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Abstract. We address the new problem of designing large families of subsets of a common
labeled ground set that simultaneously have small pairwise intersections and the property that the
maximum discrepancy of the label values within each of the subsets is less than or equal to one. Our
results include an upper bound on the size of such families, and constructions based on transversal
designs, packings, and new forms of Latin rectangles. The constructions jointly optimize the size
of the family of sets and the labeling scheme and achieve optimal family sizes for many parameter
choices. Probabilistic arguments akin to those used for pseudorandom generators lead to significantly
suboptimal results when compared to the proposed combinatorial methods. The intersecting sets
discrepancy problem is motivated by emerging applications in coding for molecular data storage.
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1. Introduction. In his seminal work [3], Beck introduced the notion of the
discrepancy of a finite family of subsets over a finite ground set as the smallest integer d
for which the elements in the ground set may be labeled by 41 so that the sum of labels
in each subset is at most d in absolute value. Set discrepancy theory, or set bicoloring
theory, has since been studied and generalized in a number of different directions [10,
17, 22], and it has found applications in areas as diverse as pseudorandomness and
independent permutation generation [1, 25|, e-approximations and geometry [19], bin
packing, lattice approximations, and graph spectra [9, 24, 27].

The goal of these, and almost all other studies of discrepancies of set families,
was to establish bounds on the largest size of families of d-discrepancy sets for a given
ground set, or to construct large set families with prescribed discrepancy values. The
sets were assumed to have no special structural constraints other than those that
ensure desired discrepancy properties. An exception in this context is the work of
Colbourn, Dinitz, and Rosa [8] concerning the problem of bicoloring Steiner triple
systems (STSs) [7]. STSs are set systems in which the subsets of interest satisfy
additional intersection constraints, ensuring that each pair of distinct elements of the
ground set appears in exactly one subset of the system. The key finding is that STSs
are inherently not possible to bicolor, as detailed in [7] and the follow-up work [20].

Recently, the authors proposed a number of coding techniques for molecular stor-
age platforms [13, 15, 21, 34, 32, 33]. In one such paradigm, data is recorded in terms
of the locations of nicks (cuts) in naturally occurring DNA strands. In order to correct
readout errors, information is encoded into sets of nicking positions that have small
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overlaps, i.e., into sets with small intersections. As the DNA strand is of the form of
a double helix, i.e., composed of two strands (a sense strand and an antisense strand),
nicks may be introduced on either of the two entities. To prevent disassociation of the
strands due to nicking, it is desirable to distribute the nicks equally on both strands.
Such a problem setting leads to a constructive set discrepancy problem, in which one
desires to construct a large family of subsets of a ground set that have small intersec-
tion and small discrepancy d. In this setting, each set gives rise to two codewords in
which the labels are complements of each other, as nicks on different strands can be
easily distinguished from each other in the sequencing and alignment phase [23].

To address the problem, we proceed in two directions. First, we examine existing
(near-optimally) sized families of sets with small intersections, such as the Bose-Bush
and Babai-Frankl families [2, 5] and Steiner systems [7]. For the former case, we
show that one can achieve the smallest possible discrepancy (d = 0 for even-sized
sets and d = 1 for odd-sized sets) in a natural manner by using the properties of the
defining polynomials of the sets. Second, we generalize the results of [8] to show that
no Steiner system can have optimal discrepancy. We establish upper bounds on the
size of optimal discrepancy intersecting families and then proceed to describe several
constructions based on packings and transversal designs (TDs) that have optimal
discrepancy values. In the process, we also invoke graph-theoretic arguments and
some ideas similar to those reported in [4, 26]. An alternative approach to addressing
the code construction problem for fixed set sizes is to use specialized ternary constant
weight codes, but we find the set discrepancy formulation easier to work with.

The paper is organized as follows. In section 2 we precisely formulate the problem
and provide simple arguments that show how near-optimal families of sets with small
intersection constructed by Bose-Bush and Babai—Frankl may be balanced. Section 3
is devoted to studying upper bounds on the size of optimal discrepancy families of
intersecting sets, while section 4 discusses various set constructions.

2. Problem statement and a sampling of results. Let [1,v] = [v] denote
the set of integers {1,2,...,v}. A family of subsets of [v], F, = {F,...,Fs}, s > 2,
is k-regular if for all 1 < j < s, |F;| = k. Otherwise, the family is irregular. The
sets in JF, have t-bounded intersections if for all pairs of distinct integers i,j € [s],
|F; N Fj| <t. Naturally, when F, is k-regular, we require that ¢t < k.

Let L : [v] = {+1,—1} be a labeling of the elements in [v]. The discrepancy of a
set F; € F, under the labeling L is D (F}) = ZieFJ L(i). For fixed values of v and
t, our goal is to find the largest size s of a t-bounded intersection family F, for which
there exists a labeling L such that D (F;) € {—1,0,+1} for all 1 < j <'s. We refer
to such a set system as an extremal balanced family.

Sets with bounded pairwise intersections have been extensively studied in the
past [2, 7, 28]. Well-known examples include Steiner systems, corresponding to k-
regular families F,, with the property that each t-subset of [v] belongs to exactly one
member of the family [7], and C-intersecting families of sets described in [2, 5]. In
the latter, the cardinalities of the intersections of the sets are restricted to lie in a
predetermined set C. Very little is known about discrepancies of intersecting sets
and extremal balanced families in particular. The problem at hand is difficult, and
it appears hard to construct extremal families for arbitrary parameter values. We
therefore mostly focus on some specific choices of the parameter sets.

Certain families of ¢-bounded intersection sets with (near-) optimal size have
inherently simple labelings that ensure the balancing property. We identified one
such family, described in [2, 5], and in what follows describe a simple proof that this
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family may be indeed perfectly balanced.

Bose—Bush and Babai—Frankl construction [2, Thm. 4.11]. Let ¢ be a
prime power and 1 <t < k < q. Set v = kq. Let & be a primitive element of the
finite field F, and set A = {0,1,&,...,£72}, so that |A| = k. For each polynomial
f € F,lz], define a set of pairs of elements

A; = {(a, f(a)): a € A}.
Clearly, |Af| = k. Let

Clk,q) = {Af: f € Fylz),deg(f) <t —1}.

Then C(k, q) is a collection of ¢* k-subsets of the set X 2 Ax F, such that every two
sets intersect in at most t — 1 elements, because two distinct polynomials of degree
< t—1 cannot intersect in more than ¢t — 1 points. When v is large, this construction
requires ¢ = v/k to be large as well.

The Ray-Chauduri-Wilson theorem [2, Thm. 4.10] asserts that the size of any
family F, of k-regular sets with & > ¢ whose pairwise intersection cardinalities lie
in some set of cardinality ¢ satisfies |[F,| < (7). As an example, the set of all -
subsets of [v] forms a (¢ — 1)-intersection bounded ¢-regular family. This result can be
strengthened when the set of allowed cardinalities equals {0,1,...,¢ — 1}, provided
that v > 2k? for fixed k and t. This is the best known such bound, and it is met
by the construction dfescribed above. It is easy to see that the size of the family
is roughly equal to 77, which has the same growth rate with respect to v as the

approximate upper bound of Ray-Chauduri and Wilson (2”—,:),,, and dominates the
other terms provided that v is sufficiently large and k,t are kept constant.

PROPOSITION 1. There exists a labeling L of points (a, f(a)) of the set X such
that every set in C(k,q, s) has discrepancy equal to O when k is even and discrepancy
equal to £1 when k is odd.

Proof. We prove the statement by constructing a suitable labeling. First, we
map the elements of the set X to [0,n — 1] as follows. Let r be a mapping such that
r(0) =0and r(a) = m+1if a = &™ # 0. Then r(a) € [0,k — 1] for every a € A
and r(b) € [0,¢q — 1] for every b € F,. The pair (a,b) € X = A x F, is mapped to
o(a,b) = gr(a) + r(b) € [0,n — 1]. This mapping is a bijection.

Case 1: k is even. We claim that for every set Ay, half of the elements are
mapped to [0,n/2 — 1] while the other half are mapped to [n/2,n — 1]. Indeed, for
ac{0,1,¢...,6?272) c Aand b= f(a) € F,, the pair (a,b) is mapped to

o(a,b) =qr(a)+rd) <qk/2—-1)+(¢—1)=n/2—1.
For a € {€¥/271, ... €2} € A and b= f(a), we have
o(a,b) =qr(a) +r(b) > ¢k/2+0=n/2.

This proves the above-stated property regarding the mapping o. Based on this result,
we can now associate +1 values with the elements of X according to the following
rule: assign —1 to (a,b) if o(a,b) < n/2, and +1 to (a,bd) if o(a,b) > n/2. Then,
every set in C(k, ¢, s) has half of the elements mapped to —1 and half mapped to +1.
Equivalently, the discrepancy of every set is equal to 0.

Case 2: k is odd. Similarly as for the case when k is even, we can easily show
that for every set Ay, the first (k + 1)/2 elements are mapped to [0,7/2 + ¢/2 — 1],
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and the last (k — 1)/2 elements are mapped to [n/2+ ¢/2,n — 1]. Thus, the following
+1 assignment guarantees that each set in C(k,q, s) has element sum equal to —1
(or by symmetry, +1): assign —1 to (a,b) if o(a,b) < n/2+ ¢/2 and +1 to (a,b) if
o(a,b) >n/2+q/2.

This completes the proof of the proposition. 0

A few remarks are in order. First, the labeling presented is solely based on the
set A, and the first entry in each pair partitions the set X into k-groups. Hence,
the balancing property is inherited from the partition of A, which suggests a close
connection with constructions of transversal designs (TDs).

A TD TD(t,k,v)! consists of

1. a set V of kv elements (called points);

2. a partition of V into sets {G; : i € [k]}, where each G; contains v points and
is called a group;

3. a set B of k-subsets called blocks for which (a) every block and every group
intersect in exactly one point (“blocks are transverse to groups”); and (b)
every t-subset of V either occurs in exactly one block or contains two or more
points from a group (but not both).

Because no t-subset of elements can appear in two or more blocks, any two distinct
blocks of a TD(t, k,v) intersect in at most ¢t — 1 elements. It is well known that

e whenever ¢ is a prime power and 1 <t < k < g+ 1, there exists a TD(t, k, q);

e whenever ¢ is a power of 2 and 1 < k < g + 2, there exists a TD(3, k, q);

e for any positive integers v and t, both TD(¢,t + 1,v) and TD(¢,t,v) exist.
Whenever a TD(t, k,v) exists, one can assign positive labels to the points in half of
the groups and negative labels to the points in the other half of the groups when
k is even, or nearly half when % is odd. This automatically leads to a well-defined
balanced family of sets, as necessarily every block meets every group in a single point.
It is straightforward to see that the Bose—Bush/Babai-Frankl construction produces
a TD, as outlined in [29]. However, this construction is not optimal in general, since
it may be possible to add k-blocks to the design that intersect the groups in more
than one point.

One can add additional k-blocks to the designs as follows. For simplicity, assume
that k is even and that ¢ > 3. Pick one group of the design that lies within the

set of positively labeled elements Py and one group of the design that lies within

the set of negatively labeled elements P_. There are (5)2 such pairs of groups. By

construction, any k-subset with % points from the first group and g points from the
second group intersects each block of the TD in at most two points. Furthermore, each
pair of such blocks intersects in at most (%W points, so that as long as ¢t > max{g, 2},
the augmented TD both is balanced and satisfies the intersection constraint.? This
observation illustrates the fact that extremal balanced families of sets with small
intersections cannot be directly derived from TDs.

Henceforth, we consider the problem of jointly constructing large intersecting
families with labelings that ensure that the set discrepancies are contained in {0, £1}.

YA TD(t, k,v) is equivalent to an OA(t,k,v) orthogonal array, which in turn is equivalent to
k — 2 mutually orthogonal Latin squares of order n when ¢ = 2 [14]. We refer to all these entities as
transversal designs (TDs).

2We can generalize this argument to form new blocks using s > 2 groups, half of which are
labeled +1 and half of which are labeled —1. As long as t > max{f7 s}, the new blocks are valid

provided that any two collections of s groups have fewer than kL/s groups in common. To avoid

notational clutter, we assume that % is an integer.
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Since it is known that STSs cannot be balanced, i.e., that for any bicoloring of an
STS there exists one “monochromatic” set (i.e., a set with discrepancy +3 or —3) [8],
we instead focus our attention on packings [7]. A packing C(t, k,v) with parameters
(t,k,v) is a k-regular family of subsets F of [v] with the property that each ¢-element
subset of [v] appears in at most one subset. This automatically ensures that any two
distinct F;, F; € F, satisfy |F; N F;| < t. It is customary to refer to the subsets as
blocks, and we employ both terms. In the sections to follow, we establish the existence
of packings with perfect balancing properties based on explicit constructions that rely
on orthogonal arrays and factorizations of graphs [6].

The problem of determining large families of t-bounded intersecting sets has also
been independently studied in the theoretical computer science literature, where such
sets were considered for generating pseudorandom strings [31]. Most approaches use
the probabilistic method. In one such setting [31], the ground set [v] is divided into
k disjoint intervals of size . A subset S € [v] is termed “structured” if it contains
exactly one element from each interval. A structured set S is generated by picking
uniformly at random, with replacement, one element from each interval and adding it
to S. A probabilistic argument reveals that there exists a set of (,’;—ﬁ)t structured sets,
each pair of which intersects in at most ¢ positions. This bound, compared to the
Ray-Chauduri-Wilson bound, is smaller by a factor of (k%)t, but balancing the sets
is even easier: points in half of the intervals can be labeled by +1 and points in the
other half by —1 (or vice versa). If the number of intervals is even, the discrepancy
of each set is 0; if the number of intervals is odd, the discrepancy is +1.

3. Upper bounds. We first derive upper bounds on the size of extremal bal-
anced regular packings (which we refer to as balanced packings for short) and then
proceed to establish constructive lower bounds for some given choices of parameters.

For ease of notation, for a given labeling L, let P, = {i € [v] : L(1) = +1},
P_={iev]: L) = -1}, py = |P4|, and p_ = |P_| = v — py. Without loss
of generality, we assume that p; > p_, and use A(t,k,v) to denote the size of a
balanced packing family with parameters (¢, k,v). The following simple upper bound
on A(t, k,v) is based on standard counting arguments.

LEMMA 1. For any labeling L with label classes of size py and p— such that py >
2[H17, and for t < k, one has

( T ) ( /2] )
)

Proof. First, there are at most (Lf /+2 ( (f /21) t-element subsets which contain
|t/2] elements that are labeled +1 and [¢/2] elements that are labeled —1. For every
balanced set B in the underlying packing, there are |k/2] and [k/2] of its elements
that lie in the sets P_ and P, respectively, or vice versa. For simplicity, let By C B
denote the set of elements that have the label +1, with |B.| = [4]. Let B_ = B\ By,

with |B_| = [£]. From each such B, we can generate

() ()= (B (#2)
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subsets of size t. Since each t-element subset of B appears only once, we have

() (B ) aeem < () ) (i )

which proves the claim. 0

As may be observed from Lemma 1, the maximum size of a regular (¢, k, v) packing
depends only on the values of P, and P_. The next simple corollary establishes
which values of these parameters maximize the upper bound. The obtained bound
has the same asymptotic growth as the Ray-Chaudhuri-Wilson bound, (%)t, although
it satisfies both the intersection and discrepancy constraints. It also shows that the
construction by Bose-Bush and Frankl-Babai is near-extremal in terms of satisfying
both joint intersection and balancing conditions, although the construction itself was
proposed for addressing intersection constraints only.

( [v/2] ) ( [v/2] )
/2] /2]
(Wﬂ)<W2>

AR

Next, we turn our attention to constructing balanced (¢, k,v) packings that meet
the bound from Corollary 1 with equality. Given that one can perfectly balance
the Babai—Frankl sets, the natural question arises if some Steiner systems, in which
every t-subset is required to appear in exactly one block, can be perfectly balanced.
Theorem 1 states that the answer to this question is negative: perfectly balanced
systems necessarily have cardinalities smaller than that of Steiner systems with the
same parameters. This result complements and extends the findings of [8] which
pertain to STSs only and were considered in the setting of colorability of Steiner
systems.

Our proof of Theorem 1 follows from Lemmas 2 and 3, which show that the size
of a balanced packing with parameters (¢, k, v) is strictly less than the size of a Steiner

system, denoted S(t, k,v), with the same parameters for the case where t is even and
t is odd, respectively. Both proofs make use of the following claim.

COROLLARY 1. Fort <k,

A(t,k,v) <

CrLAIM 1. Suppose there exists a balanced Steiner system S(t,k,v) where t > 4.
Then there exists a balanced Steiner system S(t — 2,k — 2,v — 2).

Proof. Assume that S(¢, k,v) is balanced with label classes P, and P_. A system
S(t—2,k—2,v—2) can be obtained by selecting two elements e; € P, and e3 € P_.
Then, the balanced Steiner system S(¢ — 2,k — 2,v — 2) can be obtained by selecting
{B\{e1,e2}: B € S(t, k,v),{e1,ea} C B}. More precisely, the S(t —2,k —2,v—2) is
formed by taking the blocks that contain both elements e; and es and by subsequently
removing the elements e, e5 from each of the blocks. 0

As a result of Claim 1, if there exists a (¢, k,v) balanced system S(¢, k,v), then
there exists a (2,k —t + 2,v — t + 2) balanced system S(2,k —t+2,v —t+2) if t is
even. Lemma 2 uses this claim to handle the case where ¢ is even. The case where ¢
is odd requires a little more work and is handled in Lemma 3. The next claim is used
in the proofs of Lemmas 2 and 3.
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CLAIM 2. Suppose the Steiner system S(2,k,v) is an extremal (t,k,v) balanced
system for odd k where v > k. Then,

Ipy —p—| < 1.

Proof. Suppose, to the contrary, that the result does not hold. Define k= f%}
From Lemma 1,

G|
A2,k v) < ~A——.
E(k—1)

On the other hand, since S(2, k, v) is a Steiner system, we have

—1
8@ ko) = —20 =1
(2k — 1)(2k — 2)

Since v > k, we have v > 2k. For a fixed k > 1, since |S(2, k,v)| — A(2, k,v) increases

as v increases, it follows that the difference |S(2, k,v)| — A(2, k,v) is minimized when

v = 2k. However, in this case, |S(2,k,v)| — A(2,k,v) > ﬁ > 0, and so the result

follows since k >t = 2. O
We are now ready to handle the case when t is even.

LEMMA 2. For even t such thatt < k < v where py > % and v > 2, one has

A(t,k,v) < |S(t, k,v).

Proof. Suppose now that the bound in the statement of Lemma 2 does not hold.
This implies that there exists a balanced S(2,k —t+2,v —t+2) system by repeatedly
applying the procedure from Claim 1. Once again, for short, let ]3+ be the set of
elements in S(2,k —t+ 2,v — t + 2) labeled 41, and let P_ be the set of elements
labeled —1, and p; = |Py|, and p_ = |P_|. Also, let k = [E=1£2]. As before, we
assume Py are the elements in [v] labeled +1 for the system S(¢, &k, v).

We start with the following simple claim.

CLAIM 3. It holds that p, > k.

Proof. If S(2,k —t 4+ 2,v — t 4+ 2) is obtained from S(¢,k,v) by applying the
procedure described in Claim 1, then py = py — % +1> %, which implies

Py > [E=LE2]) as desired. O

Suppose first that k is even, which (since ¢ is also even) implies that each block
in S(2,k —t+2,v—t+ 2) has k= % elements labeled +1 and k elements
labeled —1. Then, the bound in Lemma 1, which appears on the right-hand side of
the equation that follows, along with the assumption that every (k — t + 2)-block of
S(2,k —t+2,v—t+2) has k elements in P, any pair of which uniquely identifies a

block requires that
( D+ )
2 P+P—

(2) "

(1)

This, in turn, implies that
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According to Claim 2, we only need to consider the cases where py = p_ or py =
p— +1. If py = p_, then ﬁi:%ll = %“, which implies that p, = k, and from Claim 3
this cannot hold. If p, = p_ + 1, then % = %, also a contradiction.

Next, we consider the case when k is odd. Then, every (k — t + 2)-block has
either k elements from P_ (which implies that the block comprises k — 1 elements
from P_) or k — 1 elements from P_ (and so the block has k elements from P, ). Let
By C S(2,k —t+2,v—t+ 2) denote the blocks in S(2,k —t + 2,v — ¢ + 2) that
have k elements from Py, and let B_ C S(2,k —t 4+ 2,v — t + 2) denote the blocks
in $(2,k —t+2,v—t+2) that have k elements from P_. Clearly, |By|+ |B_| =

% equals the total number of blocks in S(2,k—t+2,v—t+2), since the

total number of blocks in the Steiner system S(2, k—t+2,v—t+2) is %.
Note that the total number of pairs of elements in ]5+ equals the sum of the number
of pairs of elements in P, N By and the number of pairs elements in P, N B_, so that

) (5 )50 = (%)

Similarly, by counting the number of pairs in P_, we get

3) () (5) = (7).

From (2), we have

Substituting |B| into (3), we get
pb—\ _ [ P+
2 2
kN (k-1
2 2

|B-| =

which simplifies to

P+
IB_| = .
Ak —1)2
Next,
2 - 2 P2 +p2 —py —p
Bl +1B-| = +|po| = BT LT

(é) 2(k —1)2

Since the number of blocks in S(2,k — ¢ + 2,v — ¢t + 2) equals %, we

have

P +P5 — Py — P2 _ (P + Do) Py + P2 — 1)

2(k —1)2 (2k —1)(2k — 2)
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First, note that k> 1. Otherwise, if k= 1, then since k= k%l - % + 1, this implies
that k£ +1 = ¢, a contradiction. Thus, we can multiply both sides of the previous

equation by k& — 1 and simplify to conclude that the following must hold:

P2 AP3— Py —P2  (Py + Do)y + P2 — 1)

k-1 2k —1
Solving for k, we get

2p4p—

k: = N = N ~ ~ .
24P — P3 — P2 + Py + D

According to Claim 2, we only need to consider the cases where p, = p_ or
P+ =p- + 1. lf p; = p_, then k = p, which contradicts Claim 3. If py =p_ +1,
then we also have that k = p,, which is another contradiction. This completes the
proof. 0

The next lemma establishes the result for odd ¢. The ideas behind the proof are
similar to the proof of the previous lemma and can be found in Appendix A.

k+1

LEMMA 3. For odd t, such that t <k <wv where p; > 5= and v > 2, we have

A(t, k,v) < |S(t, k,v)).

Based on Lemmas 2 and 3, we have the following theorem.

THEOREM 1. Fort < k <v where py > % and v > 2,
A(t, k,v) < S(t, k,v).

4. Optimal and near-optimal code constructions. Next we describe how
to construct extremal balanced intersecting families of sets, i.e., families of sets that
meet the bound in Corollary 1 for several parameter choices. In particular, we exhibit
extremal balanced set constructions based on a new form of Latin rectangles for all
values of v and t = 2, k = 3, and asymptotically extremal balanced sets for all even
vand k=t+1.

4.1. Extremal balanced systems with parameters (t = 2,k = 3,v). We
consider a simple construction for the parameters t = 2,k = 3 in terms of factoriza-
tions of graphs. Recall that a factor of a graph is a subgraph with the same set of
vertices as the graph. If the spanning subgraph is r-regular, it is an r-factor. A graph
is r-factorizable if its edges can be partitioned into disjoint r-factors. A 1-factor of
a graph is a perfect matching, and a 1-factorization is a partition of the graph into
matchings. Equivalently, a 1-factorization of a d-regular graph is a proper coloring of
the edges with d colors. Suppose that K, is a complete graph with vertex set Py.
Let ® = {®y,...,®,, 1} be a 1-factorization of K, , and let the triples be of the
form {4, a1, as}, where i € [p_] and where the edge (a1, az2) € ®;. It is straightforward
to see that the resulting system is a (2, 3, v) packing consisting of triples defined over
[v]. When p_ # p;, we have the following result.

LEMMA 4. Suppose that py is even and that p— < py. Then, A(2,3,v) = 2=,

Example 1. Let Py = 6 and P_ = 3, and for simplicity, assume that P, =
{1,2,3,4,5,6} and P_ = {a,b,c}. Then, & = {®y,...,P5} is a 1-factorization of Kg
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where

[

{1021, 43.41, 45,61}, @2 = {{1,4}. 42,6}, {3.5}},
{10,6},2.31, 4.5} ). @1 = {{2,4},{1.5}, (3.6} }.,
@5 = {{1,3},{2,5},{4,6} }.

According to the procedure described prior to Lemma 4, the triples are formed by
adding a to each set in @1, adding b to each set in ®5, and adding ¢ to each set in P3.
This leads to the following triples:

{a,1,2},{a,3,4},{a, 5,6},
{b,1,4},{b,2,6},{b,3,5},
{¢,1,6},{c,2,3},{c,4,5}.

Hence, the construction outlined in Lemma 4 achieves the bound A(2,3,v) = 9 of
Lemma 1.

O3

Next, we turn to the case where p; = p_ and p, is even. A simple yet tedious
argument reveals that for these parameter choices, one cannot use the factorization
approach previously outlined. Hence, we propose a new construction that relies on a
new special form of Latin rectangles [11]; in our setting, a Latin rectangle is defined
as an array of dimension p, x p; with entries belonging to a set of cardinality 2p,
and such that every element appears at most once in each row and column of the
array. The rows of the array are indexed by elements from Py = {0,1,...,p; — 1},
while the columns are indexed by elements from the same set, but “boxed” P_ =

{@, ,...,}, so as to distinguish them from the elements in P,. Our

choice of notation is governed by the fact that we will use the values in P, and P_,
unboxed or boxed, to describe indices and placements of the elements within the
array. An additional requirement on the Latin rectangles is that they do not have
fized points, i.e., elements in the array that are equal to the index of their respective
row or column. To more precisely describe the fixed point constraint, let ¢; ; denote
the element of the Latin rectangle with row index ¢ € P, and column index j € P_.
Obviously, triples of the form {4, j,¢; ;} constitute a balanced packing as long as (a)
there are no fixed points in the array, in which case one would have ¢; ; =i or ¢; ; = j
and therefore have the same point repeated twice and (b) the triples are distinct.
Clearly, only half of the entries of the rectangle may be included in the packing.

The concept of Latin rectangles without fixed points is illustrated by the next
example for which v = 16 and p; = p_ = 8.

o] [1] [2] |3] [4] |5]
7 5 |5]

N oo e e o
o =GR
>~ o[c[e[s]E]

- oo wEEE]
e = o oE[e[=
G o = o [FS)
s[=[ee[s]~ o =[5

EE[E]- s o ~[3
CEEEe - «[a]
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The above Latin rectangle leads to the following 32 distinct triples:

{0,7.[0 {16, 0]} {0,5,[ 1] {6,7.[1]}.{4.7.[ 2]}, {5.6.[ 2]}, {3.6.[3]}. {4,5.[ 3]},
{2,5,[4]}, (3,4, [4]} {1,4,[5 ]} {2.3,[5 ], {0,3,[ 6 1, {1,2.[ 6 |}, {0, 1,[ 7]}, 2,7, [ 7]},
o.21[5 1 {0, [3] [4]p u [ ] [a ] (2L [3]h 2. [0 [3 ] 2 [ [ 2] 3. [0 [ . 8. 2] [7 ]
aLol[7hqa[1][e]y. . [0} [5]y. {5.[6 [ [ 7] 6. [4].[7]s. {6.[5] [6 ]y {7.[3][6 ]} 7. [4].[5]}-

It is easy to check that these triples constitute a balanced (2, 3,16) packing of maxi-
mum size.

We describe next a general construction for Latin rectangles with the properties
listed above. A naive approach is to create the first column of the rectangle using only
elements from either P, or P_, and then fill in the remaining columns using cyclic
shifts of the elements in the first column. Unfortunately, such a choice necessarily
leads to one column being improperly filled out. This is why we require that the
first column contain elements from both P, and P_. The remaining columns are
obtained from the first column by applying a simple cyclic-shift operation as detailed
next. To explain how the operation is performed, we note that one can decompose
a rectangle into two subarrays: one subarray contains entries from P, only, while
the other contains elements from P_ only, as shown below. Note that in the second
subarray we switched the row and column indices for ease of interpretation.

3 4 5 6 7

D OB EABEBNR T 1@5
0] 7 5 3 1 (1]
1] 6 4 2 0 % ﬂ
2 5 3 1 7 =]
3 6 4 2 0 131
4 75 3 1 4
5 0 6 4 2 5] 0]
6|1 7 5 3 —
710 6 4 2 16

7] (2] [o] [s]

Formally, let Z be a Latin rectangle without fixed points, let Zp, be the subarray
containing elements from P, , and let Zp_ be the transpose of the subarray containing
elements from P_. For simplicity, we refer to Zp, as a positive Latin rectangle and
Zp_ as a negative Latin rectangle. Clearly, Z is a Latin rectangle without fixed points
if and only if Zp, is a positive Latin rectangle without fixed points and Zp_ is a
negative Latin rectangle without fixed points.

With a slight abuse of notation, and for simplicity of notation, we hence omit
boxes around indices and variables. Note that if /; ; = k is an entry in #Zp, , then
necessarily ¢ € Py, implying that ¢ is unboxed, and j € P_, implying that j is boxed.
In addition, as k € P4, the entry is unboxed. Similarly, if ¢; ; = k is an entry in Zp_,
then i € P_ is boxed, j € Py is unboxed, and k € P_ is boxed. Therefore, in order
to know which entries are boxed and which are unboxed, it suffices to know whether
¢; ; is an entry in a positive or negative Latin rectangle. Furthermore, all values are
taken modulo p,, regardless of the value being boxed or not.

Our procedure for constructing Latin rectangles without fixed points starts by
carefully filling out the entries in the first column, i.e., the column indexed by the
element @ or the element 0. Then, for 4; ; € Zp, and {; ; € Zp_, we have

Update rule: If ¢; ; = k, then ;1 j41 =k —1,

where i,5 € {0,...,py —1}.
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In our running example, consider the entry /19 = 6 € #p,. According to the
above update rule, £o1 = 5, and {75 = 4. Similarly, f29 = 5 € Zp_, which implies
{1 = 4. It is straightforward to see that both #p, and Zp_ are completely deter-
mined by the choice of the first column. We hence focus on describing how to properly
choose this column.

The first relevant observation is that the cyclic-shift diagonal construction for
Latin rectangles satisfies a symmetry condition, which asserts that the elements in
the array can be grouped into pairs that lead to the same triple. As a result, the
condition also describes how to choose elements in the array that lead to distinct
triples in the packing, with exactly half of the elements in the array included in the
packing.

DEFINITION 1 (symmetry condition). If¢;; =h € Zp,, then
Eh,j =1 € %p+.
Similarly, if {;; = h € Zp_, then by ; =i € Xp_.

A Latin rectangle without fixed points necessarily satisfies the above symmetry
condition: it is straightforward to see that if an element appears at most once in each
row and column of such a rectangle, any triple in the corresponding (2, 3, 2p. ) packing
may be generated from exactly two entries in the underlying Latin rectangle. In our
running example, the (2,3, 16) packing contains the triple (0, 7,0) which results from
two entries in the first column, £oo = 7 and ¢7¢ = 0. Similarly, the triple (0,2,5)
arises from two entries in the first row, {y2 = 5 and ¢y 5 = 2. It is straightforward
to check that any triple containing two elements from P, may be obtained from two
entries in the same column, and that any triple containing two elements from P_ may
be obtained from two entries in the same column of the corresponding positive and
negative rectangle, respectively.

Due to the symmetry condition, we may pair up elements in the first column of
Zp, and Zp_ into &= pairs that lead to the same triples. For the running example,
the first column of #p, comprises two pairs {{0,7},{1,6}}. We refer to this set as
the positive Latin rectangle set. Similarly, the two pairs {{2,5},{3,4}} are referred
to as the negative Latin rectangle set.

Next, we introduce a regularity condition for Latin rectangles. Since the con-
struction of the Latin rectangles is based on cyclically shifting increasing or decreas-
ing sequences on the diagonals, seeded by the elements in the first column, one can
automatically ensure that no column contains the same element more than once. The
regularity condition ensures that no row contains the same element more than once.

DEFINITION 2 (regularity condition). For any two distinct pairs {i,j} and {i’,j'}

in either the positive or negative Latin rectangle set, it holds that
i—i' £

To intuitively justify the regularity condition, consider an example for which the
regularity condition does not hold. Suppose the pairs {6,2} and {4,0} are in the
positive Latin rectangle set. Note that since 6 — 4 = 2 — 0, the regularity condition
does not hold. For this setting, the corresponding Latin rectangle Zp, has £40 = 0
and f50 = 2. Since {59 = 2, applying our update rule twice would imply that
ly9 =0 = lyo. The last equality asserts that two entries in the row indexed by 4
have the same value.

The following claim can be easily established by noting that the set of differences
of elements in the same column of our Latin rectangles is the same for all columns.
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CrLAM 4. Suppose that £;; € Xp, or that l;; € Xp_, and that j # j'. If
l; ; = 4; jr, then there exist two distinct pairs {i1,j1}, {i2, jo} in either the positive or
a negative Latin rectangle set such that

12 — 11 = jo — J1.

The construction procedure for Latin rectangle sets varies slightly depending on
whether p, is divisible by 4. We start with the simpler case when 4|p...

CONSTRUCTION 1. Suppose that 4|p.. Set the elements of the positive Latin rec-
tangle set to

{i, =i -1},

where 1 € [pf — 1]. Set the elements of the negative Latin rectangle set to
{i,—i — 1},

where i € {&F, BF +1,... BF — 1},

LEMMA 5. For 4|py, Construction 1 results in a Latin rectangle without fixed
points.

Proof. Since the elements from P, within column ¢ of the underlying Latin rec-
tangles are obtained by decreasing the values of the elements from P, in column i —1,
it follows that a column contains an element from P, twice if and only if the first
column contains an element from Py twice. Clearly, Construction 1 ensures that the
first column only contains distinct elements from P,. A similar argument holds for
elements from P_. Hence, no element appears more than once in each column of the
underlying Latin rectangle.

Next, we show that no row contains an element in the rectangle more than once.
According to Claim 4, this is equivalent to showing that the regularity condition holds.
Suppose, on the contrary, that there exist two distinct pairs {i,5},{i’,j'} such that
it —1i' =7 —j'. According to Construction 1, j = —i — 1 and j' = —i’ — 1, so that

which can only hold if i —i’ = &=, However, according to Construction 1, if i —i’ = &=,

then [{i,i'} N Py| =1, and either {7, j} belongs to the positive Latin rectangle set and
{#, 7'} belongs to the negative Latin rectangle set or vice versa. This follows since if
{i,7}.{¢’, j'} are both in the positive Latin rectangle, then i — ' € {1,2,..., % — 2}
ori—i e {&+2,...,py —2}, and so i — i # E-. In either case, the condition in
Claim 4 cannot be met. This implies that the regularity condition holds.

To see that the Latin rectangles do not have fixed points, suppose on the contrary

that ¢; ; = 4. Then, according to our update rule, ¢; o = ¢, which is impossible
according to Construction 1. By symmetry, the same argument can be used to handle
the case where ¢; ; = j. ]

We consider next the case when Z& is odd. These parameter values require a
slightly different construction for the Latin rectangle sets. Once again, we illustrate
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the construction by an example in which py = p_ = 10, shown below.
[0] [6] 9]
ol 7 4 2 [7] 8 6 [4] 3 1
108 5 3 [6] 9 7 4 2 0
216 4 0 8 5 3 1 9
305 19 6 4 2 0 7
4 2 0 [o] 7 5 3 1 8 6
503 1 [9] 8 6 4 2 9 7
6| 2 9 7 5 3 0 8 4
7 0 8 6 4 1 9 [o] 5 3
sf1 9 7 5 2 o0 [9] 6 4 [6]
90 8 6 3 1 7 5 2

As before, one can decompose the Latin rectangle into two subarrays as shown below.

L] [ [ [3 [4 [ [¢] [7] [5] [ _ o] [o] [2] [3] [4] [s] [6] [7] [8] [9]
o0 9 7 4 2 s 6 31 0 7] [4]
1] 8 5 3 9 7 4 2 0 1
2] 6 4 0 8 5 3 1 9 2
3] 5 19 6 4 2 0 7 3
4 2 0 7 5 3 1 8 6 4 (0]
53 1 8 6 4 2 9 7 5
6| 2 9 7 5 3 0 8 4 6
7 0 8 6 4 1 9 5 3 . [0]
s/ 1 9 7 5 2 0 6 4 s
. S
9/ 0 8 6 3 1 7 5 2 0

Recall that when % is even, one partitions the first column into two sets, each of
size &=, with half of the elements lying in P, and half of the elements lying in P_. For
the case when ’% is odd, adopting the same approach as described in Construction 1
does not produce the desired result. We hence modify the construction of positive

and negative Latin rectangle sets as follows.

CONSTRUCTION 2. Suppose that %r is odd. Then, the positive Latin rectangle set
consists of the following pairs:
{i,—i— 1}

fori€ [B=2 —1], and
{3, —i — 2}

forie {p%f, % +1,..., %’ — 2}. The negative Latin rectangle set contains only

one pair:
P+ p+—2
— —1,- — 1.
{5

LEMMA 6. When p% is odd, Construction 2 produces a Latin rectangle without
fixed points.

Proof. The fact that no elements appear more than once in every column and
that the Latin rectangle does not have fixed points follows along the lines described
in the proof of Lemma 5. Hence, we focus on proving that the regularity condition is
satisfied.

Suppose that two distinct pairs {4, j }, {¢’, j'} belong to the positive Latin rectangle
set and that, on the contrary, the regularity condition does not hold. Then,

i —i=j ]
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According to Construction 2, we need to consider four different cases:

Lj=—i—1,j=—i'—1,

2 j=—i—1,j = —i —2,

3. j=—i—2, 5 = —i —1,

4 j=—i—2, 5 =—i' —2.
Suppose first that case 1 holds. Then, i/ —i=j" —j=(—i'—-1)—(—i—1)=¢— 17,
which is true only if i — i’ = &=, However, if case 1 is true, then i — i’ # &, since
i—i e {l,2,..., 5 —3Yori—i e {% +3,5 +3,...,py —2}. The observation
is a consequence of Construction 2 and leads to a contradiction. Next, we consider
case 2 and suppose that i’ —i = (—#' —2) — (=i — 1) = ¢ — ¢’ — 1. This clearly cannot
be true as all operations are performed modulo p;, where p; is even. Similarly, if
case 3 holds, then ¢/ —i = (—¢' — 1) — (=i — 2) = ¢ — i’ + 1, which is impossible.
Finally, if case 4 holds, then i’ —i = (i’ —2) — (—i — 2) =i — 4, which is true only if
i —i' = BF. Similarly to case 1, if case 4 holds for ,’, then i —i’ € {1,2,..., 5 — 3}
ori—i € {% +3,5 +3,...,p1 —2}. Construction 2 ensures that i — i’ # &=,
and this establishes that the regularity condition holds for all elements in P,. To
complete the proof, we need to show that the regularity condition also holds for the
pair of elements in P_. This immediately follows since

P+ p+—2 3p+ —2 , 2-3py
1o (= —1) = . |
2 ( 1 ) 71

Lemmas 4, 5, and 6 lead to the following result.
THEOREM 2. For even v, A(2,3,v) = L%J

Proof. Since py = 3, the Latin rectangle contains pi entries, and each triple in
the packing corresponds to exactly two entries in the rectangle. Hence, when py is

2
even, the resulting system contains % = % triples. When p, = 3 is odd, the result
follows by noting that L%J = MM; based on Lemma 4, we only need to
assign 5 — 1 elements to P_ and § + 1 elements to P,. d

Theorem 2 and Lemma 4 provide constructions for balanced (2,3,v) packings
whose cardinality matches that in the bound of Corollary 1 whenever v € {4m,4m +
2,4m + 3}, where m is a positive integer. In what follows, we show how to generate
an extremal balanced (2,3,v) packing for v = 4m + 1 by adding one point and p,
triples to a (2, 3,4m) balanced system.

LEMMA 7. Forv=4m+1, A(2,3,v) = L%g%] )

Proof. Let ¢; ;, i,j € [2m], be the entries of a 2m x 2m Latin rectangle obtained
according to Constructions 1 and 2. We describe next how to append one additional
column to these Latin rectangles, indexed by 7 and show that the resulting
2m x (2m + 1) Latin rectangle has no fixed points. Since the proof involves entries
from the complete Latin rectangle, we use both boxed and unboxed entries for clarity
of exposition. The constructed rectangle leads to a balanced (2, 3,4m + 1) packing of
maximal size using the same procedure outlined in the previous discussion.

Let £; ;, denote the entries of the augmented 2m x (2m+1) Latin rectangle, where

l; =1t fori € [2m], j € {,-..,}. We set
2 — B
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It is straightforward to verify that the resulting Latin rectangle has no fixed points

since the row with entries {607@,60,, . ,EO,} from the 2m x 2m Latin rec-

tangle contains only odd-valued numbers in P,. More precisely, in the 2m x 2m
Latin rectangles, the ¢th row contains only odd-valued numbers from P, if i is

1 -val s if 7 is . Theref f '
even, and only even-valued numbers if ¢ is odd erefore, for any i, Ei’ &z

{617@,€i7, e ,Eiy}. This implies that €i7 appears once in each row.
Since it is straightforward to see ¢ appears once in column , the

1y
claim follows. O

Applying the described procedure on our running example results in the following
Latin rectangle:

|[o] 7] [3
0] 7 3] (2] 3 1 4
1|6 [4] 3] 1] 4 2 0 5
253176
3] o] [7] 6 4 2 o [2] 7
all7] 6] 7 5 3 1 [1] o] o
506] o 6 4 2 [o] [7] [6] 1
61 7 5 3 [7] [6] [5] [4] 2
710 6 4 [6] [5] [4] [3] 2 3

The results are summarized in the next theorem.

THEOREM 3. For any v > 8,

3131

4.2. Balanced systems with parameters (t,k =t + 1,v). In the previous
section, we established that for the special case t = 2 and k = t+ 1, extremal balanced
families may be constructed using specialized Latin rectangles. In what follows, we
demonstrate using a different proof technique that asymptotically extremal balanced
families may be obtained for all choices of ¢ and k = ¢ + 1 via a restricted sum
construction.

Let Z,, denote the integers modulo v. First, suppose that v = 2¢ is even. Consider
k-subsets of Z, that sum to 0 mod v, where k is fixed. Note that when any k — 1
integers in Z, are chosen, the last integer is uniquely determined.

When k = 4m, choose any 2m — 1 different even integers from Z,, and choose 2m
different odd integers from Z,. The integer that makes the sum equal to 0 must be
even; hence, either the set of 4m elements contains the same number of even and odd
integers, or the last element repeats an element already chosen. In the latter case, we
exclude the set from the choice of 4m — 1 elements from further consideration.

When k& = 4m + 1, choose any 2m different even integers from Z,, and choose
2m different odd integers from Z,. The integer that makes the sum equal to 0 must
be even; hence, either the set of 4m + 1 elements contains one more even than odd
integer, or the last element repeats an element already chosen. In the latter case, the
set from the choice of 4m elements is excluded.

When k& = 4m + 2, choose any 2m + 1 different even integers from Z,, and choose
2m different odd integers from Z,. The integer that makes the sum equal to 0 must

At k,v) = {
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be odd; hence we must have the same number of even and odd, or the last element
repeats an element already chosen. As before, in the latter case, the set from the
choice of 4m elements is excluded.

When k& = 4m+ 3, choose any 2m + 1 different even integers from Z,, and choose
2m + 1 different odd integers from Z,. The integer that makes the sum equal to 0
must be odd; hence, our selection, if not including repeated elements, has one less
even than odd number.

By labeling every even integer by a +1 and odd integer by —1, we obtain the
desired discrepancy values for each block. The number of blocks obtained via this
procedure may be computed as follows. As an example, consider the case k = 4m + 3;
we have (2m£ +1) (2m€ +1) sets in our initial selection, and these selections were completed
in any of 2m + 2 ways by choosing different subsets of the odd elements. This leads to
(QmZ +1) (2mé +1) /(2m + 2) different sets, provided that the last element added is not a
repetition. Hence, we only need to determine how many times the forced last element
causes a repetition and our selection fails. Roughly, there are ¢ odd numbers, 2m + 1
selected odd numbers that may lead to a repetition, so that the fraction of the times
that we fail is 2’”@*1. Since £ = 3, whenever k is fixed and v — oo, this failure rate
approaches zero. A similar analysis can be performed for other selections of k. Hence,
asymptotically, the sum construction is extremal.

As an example, consider the case t = 2, k = 3, and v = 12. In this case, we get

the following 15 blocks:

{0,1,11},{0,3,9},{0,5,7},{1,2,9},
{1,4,7},{1,5,6},{1,3,8},{2,3,7},
{3,4,5},{3,10,11}, {4,9,11}, {5, 8,11},
{5,9,10},{6,7,11},{7,8,9}.

We miss all pairs when both initial choices are even, and in general, we miss all initial
pairs of the form {z, —2x} as x—2x+x = 0. Furthermore, we miss the triples obtained
from

{1,10},{2,5},{2,11}, {3,6},{6,9}, {7, 10}.

These are the only triples omitted, because if in {x,y, z} we have z = z, then we must
have y = —2z. By comparison, the extremal construction from the previous section
produces % = 18 triples.

These observations easily extend to any choice of even v and any k =t + 1, but

they do not yield simple counterparts for the case of odd v.

4.3. Constructions based on transversal designs. Next, we return to the
approach outlined at the beginning of our discussion, in which balanced families of set
with small intersections are obtained using TDs (akin to the Bose-Bush and Babai-
Frankl constructions). The next lemma addresses the case k = 4 and t = 3 and
provides extremal balanced sets. It also rigorously specifies how to identify additional
blocks to the design so that the result is optimal.

LEMMA 8. Suppose that there exists a TD(t, k,v) withv = 4m and m even. Then,

A(3,4,v) = ( UéQ ) ( 0{2 ) _viv/2-1)

2 16
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Proof. For simplicity, we assume that points in our design are represented as
ordered pairs in V' = Z,,, x[4], where the labels {0, 1, 2, 3} refer to the groups in the TD.
According to the labeling approach from the introduction, we set P, = [m] x {0,1}
and P_ = [m] x {2,3}. There are m? blocks in the TD, all of which are balanced
based on our choice of labels and the the inherent properties of the TD.

We now describe formally how to add new blocks to the blocks in the design to
obtain extremal families. The blocks are of the form

{ala az, bla b2}7

where a1, az € [m] x {0,1}, by, by € [m] x {2,3}. Let @@ = {9 . 39 1beal-
factorization of points in group g of the TD, where g = 0,1, 2,3. Select {a1,a2} € (I)§91)
and {b1,b2} € @592), where g; € {0,1} and g2 € {2,3}, and 1 <i<m — 1.

It is straightforward to see that there are 2m x (3) blocks of the above form.
There are four ways to select the pair g; € {0,1} and g € {2,3}; for g1 and go fixed,

there are ("3') choices for aj,as. Since ®91) is a 1-factorization, there exists some

1 <4 < m, such that {a1,a2} € ¢§gl). Next, we select a pair {b1,ba} from the set

@ggg). Since @5,92) contains % disjoint edges, there are % choices for {b1,b2}. Thus,

in total, there are
m m m
4 x < 9 ) X 5 = 2m X < 9 >

choices for the new blocks. It is straightforward to see that no two newly added blocks
intersect in more than two points and that the blocks are balanced.
The union of the blocks from the TD and the newly constructed blocks has

e () 2P

2

elements, which proves the claimed bound. ]

Ezample 2. Suppose that Stp(3,4,16) is a TD with points of the form Zj x
{0,1,2,3} and blocks

{{(imo)’ (i1,1), (i2,2), (i3,3)} : @0, %1, 42,13 € Zg, i3 = ig + i1 +i2}-

Based on the outlined construction, we set Py = Z4 x {0,1} and P, = Z4 x {2, 3}.
Since there are four choices for each of ig, 1,2, it follows that we have 4% = 64 blocks.
The factorization of interest reads as

20 = {2}, 27 @)} = {{{(o,g» (L} {(2.9). 3. 9)} .
{{0.9).2.9)}.{(1.9). 3.9} }.
{{0.9).3.9)}{(L,9). <2,g>}}},
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where g € {0,1,2,3}. Thus, for a g; € {0,1} and a go € {2,3}, we obtain 12 blocks:

{{(ngl)’ (1’ gl)v (0792)» (1) 92)}’ {(0791)7 (1791)7 (2792)7 (3792)}7 {(2’ gl): (3791)’ (0’ 92): (1792)}7

{(2,91)7 (3,91), (2,92), (3,92)}7 {(0791)7 (2,91), (0, g2), (2792)}7 {(07 91),(2,91), (1, g2), (3792)}7
{(1791)’ (3’ gl)r (0792)7 (2» 92)}7 {(Lgl)v (3791)7 (1792)7 (3792)}7 {(07 gl)v (3791)7 (07 92)7 (3792)}7

{(ngl)’ (3’ gl)v (1792)» (2) 92)}’ {(1791), (2791)7 (0792)7 (3792)}7 {(1’ gl): (2791)’ (1’ 92): (2792)}}~

Since there are four choices for g1, go, it follows that the total number of added blocks
is 48. Thus, we have a balanced (3,4, 16) packing with 112 blocks, which is optimal.

When v is a power of two, the construction of Lemma 8 can be simplified further.

Ezample 3. The points are of the form Fom x {0,1}, and Py = {(2,0) : © € Fom }
and P_ = {(z,1) : © € Fam }. The additional blocks are generated according to

{{(aho), (a2,0), (b1,1), (b2,1)} : a1,a2,b1,b2 € Fom by = a1 +az + b1}-

In order to verify the validity of the construction, one needs to prove that for any
choice of distinct aj,as and by # bo, there exists a by that satisfies the defining
constraint. Since aq, ag, b1, by belong to a field with characteristic two, if by = bo, it
follows that a; = ao, which is impossible. Therefore, the blocks in the TD along with
the blocks from the above construction result in a (¢t = 3,k = 4,v) extremal balanced
system whenever v is a power of two.

4.4. Constructions based on maximal disjoint Steiner systems. When
the sets in F can be partitioned into classes Fi,...,F, so that (V,F;) is a (¢, k,v)
packing for each 1 < i < n, we say that (V,F) is t'-partitionable with partition
classes F1,...,Fn. Let (Vi,F') be a (t1, k1,v1) packing that is ¢;-partitionable with
partition classes F, ..., F!. Similarly, let (Va, F2) be a (t2, k2, v2) packing that is ¢o-
partitionable with partition classes FZ, ..., F2. Suppose that V; and V; are disjoint.
Form a new packing with blocks {BUD : B € F}, D € F?,1 <i < n}. This packing
has v = v1 + v points. Each block has k = k; + ko points. Two distinct blocks can
share at most max (ks + t1 — 1, k1 + t2 — 1) points. Hence, the resulting structure is
a (max(ke + t1, k1 + ta2), k1 + ko, v1 + v2) packing. By setting Vi = Py and Vo = P_,
each block has discrepancy |k — ka|. Therefore, we need to choose k; and ks to have
values as close as possible.

4.4.1. Balanced sets with parameters (2, 3,v). A 1-factorizationisa (2,2,2m)
packing that is 1-partitionable into 2m — 1 classes. A set of 2m — 1 points, each form-
ing a block of size one, is a (1,1,2m — 1) packing that is 0-partitionable into 2m — 1
classes. Hence, using this factorization approach we can obtain a (2, 3,4m—1) packing
with discrepancy 1 having m(2m — 1) blocks, or, roughly, %v2 blocks. In comparison,
an STS would have (4m — 1)(4m — 2)/6 blocks, which roughly equals $m? (3 v?).

4.4.2. Balanced sets with parameters (3,4, v). A 1-factorization is a (2,2, 2m)
packing that is 1-partitionable into 2m—1 classes. Hence, we have a (3, 4, 4m) packing
with discrepancy 0 and m?(2m — 1) blocks, or, roughly, 3—12 v3 blocks. In comparison, a
Steiner quadruple system would have (4m)(4m — 1)(4m — 2) /24 blocks, which roughly

1

equals §m? (g5 v®).
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4.4.3. Balanced sets with parameters (4,5, v). A 1-factorization is a (2,2, 2m)
packing that is 1-partitionable into 2m — 1 classes. A large set of STS or maximal
disjoint Steiner system [18, 30] is a (3, 3, v) packing that is 2-partitionable into v — 2
classes, or, equivalently, a set of v — 2 Steiner triple systems that have disjoint block
sets. Such a system exists whenever (2m + 1 =)v = 1,3 (mod 6) (with six excep-
tions; see [18, 30]). So we obtain a (4,5,4m + 1) packing with discrepancy 1 having
(2m — 1)m?(2m + 1)/6 blocks, which is roughly z-v* blocks. A Steiner quintuple
system would have (4m + 1)(4m)(4m — 1)(4m — 2)/120 blocks, which roughly equals

32, 4 1 .4

4.4.4. Balanced sets with parameters (5,6,v). A large set of STSs is a
(3,3,v) system that is 2-partitionable into v — 2 classes, when (2m + 1 =)v = 1,3
(mod 6) (with six exceptions; see [18, 30]). So we obtain a (5, 6,4m + 2) packing with
discrepancy 0 having roughly (2m — 1)(%)2 ~ 8m® blocks. A Steiner sixtuple
system would have (4m + 1)(4m)(4m — 1)(4m — 2)/120 blocks, which roughly equals
32 4 /.1 4
st (150")-

4.4.5. Balanced sets for other parameter choices. Next, we consider two
constructions for general ¢ and k. For this construction, once again we make use of the
notion of maximal disjoint Steiner system [16]. We denote the decomposition of the
maximal disjoint Steiner system by M(¢t, k,v) = {M1(t, k,v), ..., Mp(t, k,v)} where
for any i € [v — T, M;(t, k,v) is a (¢, k,v) Steiner system, and for any two distinct
i,j € [T], Mi(t,k,v) N M,(t,k,v) =0. Here,

G
()/(F)

We first consider the case when k is even.

CONSTRUCTION 3. Suppose that there exists a mazximal disjoint Steiner system
M(t, k,v). Let Py ={(1,0),(2,0),...,(v,0)} and P = {(1,1),(2,1),..., (v, 1)} and
form the following sets:

Splt,t+1,20) = {{(@1,0),.., (@, 0), (B, 1), (b, 1)}
{aty o ap}, {Bas .o be} € Mi(t kyv),i € T}.

The following theorem is a straightforward result that is based on Construction 3.

THEOREM 4. Suppose that there exists a mazimal disjoint Steiner system M(t, k,v).
Then, there exists an extremal (t + k, 2k, 2v) balanced packing.

A drawback of Construction 3 is that relatively few constructions for maximal
disjoint Steiner systems exist, with most results focusing on STSs. It was shown
in [18] that if the order of 2 modulo v — 2 is an odd number, then there exists a
maximal disjoint STS. In addition, it is known that if there exists a maximal disjoint
STS with point set [v], then for 7 a prime number there also exists a maximal disjoint
STS [mv + 2]. An immediate consequence of Theorem 4 is the following result.

LEMMA 9. Suppose there exists a maximal disjoint system M(2,3,v). Then, there
exists a (5,6,2v) balanced packing of mazimum size.

Using a simple modification of Construction 3, we arrive at the following result.
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LEMMA 10. Suppose that there exists a maximal disjoint system M(2,3,p1) and
that p— = py — 1 is an even number. Then, there exists a (4,5,p+ + p—) balanced
packing of mazximum size.

Proof. There are T' = p; — 2 disjoint STSs {M1(2,3,p1),..., My, —2(2,3,p4)},
where py —2 = p_ — 1. If p_ is even, then there exists a 1-factorization of & =
{®1,...,®,, 2} of K}, . Let

{{(alﬂ 0)7 (a270)7 (a3, 0)7 (b17 1)7 (b27 1)} :
{a1, 02,03} € M;(2,3,p), {b1, b} € &y, € [T]}

The proof that the described set of blocks constitutes a (4,5, p4 + p—) extrema bal-
anced packing follows from the same line of reasoning as used in Theorem 4. |

Appendix A. Proof of Lemma 3. Suppose that, to the contrary, there exists a
(t, k,v) balanced system S(t, k, v), which according to repeated application of Claim 1
means that there exists a balanced system S(3,k —t+3,v —t+ 3). Next, we proceed
similarly as before, except that we select one more element e; € P_ and let

5(27k—t+2,v—t+2):{B\61:B65(3,k—t+371}—t+3) andeleB}.

Let 13+ denote the elements in S(2,k —t+2,v —t+ 2) labeled +1, and let P_ denote
the elements labeled —1. Again, let p. = |Py|,p_ = |P_| and k = [2=1£27. Note
that under this setup, for any B € S(2,k —t + 2,v — t 4+ 2), the discrepancy of B is
either —2, —1, or 0. More specifically, if kK —t¢+2 is odd, then \Bﬂf%r\ =k Ifk—t+2
is even, then |B N Py| € {k,k—1}.

The next claim is an analogue of Claim 3.

CLAIM 5. One has p4 > k.

Proof. It S(3,k —t + 3,v — ¢t + 3) is obtained from S(¢,k,v) by applying the

procedure from Claim 1, then p; = py — % Thus, if p > kgl, which is one of the

assumptions in the lemma, then p, > k= [’“_Qﬁ] 0

Next, suppose first that k—¢+2 is odd so that for any B € S(2,k—t+2,v—1+2),
|[BNPy|=kand |[BNP_|=k—1. Then, for a Steiner system S(2,k—t+2,v—t+2),
counting arguments similar to those used in the previous lemma would lead to

(%)
2 ) pp-

(’;) Wi 1)

which means that py —1 = p_. Note that we can count the number of elements in
S(2,k —t+2,v—t+ 2) by also considering all pairs from P_, which implies

(v) (%)
(") (8)

If py — 1 =p_, then this implies that py = lAc, which contradicts Claim 5.
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Next, we consider the case where k—t+2 is even. Let By C S(2,k—t+2,v—t+2)
denote the set of blocks in 5(2 k—t+2 v—t+2) with k+1 elements in P, and that
have k — 1 elements from P_. Similarly, let B C S(2,k —t+2,v—t+2) denote the
set of blocks in S(2,k —t +2,v — ¢+ 2) with k elements in P, and k elements from
P5. Using ideas similar to those in the previous lemma, we arrive at

(1) (K3 ) e (5)= (%)
) () i (5) = (7).

From (4) and (5), we have that

|By| =

and

We now follow the same logic as in the previous proof. First, notice that according
to (4) and (5), the total number of blocks in S(2,k —t+2,v —t +2) is

P2 (k= 1) + po(pa — Dk + py — pyk

|By| + |B-| = (2k — 1)k(k — 1)

We also know that since S(2,k — ¢+ 2,v —t + 2) is a Steiner system, the number of
blocks in S(2,k —t+2,v —t +2) is %, which implies
Pk —1) + P22 — Dk +py —pik _ (4 +p2) (s + P — 0}
(2k — D)k(k —1) 2k(2k — 1)

Solving for k gives
2p+p- + P2 — Py + Py — P

]%: = = = = -
2p1p— — P2 — P3 + P+ +p-

Recall from Claim 2 that we only have two cases left to consider: the case where
p+ = p— and the case where py = p_ + 1. If p, = p_, then k= P+, which is a
contradiction of Claim 5. Otherwise, if p, = p_ + 1, then k= p+ — 1, and we arrive
at a contradiction in this case as well.
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