801.08115, 2018.

L. Sun, Z. Li, Q. Yan, W. Srisa-an, and Y. Pan. Sig-
pid: significant permission identification for android
malware detection. In 2016 I1th International Con-
ference on Malicious and Unwanted Software (MAL-
WARE), pages 1-8, Oct 2016.

M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang.
Monet: A user-oriented behavior-based malware vari-
ants detection system for android. /IEEE Transactions on
Information Forensics and Security, 12(5):1103-1112,
May 2017.

VirusTotal. A
on virustotal (first

leakerlocker sample found
seen: 2016-11-23), 2016.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

https://www.virustotal.com/en/file/
dB82330e1d84c2f866a0££21093cbhb%66%aaef2b0
Tbf430541ab6182f98f6fdf82/analysis/
1479960699.

Brian Wallace. Optimizing ssdeep for use
at scale and ssdeep cluster. 2015. https:
//www.virusbulletin.com/virusbulletin/
2015/11/optimizing-ssdeep-use-scale
https://github.com/bwall/ssdc.

and

X. Wang, Y. Yang, and S. Zhu. Automated hybrid anal-
ysis of android malware through augmenting fuzzing
with forced execution. IEEE Transactions on Mobile
Computing, pages 1-1, 2019.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou,
and Wu Zhou. Deep Ground Truth Analysis of Current
Android Malware, pages 252-276. Springer Interna-
tional Publishing, Cham, 2017.

Dietrich Wettschereck and David W. Aha. Weighting
features. In Manuela Veloso and Agnar Aamodt, ed-
itors, Case-Based Reasoning Research and Develop-
ment, pages 347-358, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg.

Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun,
and J. Zhang. Auditing anti-malware tools by evolving
android malware and dynamic loading technique. /EEE
Transactions on Information Forensics and Security,
12(7):1529-1544, July 2017.

Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu,
Bodong Li, Wenjun Hu, and Dawu Gu. Appspear: Byte-
code decrypting and dex reassembling for packed an-
droid malware. In Herbert Bos, Fabian Monrose, and
Gregory Blanc, editors, Research in Attacks, Intrusions,
and Defenses, pages 359-381, Cham, 2015. Springer
International Publishing.

Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao
Wu, and Peng Liu. Viewdroid: Towards obfuscation-
resilient mobile application repackaging detection. In
Proceedings of the 2014 ACM Conference on Security
and Privacy in Wireless Mobile Networks, WiSec "14.

ACM, 2014.

22nd International Symposium on Research in Attacks, Intrusions and Defenses

545

https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
http://blog.trendmicro.com/trendlabs-security-intelligence/leakerlocker-mobile-ransomware-threatens
http://blog.trendmicro.com/trendlabs-security-intelligence/leakerlocker-mobile-ransomware-threatens
http://blog.trendmicro.com/trendlabs-security-intelligence/leakerlocker-mobile-ransomware-threatens
-expose-user-information/
https://www.virustotal.com/en/file/d82330e1d84c2f866a0ff21093cb9669aaef2b0
https://www.virustotal.com/en/file/d82330e1d84c2f866a0ff21093cb9669aaef2b0
7bf430541ab6182f98f6fdf82/analysis/1479960699
7bf430541ab6182f98f6fdf82/analysis/1479960699
https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale
https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale
https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale
https://github.com/bwall/ssdc

