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Abstract— Interest in soft robotics has increased in recent
years due to their potential in a myriad of applications. A
wide variety of soft robots has emerged, including bio-inspired
robotic swimmers such as jellyfish, rays, and robotic fish.
However, the highly nonlinear fluid-structure interactions pose
considerable challenges in the analysis, modeling, and feedback
control of these soft robotic swimmers. In particular, developing
models that are of high fidelity but are also amenable to control
for such robots remains an open problem. In this work, we pro-
pose a data-driven approach that exploits Koopman operators
to obtain a linear representation of the soft swimmer dynamics.
Specifically, two methodologies are explored for obtaining the
basis functions of the the operator, one based on data-based
derivatives estimated using high-gain observers, and the other
based on the dynamics structure of a tail-actuated rigid-body
robotic fish. The resulting approximate finite-dimensional op-
erators are trained and evaluated using data from high-fidelity
CFD simulations that incorporate fluid-structure interactions.
Validation results demonstrate that, while both methods are
promising in producing control-oriented models, the approach
based on derivative estimates shows higher accuracy in state
prediction.

I. INTRODUCTION

The need for robots that are geometrically compliant yet
robust has led soft robotics to emerge as a field of interest in
recent years [1], [2]. While conventional robots consisting
of rigid components typically present limited adaptability,
soft robots possess a large number of degrees of freedom,
which allows them to achieve versatile motion and dexterous
manipulation. Soft-bodied animals, such as insects, snakes
and fish, have been a significant source of inspiration for
the development of a wide variety of biomimetic soft robots
[3], [4]. Aquatic biomimetic robots have particularly become
a promising application of soft robotics since, much like
aquatic animals, their soft bodies can achieve high mobility,
efficiency, and dexterity [5]. Their potential in applications,
including inspection, search and rescue [6], environmental
sampling [7], and serving as platforms to address biological
questions [8], makes soft robotic swimmers a topic of
interest.

Despite the promise of soft swimming robots, their com-
plex dynamics, large number of degrees of freedom, and
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fluid-structure interactions have made it challenging to obtain
models that are accurate yet amenable to model-based control
design. Most of the work on soft aquatic robots has focused
on prototype development based on a wide variety of actu-
ation methods and materials [9]–[12]. While there has been
some work on modeling, the models obtained are typically
not control-oriented [12]–[17]. More importantly, however,
successful models need to be robust to unknown parameters
or changes of fluid environments, while also being conducive
to real-time implementation [18], [19].

Koopman operators allows one to construct explicit linear
representations of complex dynamical systems [20], [21].
While this method is data-driven, it has the benefit of
producing explicit linear control-affine models. There has
been some work on using the Koopman operator for con-
structing a linear representation of rigid robotic fish with
basis functions derived from higher-order derivatives of the
underlying nonlinear dynamic model [22].

In this paper, we propose a data-driven approach that
utilizes Koopman operators to obtain linear, control-oriented
models for soft robotic swimmers. In particular, we propose
two different methods for constructing the derivatives-based
basis functions for the Koopman operators. Specifically, one
method utilizes higher-order derivatives of the measured
states, which are estimated using high-gain observers, and the
other assumes that the dynamics structure of the soft robotic
swimmer can be approximated using a relevant averaged
model of a rigid, tail-actuated robotic fish. The proposed
Koopman schemes are trained and then validated using
data obtained from high-fidelity CFD simulations. Validation
results show that both methods are promising, but the one
based on estimated derivatives demonstrates higher accuracy
in predicting the robot’s behavior.

The rest of the paper is organized as follows. We first
review the Koopman operator in Section II. In Section III, we
detail the CFD-based model of the soft robotic swimmer and
the scheme for obtaining its measured states. Construction of
the basis functions for the soft robotic swimmer is presented
in Section IV. In Section V, we evaluate the accuracy of the
resulting Koopman operator-based linear models and discuss
the results. Finally, we provide some concluding remarks in
Section VI.

II. BACKGROUND ON KOOPMAN OPERATORS

Expressing a system’s dynamics in a linear fashion is
often desirable since it eases both the investigation of the
stability properties [23] and the control synthesis of complex
systems [22]. Unlike linearization, which naturally becomes
inaccurate away from the linearizing point, the Koopman



operatorisabletoevolveanonlinearsystem withfull
fidelitythroughoutthestatespace[24].ThismakesKoopman
operatorsanattractiveapproachforobtainingreliablelinear
representationsofcomplexsystems.

A.KoopmanOperator

TheKoopmanoperatorKisaninfinite-dimensionallinear
operatorthatevolvesfunctionsofthestatesξ∈RN of
adynamicssystem.Thesefunctions,Φ(ξ),oftentermed
observables,thusevolveaccordingto

d

dt
Φ(ξ)=KΦ(ξ)or Φ(ξk+1)=KdΦ(ξk) (1)

inthecontinuous-timeanddiscrete-timesettings,respec-
tively.
Theinfinite-dimensionalnatureoftheKoopmanoperator

preventsitfrombeingpracticalingeneral.Nevertheless,
therehasbeensomeprogresstowardsobtainingfinite-
dimensionallinearKoopmanrepresentations,whichareonly
applicableforcertainclassesofnonlinearsystems[25]–[30].
Inthecasewherenofinite-dimensionalKoopmaninvariant
subspacecanbefound,recentstudieshaveimplemented
data-drivenregressionschemestoapproximatetheinfinite-
dimensionaloperatorKwithafinite-dimensionalapprox-
imationK̃,[21],[31],[32].Althoughapproximatingthe
Koopmanoperatorinduceserrorsinthesystempropaga-
tion,ithasbeenshownthatthelinear modelisableto
evolvetheoriginalsystemwithacceptableaccuracy[22].
Improvingboththeshort-andthelong-termaccuracyof
theapproximate Koopman modelsisanactiveresearch
topic,withpositiveresultsfromrecenteffortsthattryto
imposeconditionsonthelearnedrepresentation(suchas
dissipativity[33],orstability[34])inordertomoreclosely
matchpropertiesoftheunderlyingdynamics.

B.Data-drivenFinite-dimensionalApproximation

Inthisworkweutilizetheleast-squares method[21]
toobtainafinite-dimensionaloperator.Inparticular,one
canobtaina KoopmanoperatorapproximationK̃ by
choosingasetofbasisfunctionsΦ(ξ)andsolvinga
least-square minimizationproblem.Toincludetheactua-
tionterms,lettheobservablesbedefinedasΦ(ξ,u) =
[φ1(ξ,u),φ2(ξ,u),φ3(ξ,u),...,φq(ξ,u)]

T ∈ Rq.Inthe
discrete-timecase,theminimizationproblemtakesthefol-
lowingform

K̃d=argmin
K̃d

P−1

k=1

1

2
Φ(ξk+1,uk+1)−K̃dΦ(ξk,uk)

2(2)

wherePdenotesthenumberofmeasurements,whichare
composedofaninitialstateξk,afinalstateξk+1 andthe
actuationappliedateachinstant,ukanduk+1.Itwasshown
thatin[21]thatthereisaclosed-formsolutiontotheproblem
presentedabove,andisgivenby

K̃∗d=AB
† (3)

where

A=
1

P

P 1

k=1

Φ(ξk+1,uk+1)Φ(ξk,uk)
T (4)

B=
1

P

P 1

k=1

Φ(ξk,uk)Φ(ξk,uk)
T (5)

and†denotesthe Moore-Penrosepseudoinverse. The
continuous-time operatorcan be obtained viaK =
log(Kd)/∆t,where∆tisthetimespacingbetweenmea-
surements,ξkandξk+1 [21].
Inthesectionsthatfollowweproposeseveralmethods

forconstructingtheobservablesinordertoapproximatea
Koopmanoperatorforasoftroboticswimmer.

III.SOFTROBOTICSWIMMER:CFDMODELINGAND
DATAEXTRACTION

Softroboticswimmersexhibitcomplexbehaviorand
possesdynamicsthataredeterminedbyhighlynonlinear
fluid-structureinteractions.Theauthorsin[35]demonstrated
thattheactivestrainapproachinadistributedLagrange
multiplier/fictitiousdomain(DLM/FD)methodcancapture
thiscomplexbehaviorwithhighfidelity.Inthispaper,weuse
thecomputationalfluiddynamics(CFD)modeltogenerate
thedatausedforthetrainingandvalidationoftheKoopman-
basedmodels.

A.CFDModel

Theauthorsin[35]recentlydevelopedacomputational
frameworkforsimulationofasoftroboticswimmerthat
usesafictitiousdomain/active-strainmethodtosimulatesoft
robots’swimmingmotionsatfiniteReynolds(Re)numbers
(typicallyintherangeof100to1000).Themethodassumes
thattherobotiscomposedofsoftactivematerialsandcan
performfinite/largedeformationswhensubjectedtostimu-
lation.Thesoftswimmerismodeledasa2Drectangular
beamoflengthLanduniformthicknesshmadeupofa
continuoushyperelasticmaterialwhich,atthemicroscopic
level,isdrivenbyacontractingelementwithaninitiallength
l0.Fig.1(a)illustrateshowtheslenderfishbodyshape
ischaracterized.Toactivatethebeaminacontinuousand
periodicfashion,aconstant(λa=1−α0)ortime-dependent
contractilestraincontractilefieldisappliedalternativelyon
bothsidesofthebeamwithsomeperiodT.
Tocontroltheresultantundulatoryswimmingmotion,the
magnitudeofthecontractionstrengthαisformulatedas

αR(t)=α0(t)+
β(t)

2
, αL(t)=α0(t)−

β(t)

2
, (6)

whereαR(t)andαL(t)correspondtotheactuationstrength
ontherightandleftsides,respectively.Hereα0(t)refers
tothe“base”contractionstrengthtoachieveforward
(“straight”)swimmingmotionanditistobelimitedtosome
range0≤α0≤αmax,andβdenotesthebiasbetweenthe
contractionstrengthsofthetwoactuatedsideswhichallows
forturning.Thesoftswimmerwillthenturninthedirection
ofstrongeractuation.Fig.1(b),demonstratesthatthesoft
swimmerturningmotionswithdifferentturningradiicanbe
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(a) (b) (c)
Fig. 1: FD/active-strain simulator: (a) Micro-mechanical model of a 2D beam under contractile actuation (view from above).
The active segment is of length δ. (b) Trajectories of turning motions by tuning β. (c) Instantaneous snapshot of vorticity
field of a free-swimming beam at Re = 500 and T = 2.0. [35]

Fig. 2: Top view of the soft robotic swimmer undergoing
planar motion.

effectively achieved by tuning β.
To simulate the swimming motions of soft robots, this

active strain model is implemented using a fictitious do-
main (FD) method which solves the fully coupled nonlin-
ear fluid/elastic-structure interactions (FESI). When coupled
with the fluid-flow solver via the fictitious domain formu-
lation, one can simulate how an active beam will undergo
periodic undulatory motions as illustrated by the vorticity
map in Fig. 1(c). The reader is referred to [35] for further
details.

B. Representation of States

Given their large compliance, soft robots tend to have a
large number of degrees of freedom (DOFs), which makes
modeling very challenging. Instead of attempting to capture
the evolution of each DOF, we only consider the movements
of the soft body as a whole. The soft robotic swimmer is
then viewed as a general 3-DOF rigid body with 2 inputs
that undergoes planar motion. Let {I} denote the inertial
coordinate frame and {B} the body-fixed reference frame
attached to its center of mass. In particular, let [X, Y, Z]T

and [x, y, z]T denote the inertial and the body-fixed
coordinate systems, respectively, as illustrated in Fig. 2. Note
that the body-fixed x axis is defined by the connecting line
between the center of the swimmer and its anterior leading
tip. Let x, y denote the position of the origin of {B} in {I}.
Furthermore, let v1 , v2, and ω denote the body-fixed surge,
sway and angular velocities, respectively. Furthermore, let
γ denote the angle of attack, formed by the direction of
v = [v1, v2]T with respect to the body-fixed x-axis, and
let ψ denote the heading angle, formed by the body-fixed
x-axis relative to the inertial X-axis. In the next section,

we will discuss how to capture the dynamics that govern
the evolution of these velocity states, v1, v2, and ω, using
Koopman operators.

IV. SYNTHESIS OF DERIVATIVE-BASED KOOPMAN BASIS
FUNCTIONS

In this section, using the system states defined previously,
we propose two approaches to populate the observables of
the approximate Koopman operator. Recall that in the
continuous-time setting the approximate Koopman operator
K̃ evolves functions of the states and inputs of a system [22]
such that

dΦ(ξ, u)

dt
≈ K̃Φ(ξ, u) (7)

without loss of generality, the above can be rewritten as

d

dt

[
Φξ(ξ)

Φξ,u(ξ, u)

]
≈

[
K̃ξ K̃ξ,u
K̃u,ξ K̃u

][
Φξ(ξ)

Φξ,u(ξ, u)

]
(8)

where Φ(ξ, u) = [Φξ(ξ),Φξ,u(ξ, u)]T , with Φξ(ξ) ∈ Rqξ
being only dependent on the states and Φξ,u(ξ, u) ∈ Rqu
being dependent of the inputs as well. Note that q = qξ+qu.
Here K̃ξ ∈ Rqξ×qξ , K̃ξ,u ∈ Rqξ×qu , K̃u,ξ ∈ Rqu×qξ and
K̃u ∈ Rqu×qu are sub-matrices of K̃.

By linearizing the above Koopman representation with
respect to Φξ(ξ) and u, one can obtain a state and control-
affine linear model, such that

dΦξ(ξ)

dt
≈ ∂

∂Φξ(ξ)

(
K̃ξΦξ(ξ) + K̃ξ,uΦξ,u(ξ, u)

)
Φξ(ξ)

+
∂

∂u

(
K̃ξΦξ(ξ) + K̃ξ,uΦξ,u(ξ, u)

)
u

=
(
K̃ξ +

∂

∂Φξ(ξ)
K̃ξ,uΦξ,u(ξ, u)

)
Φξ(ξ)

+
(
K̃ξ,u

∂

∂u
Φξ,u(ξ, u)

)
u

=A(ξ, u)Φξ(ξ) +B(ξ)u

(9)

where A(ξ, u)
4
= (K̃ξ+ K̃ξ,u

∂

∂Φξ(ξ)
Φξ,u(ξ, u)) and B(ξ)

4
=

K̃ξ,u
∂

∂u
Φξ,u(ξ, u), and would be evaluated around the nom-

inal trajectories ξ∗ and u∗.
Having A and B be state-dependent requires the constant

reevaluation of Eq. (9); however, by letting Φξ,u(ξ, u) = u



one can avoid this, such that

dΦξ(ξ)

dt
≈K̃ξΦξ(ξ) + K̃ξ,uu

=AΦξ(ξ) +Bu
(10)

Note that in this manner A and B are fixed and not dependent
on the state and inputs. Similar analysis shows that in the
discrete-time setting

Φξ(ξk+1) ≈AΦξ(ξk) +Bu(k) (11)

By letting ξ = [x, y, ψ, v1, v2, ω]T , Eq. (10) can then
be used to represent the soft robot dynamics with a time-
invariant linear system representation by properly choosing
the basis functions Φξ(ξ) and the system inputs u.

From the CFD-model, there are two physical inputs at
our disposal, namely the forward swimming control α0 and
the turning control β. In this work, we explore defining the
system inputs u in two distinct manners: one, termed “linear
inputs”, treats directly α0 and β as control inputs,

u1 =α0

u2 =β
(12)

and the other termed “nonlinear inputs” and inspired by the
averaged robotic fish model [36], treats the system inputs as
nonlinear functions of the physical variables α0 and β, in
the following form:

u1 = α0(3− 3

2
β2 − 3

8
α2
0)

u2 = α2
0β

(13)

Next we elaborate on the two derivatives-based methods
for generating the basis functions.

A. Basis Function Synthesis Based on Estimated Higher-
Order Derivatives

Without prior knowledge of the system’s dynamics, the first
method, termed “Higher-Order Derivatives” (HOD), the basis
functions are populated using higher order derivatives of the
states, which are estimated using high gain observers. Let
ξ1 = v1, ξ2 = v2, ξ3 = ω, ξ4 = x, ξ5 = y, ξ6 = ψ. Then the
basis functions Φ(ξ) can be defined as follows

Φ(ξ) =



φ1
...
φ6

φ7

...
φTn+n
φTn+n+1

φTn+n+2


=



ξ1
...
ξ6

dξ1
dt
...

dT

dtT
ξn

u1

u2


(14)

where T denotes the derivative’s order and n is the number
of states (6 in the current case) .

B. Basis Function Synthesis Based on Robotic Fish Dynam-
ics

The second approach, termed “Robotic Fish-Inspired” (RFI),
adopts the approach proposed in [22]. In particular, we
assume the dynamics of the soft robotic swimmer have the
same structure as that of an approximate averaged dynamic
model of a tail-actuated rigid robotic fish [36]. Although it
is known that the dynamics differ between both systems,
we assume the overall model structure is sufficiently close
such that the observables can then be populated with the
states, and the terms involved in the first and second-order
derivatives of the states. Specifically, the first 6 observables
are populated with the states, while separate functions are
used for the time-derivatives of each individual term that
appears in the dynamics and their derivatives. For example,
considering that the kinematic equation and the surge accel-
eration of the robotic fish are given by

ẋ =v1 cos(ψ)− v2 sin(ψ)

ẏ =v1 sin(ψ) + v2 cos(ψ) (15)

ψ̇ =ω

v̇1 =
m2

m1
v2ω −

c1
m1

v1

√
v21 + v22

+
c2
m1

v2

√
v21 + v22 arctan(

v2
v1

) + b1u1 (16)

where m1,m2, c1, b1 are unknown constants. The first 11
basis functions are then populated as

Φ(ξ) =



φ1

...
φ6

φ7

φ8

φ9

φ10

...


=



x
...
ω

v1 cos(ψ)− v2 sin(ψ)
v1 sin(ψ) + v2 cos(ψ)

v2ω
v21
...


(17)

where the nonlinear terms are approximated as
√
v21 + v22 ≈

v1 and arctan( v2v1 ) ≈ v2
v1

. Note that to allow the identification
of unknown coefficients, each term in the derivatives is con-
sidered individually. Using the nonlinear terms that appear
in the rest of the dynamic equations, one can continue to
uniquely construct the basis functions until all the terms
are considered (see [22]). Similarly, the rest of the basis
functions are constructed using the terms that appear in the
second order derivatives. For example, by considering that
d2x
dt2 = dv1

dt cos(ψ) − v1 sin(ψ)ω − dv2
dt sin(ψ) − v2 cos(ψ)ω

and by approximating the nonlinear terms that appear in dv1
dt

and dv2
dt as previously mentioned, some of the basis functions

are then given by
φ15
φ16
φ17

...

 =


v2ω cos(ψ)
v21 cos(ψ)
v22 cos(ψ)

...

 (18)

In this way, Φ(ξ) ∈ R60, which is populated with the
system states as well as 52 additional scalar functions of the
states.



V. MODEL TRAINING AND VALIDATION RESULTS

To illustrate and evaluate the proposed methods, we first
describe the training of the Koopman operators and then
compare their predictive accuracy against data sets that
different from the one used to do the training.

A. Training of Koopman Operators

Each Koopman operator is trained by solving the least
square problem (2) with (3), where Φ is defined using
one of the two methods proposed above. In this work, we
consider up to 3 orders (P = 1, 2, 3) of the derivatives when
populating the observables using the HOD method, as we are
interested in determining what effect the orders of derivatives
would have on the Koopman predictive performance. To
estimate the higher-order derivatives of the states, high-gain
observers [37] are implemented since they offer desirable
robustness and stability properties. Furthermore, since two
types of system inputs (linear inputs and nonlinear inputs)
are also considered, a total of 8 different approaches are
explored and compared.

The training data ξk and ξk+1 are obtained based on the
data collected from the CFD simulations. In particular, the
physical inputs α0(t) and β(t) are varied randomly across
the allowable input space such that the training data provides
rich enough exploration of the dynamical system phase
space. The resulting time-averaged states are then sampled
at ∆t = 0.01s. Note that α0(t) and β(t) and thus the inputs
uk and uk+1 are kept constant between measurements. The
surge v1 and sway v2 velocity measurements are normalized
with a velocity scale defined as the beam actuation times
body length frequency, and the heading angle is calculated
by considering an imaginary line connecting the midpoint of
the soft robot with the the anterior leading tip of the robot.

Once the Koopman operators are trained, the state and
control linearization matrices A and B are extracted. The
linear system is then propagated for T = 15 seconds from
the initial time, and the predictions are compared with
corresponding data. To quantify how well the Koopman
operators predict a given data set, we utilize the normalized
mean square error (NMSE) defined as follows:

fit(i) = 1− ‖ξref (:, i)− ξ(:, i)‖2

‖ξref (:, i)−mean(ξref (:, i))‖2
(19)

where ‖ · ‖ indicates the 2-norm of a vector, ξref is the
CFD-data measurements, and i = 1, ...n, where n is the
number of states, and mean(ξref (:, i)) represents the mean
of state i. Each fit is thus a row vector of length n that
represents the ’fitness ”for each state, i.e it is a quantitative
representation of the closeness of ξ to ξref across the time
horizon T . Note that the NMSE varies between -∞ and 1,
where 1 signifies a perfect fit. Finally, we average fit(i)
across all states to obtain an average fit for the whole data
set. Table I summarizes the percent fit for all 8 methods.
Note that “HOD”, “HOD-2” and “HOD-3” denote utilizing
up to the 1st, 2nd, and 3rd-order derivatives for the HOD
method, respectively. For the sake of illustration, Fig. 3
depicts the fitness achieved by the HOD and RFI-trained

TABLE I: The level of fitness between the CFD training data
and the predictions by the trained Koopman for the four
different basis function synthesis methods proposed. Note
that the fitness values range between -∞ and 1, with 1 being
a perfect fit.

Method Nonlinear Inputs Linear Inputs
HOD 0.8036 0.8039

HOD-2 0.7511 0.7513
HOD-3 0.7634 0.7636

RFI 0.9315 0.9316

Koopman operators for the case when the nonlinear inputs
are considered.

Table I conveys the message that the approximated
Koopman operators are able to fit the training data with
acceptable accuracy overall. The RFI method produces the
highest fit, and all HOD fits are comparable, with HOD
having the best fit. It is also interesting to note that using
nonlinear inputs in fact results in a slightly inferior fitting
performance than using the linear inputs. To determine how
the operators capture the full dynamics of the robot, their
predictive performance is tested against other sets of data.

B. Comparison of Prediction Performance

To measure how well the approximate Koopman operators
capture the dynamics of the soft robotic swimmer, we use the
resulting operators to predict the evolution of the states for a
time horizon T = 15 s, given a particular set of inputs u that
were not used in the training, and then compare the resulting
trajectories against the corresponding CFD data. In partic-
ular, four data sets that capture the soft robot’s dynamics
with different linearly varying inputs are considered. Fig. 4
illustrates the NMSE of each approach obtained for every
data set when considering both linear and nonlinear inputs.
Furthermore, for the sake of illustration, Fig. 5 illustrates the
comparison for the RFI and HOD methods only in the case
when nonlinear inputs are considered.

From Fig. 4, when considering the goodness of fit across
different data sets, it is evident that the HOD methods, on
average, achieve better prediction performance than the RFI-
based method. In other words, although from Table I one
can conclude RFI method produces the highest fit for the
training data, from Fig. 4 one can see that when considering
the predictive power of the trained Koopmans across different
data sets, the HOD methods on average yield the highest fit.
On the other hand, there seems to be no significant added
benefit in including second and third-order derivatives when
considering the fitness that is achieved. We conjecture that
this is because the rigid body dynamics are not an accurate
representation of the soft swimmer and therefore higher-
order terms may not be relevant. Utilizing the first-order
derivatives, however, does have the benefit of yielding a
lower dimensional Koopman operator. Furthermore, it can be
noted that there is a difference in the predictive performance
between the Koopman operators trained using linear inputs
or nonlinear inputs, where the former leads to higher level
of fitness.



(a) RFI method. (b) HOD method using 1st order derivatives

Fig. 3: Fitness between Koopman model and measurements used to train it for the two different approaches: (a) RFI and
(b) HOD when nonlinear inputs are considered. The blue line shows the evolution of the states using the Koopman model.

(a)

(b)
Fig. 4: Level of fitness between four different data sets and
Koopman predictions for all four methods when considering
(a) nonlinear inputs and (b) linear inputs.

Upon further analysis of the Koopman operators, we
note that although all four methods yield state transition
A matrices with unstable eigenvalues, the resultant linear
systems are either stabilizable or controllable. In particular,
when considering both linear and nonlinear inputs, only the
HOD method yields a system that is controllable.

We conclude that although the RFI method yields an
operator that fits its training data the best, on average
the HOD method provides the best fit when considering
other data sets that capture different dynamics of the soft
robotic swimmer. Furthermore, this method has the benefit
of producing a lower dimensional operator and a resultant
controllable linear system. These properties are important
since lower dimensional linear representations reduce the
complexity in synthesizing controllers, and the controllability
plays a crucial role when addressing different control prob-
lems. In general, these results indicate that it is possible to
produce a control-affine linear model that reasonably predicts
the complex behavior of the soft swimmer without having

any prior knowledge of the dynamics.

VI. CONCLUSIONS

In this paper, two different methods of obtaining basis
functions for constructing Koopman operators are proposed
for soft robotic swimmers. One method that utilizes higher-
order derivatives of the states estimated using high-gain
observers, and the other that utilizes the dynamic model of a
rigid robotic fish to obtain the higher-order derivatives. The
predictive performance of the estimated Koopman operators
is tested against CFD simulation data and is quantified using
the normalized squared error. It is shown that although both
methods provide promising results, estimating higher-order
derivatives from data appears to be more effective, and the
resulting model is more computationally efficient for control
design.

For future work, the Koopman operator obtained using the
proposed methods will be used to design different model-
based controllers for the soft robotic swimmer, which will
be evaluated in CFD simulation. We will further prototype
a soft robotic swimmer, and explore the use of the proposed
modeling approach for such physical robots.
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