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Deterministic and Randomized Actuator Scheduling
With Guaranteed Performance Bounds

M. Siami, A. Olshevsky, and A. Jadbabaie

Abstract—In this paper, we investigate the problem of actuator selection
for linear dynamical systems. We develop a framework to design a
sparse actuator schedule for a given large-scale linear system with
guaranteed performance bounds using deterministic polynomial-time and
randomized approximately linear-time algorithms. First, we introduce
systemic controllability metrics for linear dynamical systems that are
monotone and homogeneous with respect to the controllability Gramian.
We show that several popular and widely used optimization criteria in the
literature belong to this class of controllability metrics. Our main result
is to provide a polynomial-time actuator schedule that on average selects
only a constant number of actuators at each time step, independent of the
dimension, to furnish a guaranteed approximation of the controllability
metrics in comparison to when all actuators are in use. Our results
naturally apply to the dual problem of sensor selection, in which we
provide a guaranteed approximation to the observability Gramian. We
illustrate the effectiveness of our theoretical findings via several numerical
simulations using benchmark examples.

I. INTRODUCTION

Over the past few years, controllability and observability properties
of complex dynamical networks have been subjects of intense study
in the controls community [1]–[12]. This interest stems from the
need to steer or observe the state of large-scale, networked systems
such as the power grids [13], social networks, biological and genetic
regulatory networks [14]–[16], and traffic networks [17]. While the
classical notion of controllability and observability, introduced by
Kalman in [18] is quite well understood, the dependence of various
measures of controllability or observability on number and location
of sensors and actuators in linear systems have been subject of study
for nearly 5 decades [19]. Often times, there is a need to steer or
estimate the state of a large-scale, networked control system with
as few actuators/sensors as possible, due to issues related to cost
and energy depletion. The desire to perform control/estimation using
a sparse set of actuators/sensors spans various application domains,
ranging from infrastructure networks (e.g., water and power networks)
to multi-robot systems and the study of the human connectome. For
example, energy conservation through efficient utilization of sensors
and actuators can help extend the duration of battery life in networks
of mobile sensors and multi-agent robotic networks; estimating the
whole state of the power grid using fewer measurement units will
help reduce the cost of monitoring the network for systemic failures,
etc.

It is therefore desirable to have a limited number of sensors and
actuators without compromising the control or estimation perfor-
mance too much. Unfortunately, as the recent works in [1], [20]
have shown, the problem of finding a sparse set of input variables
such that the resulting system is controllable is NP-hard. Even the
presumably easier problem of approximating the minimum number
better than a constant multiplicative factor of logn is also NP-hard.
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Other results in the literature have studied network controllability
by exploring approximation algorithms for the closely related subset
selection problem [1], [11], [12]. More recently, some of the authors
showed that even the problem of finding a sparse set of actuators to
guarantee reachability of a particular state is hard and even hard to
approximate [21].

Previous studies have been mainly focused on solving the optimal
sensor/actuator placement problem using the greedy heuristic, as
approximations of the corresponding sparse-subset selection problem.
While these results attempt to find approximation algorithms for
finding the best sparse subset, our focus in this paper is to gain
new fundamental insights into approximating various controllability
metrics compared to the case when all possible actuators are chosen.
Specifically, we are interested in actuator/sensor schedules that select
a small number of actuators/sensors so as to save the energy while
ensuring a suitable level of controllability (observability) performance
for the entire network. Due to energy efficiency, we may want to
reduce the number of active actuator/sensors at each time. At the same
time, we would like to have a performance that closely resembles that
of the original system, when all available sensor/actuators are active.

We investigate sparse sensor and actuator selection as particular
instances where discrete geometric structures can be utilized to study
network controllability and observability problems (cf. [20], [22],
[23]). A key observation is the close connection between this problem
and some classical problems in statistics such as outlier detection,
active learning, and optimal experimental design. In recent years,
there has been a renewed interest in optimal experiment design which
has a long history going back at least 65 years [24], [25].

One of our main contributions is to show that the time-varying
actuator selection problem, which goes back to a paper by Athans
in 1972 [19], can be solved via random sampling. We propose an
alternative to submodularity-based methods and instead use recent
advances in theoretical computer science to develop scalable algo-
rithms for sparsifying control inputs. Current approaches based on
polynomial time relaxations of the subset selection problem require
an extra multiplicative factor of logn sensors/actuators times the
minimal number in order to just maintain controllability/observability.
Using these recent advances [25]–[31], we show that by carefully
designing a scheduling strategy, one can choose on average a constant
number of sensors and actuators at each time, to approximate the
controllability/observability metrics of the system when all sensors
and actuators are in use.

Potential application domains. One potential application can
be considered as wide-area oscillation damping control using High
Voltage DC (HVDC) lines (e.g., [32]–[34]). HVDC systems are
increasingly being installed in power grids all around the globe. This
trend is expected to continue with recent advancements in power
electronics technology, energy harvesting, and usage of renewable
energy [32]. In this setup, it seems quite compelling to examine
approaches that can support sparse HVDC lines (i.e., actuators)
scheduling to improve the controllability of the power grid in order to
account for issues related to cost, energy depletion, and the limitations
in directly accessing actuators, especially in large networks (cf.
Example 2 in Section VII). Moreover, note that the dual problem of
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actuator scheduling for control is sensor scheduling for estimation. In
the present case, our sparse sensor schedule setup is equal to reducing
the number of measurements for data reduction, and the observability
Gramian-based measures show how well one can estimate the state
of the system [35].

Another potential application is disease spread estimation in net-
works where testing resources are scarce. There are several models for
the spread of infections (see [36] and references therein). Formally,
let us consider a network with n nodes. Each node represents a city
and has a non-negative scalar state xi(k) associated with it, which
indicates the prevalence of an infection in that node. Since xi(t) is
the proportion of the population at node i infected at time t, we
assume that the xi(t) are close to zero (for example, this is valid for
the recent COVID-19 pandemic; even though there are a substantial
number of infected people still the proportion of the population that
is infected is small as of early-April, 20201). It therefore makes sense
to linearize the epidemic models around the zero state.

After linearization, the states evolve according to an autonomous
linear differential equation x(k + 1) = Ax(k); in all epidemic
models, the off-diagonal entries aij of the state matrix A indicates
the unitized transmission rate of the infection from city j to city i,
while the diagonal entries can be positive or negative, reflecting the
possibility of either local spread or recovery.

We assume y(t) = C(t)x + w(t), where C(t) is a “subset” of
the identity matrix (because one can measure the prevalence of the
infection in a node by randomly testing from the population at that
node) and w(t) is noise. The sensor scheduling problem in this
context amounts estimating the state with as small a variance as
possible, while the measurements have to be done over a certain
time-horizon and are bounded in number due to scarce resources.2

Some of our results appeared earlier in the conference version of
this paper [37], [38]; however, their proofs are presented here for the
first time. The manuscript also contains several new results, remarks,
numerical examples, and proofs.

II. PRELIMINARIES AND DEFINITIONS

A. Mathematical Notations

Throughout the paper, discrete time index is denoted by k. The
sets of real (integer), non-negative real (integer), and positive real
(integer) numbers are represented by R (Z), R+ (Z+) and R++

(Z++), respectively. The set of natural numbers {i ∈ Z++ : i ≤ n}
is denoted by [n]. The cardinality of a set σ is denoted by card(σ).
Capital letters, such as A or B, stand for real-valued matrices. For
a square matrix X , det(X) and Trace(X) refer to the determinant
and the summation of on-diagonal elements of X , respectively. Sn+
is the positive definite cone of n-by-n matrices. The n-by-n identity
matrix is denoted by I . Notation A � B is equivalent to matrix
B − A being positive semi-definite. The transpose of matrix A is
denoted by A>. The rank, kernel and image of matrix A are referred
to by rank(A), ker(A) and Im(A), respectively. The Moore-Penrose
pseudo-inverse of matrix A is denoted by A†. The ceiling function
of x ∈ R is denoted by dxe where it returns the least integer greater
than or equal to x.

B. Linear Systems and Controllability

We start with the canonical linear discrete-time, time-invariant
dynamics

x(k + 1) = Ax(k) + B u(k),

1https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.
html

2From now on we will focus the paper on the actuator selection problem.
The dual notion of sensor selection follows similar ideas.

where A ∈ Rn×n, B ∈ Rn×m and k ∈ Z+. The state matrix A
describes the underlying structure of the system and the interaction
strength between the agents, and matrix B represents how the control
input enters the system. Equivalently, the dynamics can be written as

x(k + 1) = Ax(k) +
∑
i∈[m]

bi ui(k), (1)

where bi’s are columns of matrix B ∈ Rn×m. Then, the controlla-
bility matrix at time t is given by

C(t) =
[
B AB A2B · · · At−1B

]
. (2)

In this paper, we assume that t > 0 is the time horizon to control
(also known as the time-to-control). It is well-known that from a
numerical standpoint it is better to characterize controllability in terms
of the Gramian matrix at time t defined as follows:

W(t) =

t−1∑
i=0

AiBB>(Ai)> = C(t) C>(t). (3)

When looking at time-varying input/actuator schedules, we will
consider the following linear system with time-varying input matrix
B(.)

x(k + 1) = Ax(k) + B(k)u(k). (4)

For the above system, the controllability and Gramian matrices at
time step t are defined as

C∗(t) =
[
B(t− 1) AB(t− 2) A2B(t− 3) · · · At−1B(0)

]
,

and

W∗(t) =

t−1∑
i=0

AiB(t− i− 1)B>(t− i− 1)(Ai)>

= C∗(t) C>∗ (t), (5)

respectively.
Assumption 1: Throughout the paper, we assume that the system

(1) is controllable (i.e., the controllability matrix has full row rank
and the Gramian is positive definite). However, all results presented
in this paper can be modified/extended to uncontrollable systems.

C. Matrix Reconstruction and Sparsification

The key idea through out the paper is to approximate the time-t
controllability Gramian as a sparse sum of rank-1 matrices, while
controlling the approximation error. To this end, we present a key
lemma from the sparsification literature and state the necessary mod-
ification. We then use this result later in our deterministic algorithm
to find a sparse actuator schedule.

Lemma 1 (Dual Set Spectral Sparsification [39]): Let
V = {v1, . . . , vt} and U = {u1, . . . , ut} be two equal cardinality
decompositions of identity matrices (i.e.,

∑t
i=1 viv

>
i = In and∑t

i=1 uiu
>
i = I` ) where vi ∈ Rn (n < t) and ui ∈ R` (` ≤ t).

Given an integer κ with n < κ ≤ t, Algorithm 1 computes a set of
weights ci ≥ 0 where i ∈ [t], such that

λmin

(
t∑
i=1

civiv
>
i

)
≥
(

1−
√
n

κ

)2

,

λmax

(
t∑
i=1

ciuiu
>
i

)
≤

(
1 +

√
`

κ

)2

,

and
card {i : ci > 0, i ∈ [t]} ≤ κ.

Due to space limitations, we refer the interested readers to [39] for
more details on Algorithm 1. However, roughly speaking, Algorithm
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1 is based on choosing vectors in a greedy fashion that satisfy a set
of desired properties at each step, leading to bounds on eigenvalues.
In Algorithm 1, lower and upper barriers or potential functions are
defined as follows:

φ(µ,A) =

n∑
i=1

1

λi(A)− µ, (6)

and

φ̄(µ̄, Ā) =
∑̀
i=1

1

µ̄− λi(Ā)
, (7)

respectively. These potential functions quantify how far the eigen-
values of A and Ā are from the barriers µ and µ̄. These potential
functions become unbounded as any eigenvalue nears the barriers.3

We control the maximum eigenvalue of Ā using an upper barrier
µ̄ and the minimum eigenvalue of A using a lower barrier µ. Two
parameters L and U are defined as follows:

L(v, δ,A, µ) =

v>
(
A− (µ+ δ)In

)−2
v

φ(µ+ δ,A)− φ(µ,A)
− v>

(
A− (µ+ δ)In

)−1
v,

and

U(u, δ̄, Ā, µ̄) =

u>((µ̄+ δ̄)I` − Ā)−2u

φ̄(µ̄, Ā)− φ̄(µ̄+ δ̄, Ā)
+ u>

(
(µ̄+ δ̄)I` − Ā

)−1
u.

The Sherman-Morrison-Woodbury formula inspires the structure of
the above quantities for more details on the barrier method (cf. [41,
Section 1.2]). These potential functions (6) and (7) are chosen to guide
the selection of vectors and scalings at each timestep τ and to ensure
steady progress of the algorithm. Small values of these potentials
indicate that the eigenvalues of Ā and A do not concentrate near µ̄
and µ, respectively. In Algorithm 1, at each iteration, we increase
the upper barrier µ̄ by a fixed constant δ̄ and the lower barrier µ̄ by
another fixed constant δ. It can be shown that as long as the potentials
remain bounded, there must exist (at every step τ ) a choice of an index
j and weight cj so that the addition of associated rank-1 matrices
to Ā and A, and the increments of barriers do not increase either
potential and keep all the eigenvalues of the updated matrix between
the barriers (see Algorithm 1). Repeating these steps ensures steady
growth of all the eigenvalues and yields the desired result.

This algorithm is a generalization of an algorithm from [28] which
is deterministic and at most needs O

(
κt(n2 + `2)

)
. Furthermore, the

algorithm needs O(κtn2) operations if U contains the standard basis
of Rt; we refer the reader to [39] for more details.

Remark 1: We modify the 5th line of Algorithm 1; at each step,
we choose an index j that maximizes

L(vj , δ,A(τ), µ(τ))− U(uj , δ̄, Ā(τ), µ̄(τ)), (8)

instead of only finding an index j such that

U(uj , δ̄, Ā(τ), µ̄(τ)) ≤ L(vj , δ,A(τ), µ(τ)). (9)

We should note that if an index j maximizes (8), then it will satisfy
(9). Therefore, Lemma 1 still holds for the modified algorithm, and
hence the theoretical bounds are valid. Based on our simulations, we
observe that this modification can help to improve Algorithm 1 by
producing smaller ratio λmax

(∑t
i=1 civiv

>
i

)
/λmin

(∑t
i=1 civiv

>
i

)
(in Section V, we will see that this quantity is closely related to
approximation factor ε). We denote the application of the algorithm

3These potentials are equal to constant multiples of the Stieltjes transform
of A and Ā evaluated at µ and µ̄, respectively [40].

Algorithm 1: A Deterministic Dual Set Spectral Sparsification
DualSet(V, U, κ).

Input : V = [v1, . . . , vt], with V V > = In
U = [u1, . . . , ut], with UU> = I`
κ ∈ Z+, with n < κ ≤ t

Output: c = [c1, c2, . . . , ct] ∈ R1×t
+ with ‖c‖0 ≤ κ

1 Set c(0) = 0t×1, A(0) = 0n×n, Ā(0) = 0`×`, δ = 1,

δ̄ =
1+
√
`
κ

1−
√
n
κ

2 for τ = 0 : κ− 1 do
3 µ(τ) = τ −

√
κn

4 µ̄(τ) = δ̄
(
τ +
√
κ`
)

5 Find an index j such that

U(uj , δ̄, Ā(τ), µ̄(τ)) ≤ L(vj , δ,A(τ), µ(τ))

6 Set ∆ = 2
(
U(uj , δ̄, Ā(τ), µ̄(τ)) + L(vj , δ,A(τ), µ(τ))

)−1

7 Update the j-th component of c(τ):

c(τ + 1) = c(τ) + ∆ej ,

8 A(τ + 1) = A(τ) + ∆vjv
>
j

9 Ā(τ + 1) = Ā(τ) + ∆uju
>
j

10 end
11 return c = κ−1

(
1−

√
n
κ

)
c(κ)

to V and U by

[c1, c2, · · · , ct] = DualSet∗(V,U, κ).

We now recall the concentration lemma of Rudelson-Vershynin [29]
as follows. We are going to use this result in the proof of Theorem
2.

Lemma 2: [29, Thm. 3.1] Let y ∈ Rp be a random vector such
that ‖y‖ ≤ b almost surely and ‖E yy>‖2 ≤ 1. Let y1, · · · , yn be
i.i.d. copies of y. Then

E

∥∥∥∥∥ 1

n

n∑
i=1

yiy
>
i −E yy>

∥∥∥∥∥
2

≤ min

(
1, cb

√
logn

n

)
, (10)

where c > 0 is some universal constant.
In the next section, we show how various controllability measures

can be approximated by selecting a sparse set of actuators via the
above algorithm.

III. SYSTEMIC CONTROLLABILITY METRICS

Similar to the systemic notions introduced in [42]–[44], we define
various controllability metrics. These measures are real-valued op-
erators defined on the set of all linear dynamical systems governed
by (4) and quantify various measures of the required control energy.
All of the metrics depend on the controllability Gramian matrix of
the system which is a positive definite matrix. Therefore, one can
define a systemic controllability performance measure as an operator
on the set of Gramian matrices of all controllable systems with n
states which we represent by Sn+.4

Definition 1 (Systemic Criteria): A controllability metric
ρ : Sn+ → R is systemic if and only if

4For any X ∈ Sn+ and given t ∈ Z++, there exists at least one controllable

system withW(t) = X (e.g., x(k+1) = X
1
2 u(k)), and for any controllable

system, it is well known that the Gramian matrix is positive definite (see (5)).
Therefore, the set of Gramian matrices of all controllable systems with n
states is equal to Sn+.
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Optimality-criteria Systemic Controllability Measure Matrix Operator Form
A-optimality Average control energy Trace

(
W−1(t)

)
D-optimality The volume of the ellipsoid (detW(t))−1/n

T-optimality Inverse of the trace 1/Trace(W(t))

E-optimality Inverse of the minimum eigenvalue 1/λmin(W(t))

TABLE I: Some important examples of systemic controllability metrics.

1. Homogeneity: For all κ > 1,

ρ(κA) = κ−1ρ(A);

2. Monotonicity: If B � A, then

ρ(A) ≤ ρ(B).

For many popular choices of ρ, one can see that they satisfy the
properties presented in Definition 1. Some of them are listed in Table
I. We note that similar criteria have been developed [24], [25], [45]
in the experiment design literature (cf. Table I). In what follows, we
will make this statement formal.

Proposition 1: For given dynamics (4) with Gramian matrixW(t),
the metrics presented in Table 1 are systemic controllability measures.

Proof: One can easily see that all these measures satisfy the
homogeneity, and monotonicity properties in Definition 1 (cf. [44],
[46]).

In the next section, we show how various measures can be
approximated by selecting a sparse set of actuators.

IV. SPARSE ACTUATOR SELECTION PROBLEMS

For a given linear system (1) with a general underlying structure,
the actuator scheduling problem seeks to construct a schedule of the
control inputs that keeps the number of active actuators much less
than the original system such that the controllability matrices of the
original and the new systems are similar in an appropriately defined
sense. Specifically, given a canonical linear, time-invariant system (1)
with m actuators and controllability Gramian matrix W(t) at time t,
our goal is to find a sparse actuator schedule such that the resulting
system with controllability GramianWs(t) is well-approximated, i.e.,∣∣∣∣ρ (W(t))− ρ (Ws(t))

ρ (W(t))

∣∣∣∣ ≤ ε, (11)

where ρ is any systemic controllability metric that quantifies the
difficulty of the control problem for example as a function of the
required control energy, and ε ≥ 0 is the approximation factor.
The systemic controllability metrics are defined based on the con-
trollability Gramian, therefore “close” Gramian matrices result in
approximately the same values. Our goal here is to answer the
following questions:

- What is the minimum number of actuators to be chosen to
achieve a good approximation of the system with the full set
of actuators utilized?

- What is the relation between the number of selected actuators
and performance/controllability loss?

- Does a sparse approximation schedule exist with at most a
constant number of active actuators at each time?

- What is the time complexity of choosing the subset of actuators
with guaranteed performance bounds?

In the rest of this paper, we show how some fairly recent advances
in theoretical computer science and the probabilistic method can
be utilized to answer these questions. The probabilistic method is
one of the most important tools of modern combinatorics which
was introduced by Erdös. The idea is that a deterministic solution

is shown to exist by constructing a random candidate satisfying all
the requirements of the problem with positive probability. Recently,
Marcus, Spielman, and Srivastava introduced a new variant of the
probabilistic method which ends up solving the so-called Kadison-
Singer (KS) conjecture [30]. We use the solution approach to the KS
conjecture together with a combination of tools from Sections V to
find a sparse approximation of the actuator selection problem with
algorithms that have favorable time-complexity.

V. A WEIGHTED SPARSE ACTUATOR SCHEDULE

As a starting point, we allow for scaling of the input signals at
chosen inputs while keeping the input scaling bounded. The input
scaling allows for an extra degree of freedom that could allow for
choosing a sparser set of inputs. Given (1), we define a weighted
actuator schedule by σ = {σk}t−1

k=0 and scalings si(k) ≥ 0 where
i ∈ [m], k + 1 ∈ [t], and σk = {i|si(k) > 0} ⊆ [m]. The resulting
system with this schedule is

x(k + 1) = Ax(k) +
∑
i∈σk

si(k) bi ui(k), k ∈ Z+ (12)

where si(k) ≥ 0 shows the strength of the i-th control input at time
k. The controllability Gramian (5) at time t for this system can be
rewritten as

Ws(t) =

t−1∑
k=0

∑
j∈σk

s2
j (k)

(
At−k−1bj

)(
At−k−1bj

)>
. (13)

Our goal is to reduce the number of active actuators on average d,
where

d :=

∑t−1
k=0 card {σk}

t
, (14)

such that the controllability Gramian of the fully actuated and the new
sparsely actuated system are “close.” Of course, this approximation
will require horizon lengths that are potentially longer than the dimen-
sion of the state. The definition below formalizes this approximation.

Definition 2: Given a time horizon t ≥ n, system (12) with a
weighted actuator schedule is (ε, d)-approximation of system (1) if
and only if

(1− ε)W(t) � Ws(t) � (1 + ε)W(t), (15)

where W(t) and Ws(t) are the controllability Gramian matrices
of (1) and (12), respectively, and parameter d is defined by (14)
as the average number of active actuators, and ε ∈ (0, 1) is the
approximation factor.

Remark 2: While it might appear that allowing for the choice of
si(k) might lead to amplification of input signals, we note that the
scaling cannot be too large because the approximation is two-sided.
Specifically, by taking the trace from both sides of (15), we can see
that the weighted summation of s2

i (k)’s is bounded. Moreover, based
on Definition 2, the ranks of matricesW(t) andWs(t) are the same.
Thus, the resulting (ε, d)-approximation remains controllable (recall
that we assume that the original system is controllable).

Remark 3: The results presented in this paper also work for the
case of linear time-varying systems, and it is straightforward to extend
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Algorithm 2: A deterministic greedy-based algorithm to con-
struct a sparse weighted actuator schedule (Theorem 1).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: si(k) ≥ 0 for (i, k + 1) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 Set V =

(
C(t)C>(t)

)− 1
2 C(t)

3 Set U = V

4 Run [c1, · · · , cmt] = DualSet∗(V, U, dt)

5 return si(k) :=
√
ci+mk/(1 + n

dt
) for (i, k + 1) ∈ [m]× [t]

Algorithm 3: A deterministic greedy-based algorithm to con-
struct a sparse weighted actuator schedule (Corollary 1).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: si(k) ≥ 0 for (i, k + 1) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 Set V =

(
C(t)C>(t)

)− 1
2 C(t)

3 Set

U =

e1, . . . , emt︸ ︷︷ ︸
=Imt


// where ei ∈ Rmt for i ∈ [mt] are the
standard basis vectors for Rmt

4 Run [c1, · · · , cmt] = DualSet∗(V, U, dt)

5 return si(k) :=
√
ci+mk for (i, k + 1) ∈ [m]× [t]

them for affine nonlinear discrete-time systems as well.

A. Deterministic Approach: Sparsifying Sums of Rank-one Matrices

The next theorem constructs a solution for the sparse weighted
actuator schedule problem in polynomial time.

Theorem 1: Given the time horizon t ≥ n, model (1), and d > 1,
Algorithm 2 deterministically constructs an actuator schedule such
that the resulting system (12) is a (ε, d)-approximation of (1) with
ε = 2√

dt
n

+
√

n
dt

in at most O
(
dm(tn)2

)
operations.

Proof: The controllability Gramian of (1) at time t is given by

W(t) =

t−1∑
i=0

m∑
j=1

(Aibj︸︷︷︸
vij

)(Aibj)
>

=

t−1∑
i=0

m∑
j=1

vijv
>
ij . (16)

By multiplying W−
1
2 (t) on both sides of (16), it follows that

I =

t−1∑
i=0

m∑
j=1

(W−
1
2 (t)Aibj)︸ ︷︷ ︸
v̄ij

(W−
1
2 (t)Aibj)

>

=

t−1∑
i=0

m∑
j=1

v̄ij v̄
>
ij . (17)

Next, we define U := {v̄ij |i + 1 ∈ [t], j ∈ [m]} and V := U .
According to (3), (16), and (17), elements of U are the columns of
matrix

(
C(t)C>(t)

)− 1
2 C(t). We now apply Lemma 1, which shows

that there exist scalars c̄ij ≥ 0 with

card {(i, j) : i+ 1 ∈ [t], j ∈ [m], c̄ij > 0} ≤ dt

n
× n, (18)

such that (
1−

√
n

dt

)2

I �
t−1∑
i=0

m∑
j=1

c̄ij v̄ij v̄
>
ij ,

and
t−1∑
i=0

m∑
j=1

c̄ij v̄ij v̄
>
ij �

(
1 +

√
n

dt

)2

I,

or equivalently,(
1−

√
n

dt

)2

W(t) �
t−1∑
i=0

m∑
j=1

c̄ij vij v
>
ij �

(
1 +

√
n

dt

)2

W(t). (19)

We can of course write the controllability Gramian of (12) at time t
as

Ws(t) =

t−1∑
i=0

m∑
j=1

s2
j (t− i− 1)(Aibj︸︷︷︸

vij

)(Aibj)
>

=

t−1∑
i=0

m∑
j=1

s2
j (t− i− 1) vijv

>
ij .

Define ε := 2√
dt
n

+
√

n
dt

, and

sj(t− i− 1) :=

√
c̄ij/(1 +

n

dt
). (20)

Then, by substituting
(
1 + n

dt

)
s2
j (t− i− 1) for c̄ij in (19), we get

(1− ε)W(t) � Ws(t) � (1 + ε)W(t). (21)

Finally, using (21), (18), and Definition 2, we obtain the desired result.
Moreover, this algorithm runs in dt iterations; In each iteration, the
functions U and L are evaluated at most mt times. All mt evaluations
for both functions need at most O(n3 + mtn2) time, because for
all of them the matrix inversions and eigenvalue decompositions can
be calculated once. Finally, the updating step needs an additional
O(n2) time. Overall, the complexity of the algorithm is of the order
O
(
dm(tn)2

)
.

Remark 4: For a given d ≥ 1, while choosing dt columns of
the controllability matrix that form a full row rank matrix (i.e., the
system is controllable) is an easy task but finding dt columns of
the controllability matrix that approximate the full Gramian matrix
is what we are interested in here. To do so, we should note that
approximating the full Gramian matrix while keeping the number of
active actuators less than a constant d at each time is not possible in
general. For example, in the case that A = 0n×n and B = In, at
least all actuators at time k = t − 1 are needed to form a full row
rank matrix (or to approximate the full Gramian matrix). However, as
we mentioned earlier, the number of active actuators on average can
be kept constant in order to approximate the full Gramian matrix.
Furthermore, condition dt ≥ n is needed for any algorithm that
has a hope of success. Indeed, taking B = In and A = In, it
is straightforward to see that if dt < n, then we cannot hope to
approximate the controllability Gramian because the controllability
matrix of any schedule with d active actuators on average is not full
rank.

Tradeoffs: Theorem 1 illustrates a tradeoff between the average
number of active actuators d and the time horizon t (also known as
the time-to-control). This implies that the reduction in the average
number of active actuators comes at the expense of increasing time
horizon t in order to get the same approximation factor ε. Moreover,
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Fig. 1: This plot presents the approximation factor ε given by Theorem
1 versus the average number of active actuators d ∈ (1, 100] and the
normalized time horizon t/n.

the approximation becomes more accurate as t and d are increased.
Of course, increasing d will require more active actuators and larger
t requires a larger control time window.

Fig. 1 depicts the approximation ratio ε given by Theorem 1 versus
the average number of active actuators d and the normalized time
horizon t/n. We note that the approximation factor improves as t
become larger than n. Moreover, because of 2

x+ 1
x

≤ 1 for x > 0,

the approximation factor ε = 2√
dt
n

+
√

n
dt

is always less than or equal

to one. Hence, the upper bound ratio in (15) is at most two.
Sparse Actuator Schedules with Energy Constraints: In this sub-

section, based on the energy/budget constraints on the scalings si(k)’s
where i ∈ [m] and k+ 1 ∈ [t]; three cases are considered as follows

(i) the scaling ratios are bounded, i.e.,

max
i∈[m],k+1∈[t]

s2
i (k) ≤ γ,

(ii) the sum of scaling ratios for each input is bounded, i.e.,

max
i∈[m]

∑
k+1∈[t]

s2
i (k) ≤ γ,

(iii) the sum of scaling ratios at each time is bounded, i.e.,

max
k+1∈[t]

∑
i∈[m]

s2
i (k) ≤ γ.

In the next corollaries, we present deterministic sparse actuator
schedules with the above energy/budget constraints. These corollaries
trade one of the inequalities in Theorem 1 with a single fixed bound
on the size of scalings.

Corollary 1: Given the time horizon t ≥ n, model (1), and d > 1,
Algorithm 3 deterministically constructs an actuator schedule for (12)
in at most O

(
dm(tn)2

)
operations such that, on average, at most d

active actuators are selected, and the following bound

ρ(Ws(t)) ≤
(

1−
√
n

dt

)−2

ρ(W(t))

holds for all systemic controllability measures. Moreover, the maxi-
mum scaling ratio over all time and inputs is bounded by

max
i∈[m],k+1∈[t]

s2
i (k) ≤ γ,

where γ =
(
1 +

√
m
d

)2.
Proof: The proof is a simple variation on the proof of Theorem

1, and is not repeated here.
As expected, the above result shows that the scaling becomes

Algorithm 4: A deterministic greedy-based algorithm to con-
struct a sparse weighted actuator schedule (Corollary 2).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: si(k) ≥ 0 for (i, k + 1) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 Set V =

(
C(t)C>(t)

)− 1
2 C(t)

3 Set

U =
1
√
t

e1, . . . , em︸ ︷︷ ︸
=Im

, · · · , e1, . . . , em︸ ︷︷ ︸
=Im


// where ei ∈ Rm for i ∈ [m] are the standard

basis vectors for Rm and UU> = Im

4 Run [c1, · · · , cmt] = DualSet∗(V, U, dt)

5 return si(k) :=
√
ci+mk for (i, k + 1) ∈ [m]× [t]

Algorithm 5: A deterministic greedy-based algorithm to con-
struct a sparse weighted actuator schedule (Corollary 3).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: si(k) ≥ 0 for (i, k + 1) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 Set V =

(
C(t)C>(t)

)− 1
2 C(t)

3 Set

U =
1
√
m

e1, . . . , e1︸ ︷︷ ︸
m times

, · · · , et, . . . , et︸ ︷︷ ︸
m times


// where ei ∈ Rt for i ∈ [t] are the standard

basis vectors for Rt and UU> = It

4 Run [c1, · · · , cmt] = DualSet∗(V, U, dt)

5 return si(k) :=
√
ci+mk for (i, k + 1) ∈ [m]× [t]

smaller as the ratio m/d decreases.
Corollary 2: Given the time horizon t ≥ n, model (1), and d > 1,

Algorithm 4 deterministically constructs an actuator schedule for (12)
in O

(
dm(tn)2

)
operations such that it has, on average, at most d

active actuators, and the following

ρ(Ws(t)) ≤
(

1−
√
n

dt

)−2

ρ(W(t))

holds for all systemic controllability measures. Moreover, the sum of
scaling ratios for all inputs is bounded by

max
i∈[m]

t−1∑
k=0

s2
i (k) ≤ γ,

where γ = t
(
1 +

√
m
dt

)2.
Proof: The proof is a simple variation on the proof of Theorem

1, and is not repeated here.
Corollary 3: Given the time horizon t ≥ n, model (1), and d > 1,

Algorithm 5 deterministically constructs an actuator schedule for (12)
in O

(
dm(tn)2

)
operations such that it has, on average, at most d

active actuators, and the following

ρ(Ws(t)) ≤
(

1−
√
n

dt

)−2

ρ(W(t))

holds for all systemic controllability measures. Moreover, the sum of
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scaling ratios at each time is bounded by

max
k+1∈[t]

m∑
i=1

s2
i (k) ≤ γ,

where γ = m
(

1 +
√

1
d

)2

.
Proof: The proof is a simple variation on the proof of Theorem

1, and is not repeated here.
We use a different idea in Subsection V-B, to develop scalable

algorithms that sparsify control inputs by employing a sub-sampling
method for a time-varying actuator schedule. This however come at
the cost of an extra log factor in terms of the average number of
selected actuators.

B. Randomized Approach: Sampling Based on the Leverage Score

In this subsection, we focus on a computationally tractable method
for the weighted sparse actuator scheduling problem that achieve near
optimal solution.

Definition 3: The leverage score of the i-th column of matrix P ∈
Rn×m is defined as

`i = p>i (PP>)†pi,

where pi is the i-th column of matrix P .
This quantity encodes the importance of the i-th column com-

pared to the other columns. A larger leverage score shows that the
corresponding column has more influence on the spectrum of P .
Based on the leverage score definition, we get `i ∈ [0, 1] for all
i ∈ [m]. Because `i’s are the diagonal elements of the projection
matrix P>(PP>)−1P and the diagonal elements of the projection
matrix are between zero and one. Leverage score `i = 1 means
that the i-th column has a component orthogonal to the rest of the
columns. Therefore, eliminating that column will decrease the rank
of matrix P . On the other hand, `i = 0 means that the i-th column is
parallel to the rest of the columns. When the corresponding matrix is
the graph Laplacian, this quantity reduces to the effective resistance
of each link in a graph [27].

We group the columns of C(t) in the following form

C(t) =

[b1 Ab1 · · ·At−1b1
]︸ ︷︷ ︸

C1(t)

· · ·
[
bm Abm · · ·At−1bm

]︸ ︷︷ ︸
Cm(t)

 ,
where bj is the j-th column of matrix B. Matrix Cj(t) presents the
controllability matrix of input j at time t. The leverage score for each
column of C(t) is defined as

`(Aibj) = (Aibj)
>
(
C(t) C>(t)

)†
Aibj , (22)

where (i+ 1) ∈ [t] and j ∈ [m]. For these scores, we have
t−1∑
i=0

m∑
j=1

`(Aibj) = Trace
(
C>(t)(C(t)C>(t))†C(t)

)
= Trace

(
(C(t)C>(t))†C(t)C>(t)

)
= Trace(In) = n. (23)

In (23), we use the fact that Trace(AB) = Trace(BA) (i.e., the
matrices in a trace of a product can be switched without changing
the result as long as A and B> have the same dimensions), and
rank(C(t)) = n (i.e., the system is controllable).

We now randomly sample the actuators with probabilities propor-
tional to their leverage scores to sparsify control inputs. This sampling
occurs across time and over all possible actuators at each time (see
Algorithm 6). At every time, each actuator is kept active or inactive

Algorithm 6: A simple randomized algorithm to compute a
sparse weighted actuator schedule {σi}t−1

i=0 (Theorem 2).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: {σi}t−1
i=0 and si(k − 1) for (i, k) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 set {σi}t−1

i=0 to be the empty sets (i.e. σi := {})

3 set si(k − 1) = 0 for (i, k) ∈ [m]× [t]

4 set π(i, k) =
Trace

(
(C(t)C>(t))†At−kbi(A

t−kbi)
>
)

n
for all

(i, k) ∈ [m]× [t]

5 for j = 1 to M := ddte do
6 (i, k) ← sample (i, k) from [m]× [t] with probability

distribution π
7 σk−1 = σk−1 ∪ {i}
8 s2i (k − 1) = s2i (k − 1) + 1

Mπ(i,k)

9 end
10 return {σi}t−1

i=0 and si(k − 1) for (i, k) ∈ [m]× [t]

according to probability `(Aibj)/n where (i+ 1) ∈ [t] and j ∈ [m].
Using [27, Thm. 1], we can construct a sampling strategy that utilizes
the leverage score to probabilistically choose actuators. The catch is
that there is an extra logn factor in the average number of selected
actuators, and potentially different actuators are chosen at different
times.

Theorem 2: Assume that dynamics (1), time horizon t ≥ n, and
approximation factor ε ∈ [1/

√
n, 1) are given. Choose a real number

d = 9c2n logn
tε2

, where c is the constant in Lemma 2. Then, Algorithm
6 produces scheduling (12) which is (ε, d)-approximation of (1) with
probability of at least 0.5 for sufficiently large n.5

Proof: The structure of the proof follows from the proof of [27,
Thm. 4]. Let us start with the following projection matrix

Π = C(t)>W−1(t) C(t), (24)

where C(t) is n-by-tm controllability matrix (2) and matrix W(t) =
C(t) C>(t) is given by (3). The tm-by-tm projection matrix Π has
eigenvalue at 0 with multiplicity t×m−n and eigenvalue at 1 with
multiplicity n. Therefore, we get

Trace(Π) = rank(Π) = n. (25)

The set X is obtained based on columns of Π as follows

X =
{
yj ∈ Rn : yj = (πj)

−1/2 Π(., j), and j ∈ [tm]
}
,

where matrix Π is given by (24), vector Π(., j) is the j-th column
of Π, and πj is probability of selecting vector yj (i.e., π(yj) = πj).
The probability distribution π over X is defined by

π(yj) := πj =
Π(j, j)

rank(Π)
=

Π(j, j)

n
, (26)

where Π(j, j) is the j-th diagonal element of matrix Π and j ∈ [tm].
Based on (24), each columns of Π corresponds to the i-th input at
time k − 1 where (i, k) ∈ [m] × [t]. The mapping comes from the

5We should note that one can repeat Algorithm 6, for example c = 4 times
to get the desired results with more than 1 − 1/c4 = 0.9375 probability.
Moreover, the probability is improved by increasing the number of iteration
c. Assume c is a constant and does not depend on n, t, d or m. Then,
repeating the algorithm c times does not change the time complexity of the
algorithm, and we still have an approximately linear time algorithm. Therefore,
by repeating the algorithm and choosing the best result, we can obtain the same
error bound with higher probability.
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controllability matrix structure (2), and we define it as m(.) : [mt]→
[m]× [t], where

m(j) = (i, k) =
(
j − tb j

t
c, t− b j

m
c
)
. (27)

This means the j-th column of Π corresponds to (i, k), where k =
t − b j

m
c and i = j − tb j

t
c. Thus, in Algorithm 6, for notational

simplicity we denote π(yj) := π(m(j)) = π(i, k). For each element
of X , we have

‖yj‖ = (πj)
−1/2 ‖Π(., j)‖ =

(
n

Π(j, j)

)1/2

× (Π(j, j))1/2

=
√
n. (28)

where, we use the fact that

Π(., j)>Π(., j) = Π(j, j),

because Π is an orthogonal projection matrix (i.e., ΠΠ = Π). Then,
using (25) and (28), we have

E(yy>) =

tm∑
j=1

πjyjy
>
j =

tm∑
j=1

πj
1

πj
Π(., j)Π(., j)>

= ΠΠ = Π, (29)

where y is a random variable vector with a countable set of outcomes
X occurring with probabilities π defined by (26). Let ŷ1, . . . , ŷM be
independent samples drawn from π, then, based on Algorithm 6, then
we have

ΠΓΠ =

tm∑
j=1

Γ(j, j)Π(., j)Π(., j)>

=

tm∑
j=1

s2
i (k − 1)Π(., j)Π(., j)>

=

tm∑
j=1

# of times (i, k) is sampled
Mπ(i, k)

Π(., j)Π(., j)>

=
1

M

tm∑
j=1

# of times (i, k) is sampled
π(i, k)

Π(., j)Π(., j)>

=
1

M

M∑
j=1

ŷj ŷ
>
j , (30)

where Γ is a nonnegative diagonal matrix and the random entry
Γ(j, j) specifies the “amount” of the i-th input at time k − 1
(where m(j) = (i, k)) included in the sparse actuator scheduling by
Algorithm 6. For instance, Γ(j, j) = 1/Mπ(m(j)) if he i-th input
at time k − 1 is sampled once, 2/Mπ(m(j)) if it is sampled twice,
and zero if it is not sampled at all. The scaling of the i-th input
at time k − 1 in the scheduling is given by s2

i (k − 1) = Γ(j, j)
where m(j) = (i, k). We next use a concentration lemma to prove
this theorem. Using Lemma 2, (28), (29), and (30), we get

E

∥∥∥∥∥ 1

M

∑
i=1

ŷiŷ
>
i −E yy>

∥∥∥∥∥
2

= E ‖ΠΓΠ−Π‖2 (31)

≤ min

(
1, c

√
n logM

M

)
,(32)

where c is an absolute constant. Assuming M = 9c2n logn/ε2 gives6

E ‖ΠΓΠ−Π‖2 ≤ c

√
n logM

M

6It can be shown that M = 4n lognε2 would be enough to get ε
approximation with high probability [47].

≤ ε

√
log(9c2n logn/ε2)

9 logn
≤ ε/2, (33)

for n sufficiently large, and ε is assumed to be in [1/
√
n, 1). By

Markov’s inequality and (33), we have

Pr [‖ΠΓΠ−Π‖ > ε] ≤ 0.5,

which means we have

‖Π−ΠΓΠ‖2 ≤ ε, (34)

with probability of at least 0.5. Note that Γ is a non-negative diagonal
matrix with weights s2

i (k) on its diagonal such that Ws(t) =
C(t) Γ C>(t). Based on [27, Lemma 4], the inequality (34) is equiv-
alent to

sup
x∈Rtm
x6=0

|x>(Π−ΠΓΠ)x|
x>x

≤ ε. (35)

Since we have Im{C>(t)} ⊂ Rmt, it follows that

sup
x∈Im{C>(t)}

x6=0

|x>(Π−ΠΓΠ)x|
x>x

≤ sup
x∈Rmt
x6=0

|x>(Π−ΠΓΠ)x|
x>x

≤ ε.

Let us define x = C>(t)x′. Then, we rewrite (35) as follows

sup
x′∈Rn

x′ /∈ker{C>(t)}

|x′>(W(t)−Ws(t))x
′|

x′>W(t)x′
≤ ε. (36)

As a result, it follows that

sup
x′∈Rn
x′ 6=0

|x′>(W(t)−Ws(t))x
′|

x′>W(t)x′
≤ ε, (37)

which implies that

(1− ε)W(t) � Ws(t) = C(t)ΓC>(t) � (1 + ε)W(t). (38)

Finally, using (38) and Definition 2, it is straightforward to show that
for every systemic controllability measure ρ : Sn+ → R+, we have∣∣∣∣ρ(W(t))− ρ(Ws(t))

ρ(W(t))

∣∣∣∣ ≤ ε.

Therefore, we conclude the desired result.
This result shows that with a simple randomized sampling strategy,

one can choose on average less than O(logn/ε2) number of actuators
at each time, to approximate any of the controllability metrics when
t = n. Moreover, this result shows that it is possible to have a
time-varying actuator schedule with a constant number of active
actuators on average over a time horizon a little longer than n (i.e.,
t = O(n logn)) via random sampling. Algorithm 6 computes the
sparse actuator schedule using a nearly-linear time Õ(mt) algorithm7

with guaranteed performance bounds, where mt is the total number
of actuations (time-to-control × number of inputs ). This favorable
almost-linear-time complexity is achieved by random sampling of
actuators in both time and domain based on their leverage scores [27].
According to Theorem 1, the average number of active actuators can
be reduced to O(1/ε2), at the expense of either solving SDPs [26]
or greedily handling certain eigenvalue bounds (see Algorithm 2).
Algorithm 6 is conceptually simpler than Algorithm 2 and the SDP-
based algorithm presented in [26], which provide d = O(1/ε2) in
O(m(tn)2/ε2) and Õ

(
mt/εO(1)

)
time, respectively.

The concept of a leverage score for each column can be generalized

7f(n) ∈ Õ (g(n)) means that there exists c > 0 such that f(n) ∈
O (g(n) logc g(n)).
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to a group of columns as follows

`Ci = Trace
(
C>i (t)

(
C(t) C>(t)

)†
Ci(t)

)
. (39)

Using group leverage scores, one can also use a greedy heuristic
algorithm to obtain an approximation solution for the static scheduling
problem. We note that the problem of approximation of the controlla-
bility Gramian with a sparse, static actuator set is considerably more
challenging as it doesn’t lend itself to a sampling-based strategy: any
choice made at one time has to be consistent with the next.

When using a time-varying schedule, the contribution of each
actuator to the Gramian at each time is a rank-one matrix. Therefore,
we can use the machinery developed for the Kadison-Singer conjec-
ture to find a sparse subset of actuators over time to approximate
the (potentially very large) sum of rank-one matrices. In the static
case, however, the choices of actuators at different times are all the
same. As a result, the Gramian can be written as a sum of positive
semi-definite matrices corresponding to the selected actuators at each
time. Finding a sparse approximation in this case would require a
generalization of the Kadison-Singer conjecture from sums of rank-
one to sums of higher ranked positive semidefinite matrices. Such a
result has remained elusive as of yet.

VI. AN UNWEIGHTED SPARSE ACTUATOR SCHEDULE

In the previous section, we allowed for re-scaling of the input
to come up with a sparse approximation of the Gramian. Here, we
assume that the actuator/signal strength cannot be arbitrarily set for
individual active actuators and only can be 0 or 1. Given a time
horizon t ≥ n, our problem is to compute an actuator schedule
σ = {σk}t−1

k=0 where σk ⊂ [m] for the system (1), i.e.,

x(k + 1) = Ax(k) +
∑
i∈σk

bi ui(k), k ∈ Z+. (40)

As before, the controllability Gramian at time t for schedule (40) is
given by

Wσ(t) :=

t−1∑
i=0

∑
j∈σi

(At−i−1bj)(A
t−i−1bj)

>. (41)

Optimal actuator selection can now be formulated as a combina-
torial optimization problem. We consider both static and dynamic
actuator schedules, corresponding to time-invariant and time-varying
input matrices.

1) The Static Scheduling Problem: In this case, all sets σi ⊂ [m]
for i+ 1 ∈ [t] are identical, which means we keep the same schedule
at every point in time for the whole time horizon t:

min
σ∈S(m,dmax)

ρ

(
n−1∑
i=0

∑
j∈σ

(Aibj)(A
ibj)
>

)
, (42)

where

S(m, dmax) := {σ : σ ⊂ [m], card(σ) ≤ dmax}, (43)

where dmax is a given upper bound on the number of active actuators
at each time, and m is the total number of actuators.

2) The Time-varying Scheduling Problem: In this case, the optimal
dynamic strategy is given as:

min
{σi}

t−1
i=0∈S(m,dmax,t)

ρ

(
t−1∑
i=0

∑
j∈σi

(At−i−1bj)(A
t−i−1bj)

>

)
, (44)

where

S(m, dmax, t) :=

{
{σi}t−1

i=0 : σi ⊂ [m],

t−1∑
i=0

card(σi) ≤ tdmax

}
,

(45)

and dmax is a given upper bound on the average number of active
actuators at each time, i.e., dmax ≥

∑t−1
i=0 card(σi)/t, where t is

a time horizon, and m is the total number of actuators.
The exact combinatorial optimization problems (42) and (44)

are intractable and NP-hard optimization problems; however, it is
straightforward to solve a continuous relaxation of these optimization
problems where the cost function ρ is convex. To find a near-
optimal solution of optimization problems (42) and (44), one can
use a variety of standard methods for optimal experimental design
(greedy methods, sampling methods, the classical pipage rounding
method combined with SDP). Specifically, in the case of submodular
systemic controllability measures (e.g., D- and T-optimality), the
classical rounding method (e.g., pipage and randomized rounding)
combined with SDP relaxation results in computationally fast algo-
rithms with a constant approximation ratio [45]. These approaches
are not applicable to non-submodular systemic measures, such as A-,
and E-optimality [25], [48].

In the following result, we use a result based on regret minimization
of the least eigenvalues of positive semi-definite matrices (cf. [25]) to
obtain a constant approximation ratio for all systemic controllability
metrics.

Theorem 3: Assume that time horizon t ≥ n, dynamics (1),
systemic controllability metric ρ : Sn+ → R, and dmax > 2 are
given. Then there exists a polynomial-time algorithm which computes
a schedule σ̂ = {σ̂i}t−1

i=0 that satisfies

ρ(Wσ̂(t)) ≤ γ

(
dmaxt

n

)
. min
{σi}

t−1
i=0∈S(m,dmax,t)

ρ (Wσ(t)) ,

where γ(dmaxt/n) is a positive constant depending only on dmaxt/n.
Proof: The proof is a simple variation on the proof of [25, thm.

1.1], and is not repeated here.
The positive constant γ(.) in Theorem 3 is defined as follows

γ(ζ) = min
y> 3ζ

ζ−2

v(2 + v
ζ
)

(1− 2
ζ
)v − 3

, where ζ > 2, (46)

see the proof of [25, thm. 1.1]. For example, for dmaxt/n ∈
{4, 10, 50}, using (46), we get

γ(4) = 2
(

5 +
√

21
)
≈ 19.1652,

γ(10) = 5

(
11 +

√
57

16

)
≈ 5.79682,

and

γ(50) = 25

(
17 +

√
33

192

)
≈ 2.96153.

Next, we use the results from Section V to obtain an unweighted
sparse actuator schedule with guaranteed performance bound.

Corollary 4: Assume that time horizon t ≥ n, dynamics (1), and
dmax > 1 are given. Then polynomial-time Algorithm 7 determinis-
tically constructs an actuator schedule for (12) with si(k) ∈ {0, 1}
such that it has, on average, at most dmax active actuators, and the
following

ρ(Wσ(t)) ≤

 1 +
√

m
dmax

1−
√

n
dmaxt

2

ρ(W(t)),

holds for all systemic controllability measures.
Proof: The proof is a simple variation on the proof of Theorem

1, and is not repeated here.
In view of this result, one can choose any constant number greater

than one as the number of active actuators on average to construct
a sparse unweighted actuator schedule in order to approximate
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Algorithm 7: A deterministic greedy-based algorithm to con-
struct a sparse unweighted actuator schedule (Corollary 4).

Input : A ∈ Rn×n, B ∈ Rn×m, t and dmax

Output: si(k) for (i, k + 1) ∈ [m]× [t]

1 C(t) :=
[
B AB A2B · · · At−1B

]
2 Set V =

(
C(t)C>(t)

)− 1
2 C(t)

3 Set

U =

e1, . . . , emt︸ ︷︷ ︸
=Imt


// where ei ∈ Rmt for i ∈ [mt] are the standard

basis vectors for Rmt

4 Run [c1, · · · , cmt] = DualSet∗(V, U, dmaxt)

5 return si(k) :=
⌈√

ci+mk/
(

1 +
√

m
dmax

)⌉
for

(i, k + 1) ∈ [m]× [t]

Algorithm 8: A greedy heuristic for given ρ(.) which sequen-
tially picks inputs GreedyStatic(A,B, t, d).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: Bs ∈ Rn×d, ρ(Ws)

1 Ws := 0n×n

2 for k = 1 to d do
3 j ← find a column of B that returns the maximum value for

ρ(Ws+αIn)−ρ

(
Ws +

t−1∑
i=0

AiB(:, j)B(:, j)>(Ai)> + αIn

)
// α > 0 is sufficiently small to avoid
singularity

4 Bs ← [Bs, B(:, j)]

5 Ws =
∑t−1
i=0 A

iBsB>s (Ai)>

6 B(:, j)← [ ]

7 end
8 return Bs, ρ(Ws)

controllability measures. This, however, comes at the cost of an extra(
1 +

√
m

dmax

)2

factor in terms of the energy cost compared to the
weighted sparse actuator schedule (cf. Corollary 1).

VII. NUMERICAL EXAMPLES

In this section, we consider three numerical examples to demon-
strate the results.

We compare our results with a greedy heuristic that sequentially
picks control inputs to maximize the systemic metric decrease of
the controllability matrix (see Algorithm 8). The selected inputs are
active at all times. It is shown that the greedy method works well
and matches the inapproximability barrier8 in polynomial time [1].
We also compare our results with a greedy algorithm for a time-
varying actuator schedule that sequentially picks both control inputs
and activation times to maximize the decrease in the systemic metric
of the controllability Gramian (see Algorithm 9). Without loss of
generality, we assume time horizon t = n.

8It approximates the minimum number of inputs in the system that need to
be affected for controllability within a factor of c logn for some c > 0.

Algorithm 9: A greedy heuristic for given ρ(.)

which sequentially picks inputs and activation times
GreedyTimeVarying(A,B, t, d).

Input : A ∈ Rn×n, B ∈ Rn×m, t and d

Output: ρ(Ws)

1 C :=
[
B AB A2B · · · At−1B

]
2 Cs := 0n×mt

3 for k = 1 to M := ddte do
4 j ← find a column of C that returns the maximum value for

ρ(Ws + αIn)− ρ
(
Ws + C(:, j)C(:, j)> + αIn

)
// α > 0 is sufficiently small to avoid
singularity

5 Cs ← [Cs, C(:, j)]

6 Ws = CsC>s

7 C(:, j)← [ ]

8 end
9 return ρ(Ws)

Example 1 ( [1]): Assume that the state space matrices of system
(1) are given by

A =



1 0 0 0 0 0 0 −7
2

0 2 0 0 0 0 0 −3
0 0 3 0 0 0 0 −5

2
3
4

1
2

0 4 0 0 0 13
8

0 3
4

1
2

0 5 0 0 11
8

5
4

0 3
4

0 0 6 0 3
2

3
2

5
4

1 0 0 0 7 9
4

0 0 0 0 0 0 0 8


(47)

and
Bmin = diag [1, 1, 0, 0, 0, 0, 0, 1] (48)

Direct computation shows that choosing (48) makes the system
controllable and no diagonal-matrix sparser than Bmin renders A
controllable. For this case (B = Bmin), the performance is:

Trace

(
n−1∑
i=0

AiBminB
>
min(Ai)>

)−1

= 0.503,

and for the fully actuated case (i.e., B = I8), we have

Trace

(
n−1∑
i=0

AiBB>(Ai)>
)−1

= 0.132.

We compare our method with simple-random and periodical switching
methods which are depicted in Fig. 2, and obtain systemic controlla-
bility performances, which are presented in Table II.

Example 2: Let us consider a dynamic network consisting of n =
200 agents/nodes, which are randomly distributed in a 1× 1 square-
shape area in space and are coupled over a proximity graph. Every
agent is connected to all of its spatial neighbors within a closed ball
of radius r = 0.125. Assume that the state space matrices of this
network are given by

A = In −
1

n
L, and B = In, (49)

where L is the Laplacian matrix of the underlying graph given by
Fig. 3. Now, we consider the actuator scheduling problem discussed
in Section V. For undirected consensus networks, a similar problem
arises in assignment of a pre-specified number of active agents, as
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Fig. 2: Six unweighted actuator schedules for Example 1: (a) all actuators are active at time 7 (b) actuator one is active at each time (c) the schedule
is obtained Algorithm 7 (d) three actuators are active at all time and each actuator is used three times (e) three fixed actuators {1, 2, 8} are active
at all time (f) the proposed sparse schedule based on Algorithm 7 with less than two active actuators at each time on average. The color of element
(i, k) is red when si(k) = 1 and white otherwise where i ∈ [8], k + 1 ∈ [8] and si(k) ∈ {0, 1}. For Figs. 2 (c)&(f), which are obtained based on
Algorithm 7, we can observe that the actuator schedule has procrastination in actuator activations (i.e., more active actuators at the end of the time
horizon); however, in Example 3 we can see “front-loaded” behavior (i.e., more active actuators early in the time horizon) due to different dynamics
in this example.

Figs. 2.(a)&(b) Fig. 2.(c) Fig. 2(d) Fig. 2.(e) Fig. 2.(f) Algorithm 8 Algorithm 9 Fully Actuated
Trace

(
W−1(n)

)
uncontrollable 0.628 uncontrollable 0.503 0.161 uncontrollable 0.294 0.132

d 1 1.125 3 3 1.875 3 3 8

TABLE II: The values of controllability performance and average number of active actuators at each time for the unweighted actuator schedule
presented in Fig. 2 and based on greedy algorithms 8 and 9. The unweighted schedules presented in Figs. 2 (c)&(f) are obtained based on Algorithm
7. It is not possible to greedily select three inputs (active at all time) to make the system in Example 1 controllable.

Fig. 4 (Algorithm 6) Static Leader Schedule Fully Actuated
Trace

(
W−1(n)

)
93.64 676.68 18.16

Average Number of Leaders: d 40 160 200

TABLE III: The values of controllability performance for three different actuator schedules in Example 2: 1) the weighted actuator schedule in Fig.
4 based on Algorithm 6, 2) the static leader schedule with 160 leaders active at all time, 3) the fully actuated case. To have a fair comparison, we
normalize the resulting schedule of Algorithm 6 such that the sum of the scalings satisfies

∑n−1
k=0

∑m
i=1 s

2
i (k) = dn where d = 40. The value of the

controllability metric for the materialized result of Algorithm 6 is 18.54, which is much closer to the controllability metric of the fully actuated case.

leaders, in order to minimize the controllability metric, e.g., the
average controllability energy (cf. [49], [50]). In our setup, each
leader i in addition to relative information exchange with its neighbors
(based on Laplacian matrix L), it also has access to a control input
ui(.). This system is controllable with only a few inputs/leaders9;
however, the amount of the average control energy with a static
actuator/leader schedule is too large even for a large number of leaders
(see Table III). On the other hand, with a time-varying strategy, the
resulting performance is close to the fully actuated case even with
a small number of leaders. Therefore, instead of choosing the same
leaders at every time step, we choose/switch leaders over a given time
horizon to further decrease the controllability metric.

Fig. 3 shows the underlying graph, and node colors are proportional
to the total number of active steps during time steps 0 to 199 from

9The system is not controllable with only one input, because A does not
have distinct eigenvalues [50].

least (white) to greatest (red). Fig. 4 depicts a sparse schedule based
on Algorithm 6.

Example 3 (Power Network): The problem is to select a set of
generators to be involved in the wide-area damping control of power
systems. We apply our sparse scheduling approach on the IEEE 39-
bus test system (a.k.a. the 10-machine New England Power System;
see Fig. 5) [33], [34]. The single line diagram presented in this
figure comprises generators (Gi where i ∈ [10]), loads (arrows),
transformers (double circles), buses (bold line segments with number
i ∈ [39]), and lines between buses (see [33], [34]).

The goal of the wide-area damping control is to damp the fluctua-
tions between generators and synchronize all generators. The voltage
at each generator is adjusted by the control inputs (e.g., HVDC lines
and storages) to regulate the power output.

We start with a model representing the interconnection between
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Fig. 3: A dynamical network consists of 200 agents that are randomly
distributed in a 1× 1 square-shape area in space and are coupled over a
proximity graph. Every agent is connected to all of its spatial neighbors
within a closed ball of radius r = 0.125. Node colors are proportional
to the total number of active steps during time steps 0 to 199 from least
(white) to greatest (red) based on Algorithm 6 where d = 40 (i.e., which
means that, on average, only 20% of agents are controlled at each time).

Fig. 4: A sparse schedule based on Algorithm 6 for a given network
in Fig. 3 where d = 40. This dynamical network has m = 200 inputs;
however, on average, only 20% are active at each time between 0 to
n − 1. The color of element (i, k) is proportional to the scaling factor
s2i (k) where i ∈ [200] and k + 1 ∈ [200].

subsystems. Consider the swing dynamics

miθ̈i + diθ̇i = −
∑
j∼i

kij(θi − θj) + ui,

where θi is the rotor angle state and wi := θ̇i is the frequency
state of generator i. We assume this power grid model consists of
n = 10 generators [33], [34]. The state space model of the swing
equation used for frequency control in power networks can be written
as follows[

θ̇(t)
ẇ(t)

]
=

[
0 I

−M−1L −M−1D

] [
θ(t)
w(t)

]
+

[
0

M−1

]
u(t)

y(t) =

[
θ(t)
w(t)

]
where M and D are diagonal matrices with inertia coefficients and

Fig. 5: IEEE 10-generator 39-bus power system network (figure is adapted
from [33]). Generator colors are proportional to the total number of active
steps during time steps 0 to 19 from least (white) to greatest (red) based
on Algorithm 7 where d = 4 (i.e., which means that, on average, only
four generators are controlled at each time).

damping coefficients of generators and their diagonals, respectively.
We assume that both rotor angle and frequency are available for

measurement at each generator. This means each subsystem in the
power network has a phase measurement unit (PMU). The PMU is a
device that measures the electrical waves on an electricity grid using
a common time source for synchronization. The system is discretized
to the discrete-time LTI system with state matrices A, B, and C and
the sampling time of 0.2 second (the matrices are borrowed from
[51]).

Fig. 6 depicts nine sparse schedules based on the proposed de-
terministic method (Algorithms 3) for different values of d. The
sparsity degree of each schedule is captured by d. As d increases
the number of non-zero scalings (i.e., activations) increases while
the controllability metric decreases (improves). Fig. 7 compares the
results of Algorithms 3, 7, 8, and 9. The plot presents the values of
the average controllability energy (A-optimality) versus the average
number of active actuators. To have a fair comparison, we normalize
the resulting schedules of all the methods such that the sum of all
the scalings satisfies

∑n−1
k=0

∑m
i=1 s

2
i (k) = nd.

As one expects, Algorithms 3, 7, and 9 outperform Algorithm 8.
One observes that Algorithms 3, 7 perform nearly as optimal as the
time-varying greedy method 9; however, based on our results, we
have theoretical guaranteed performance bounds for Algorithms 3 and
7. Furthermore, the usefulness of Algorithms 3, 7 accentuates itself
when the number of active actuators on average is not too small; and
potentially can result in a better solution compare to Algorithm 9 (see
Fig. 7).

VIII. CONCLUDING REMARKS

In this paper, we have shown how recent advances in matrix
reconstruction and graph sparsification literature can be utilized
to develop subset selection tools for choosing a relatively small
subset of actuators to approximate certain controllability measures.
Current approaches based on polynomial time relaxations of the
subset selection problem require an extra multiplicative factor of logn
sensors/actuators times the minimal number in order to just maintain
controllability/observability. Furthermore, when the control energy is
chosen as the cost, submodularity-based approaches fail to guarantee
the performance using greedy methods. In contrast, we show that there
exists a polynomial-time actuator schedule that on average selects
only a constant number of actuators at each time, to approximate
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Fig. 6: Subplots (a)-(i) presents nine weighted sparse schedules for Example 3 based on the proposed deterministic method (Algorithm 3) where
d ∈ {1.05, 1.75, 2.30, 3.10, 3.95, 4.60, 5.25, 5.75, 6.35} is the average number of active actuators at each time, respectively. The color of element (i, k)

is proportional to the scaling factor s2i (k) where i ∈ [10] and k + 1 ∈ [20].

Fig. 7: This plot compares four different methods (Algorithms 3, 7, 8
and 9) for obtaining sparse actuator schedules of the 10-machine New
England Power System in Example 3. The plot presents the values of
average controllability energy (A-optimality) versus the average number
of active actuators at each time (d).

controllability measures. Similar results can be developed for the
sensor selection problem. A potential future direction is to see whether
this approach can be used to develop an efficient scheme for minimal
reachability problems.
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