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Abstract

We consider the problem of recovering a rank-
one matrix when a perturbed subset of its en-
tries is revealed. We propose a method based
on least squares in the log-space and show
its performance matches the lower bounds
that we derive for this problem in the small-
perturbation regime, which are related to the
spectral gap of a graph representing the re-
vealed entries. Unfortunately, we show that
for larger disturbances, potentially exponen-
tially growing errors are unavoidable for any
consistent recovery method. We then propose
a second algorithm relying on encoding the
matrix factorization in the stationary distri-
bution of a certain Markov chain. We show
that, under the stronger assumption of known
upper and lower bounds on the entries of
the true matrix, this second method does not
have exponential error growth for large distur-
bances. Both algorithms can be implemented
in nearly linear time.

1 Introduction

We consider the problem of finding a rank-one approxi-
mation xy” of a matrix A € R™*" when only a subset
Q of the entries of A are revealed. We do not impose
any stochastic assumptions on the support set Q (i.e.,
the entries in © do not need to be randomly chosen)
nor assume any structure on the underlying matrix A.
We are looking for stable algorithms: this means that if
what is revealed is not {A;; | (4,7) € Q} but rather the
perturbed entries {A;; + A;;}, then we need to be able
to bound the error in the recovered matrix as a function

of the size of the perturbations |[Al|p := 33, jjcq AF;
In particular, we are interested in analyzing this ques-
tion in a minimax framework. We would like to un-
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derstand, for a given error size ||A||r, how large can
the error in recovering A can be. Moreover, we would
like to know which algorithm(s) can always guarantee
this minimax level of performance. Finally, we would
like to understand how these quantities depend on the
support set €.

We will be making only the minimal requirement on
the support 2: the only condition we will impose is
that the true matrix A be identifiable, meaning that
it is possible in principle to complete the matrix A
from the unperturbed entries {A;; | (4,7) € Q}. These
conditions were worked out in Kirdly et al. [2015],
Bonald and Combes [2017], Cosse and Demanet [2017]
and we describe them next.

First, it is natural to assume that A should have no
zero entries. Indeed, if A has zero entries, then it
may be impossible to complete A even from a very
large number of unperturbed revealed entries 2. For
example, consider the case where every matrix entry
except the (1,1) entry is revealed, and equals zero; it is
impossible to know what A;; is even though the set of
revealed entries is only a single entry away from being
complete.

Provided that A has no zero entries, a simple graph-
theoretic condition exists for identifiability. Specifi-
cally, we associate the support set 2 with an undi-
rected bipartite graph, G, with node set 7, U Z,,
where I, = {1,...,m} and I, = {1,...,n} (recall that
A € R™*™), with nodes ¢ € I, and j € I, connected
if the ijth entry is an element of Q. If A has no zero
entries, identifiability is equivalent to the connectivity
of this bipartite graph (see Kirdly et al. [2015] as well
as discussion in Cosse and Demanet [2017]). Thus,
henceforth it will be standing assumptions that A has
no zero entries and that G is connected.

Our motivation stems from several practical applica-
tions ranging from worker skill estimation in crowd-
sourcing (Bonald and Combes [2017], Ma et al. [2018],
Dawid and Skene [1979], Dalvi et al. [2013], Zhang
et al. [2014]), inferring latent information from limited
observations in collaborative filtering and recommender
systems (Rennie and Srebro [2005]), and in other ma-
trix completion applications such as global positioning
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and system identification (Candes and Plan [2010]), all
of which can be formulated in terms of rank-1 matrix
completion.

2 Related Work

Our work is broadly related to a number of other works
that either utilize rank-one matrix completion in the
context of crowd-sourcing, collaborative filtering or deal
with low-rank matrix completion (Rennie and Srebro
[2005], Candes and Plan [2010], Keshavan et al. [2010],
Dalvi et al. [2013], Zhang et al. [2014], Li et al. [2016],
Bonald and Combes [2017], Ge et al. [2016], Cosse
and Demanet [2017], Ma et al. [2018], Kleindessner and
Awasthi [2018]). Apart from Cosse and Demanet [2017],
Ma et al. [2018], much of this literature assumes some
form of incoherence on the matrices, a probabilistic
model for €2, or other structures on what indices of 2
are revealed. This separates it from the present work,
which does not use any of these assumptions.

Many of the methods described in these contexts (Can-
des and Plan [2010], Keshavan et al. [2010], Dalvi et al.
[2013], Ge et al. [2016], Li et al. [2016]) reduce to
the fact that spectral decomposition is approximately
preserved even though the matrices are only partially
observed. Unlike these papers and like Cosse and De-
manet [2017], Ma et al. [2018], we impose no such
structure and so such spectral properties can no longer
be leveraged for recovery.

In the unperturbed case, it is easy to complete a matrix
A;j from a subset of revealed entries using a “prop-
agation” approach; this consists in fixing one entry,
say 1 = 1, and then solving for entries of y from the
revealed entries in the first row, and then iterating this
scheme as more entries are fixed. In particular, this
was discussed in Bonald and Combes [2017]. Unfor-
tunately, Cosse and Demanet [2017] points out that
this technique performs very poorly in the presence of
perturbations even on some very simple examples. Re-
latedly, Kleindessner and Awasthi [2018] also consider
the possibility that the observations are not rank-one;
they introduce other assumptions such as that the
entries are observed at random and that various mo-
ments can be estimated among the different observed
components can be estimated.

Other techniques proposed for matrix completion in-
clude nuclear norm minimization, see Candes and Plan
[2010]. Unfortunately, nuclear norm minimization fails
to solve our problem, as it will in almost all cases output
a higher-rank matrix, even when there is no disturbance
and sufficiently many entries are revealed, as shown
in Cosse and Demanet [2017]. Ridge-regression based
approaches have also been considered Ma et al. [2018],
Mnih and Salakhutdinov [2008], and appear natural for

our setting, since Tikhonov regularization typically pro-
vides stable solutions. Nevertheless, as pointed out in
Cosse and Demanet [2017], even these approaches are
unstable. Moreover, they require solving non-convex
optimization problems with a potentially high number
of local minima of the form

r;l}yﬂ”({l?yT—AR)QHF"‘)‘(HI‘HZ—’—||y||2>7 (1)

where () selects the entries for which data is available,
and AR denotes the revealed entries. More recently
alternative minimization (ALM) methods, wherein the
two vectors x and y are alternately updated to optimize
H(acyT — AR)QHF, have been proposed to handle the
computational bottleneck of optimizing over low-rank
matrices. Li et al. [2016], following up on a long line
of works establishes recovery guarantees, under strong-
coherence assumptions. As these authors point out,
ALM methods leverage the key property ”that the
spectral property only need to hold in an average sense’
to guarantee recovery of ALM based methods. In
contrast to these methods, we impose no constraints
either on the ground-truth matrix or assume random
sampling of revealed entries.

)

Our work is closely related to Cosse and Demanet
[2017]. Like that work, we require our algorithms be
stable. On the other hand, we differ from their method
in several ways. First, theirs is based on solving an SDP
relaxation involving a matrix whose size grows quadrat-
ically with that of the matrix to be recovered leading in
the best-case scenario to a fourth-order complexity. In
addition, Cosse and Demanet [2017] provides guaran-
tees on the relative error on a matrix of moments that
is related to, but different from, the initial matrix to
be recovered, and assumes knowing some bound on the
magnitude of the perturbation. As we will discuss later
in the paper, our methods actually run in linear time
(up to log factors), and are thus considerably faster
than methods based on SDP relaxation.

2.1 Our contributions

In this paper, we develop two efficient and stable ap-
proximation methods for rank-one estimation of a par-
tially observed matrix.

Our first scheme is based on formulating the problem
as weighted least squares in a certain logarithmically
transformed space. Qur first contribution is to demon-
strate that, for small perturbations, the performance
of this scheme matches the fundamental lower bounds
that we derive for this problem, and which are related
to the spectral gap of the bipartite graph G associated
with the revealed entries.

Unfortunately, the recovery error of the weighted log-
least squares method will scale exponentially in ||A|| .
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While this may be acceptable for small perturbations A,
it makes the minimax performance quite poor if ||A||F
is not small. Unfortunately, our second contribution
is to show that this is unavoidable. Specifically, we
consider the class of consistent algorithms, defined
those methods that require correct recovery of A when
A;j =0 for all (z,7) € Q. We show that any consistent
scheme must suffer an estimation error that scales
exponentially in ||Al|F.

This negative result leads us to consider a minor modi-
fication of our problem. Specifically, we consider the
setting where we additionally know upper and lower
bounds on the entries of A. We propose a method,
based on the encoding of the rank-one factors  and
y (from the decomposition A = 2yT) into a stationary
distribution of a suitable Markov chain, and whose pa-
rameters leverage these known lower and upper bounds.
Our final contribution is to give an estimate of the re-
covery error associated with this method and show that
it does not scale exponentially in ||Al|p.

3 The first algorithm: weighted
log-least squares

We begin with a heuristic derivation of our method.
Let us first consider the unperturbed case, i.e., when
A;; =0 for all (z,7) € Q.

We begin with the observation that it suffices to deal
with the case where A is positive. Indeed, if A = zy7 is
rank-one with no zero entries, then the same holds for
|A| = |z||y"|. Any method which works in the positive
case can be used to compute |A| by taking the absolute
value of the revealed entries {|A4;;| | (¢,j) € Q}. Having
obtained the full-matrix A, we can then easily compute
|z| and |y| by a standard rank-1 factorization. Finally,
we can use “sign propagation” to figure out the sign
of all the entries of  and y: we fix sign(z;) = +, and
repeatedly figure out the signs other elements of xz and
y by inspecting the revealed entries A;;. It is easy to
see that this process will work provided the graph G is
connected: specifically, the process will result either in
the recovery of x and y, or in the recovery of —z and
—1y, which amounts to the same thing.

Now in the case the rank-1 matrix A = zy” is positive,
it follows that =z and y can be taken to be positive
vectors. We define
zi = wx;foralliel,
z; = yj_l for all j € I,
In terms of these new variables we have that
Aij = z/zj for all (i,7) € Q,

or

log A;; =logz; —log z; for all (i,7) € . (2)

The assumption of positivity of A;; was necessary in
order to be able to take logarithm in the last equation.
We now observe that these equations are linear in the
quantities log z;. This leads to a natural idea: we can
solve the linear system of Eq. (2) for the quantities
log z;, and then find z,y by exponentiating.

We now come back to the case where the perturbations
A;; are not necessarily zero. Provided the perturbations
are not so large as to change the sign of the entries,
we can proceed as before by taking the absolute values
of the revealed matrix and recovering the signs during
post-processing using a sign-propagation step.

However, simply solving Eq. (2) approximately is no
longer the best thing to do, because different entries
of the matrix display different levels of sensitivity to
perturbations. Indeed, observe that if we solve

logz; = log(Aij + Aij)

= log Aij + (log(Aij + Aij) — log Ayj)
= log Aij + Dij7

log z; —

we see that the same disturbance A;; might create a
larger or smaller D;; depending on the matrix entry
A;j. Specifically, if A;; is smaller, a disturbance A;; of
the same magnitude can result in a larger D;;. Infor-
mally speaking, an adversary with a fixed budget for
disturbances might choose to perturb smaller entries.

Our approach to deal with this is to re-weigh the equa-
tions so that an adversary could not take advantage
of this, at least when the perturbations A;; are small
relative to A;;. Indeed, observe that using first-order
approximations

% _ log(Aij + A”) — log Aij
1 1

Ay A+ Ay

where the first approximation used that (logz)' = 1/z
while the second one used that A;; should be small.

This string of equations leads to a natural heuristic:
we can simply multiply the equation in Eq. (2) corre-
sponding to (4, j) by the revealed entry A;; + A;;. If
we do that, small perturbations A;; will have the same
effect on every equation. Thus adopting the shorthand

AZ = Aij + Aij for all (Z,j) € Q,

where the superscript “R” stands for “revealed”, our
algorithm is to solve the system of equations

Ag (log z; — log z;) = Ag- log Aﬁ, Y(i,7) €Q (3)

in the least square sense. Naturally, this is not the same
as solving Eq. (2) in the least-squares sense, since
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multiplying the (7,7)’th equation by Af-jf effectively
“weights” each equation in Eq. (2) differently.

We conclude this section by explaining how this system
of equations is a Laplacian linear system, which allows
us to leverage existing results to show it can be solved
in time nearly linear in the size of 2. We begin by in-
troducing a particular weighted version of the bipartite
graph G: Gy r has the same node set and edges as
G with the weight of the edge (i, ) being (A]})?. Let
Ly r be the Laplacian of this weighted graph, and let
B be its incidence matrix. It is standard that

Lyr = BWEBT, (4)

where W1 e RI2XIQI 5 diagonal matrix collecting all
the weights (AJ%;)?. The linear system of Eq. (3) can
then be expressed as

(WH)2 BT logz = (WF)3 log AR

where AR denotes the vector collecting the revealed
entries Ag. Using Eq. (4), least squares solutions of
this systems are solutions of the linear system

Lyrlogz = BW®log AE.
For example, one least-squares solution is
log 2 = LI, , BWFlog AL (5)

where T denotes the Monroe-Penrose inverse.

Computational Efficiency. The main advantage of
this rewriting is that it now follows from the now-classic
results of Spielman and Teng [2014] that Eq. (5), being
a system of equations with a graph Laplacian, can be
solved in near linear time (up to log terms) in the size
of 2. More precisely, a solution with precision € can be
obtained in O(|Q|log”(n + m)log(¢~1)) operations for
some constant £ > 0.

The pseudocode of the weighted log-least squares
method is given below.

Algorithm 1 Weighted Log-Least Squares Method

: Input: Positive revealed entries {Af; (1,7) € Q}.
: Solve Eq. (5) for Z.

: For i € I, set &; = z; and for j € I, set §J; = zj_l.
: Return A = g7,

=W N

3.1 Accuracy Results

We now move to a discussion of our results. Our first
theorem gives an error bound for the performance of
the weighted log-least squares method.

Theorem 1. Suppose that A is positive and
Aij + A5 >0 for all (4, 5) € Q.
Suppose that the disturbances further satisfy
A;; < (c—1)A;; forc>1 and all (i,7) € Q.

Then the weighted-log least squares method returns an
estimate A satisfying the error bound

; 2 2, /R A
4= 4]] | < A B L ) [A]f 2V T a8,

where Ry r oy 05 the largest pairwise resistance be-
tween any pair of nodes in the weighted bipartite graph
Gwr, and Ky r is the Laplacian of the complete bi-
partite graph on I, x I, where the edge of weight (i, j)
is the true entry A;;.

To parse this theorem, note that the positivity of
Aij + Ay effectively bounds A from below, while the
condition A;; < (¢ —1)A;; bounds it from above. The
latter condition is just another way of stating that the
revealed entry A;; + A;; is not more than c times the
actual entry A;;. Finally, as discussed earlier, we can
consider the positive case without loss of generality due
to the trick of taking the absolute value of revealed
entries and using sign propagation.

For a formal definition and discussion of the electrical
resistance of graphs, we refer the reader to Levin and
Peres [2017]. Informally, the resistance of a graph is
defined as the largest resistance in an electrical circuits
where each edge is replaced by a resistor with resistance
inwversely proportional to the weight of that edge.

The assumption that the revealed entry Ag has the
same sign as A;; is unavoidable. To see why, consider

the rank-1 matrix
€ €
a=(27)

2
R _ € -1
(5

where the star represents unrevealed entries, we see
that the revealed entries of AT are consistent with the

matrix
(o) =

Thus even though ||Al||F is constant, the recovery error
will scale at least as e~2. Choosing a sufficiently small
€, we can obtain an arbitrarily large error.

Supposing that

We note that the necessity of the same-sign assumption
is not particularly dependent on the choice of method,
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as this pair of matrices is a counterexample for all
methods which return a rank-1 matrix completion of
AT whenever it is available (in our next section, we
will prove lower bounds on the performance of such
methods, which we call consistent).

For small ||A||r, both the exponential factor and the
constant ¢ in Theorem 1 approach one, so that we have

1A~ All3

< Amax (KoLl 1), 6
AT FweLygn)- )

im
l1Allp—0

Theorem 1 thus identifies the key graph-theoretic quan-
tity that governs robustness in the small-perturbation
regime. Because it may be difficult to trace how this
quantity scales in the number of nodes or other graph-
theoretic quantities, we provide a corollary that gives a
bound in terms of the more usual graph characteristics.

Corollary 1. Let & be an upper bound on the entries
of the matriz A and let o™ be a lower bounds on the
revealed entries Agﬁ, Under the same assumption as
in Theorem 1, the estimate produced by the weighted
log-least squares method satisfies

A 2 a 2m—|—n 9 2eVE A R
A—AH < 2 = A c max || Al p/a
a-al s (S) Sy nalg e

2

_ 2
< (55) ometny® iy eI,

where Ruyax 18 the mazrimal pairwise resistance in the
unweighted bipartite graph G, Xo(L) is the second-
smallest eigenvalue of the Laplacian L corresponding
to this graph, and, as before, A € R™*",

4 Lower bounds

It is natural to wonder to what extent the upper bounds
we have derived in the previous section is optimal. The
following theorem considers the limiting case when
the perturbation is small. We provide a lower bound
under the assumption that the algorithm only uses the
revealed entries Af} to compute an estimate A. Note
that this assumption applies to the weighted log-least
squares method, but will be violated by the algorithm
we will propose in the next section.

Theorem 2. Consider any algorithm that computes
an estimate A of A based solely on {Aﬁ (i,5) € Q}.

Then for any entry-wise positive rank-1 matriz A® and
mask €2, one can find a matriz A such that

N 2
4= ][ = dmax(Bw Ly ) 1815 + 0 (I18al})

with Aij = A{; - Aij fOT (17]) €

Combining this theorem with Eq. (6), we obtain our
first main result: that the weighted log-least squares
method is optimal for small disturbances, and that the
relevant graph-theoretic quantity governing performance

i Amax(Kw Ll 5).

We next turn to the question of what happens when
disturbances are not small. Inspecting Theorem 1, we
see that the error bound grows exponentially in the size
of the disturbance ||A||r. There is also an exponential
scaling in terms of the largest resistance in the graph
G with weights coming from W¥. The latter is also
concerning, as resistances will often scale polynomially
in the number of nodes (for example, on a line of n
nodes resistance is linear in n). And since the resistance
of a weighted graph scales inversely in the weights, the
upper bound may also blow up for certain classes of
problems where specific revealed entries go to zero.

It is natural to ask whether these poor scalings are
avoidable. Unfortunately, our next main result answers
this negatively under a plausible assumption.

That assumption is consistency, which says that when
the revealed entries are the unperturbed entries of a
rank-1 matrix A, the algorithm should recover A ex-
actly. Consistency is a natural condition for algorithms
that estimate A based purely on revealed entries. Look-
ing forward, however, we note that consistency is not
a natural assumption for algorithms that are allowed
to use additional information. For example, later on in
the paper we will consider algorithms that know upper
and lower bounds on the entries of A. Indeed, when
revealed entries of a rank-1 matrix A with the property
that some entries of A lie outside of these bounds, such
algorithms should not simply return A.

Our second main result, presented as the following theo-
rem, says that, in the worst-case, any consistent method
suffers from exponentially poor scaling in ||Al|r and
the largest resistance of G.

Theorem 3.

(a) Fiz any positive constant c. There exists a family
of matrices A, € R"*™ support sets Q, C {1,...,n}x
{1,...,n}, and disturbances A,, satisfying ||A,|| < ¢,
with uniformly bounded AZ}-; and A;j, for which we have

'/1 - AH? > <exp <c\/Rmax <% - O(n1/2))> - 1)2

for any consistent algorithm. Here Ryax is the largest
pairwisse resistance of the (unweighted) graph G.

(b) For every even n, there exists a family of square
matrices AR, A, support sets Q with ||Al|r, max A;j,
c¢=1+maxA;;/A;; bounded uniformly independently
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of n such that for any consistent algorithm,

5 The second algorithm: Markov
chain stationary distributions

. 2 2
A AH > (mnin AR)-2,
F— 9 J

We now provide an algorithm that avoids the expo-
nential scaling discussed in the previous section. This
does not contradict Theorem 3 because we now as-
sume we have lower and upper bounds on the entries
of A: a < (A);; <@foralli e I,,j € I,, and these
quantities a @ are known to the algorithm. For small
disturbances, however, the guarantees on performance
of this method will, in the worst-case, be weaker than
the asymptotically optimal algorithm in Section 3.

In the sequel, we will find it convenient to define the

quantities p = \/aa and p = \/@/a, so that the inter-
val [, @] can be re-expressed as [up~!, up].

5.1 Algorithm Description

Since we know that every (A);; lies in [o, @], we will
begin by projecting all revealed entries on that interval.
Note that this step can only reduce the disturbances.

The algorithm consists in computing the stationary
distribution of a continuous time Markov chain defined

on the graph G. Specifically, we define the matrix
MR c R(7n+n)><(m+n) as

1 .
(MB) = ——— (i,5) € Q,
Tt (AR)
(AR),; .
(MP);; = ———— (i,5) € Q,
Tt (AR);
(MR)Z‘Z' = — Z(MR)U 1 E Iz,
Jjely
(M%) == (M%) J €1y,
i€l

and set all other entries are 0. The matrix M is defined
in the same way, replacing A% by A. For background
on continuous-time Markov chains, we refer the reader
to Levin and Peres [2017].

The motivation for this method is captured by the
following simple observation. Recalling that A = xyT,
it turns out that the vector z defined as

_VH

"y
2 = —= for i € I, zj = for j € 1,

Yj

is proportional to the stationary distribution of the
continuous time Markov chain M. This fact can be
verified immediately by observing that the “balance
equations” Miqu; = Mjizj hold.

In other words, in the case where the perturbations
are zero, computing the stationary distribution of M
immediately lets us recover x and y, and therefore the
matrix A. When the perturbations are nonzero, one
might hope that the stationary distribution of M will
depend smoothly on the perturbations A, so that it
will be possible to bound the recovery error.

This trick is very similar to the approach used by Ne-
gahban et al. [2012, 2016] for the problem of estimating
an unknown set of weights from a collection of noisy
pairwise comparisons. One difference is that we add a
projection step; this seemingly minor difference allows
us to bypass the lower bounds of Theorem 3. The
pseudocode for the method is given below.

Algorithm 2 Projected Eigenvector Algorithm

1: Project all revealed entries onto [up™t, up).

2: Compute 7t € R™*" the principal left-eigenvector
of M, normalized so that eT7n% =1

3: Let 7 be20btained by projecting each entry of 7%
onto [[o—r, 2],

4: Return the matrix A € R™*" defined as /Lj =

[L27AT1/7?FJ

Finally, the stationary distribution 7% is simply the

eigenvector of M corresponding to the zero eigen-
value. It can be computed in nearly-linear time as a
consequence of the recent results of Cohen et al. [2017].

5.2 Accuracy Results

The accuracy guarantee of this algorithm are naturally
expressed in terms of total variation (i.e., I*) norm
rather than a quadratic loss. We thus introduce the
“first-order Frobenius norm” defined as

[[M]|p., = Z | Mi;] -
,J

Note that ||M||z < ||M]|p.;, so any upper bound on
the first-order Frobenius norm is also an upper bound
on the ordinary Frobenius norm.

The error guarantee for the projected eigenvector
method is given in the following theorem.

Theorem 4. The estimate A computed by Algorithm
1 satisfies

N log pv/m +n
HA — AHF:I <3(m+ n)2p4w max (||A||oo ) ||A||1)
log pv/m +n
- 25 alogpy/m +n

where p = a/a and Ay(M) is the second-smallest eigen-
value of M, which is real.
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The previous theorem implicitly depends on the re-
vealed submatrix A%, since the matrix M is built from
AP The following corollary provides a bound which
depends only on the graph and not the revealed entries.

Corollary 2. The estimate A computed by Algorithm
1 satisfies

2.5p710gpvm +n

[A-a|  <6m+n

Since it is elementary that Ao(L)~! is at most polyno-
mial in m + n (for example, the bound Ao(L)~! <
O ((m+n)?) follows from Theorem 6.2 in Mohar
[1991b]) we come to our third result: the projected
eigenvector method avoids the exponential scaling faced
by all the consistent methods.

6 Synthetic Experiments

In this section, we conduct a number of synthetic exper-
iments to highlight similarities and differences between
the algorithms proposed here and prior works.

Metrics. Recall that our goal is to approximate the
unknown ground-truth rank-one matrix A° by a rank-
one matrix zy”, when the observations are perturbed,
AR = Ao+ A, L||Allp < 6, and the revealed entries
are sampled components of A®. We will demonstrate
that, under various scenarios, such as different per-
turbation levels (d); different samplings of revealed
entries: either random or structured; different matrix
sizes, either small or large; our algorithm recovers a
stable solution rapidly with computational time scaling
with the number of revealed entries.

Competing Rank-One Approximation Methods.
As pointed in our related work, nuclear norm based
methods do not guarantee rank-one recovery and so we
omit them in our experiments. Ridge-regression Eq. 1 is
demonstrably unstable (see Appendix Fig. 4). In sum-
mary, we are left with three algorithms, propagation
(Bonald and Combes [2017]), Alternative Minimization
with/without clipping and with SVD and with random
initialization (Li et al. [2016]), and our weighted Log-LS
method, unweighted Log-LS method, and the Markov
chain method, which we report here. The clipping
method of Li et al. [2016] was found to be sub-optimal,
and in general Alternative minimization without clip-
ping out-performed clipping for our rank-one setting.
For this reason we omitted results with clipping. We
report results for Alternative Minimization as Alt-Min-
SVD and Alt-Min-Rand.

Datasets.
Ground truth matrices A%: The matrices were gener-
ated by taking random vectors z,y, with log x;,log y;

uniformly distributed in [—(log p)/2, (log p)/2], for p =
10. As a consequence, all entries lie in [10~1, 10]. Unless
stated otherwise, matrices were of size 1000 x 1000.
Perturbation on revealed entries (A, A). The pertur-
bation applied to revealed entries consist of i.i.d. ran-
dom variable uniformly distributed in [—§/2, /2], with
0 = 1073 unless stated otherwise. Other typical per-
turbations were not observed to lead to significantly
different behaviors.

Masks and revealed entries. Two sort of masks were
considered. (i) Random mask: each entry is revealed
or not according to i.i.d. random variable of proba-
bility p, equal to 0.01 unless stated otherwise. This
corresponds thus to an average of 10 revealed entries
per row or column. Masks that did not lead to a con-
nected graph G were discarded, as this is a necessary
condition to reconstruct A% even in the absence of
perturbation. (ii) Star mask: the first k¥ rows and
columns are revealed. Note that revealing a single
row or column corresponds to a star graph, and is the
minimal number of elements required to complete a
rank-one matrix Ma et al. [2018]. Unless otherwise
specified, we conduct experiments with 1% revealed
entries, and 3-rows/columns for Star masks.

Experiments and Key Findings. All of the re-
ported results are mean values averaged over 50 trials.
We found Alt-Min-SVD and Alt-Min-Rand exhibited
high variance over the course of the iterations. We
report variances in the appendix (see Figure 5).
Effect of Perturbation Size. We first determine how the
different methods scale with size of perturbation un-
der different structures (random & star), with fixed
number of revealed entries (~ 1%) for a matrix of size
1000 x 1000, for 1000 Alt-Min iterations. Figures 1(a)
and 2(a) reveal that, unsurprisingly, accuracy degrades
with perturbation size. For small perturbation, we
notice that proposed weighted Log-LS dominates our
other proposals. Nevertheless, for large perturbations,
Markov-Chain error saturates and thus performs better
than competing methods. Propagation performs poorly
against other competing methods even with relatively
small perturbation. Alt-Min and Log-LS achieve some-
what the same accuracy with 1% randomly revealed
entries (see Fig. 2(a)).

Influence of Sampling. Figures 1 and 2 provide a quali-
tative comparison between random vs. structured star-
mask sampling. Alt-Min performs well with random
sampling, but its performance significantly degrades
with star-masks. This points to the fact that Alt-Min
performs well only when the spectral properties are
preserved, see Li et al. [2016]. Propagation is somewhat
robust to different types of sampling.

Effect of # Revealed Entries. We varied number of re-
vealed entries, keeping all other variables (matrix size,
perturbation level, # Alt-Min iterations) fixed for ran-
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Figure 1: Influence of “star-graph” sampling on proposed and competing methods. On Star graphs our Log-LS
dominates other methods with perturbation size, # Revealed Columns, Convergence Speed, and Matrix Size. For
each experiment, when one of the variables was varied (for instance perturbation) then other variables were fixed
(with matrix size n = 1000, 3-column/row star-graph sampling, and 1000 iterations for Alt-Min methods).
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sampling scenario. Matrix size is omitted as no discernible features

between Alt-Min and Log-LS were found. Experiments were conducted as in Figure 1, by varying one parameter
and holding other parameters fixed. Qualitatively Log-LS and Alt-Min perform similarly. In contrast to star-graph

sampling Alt-Min converges rapidly to optimal solution.

dom and star-mask sampling (see Fig. 1(b) 2(b)). For
star-mask we varied the number of rows/ columuns.
Both Alt-Min-SVD and Alt-Min-Rand initially per-
formed worse than proposed methods. Furthermore,
Alt-Min-Rand, could not stably recover the ground-
truth even with sufficiently large number of revealed
entries. In contrast, Alt-Min performed as well as our
Log-LS method for random sampling. This is not sur-
prising, since the assumptions for Alt-Min are satisfied.
Computational Scaling & Convergence. We refer to
Sec. 3 for details on computational scaling of our pro-
posed methods, where we claimed linear scaling with
number of revealed entries. Propagation method has a
similar scaling. In contrast, Alt-Min is iterative, and
for each iteration, scales at least linearly with number
of entries. For this reason, we also conduct experi-
ments to compare convergence speed for the various
algorithms. Fig. 1(c) reveals that Alt-Min converges
relatively slowly, and exhibits high variance under star-
mask sampling. It is indeed surprising that it takes
over 30 iterations to converge even under the ideal
random-sampling scenario (Fig. 2(c)).

Matrix Size. We also experimented with matrix size
ranging from small values to 4000 x 4000 size matri-
ces. Results are presented in Fig. 1(d). Surprisingly,
both Alt-Min-SVD and Alt-Min-Rand degrades with

size of the matrix, when all other parameters are kept
constant, while proposed method and propagation are
robust to matrix size.

7 Conclusions

We have presented two algorithms for rank-1 approx-
imation based on a set of revealed entries. Both are
computationally very efficient, in that a nearly linear
time implementation exists. Our first method, based
on weighted log least-squares, was shown to achieve the
minimax bound for small disturbances. Unfortunately,
it scales exponentially in the size of the disturbance for
large disturbances. We have shown that this is unavoid-
able because any consistent algorithm has this property.
Our second algorithm avoids this exponential scaling
by further assuming lower and upper bounds on the
matrix entries are known. However, its performance
guarantees are worse for small disturbances. We con-
ducted a number of synthetic experiments to highlight
salient aspects of our method relative to competing
methods. We showed that both in ideal and non-ideal
sampling situations, with other varying parameters,
such as matrix size and perturbation size, our method
is computationally efficient and statistically stable.
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