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On the Inapproximability of the Discrete
Witsenhausen Problem

Alex Olshevsky

Abstract—We consider a discrete version of the
Witsenhausen problem where all random variables are
bounded and take on integer values. Our main goal is to
understand the complexity of computing good strategies
given the distributions for the initial state and second-stage
noise as inputs to the problem. Following Papadimitriou
and Tsitsiklis, who showed that computing the optimal
solution is NP-complete, we construct a sequence of
problem instances with the initial state uniform over a set
of size n and the noise uniform over a set of size at most n2,
such that finding a strategy whose cost is a multiplicative

—¢ approximation to the optimal cost is NP-hard for
any e > 0.

Index Terms—Decentralized control,
complexity.

computational

[. INTRODUCTION

ITSENHAUSEN’S seminal counterexample [2]

demonstrated that linear strategies are not always in
sequential stochastic control. The counterexample consists
of a two-agent optimization problem with what has come
to be known as a non-classical information pattern, in that
it involves two agents acting in sequence, with the second
agent having no knowledge of the information seen by the
first agent. In the decades since [2], a considerable literature
has sprung up analyzing control problems with non-classical
information patterns [3]. Nevertheless, a complete analysis
of the Witsenhausen’s original counterexample is lacking,
though considerable progress has been made in understanding
the relation between optimal strategies and information
patterns [4], [5], [6], [7], [8], [9].

The goal of this letter is to contribute to the literature which
attempts to explain why Witsenhausen’s problem is difficult.
Our starting point is this letter [1], which considered a discrete
version of the Witsenhausen counterexample where all the
random variables and controls were restricted to be integers.
This problem formulation can be obtained by quantizing the

Manuscript received February 12, 2019; revised April 10, 2019;
accepted April 10, 2019. Date of publication April 18, 2019; date
of current version April 30, 2019. This work was supported in part
by NSF under Award 1740451, and in part by ARO under Award
W911NF-18-1-0072. Recommended by Senior Editor J.-F. Zhang.

The author is with the Department of Electrical and Computer
Engineering, Boston University, Boston, MA 02215 USA, and also with
the Division of Systems Engineering, Boston University, Boston, MA
02215 USA (e-mail: alexols @bu.edu).

Digital Object Identifier 10.1109/LCSYS.2019.2911925

Witsenhausen problem and rescaling [10], [11]. Furthermore,
the distribution of the initial state of the system and the noise
were viewed as inputs; in Witsenhausen’s original formula-
tion, both of these were taken to be Gaussian. It was shown
in [1] that computation of the optimal strategy for this version
of the Witsenhausen problem is NP-complete.

While such NP-hardness results do not have any impli-
cations for Witsenhausen’s original counterexample, in the
generalized scenario where the initial state and noise have
arbitrary distributions, they have a fairly powerful message.
Indeed, let us consider what would count as a solution of
the Witsenhausen problem in this more general scenario.
Presumably, one would want a formula for the optimal strat-
egy as a function of the initial state and noise distributions.
However, such a formula would be quite useless if it could
not be evaluated efficiently. Thus at the very least there should
exist an efficient algorithm for the computation of the optimal
strategy, and it is exactly this that [1] rules out.

Our goal in this letter is to strengthen the results of [1].
We seek to address the question of whether it is possible
to find approximately optimal solutions to the Witsenhausen
problem. It might initially seem that there are reasons to be
hopeful. Indeed, the reduction in [1] reduces the Witsenhausen
problem to a 3D matching problem, and, although 3D match-
ing is NP-hard, a 4/3 4 € approximation algorithm is available
for any € > 0 [12]. Moreover, constant factor approxima-
tion results were derived in [13] for a different, but finite
dimensional problem formulation, albeit with Gaussian noises.

Unfortunately, our main result rules out the possibility of
a favorable approximation with the discrete Witsenhausen
problem with arbitrary initial state and noise distribution. We
describe a family of examples, where the initial state is uni-
form over a set of n integers, and the noise is uniform over a
set of at most n? integers, and it is NP-hard to find a strategy
whose cost is upper bounded by n?>~¢ times the cost of the
optimal strategy, for any € > 0.

One might wonder if the multiplicative n*>~¢ factor is the
best one could do, i.e., if the problem might be even more dif-
ficult to approximate than that. In that direction, we show that
if the initial distribution has support X and the noise distribu-
tion has support Z, then it is always possible to approximate
the optimal Witsenhausen strategy to within a multiplicative
factor of |X|3|Z|*. Plugging in |X| = n and Z < n® for
the construction of the previous paragraph, we obtain that a
multiplicative n!! approximation is possible in that case. This
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shows a limit to how much one could potentially improve the
n>~¢-inapproximability result we described above.

The remainder of this letter is organized as follows.
Section II contains technical background, including a formal
definition of the Witsenhausen problem and the discretizations
we described above. Section III contains a proof of the n>~¢-
inapproximability result while Section IV contains a proof of
the |XP|Z* approximation result.

[I. BACKGROUND

We begin with an informal description of the Witsenhausen
problem. Two agents attempt to stabilize a system by bringing
its state close to zero in two time steps. The first agent observes
the initial state X, which we assume to be a random variable
with a known distribution. The first agent applies the control
u1, so that the state becomes Xy + u;. Now the second agent
can only see a noisy version Xo + u; + Z of the state, where Z
is some random variable with a known distribution. It applies
a control up which is therefore constrained to be a function of
Xo + uy + Z. The final cost depends only on the size of the
control applied by the first agent as well as the final distance
to the origin:

E[u% + KXo + u1 + uz)z:l,

where K > 0 is some constant. In particular, the control
applied by the second agent is “free.”

In the classical Witsenhausen counterexample [2], it is
assumed that the initial state is Xy ~ N(O, 002) while the noise
is Z ~ N(0, 1), but in this letter we will consider arbitrary
distributions for Xg, Z. We will find it convenient to reformu-
late the problem in a way that makes the inherent constraints
explicit as follows. Given independent random variables X, Z
we are looking for maps 7 : R — R, § : R — R which
minimize the cost function

E[(T(Xo) = X0)* + K(TXo) + 8T X0) + 20| ()

Moreover, we will denote this quantity as ®(px,, pz, T, 8) and
refer to it as the ‘“Witsenhausen cost.” Furthermore, we will
refer to E[(T(Xp) —Xp)?] as the “first-stage” or “transportation
cost,” while E[[T(Xp) + 8(T (Xo) + Z))]z] will be referred to
as the “second-stage” cost.

The discrete Witsenhausen problem, defined formally next,
is simply the restriction of this problem to random variables
and maps which take on integer values. For convenience, in
the sequel we use Z to denote the set of integers.

Definition 1: Let Xo,Z be independent bounded random
variables taking on integer values with probability mass
functions py,, pz. The Witsenhausen problem asks for maps
T:7Z — Z and § : Z — 7 achieving the minimum in Eq. (1).
We will use ®*(pyx,,pz) to refer to the optimal cost as a
function of the problem parameters.!

This problem was essentially introduced in [10]. It is not
hard to see that an optimal solution exists: we can restrict our
attention to a finite set of maps 7, §, as there is no need to

TA common convention in the literature is to specify the distribution of
Y = T(Xp) + Z conditioned on 7'(Xp), but since X and Z are independent
here, it is easier in this case to simply specify the distribution of Z.

consider maps which move some values in X too far. It is also
standard that, given T, the corresponding § can be found by
solving a least squares problem.

Our goal in this letter is to prove the following theorem,
which refines a result of [1] that the discrete Witsenhausen
problem is NP-hard. We will adopt the convention of using
X to refer to the support of X and Z to refer to the
support of Z.

Theorem 1: Consider the discrete Witsenhausen problem
restricted to problem instances where |X| = n and |Z| <
n?. Unless P = NP, for any € > 0 there does not
exist a polynomial-time algorithm which returns a number ¢
satisfying

¢ < ®*(px,, pz)

such that ¢ = ®(px,, pz, T, §) for some choice of maps T, §.

We also show that the n?~¢ factor in the inapproximability
result cannot be improved too much.

Theorem 2: There is a polynomial-time algorithm which
returns 7, § satisfying

®(pxy, pz, T, 8) < |1XP|Z1*®* (pxy, p2)

Indeed, plugging in |X| = n, |Z| = n? into this last the-
orem, we obtain that in the setting described by Theorem 1,
this provides an n'! multiplicative approximation.

[1l. PROOF OF THEOREM 1

We now turn to a sequence of lemmas whose culmination
will be the proof of Theorem 1. Our starting point is a defi-
nition which later on will be key to the way we will definite
the initial state Xj.

Definition 2: An integer set S is called a Sidon set of order
p if all the sums

St+s2+---+58p

with s1,...,sp € S and 51 <52 <--- <5, are distinct.

For example, S = {1, 2, 4} is a Sidon set of order 2 because
the pairwise sums of elements from this set are distinct; but
S =1{1,2,3,4} is not a Sidon set of order 2 because 3 + 3 =
44 2.

It is well-known that Sidon sets of arbitrary order exist and
can be easily constructed. We will need the following variation
of this fact, which is very similar to a lemma from [1].

Lemma 1: There exists a Sidon set S of order 4 with |S| = k
satisfying S C {1, 2,. ..,20k8}. Moreover, it is possible to
construct S in polynomial time in k.

Proof: We prove this lemma by induction. When k£ = 1, we
can simply choose S = {1}. Now suppose we have a Sidon set
S = {s1, 82, ..., 8k}, with s; being distinct positive integers,
and max;=1,__ kS < 20k8. We construct a Sidon set of size
k+ 1 by choosing a positive integer sg+; < 20(k+ 1)® to add
to S.

To ensure this works, we need that

Sa+ Sb+ Sc + 54 # Se + 8¢+ Sg + Sk+1
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for all possible choices a < b < ¢ < d,e < f < g from
a,b,c,d,e,f,g €{l,...,k+ 1}. In other words, we need to
have

Skl 7 Sa+ Sp+ S+ Sq — Se — 5p — 8.

There are at most (k + 1)7 choices of a,b,c,d,e,f, g, and
each inequality produces at most one value for si4; to avoid.
Indeed, it is possible for an inequality to produce no value
for siy1 to avoid, for example if sg4+; cancels from both
sides. However, if this does not happen, then the correspond-
ing choice of a, b, ¢, d, e, f, g results in one value for sz to
avoid.

It follows that this produces a Sidon set of order 4 if we
just place si+1 outside this set of at most (k + 17 values. We
will place sx4+1 in the range (20k8, 20(k + 1)8], which we can
always do by the pigeonhole principle, since

20k + 1B —20k% > 20- 8k > 2k) > (k+1)’.

Finally, we can construct S via the above procedure which
clearly takes polynomial time. |

The bounds of the lemma are rather loose and it is possible
to improve them, but they suffice for our purposes.

Our next step is discuss a variation on the notion of the
chromatic number which we will need. Although the following
discussion seems unrelated to Sidon sets, we will bring the two
concepts together in our NP-hardness proof later on.

The chromatic number of a graph is the minimum number of
colors needed to color the vertices so that no adjacent vertices
share the same color; we will use « (G) to denote the chromatic
number of the graph G. We will need to use a certain notion
which we call the [;-chromatic number, which as far as we
know has not been previously considered, and we motivate
this notion with the following discussion.

We may formulate the search for the chromatic number of
the graph G = ({1, ..., n}, E) as minimizing

..........

over all functions y : V — Z satisfying y (i) # y(j) for all
(i, )) € E. Indeed, the objective ®(y) is precisely the number
of colors needed minus one.

The quantity ®(y) may be thought of as a measure of dis-
persion. This motivated the introduction of the l»-chromatic
number, which uses a slightly different measure of dispersion:
the variance of the distribution of y (i) about zero.

Definition 3: Given an undirected graph G =
({1, ...,n}, E), the l,-chromatic number asks for a function
y V. — Z satistying y (i) # y(j) for all (i,j) € E and
minimizing

1 n
* . 2/
y .—n;y (i)

We remark that the graph G should not have any self-loops,
for otherwise the constraint y (i) # y (j) for all edges (i, j) in
G is impossible to satisfy.

We next use the concept of Sidon sets to give a way to
construct a discrete Witsenhausen problem starting from a

graph. The ensuring sequence of lemmas will show that com-
putation of the />-chromatic number on that graph will then
be equivalent to computation of the optimal Witsenhausen
strategy.
Definition 4: Given a graph G = ({l,...,n}, E) and an
integer B, construct an instance of the discrete Witsenhausen
as follows:
o Let {y1,...,y,} be Sidon set of order 4 with n elements,
and set x; = ly;, where [ = 4([n'>7 + 1). Generate X to
be uniform over xi, ..., x,.

o Generate Z to be uniform over all the pairs (x; —
x)/2, (i,)) € E.

« Set K to be any number strictly bigger than n°.

Observe that the graph G enters the definition of the cor-
responding discrete Witsenhausen problem solely through the
distribution of Z. Observe further that the support of Z always
symmetric about the origin since (i, j) € E whenever (j, i) € E.
Note also that the support of the random variable Xy, i.e., the
set {x1,...,Xx,}, is a Sidon set of order 4 with n elements
(because it is obtained via scaling each element of a Sidon
set by the same factor /). Finally, note that this construction
may be performed in polynomial time in # as a consequence
of Lemma 1 which tells us that the set {y;,...,y,} may be
constructed in polynomial time; that all remaining operations
take polynomial time is obvious.

The equivalence of /;-chromatic number on the original
graph and the cost of the optimal Witsenhausen strategy in
this construction is established in the following two lemmas.

Lemma 2: Suppose 0 < B < n? If the discrete
Witsenhausen problem constructed in Definition 4 has a solu-
tion with cost at most B, then the />-chromatic number of the
graph G is at most B.

Proof: Let T, § be maps which achieve a cost of at most B
in the resulting Witsenhausen problem. We will define

y () =T(x) — xi,

and argue that this choice of y works. The key observation is
that, if the discrete Witsenhausen problem constructed in this
way has a cost at most B, then it has zero second-stage cost,
i.e., we must have with probability one that

T(Xo) = 8(T(Xo) +2). 2)

This follows because of the way K was chosen. Formally,
observe that if Eq. (2) fails with positive probability, then,
because Xy, Z were constructed to be uniform over X and
Z, it fails with probability at least (1/|X)(1/|Z]) > 1/n3.
Moreover, when Eq. (2) fails, then because both the left-hand
side and the right-hand side of this equation are integer, it
follows they differ by at least one. Thus, in that case the
expectation of the Witsenhausen cost of Eq. (1) is at least
(1/n?)K -1 > B. This is a contradiction. We have thus shown
that Eq. (2) holds with probability one.

In particular, this means that for all possible x;, x; € X such
that T'(x;) # T(xj), and all possible z,, 7, € Z, we must have

T(xi) + zq # T(xj) + 2p. 3)

Indeed, if Eq. (3) fails, then it is immediate that a zero second-
stage cost cannot be obtained.
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We now claim that, due to the way Xy was defined in
Definition 4, we can conclude that actually T(x;) # T(x;) for
all pairs i,j = 1, ..., n, so that the conclusion of the previous
paragraph is actually applicable to all pairs i, j. Indeed, sup-
pose T(x;) = T(x;) for some pair i, j. Since |x; — x;| > 4n'3,
we have that either |7(x;) —x;| > 2n'" or |T(x)) —xj| > 2n'-.
Either one of these will imply the first-stage transportation
cost is strictly bigger than n* and thus strictly bigger than B.

Putting the last two paragraphs together, we have that for
all realizations x;, xj, € X, z;, z; € Z, we have that

T(xi) + 24 # T(x)) + 2
In particular,
T(x) — T(xj) # 2 — Za,
or
T(xi) —xi — (T(xj) — xj) # 26 — 2a — Xi + ;.

But if (i,j) is an edge in G, then the right-hand side of this
equations equals zero when
X —Xj
3 »Za = —2b,

and these are both in Z. So we conclude that if i and j are
neighbors in G, then

T(x;) — xi — (T(x-) - xj) #0

or y(i) # vy(j). Thus y(i) satisfies the constraint in the
definition of the /;-chromatic number (i.e., Definition 3).
Finally, we observe that

b =

1 & 1 ¢
v == v == (T — %)
R
and because the second-stage cost is zero, this is equal to
the expected Witsenhausen cost, which is at most B by
assumption. |

Note that Lemma 2 did not use that the support of Xy is
a Sidon set. The next lemma, which is just the converse of
Lemma 2, will use this fact.

Lemma 3: Suppose 1 < B < n2. If the l-chromatic number
of G is at most B, then the discrete Witsenhausen problem
constructed in Definition 4 has a solution of cost at most B.

Before we give a proof of this lemma, we require the
following fact.

Lemma 4: (x; — x;)/2 € Z if and only if (i,j) is an
edge in G.

Proof: One direction is one immediate from Definition 4.
On the other hand, suppose (x; —x;)/2 € Z. This means there
exist neighbors a, b in G such that

Xi — X Xa — Xb
22
or
Xi +Xi +Xp +Xp = Xg + Xg + X + Xj
Since x, # xp and {x{,...,x,} is a Sidon set of order
four, this implies that x; = x4,x, = x;. Thus i and j are
neighbors. |

Proof of Lemma 3: Paralleling the proof of Lemma 2, we
define

T(x) =xi +y(@),

where y is the coloring that achieves /;-chromatic number
at most B. For integers x’ ¢ {xi,...,x,}, we can define T(x)
arbitrarily, as it does not affect the Witsenhausen cost. We will
show that, with this choice, the second-stage cost is zero. Once
this is shown, the proof will be complete as the l>-chromatic
number (1/n))"; y2(i) is just the transportation cost.

To argue that the second stage cost is zero, we proceed by
contradiction. The second stage cost is not zero if and only if
there exist x;, x; € X, z4, zp € Z with T'(x;) # T(x;) such that

T(x) +za =T(x) + 2 4)

But, as in Lemma 2, we cannot have x; # x; with T(x;) =
T'(xj); indeed, by the same argument as Lemma 2, this implies
that |7 (x;) —x;| > 2n!3, which now contradicts the fact that y
achieves l,-chromatic number at most B < n2. So the second
stage cost is zero if and only if there exist x;,x; € X, x; #
Xj, Za, 2p € Z such that Eq. (4) is satisfied. Now observe we
can write Eq. (4)

Xi+y@+za=x+v() +z
or

Xitza—xi—w=v({ —vQ®. )

Now the way Z was constructed in Definition 4 means that
there exist neighbors ¢, d and neighbors e, f such that
Xe — X4 Xe — X
2 0 PT T
Plugging this into Eq. (5) and doubling both sides,

Za =

2x; + X — xa — 2 — X + x7 = 2[y () — v ()]
or

(i +x; +xe +x7) — (x5 + x5 + X0 + x0) =27 () — ¥ (D))
(6)

Now we consider two possibilities both of which lead to a
contradiction. The left-hand side of Eq. (6) is either zero or
nonzero.

If it is zero, then since x; # xj, and {xi, ..
Sidon set of order 4, we must have

., X} being a

Xi=Xxg =X, and Xj =x. = xy.

But this means that (x; — x;)/2 = (x; — x4)/2 € Z so that by
Lemma 3 we have that i and j are neighbors. But since the
left-hand side of Eq. (6) is zero, we have that y (j) = y (i) for
a pair of neighbors i, j, a contradiction.

On the other hand, if the left-hand side of Eq. (6) is nonzero,
then, since every x; is a multiple of / by construction (recall
Definition 4), the same left-hand side must have absolute value
at least /. It follows that

)
y() =yl =3 > 2n!3,
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where the strict inequality used the definition of /. Thus at
least one of |y (i)], |y ()| is strictly bigger than n'?. But this
contradicts that the /-chromatic number is at most B < nZ.
This concludes the proof. |

We now turn to an analysis of the />-chromatic number. We
begin with a lemma which shows that the l,-chromatic number
is not very far from the ordinary chromatic number. Recall that
we use the notation « (G) for the ordinary chromatic number
of G.

Lemma 5:
(k —2)°
12

2

K-> y*

1
>
T n

Proof: For the first inequality, simply consider taking y (i)
to be the color of vertex i, represented by an integer in the
set {1, ..., K}, using a coloring that minimizes the number of
colors used.

For the second inequality, consider the optimal y in the def-
inition of /-coloring. Let us translate the y so that the smallest
interval / containing its range is symmetric about the origin,
i.e., it equals either [—a, a] or [—a, a+ 1]. Observe that every
element in [ is used, i.e., every element in I equals y (i) for
some i, for else it would be possible to obtain a y with smaller
lp chromatic number. This implies that

3
— 21<12+'~+a2) > 2L
n 3n
On the other hand, the chromatic number is at most 2(a + 1).
Thus

K <2a+2<2(3/2ny*)" +2
or
(k —2)° < 12ny*,

which is a rearrangement of the second inequality. |

Lemma 6: Unless P = NP, for any € > 0, there exists no
polynomial time algorithm which, given an undirected graph
on n vertices, returns a number between y* and n>~€y*.

Proof: It is possible to define the notion of a fractional

chromatic number of a graph G, denoted by xr(G). We avoid
giving a definition here because we only need to use the
following two facts about it:

o In [14, Th. 1.2], it was shown that, for any € > O, it is
NP-hard to distinguish between graphs G on n vertices
with fractional chromatic number of n€ from graphs with
fractional chromatic number of n!~¢.

o In[15], it was shown that the fractional chromatic number
is a logarithmic approximation to the chromatic number,
ie.,

k(G)
1+ logn
where, recall, k (G) is the ordinary chromatic number; for
more details, see the discussion in [16, Sec. 3.3].
As remarked in [16], these two facts imply that it is

NP-hard to distinguish between graphs of chromatic num-
ber n€(1 + logn) and graphs with chromatic number n'~¢.

=< xr(G) =k (G),

Algorithm 1 Approximation Algorithm for the Discrete
Witsenhausen Problem
1: Input: distributions of Xy, Z
2: for k=0,...,ndo
3:  Set TX be a map that map that fixes xi, . .., x; and maps
Xk+1, - - - X to values ensuring there are no collisions
except between xi, ..., Xg.
4:  Choose 8% to be the optimal second-stage map given
Tk,
5: end for
: Choose the pair among (Tk, 8"), k=1, ...,n with lowest
Witsenhausen cost.

=)

Applying Lemma 5, it follows that it is NP-hard to distin-
guish between graphs with y* < n¢(1 4 logn)? and graphs
with y* > ﬁ(nl_e —2)%. We conclude that, for any € > 0,
it is NP-hard to approximate y* within a multiplicative factor
of less than

(nlfe _ 2)3
12n1+2¢(1 + logn)?’

Because this quantity can be lower bounded by n>~9() this
completes the proof. |

Finally, we are now able to provide a proof of our main
result.

Proof of Theorem 1: Consider a graph G with [p-chromatic
number of B. Since every vertex can be colored by a dif-
ferent color, we have that B < n?. Consider the discrete
Witsenhausen problem constructed in Definition 4: putting
together Lemma 2 and Lemma 3, we obtain that its optimal
solution has cost B. Now observing that by Lemma 6, it is
NP-hard to approximate B to within a multiplicative factor of
n?~¢ completes the proof. ]

IV. PROOF OF THEOREM 2

We now describe an algorithm for the Witsenhausen
problem whose approximation ratio is polynomial in |&’| and
| Z|. We begin with an informal discussion intended to moti-
vate our approach. Parallelling our arguments in the previous
section, we’ll adopt the convention of saying that i and j
“collide” if

T(x) + za = T(x)) + 2, (M

for some z,,zp € Z.

Our approach is simple: we “interpolate” between the
optimal solution when K = 0 (which results in 7'(x;) = x;) and
K — +o00 (which results in a T that avoids any collisions) by
fixing the k elements in X with the highest probabilities, and
moving all the other entries in X’ to avoid collisions. We do
this for all k = 1,...,n where n = |X’| and choose the best
result.

We outline the approach in the algorithm box below, where
we use the convention that p; is the probability of Xy = x; and

pP1L=p2=-- = PDn.

It is easy to see that this is a polynomial-time algorithm.
Indeed, step 6 can easily be done in polynomial time: the
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cost of each pair 7%, 8’ is a sum over |X'||Z| values. Second,
step 4 can also be done without difficulty, since the selection
of the best second-stage map given the transportation map is
an ordinary least-squares estimation problem. The following
lemma discusses how to do step 3 and implicitly gives an
upper bound on the transportation cost of the 7' chosen in
that step.

Lemma 7: Step 3 can be done in polynomial time with
T () — x5 < |1 X|| 2] for all j.

Proof: Starting with j = k+1, we sequntially set T'(x;) to be
the closest value to x; that does not yield a collision; when we
have set T'(x,), we are done. When we consider x,,, looking
at Eq. (7), we have to avoid

Tm) =T(x) +26— 24, j<m, Za.% € Z,

which rules out at most (m — 1)|Z|? different values. It fol-
lows that we can always assign 7T(x,,) so that |T(x,) — x,| <
|X||Z|. Moreover, each step of this procedure requires exam-
ining at most |X’||Z|? possibilities, and the number of steps
is at most | X[, so this procedure is polynomial time. |

We can now proceed to the proof of Theorem 2. Our first
step is to introduce some notation. We let ®(px,,pz, T, 9)
to be the first-stage (transporation) cost when Xy, Z, T, § are
the random variables and maps in the discrete Witsenhausen
problem. Likewise, we will use ®;(px,,pz,T,§) to denote
the second-stage cost. Occasionally, we will omit to write
the § in this notation, and it should be understood that
& is then selected to be the optimal choice for the
given T.

Proof of Theorem 2: We claim that Algorithm 1 with the
selection procedure of Lemma 7 returns a solution with cost
|X3|Z|*®* where ®* is the optimal Witsenhausen cost.

Indeed, consider the optimal strategy 7*, §*. Let [ be the
smallest index such that 7*(x;) # x; (we can assume such an
index exists, because otherwise Algorithm 1 finds the optimal
solution when k = n and there is nothing to prove). The
transport cost incurred by 7% is at least p;.

Now consider the (7%, %) when k = [. The transport cost
incurred by T!is upper bounded by (| X |p;) (| X] |Z12)% because
the probability of not landing at a fixed point is at most |X'|py,
in which case one moves by at most |X'||Z|? as a consequence
of Lemma 7. Thus the transport cost incurred by 7" is at most
piIlX 13| Z|*. Putting the last two paragraphs together,

1 (pxgpz. T, 8') < IXPIZ1* 0 (o pz)  (®)

We now consider the second-stage cost of 7%, §!. By con-
struction whenever one of (xit1,...,x,) is generated, the
second-stage cost is zero. Defining p’ to be the distribution
proportional to (p1, p2, ..., pi—1), this means that

®2<PXO,PZ, TZ,SZ) =@+ p)®2p pz. ). (9)

where we use / for the identity map and we used that 7/ fixes
X1y ooy X]—1-

On the other hand, consider the second stage cost under
T%,8%. Let A be the event that Xo € {xi,...,x—1}. The
second-stage cost cannot be increased if the first agent trans-
mits to the second agent whether A has occurred or not.
Thus

2 (pxo. pz. T*,8%) = (p1 + - p=)P2(p', pz. 1).

Finally, comparing Eq. (9) and Eq. (10) we obtain
®2(pxy, pz, T*, 8%) > ®2(px,, pz, T, 8'). Putting this together
with Eq. (8) completes the proof. |

(10)
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