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Originating from the destructive interference between quan-
tum excitation pathways, electromagnetically induced 
transparency (EIT) is a notable phenomenon in the optical 

response of a dielectric medium1. The transmission spectrum of a 
probe light is marked by a narrow transparency window in a broad 
absorption profile, leading to a sharp phase change and a large 
group delay within the narrow window accompanied by a reduced 
group velocity of light. EIT and its classical analogues have been 
demonstrated in gas-phase atomic2–6, metamaterial/metasurface7,8, 
plasmonic9–12, optical13–15, optomechanical16–18 and superconduct-
ing systems19,20. Among them, all-optical analogues of EIT real-
ized in optical resonant systems, such as metamaterial, plasmonic, 
photonic crystal and whispering-gallery-mode (WGM) resonators, 
allow for on-chip and room-temperature operation. Furthermore, 
the intermodal coupling makes the systems free from the strong 
control light. However, tuning of EIT via engineering resonant fre-
quencies, coupling strengths and phase delays relies on the external 
control of continuous parameters such as temperature and optical 
power, which not only deteriorates fully integrated design, but also 
brings additional noise and instability due to, for example, thermal 
fluctuation and non-equilibrium in thermodynamic processes.

Quantum and classical state controls of optical properties have 
found practical applications in photonic communication and com-
putation, such as qubit logic gates21,22, optical bit storage23, slow 
light24 and so on. As the manipulation of optical states has become 
increasingly practical with the fast-growing cavity-engineering 
techniques, including field backscattering25, index/material mod-
ulation26 and geometry deformation27, it is possible to directly 
manipulate the resonance spectrum—the discrete quasi-normal 
modes of the system—to fulfil the demanding conditions of EIT.  
Up to now, those advantages of optical states have not been utilized  
to control all-optical EIT, due to the lack of an explicit physical 

scheme that could build a connection between the manipulation of 
optical states and EIT.

Our result brings revenue to this issue by building on the recent 
progress in non-Hermitian optics. Non-Hermitian wave equations 
for open systems yielding complex energy spectra with non-orthog-
onality of eigenstates (quasi-normal modes or resonances) have 
been utilized to engineer unconventional optical behaviour and 
functionality28,29. Exceptional points (EPs), a type of degeneracy of 
the complex spectrum, at which two eigenstates coalescence30, have 
enabled unconventional effects, including unidirectional reflection/
invisibility31, chirality25, enhanced sensitivity32,33, topological optical 
switching34,35 and so on, and been applied to engineering light trans-
port, improved sensing and microlasing26,36. In particular, switch-
ing between absorbing and lasing/scattering optical modes has been 
realized with the assistance of gain/loss37,38. In WGM microresona-
tors, EPs can be reached either by tuning gain–loss contrast and 
intermodal coupling strength in coupled resonators39,40, or by pre-
cisely manipulating the backscattering/refractive index distribution 
in one resonator25,26. In particular, tuning a WGM resonator to an EP 
breaks the chiral symmetry of clockwise (CW) and counterclock-
wise (CCW) light propagation. The single merged eigenstate at the 
EP can be characterized by its chirality, the ratio of the light circu-
lating in the CW and CCW directions normalized to vary between 
[−1, 1] (ref. 25). The chirality at EPs is −1 for CCW eigenstates, and  
1 for CW eigenstates, which can naturally act as a control bit.

Here we show, both theoretically and experimentally, a way to 
control optical analogues of EIT in a system of two indirectly cou-
pled WGM microresonators, by directly constructing chiral opti-
cal states with the help of EPs. We consider a system as shown in 
Fig. 1a, where two WGM microresonators μR1 and μR2 are coupled 
to a waveguide with coupling strengths γ1,1 and γ1,2, respectively. 
Resonator μR1 (μR2) supports WGMs with the resonant frequency 
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ω1 (ω2) and intrinsic loss rate γ0,1 (γ0,2). The CW and CCW modes 
are coupled with each other via backscattering on the resonator sur-
faces. In μR2, we assume that the coupling strength of the scatter-
ing from CW to CCW (κb12) is identical to that from CCW to CW 
(κb21). In μR1, asymmetric backscattering can be introduced by addi-
tional perturbations; that is, the scattering-induced coupling from 
CW to CCW (κa12) is not equal to that from CCW to CW (κa21).  
The dynamics of the system can be described by the coupled mode 
equations, given by:

da1
dt ¼ �iω1a1 � γ0;1þγ1;1

2 a1 � iκa21a2 � ffiffiffiffiffiffiffi
γ1;1

p ain ð1Þ

da2
dt ¼ �iω1a2 � γ0;1þγ1;1

2 a2 � iκa12a1 � eiθ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1;1γ1;2

p b2 ð2Þ

db1
dt ¼ �iω2b1 � γ0;2þγ1;2

2 b1 � iκb21b2 � ffiffiffiffiffiffiffi
γ1;2

p eiθ ain þ ffiffiffiffiffiffiffi
γ1;1

p a1
 

ð3Þ
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Fig. 1 | Indirectly coupled WGM microresonators with manipulation of chirality. a, A schematic diagram of the system consisting of indirectly coupled 
WGM microresonators. A microtoroid and a microdisk are coupled to a fibre taper with coupling strengths γ1,1 and γ1,2, respectively. They both support CW 
and CCW modes (a1,2 and b1,2) that have intrinsic loss (γ0,1 and γ0,2). Intrinsic perturbations on the surfaces of each resonator can be modelled as an effective 
scatterer marked by a grey dot, which induces coupling between CW and CCW modes. A nanotip can be applied to the mode volume of μR1 to induce 
asymmetric coupling between the CW and CCW modes and breaks the chiral symmetry of μR1. An optical path loop is formed: a1 !
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and lines mark light propagation in the forward (backward) direction. b,c, Transmission (blue) and reflection (red) spectra when individually characterizing 
the modes in μR1 (b) and μR2 (c) at 1,447.6 nm. d,e, The optical path loop when μR1 is at the EP with chirality −1 (EP−) (d) and the EP with chirality 1 (EP+) 
(e). CW and CCW optical fields in each resonator are represented by a red circle and a blue circle, respectively. The loop breaks at EP− because κa21 = 0,  
and thus no interference occurs. The loop is complete at EP+ because κa21 ≠ 0, and θ controls the loop interference to be constructive or destructive.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


ArticlesNatuRE PHySicS

db2
dt ¼ �iω2b2 � γ0;2þγ1;2

2 b2 � iκb12b1 ð4Þ

where a1 (b1) and a2 (b2) correspond to the fields of CW  
and CCW modes in μR1 (μR2), respectively. The angle θ is the phase 
shift accumulated when light propagates in the fibre between the 
resonators. The output field is given by:

aout ¼ ffiffiffiffiffiffiffi
γ1;2

p b1 þ eiθ ain þ ffiffiffiffiffiffiffi
γ1;1

p a1
 

ð5Þ

We assume that the resonant frequency detuning between the 
two resonators is zero; that is, Δ1 = Δ2 = Δ (see Supplementary 
Section C2 for non-zero detuning). Then we obtain the transmission  
spectrum as:

T ¼ � γ0;1�2iΔð Þ2þγ21;1�4κa21κa12
� �

� γ0;2�2iΔð Þ2þγ21;2�4κb21κb12
� �

Pþ γ0;1þγ1;1�2iΔð Þ2þ4κa21κa12
� �

γ0;2þγ1;2�2iΔð Þ2þ4κb21κb12
� �

����
����
2

ð6Þ

where P = 16γ1,1γ1,2κa21κb12e2iθ plays the critical role of introducing an 
interference effect in the optical path. We use this theoretical model 
for numerical simulation in this study (detailed calculations are 
provided in Supplementary Section A1).

In our experimental set-up, a microtoroid is used as μR1 and 
a microdisk as μR2, which are coupled to a fibre taper waveguide. 
The two resonators support WGMs in the 1,447 nm wavelength 
band with similar polarization (see Supplementary Section B for 
the influence of potential polarization mismatch); the modes in the 
microtoroid and the microdisk have disparate quality factors (Q) 
of 6.9 × 107 and 1.6 × 105, respectively. The system is probed by a 
frequency-swept laser that is injected into the left port of the fibre 
taper. Both the transmission and the reflection signals are moni-
tored by photodetectors with the help of an optical switch and two 
circulators. We first individually characterize the microtoroid (μR1) 
and microdisk (μR2) resonators. In the transmission spectra, the 
mode splitting is observable for the high-Q modes in the micro-
toroid (Fig. 1b), indicating that the degeneracy of CW and CCW 
modes is broken through some intrinsic perturbation (for example, 
geometry or defect-based). For the low-Q modes in the microdisk, 
the mode splitting is observable only when weakly coupled to the 
taper (Fig. 1c), because the broadened linewidth blurs the two  
dips in the transmission spectrum when the coupling is large.  
For both resonators, the reflection spectra (Fig. 1b,c) also indicate 
the existence of backscattering, caused by features such as surface 
roughness and nanoparticle accumulation.

The optical analogues of EIT in resonator systems originate 
from cancellation of intracavity fields due to optical destructive 
interference41. In particular, a resonant mode is excited not only 
by the input light field directly, but also by the modal coupling to 
another resonant mode. These two excitation pathways can destruc-
tively interfere with each other and lead to EIT. In our system, light 
propagation in both forward and backward directions is allowed in 
the fibre taper between the two resonators, which could be mod-
elled as forward and backward waveguide channels. With the help 
from these channels and the backscattering in each resonator, a loop 
is formed in the optical path (Fig. 1a): light from mode a1 in μR1 

couples to the fibre in the forward direction ffiffiffiffiffiffiffi
γ1;1

p 

I

; after 

propagating in the fibre with the phase modified by the optical 

path length (eiθ), it couples into mode b1 ffiffiffiffiffiffiffi
γ1;2

p 

I

 in μR2, where the 

backscattering enables the light to couple to mode b2 (κb12); 
subsequently the light couples to the fibre in the backward direction 
ffiffiffiffiffiffiffi
γ1;2

p 

I

, propagating backwards accumulating phase (eiθ); when 

the light meets μR1, it couples into mode a2 
ffiffiffiffiffiffiffi
γ1;1

p 

I
; through 

backscattering from CCW to CW, if there is any, the light couples 
back to mode a1 (κa21). The field travelling a round trip in the loop 
will accumulate a phase shift Δϕ that is equal to the phase angle 
of the coefficient γ1,1γ1,2κa21κb12e2iθ. At the same time, mode a1 is 
directly excited by the forward-propagating field in the fibre taper. 
Therefore, optical interference occurs between these two optical 
paths for the excitation of mode a1. In addition, mode b1 can also 
be regarded as the starting and ending point of the optical path 
loop, which indicates that the same type of interference occurs in 
the excitation of b1. As a result, the field intensity in a1 and b1 can be 
enhanced by the constructive interference (Δϕ = 2π) or suppressed 
by the destructive interference (Δϕ = π), which can be controlled by 
the phase angle θ.

To see chiral states of μR1 on the optical interference, we intro-
duce a nanotip to the vicinity of the microtoroid (Fig. 1a), which 
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a, A level diagram of the system when the nanotip is not applied to μR1. 
The degeneracy of each resonator is lifted due to intrinsic perturbations, 
forming non-chiral standing-wave supermodes. The spectrum of μR1 shows 
mode splitting (inset). The levels ω1,± and ω2,± are eigenfrequencies of μR1 
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c, A level diagram when the nanotip steers μR1 to EP+ with chirality 1 and 
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perturbs the evanescent fields of the modes and their backscatter-
ing-induced modal coupling in an asymmetric way25,32. As a result, 
the backscattering-induced coupling strengths can be expressed 
as κa12 a21ð Þ ¼ ϵa1e± i2maβa1 þ ϵa2e± i2maβa2

I
 and κb12 b21ð Þ ¼ ϵbe± i2mbβb

I
, 

where βa1(a2) and βb are the azimuthal positions of the nanoscatters 
with perturbations ϵa1 a2ð Þ

I
 and ϵb

I
 on μR1 and μR2, respectively, and 

ma(b) is the azimuthal mode number of μR1 (μR2) (see Methods 
and Supplementary Section A3 for detail of the specific theoretical 
model). The perturbation skews the eigenstates of μR1 and the reso-
nator can be tuned to an EP with a single merged eigenstate of either 
chirality 1 or −1 (see Supplementary Section C4 for chirality tun-
ing). We define EP− and EP+. For EP−, the eigenmode rotates in the 
CCW direction corresponding to chirality −1. The backscattering 
from CW to CCW is non-zero, and the backscattering from CCW 
to CW is zero; that is, κa12 ≠ 0 and κa21 = 0. For EP+, the eigenmode 
rotates in the CW direction (chirality +1). The backscattering from 
CW to CCW is zero, and the backscattering from CCW to CW is 
non-zero; that is, κa12 = 0 and κa21 ≠ 0. In each case, the vanishing of 
κa12 or κa21 is achieved simply by properly adjusting the radial and 
azimuthal position of the nanotip near the rim of the microtoroid. 
At EP−, the coefficient γ1,1γ1,2κa21κb12e2iθ becomes zero and thus the 
optical path loop is broken (Fig. 1d). As a result, the modes in the 
two resonators do not interfere with each other and are excited by 
the waveguide mode sequentially. At EP+, the optical loop path still 
exists, because κa21 ≠ 0 and hence the coefficient γ1,1γ1,2κa21κb12e2iθ does 
not vanish (Fig. 1e). By proper tuning of the phase angle θ, construc-
tive/destructive loop interference can occur for the excitation of the 
intracavity fields, which could lead to an absorption or transparency 
window in the spectrum. Here the transparency (absorption) win-
dow is a single narrow peak (dip), as a result of the coalescence of 
eigenstates at EPs. A general discussion of non-EP configurations is 
presented in Supplementary Section C1.

To understand the necessary conditions of EIT in this system 
with EP-controlled chirality, we construct energy-level diagrams 
based on the eigenfrequencies of the resonator modes. Without 
perturbation by the nanotip, there are two eigenfrequencies in μR1 
(μR2) corresponding to level ω1,± (ω2,±) that are coupled to level 0 
with coupling strength γ1,1 (γ1,2), where level 0 represents the level 
at which the optical modes of resonators are not excited (Fig. 2a). 
Levels ω1,± and ω2,± are coupled indirectly via the taper. With a 
nanotip steering μR1 to the EPs, ω1,+ and ω1,− will merge and become 
degenerate. At EP− with chirality −1, the CCW eigenmode field in 
μR1 cannot be scattered back into the CW direction. As a result, the 
flow can transfer only from level ω2,± to level ω1,EP− but not in the 
opposite direction, indicating that these two levels are not coupled 
(Fig. 2b). On the other hand, at EP+ with chirality 1, the CCW field 
can be scattered back into the CW eigenmode, and thus the coupling 
between levels ω1,EP+ and ω2,± exists (Fig. 2c). If γ1,1 ≪ γ1,2, we could 
neglect the coupling between level ω1,EP+ and 0, and the system at 
EP+ will support two sets of Λ-type levels {ω1,EP+,ω2,±,0} (μR2 can 
also be treated as having one standing wave mode under a certain 
approximation, see Supplementary Section A4). In our system with 
highly dissimilar intrinsic loss rates (γ0,1 ≈ 0.025γ0,2) for the modes in 
the two resonators, this condition is not hard to satisfy, as long as we 
choose γ1,1 < 40γ0,1 and keep γ1,2 in the same order as γ0,2. Therefore, 
the level diagram at EP+ is analogous to the Λ-type energy levels 
that conventionally lay the foundation for EIT.

On the basis of the level diagram at EP+, we can further iden-
tify the parameter regimes for which the analogue of EIT could 
be enabled. First, the coupling between level ω1,EP+ and level ω2,± 
needs to be strong in analogy to the requirement of a large Rabi 
frequency of the control laser in the atomic EIT configuration. The 
effective coupling coefficient between level ω1,EP+ and level ω2,± is 
proportional to γ1,1γ1,2κa21κb12e2iθ and thus can be elevated not only by 
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increasing the coupling coefficients γ1,1 and γ1,2, but also by enhanc-
ing the intracavity scattering rates κa21 and κb12. Therefore, in the 
experiments, we chose a microdisk with more surface roughness to 
induce larger backscattering and a microtoroid with a significant 
reflection signal. Second, the decay rate of level ω1,EP+ should be 
much smaller than that of level ω2,± in analogy to the longer lifetime 
of the metastable state in atomic EIT. This is satisfied by choosing 
highly dissimilar quality factors for the modes in the two resonators 
that allow γ0,1 ≪ γ0,2.

When μR1 is strongly coupled to the taper (that is, γ1,1 ≫ γ0,1) 
and μR2 is critically coupled to the fibre taper (that is, γ1,2 ≈ γ0,2), the 
transmission at the zero detuning point Δ = 0 is given by (detailed 
calculation in Supplementary Section A2):

T Δ ¼ 0ð Þ ¼ 1

1þ4γ1;2κa21e
2iθ

γ1;1κb21
þ

γ2
1;2

κb21κb12

������

������

2

ð7Þ

Ideally, the transmission gets close to 1 when |4κa21κb12/γ1,1γ1,2|→1, 
which means that the last two terms in the denominator will  
cancel with a proper value of θ. Under our experimental condition, 
|4κa21κb12/γ1,1γ1,2| is much smaller than 1 due to the limitation in the 
backscattering rates.

In the experiments, we study the transmission spectrum con-
trolled by the two types of chiral eigenstate of μR1 associated with 
EP− and EP+. We first tune μR1 to EP−, which is verified by check-
ing that the reflection signal is zero as the light is injected from the 

right port (Fig. 3a). The lack of necessary backscattering (κa21 = 0) 
eliminates loop interference and gives rise to the exhibition of two 
overlapping dips with highly different linewidths in the transmission 
spectrum (Fig. 3b). The interpretation of this phenomenon is simi-
lar to the ‘superscattering’ phenomenon where the partial scattering 
cross-sections into uncoupled channels are added without interfer-
ence42–44. The narrow absorption dip occurring at EP− is also found 
to be invariant with the phase shift θ (Fig. 3c), consistent with our 
theoretical prediction (Fig. 3d). Moreover, the depth of the narrow 
dip varies with the change of coupling strength between μR1 and the 
fibre taper (see Supplementary Section C3 for more details). In this 
phase-invariant opaqueness, the energy loss is mainly the absorption 
loss, together with a minor portion of scattering loss into free space 
and reflection into the backward channel of the fibre. Therefore, 
these results verify that the −1 chiral state at EP− leads to a phase-
invariant type of absorption, which we name exceptional-point-
assisted absorption (EPAA). It is noted that EPAA is fundamentally 
different from electromagnetically induced absorption4,45,46, which 
relies on constructive interference. For EPAA, the absence of inter-
ference, which is critical for the superscattering type of absorption, 
is ensured by EP− regardless of the backscattering ubiquitously exist-
ing in high-Q WGM resonators. This superscattering phenomenon 
achieves a large cross-section for light absorption and thus enhances 
light–matter interaction and energy harvest, which can further ben-
efit applications such as antenna design and biomedical imaging43,44.

At EP+, with properly chosen θ controlled by the distance between 
resonators, we observe a single narrow peak out of a broad absorption 
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Fig. 4 | Transparency at EP+ with chirality 1. a, Experimentally measured transmission spectra with different phase angles θ. Close-ups of the spectra within 
the orange-shaded regions are shown in the insets. μR2 is almost critically coupled to the taper and μR1 is strongly coupled to the taper. b, The numerical 
simulation result of transmission spectra with the variation of θ. The inset shows the transmission at zero detuning (T(Δ = 0)) versus θ. The parameters 
used in the simulation are obtained by fitting the spectrum in a: κa21 = (7.114−0.0318i) MHz, κa12 = 0, κb21 = κb12 = (0.1337−0.0306i) GHz, γ0,1 = 3.024 MHz, 
γ1,1 = 11.98 MHz, polarization mismatch ϕ = 0.03π. c, Experimentally measured transmission spectra with the variation of the gap between μR1 and the taper. 
The peak of the transparency window in the transmission spectra is maximized by optimizing the destructive interference with a fixed phase angle θ.  
From top to bottom, the gap is increased by a step of 50 nm. The inset shows the transmission at zero detuning (T(Δ = 0)) as a function of the change  
in the taper–cavity gap (Δd).
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in the transmission spectrum (Fig. 4a, upper panel). The pure trans-
parency lineshape appears only when the coupling strength between 
μR1 and the taper is strong (see Supplementary Section C3 for simu-
lation results). To demonstrate this, we increase γ1,1 by reducing the 
gap between μR1 and the taper in 50 nm steps, and the narrow dip 
in the transmission spectrum gradually evolves into a narrow peak  
(Fig. 4c). Furthermore, to verify that the transparency window is 
associated with the destructive interference in the optical loop, we 
control the phase θ by tuning the horizontal distance between μR1 
and μR2. The height of the peak in the transmission spectrum (Δ = 0) 
is modified with the variation of the distance (Fig. 4a), a hallmark 
of an interference effect. In theory, when the phase shift is opti-
mized (θ = θopt), the peak reaches its highest point, corresponding 
to destructive interference (Fig. 4b). When the phase shift deviates 
from the optimized value, the peak goes downward. The deep-
est absorption dip appears at an angle of θopt + π/2, where the term 
γ1,1γ1,2κa21κb12e2iθ is opposite to that under the optimized phase, corre-
sponding to constructive interference in the optical loop. In addition, 
as two eigenstates of μR1 coalesce at EP+, the transparency window 
under destructive interference has a single peak, which we name as 
exceptional-point-assisted transparency. For a general non-EP case, 
the system-level structure (Fig. 2a) can support multiple EIT pro-
cesses and is likely to induce splitting in the transparency window 
due to multiple resonances (Supplementary Section C1).

Our experiments demonstrate that the chiral state in μR1 can be 
effectively coupled to the standing-wave modes in μR2 only when 
the chirality is 1. In other words, the chiral mode has a preferred 
direction of coupling: it can be coupled to the mode only in its 
forward-propagation path. Moreover, we note that the backward 
transmission signal (with the probing laser injected into the right 
port) is exactly the same due to the reciprocity of the system, further 
verifying that the direction of coupling associated with chirality is 
invariant with probing directions.

As we have seen so far, the chirality of EPs could be utilized to 
tailor the light transport and interference in a waveguide-coupled 
resonator system, and thus has great potential in the generation and 
control of slow light. In integrated photonic structures, the EPs can 
be achieved by index modulation or geometry deformation (for 
example, EP modulation in an InGaAsP integrated ring resonator 
platform with periodically arranged Ge and Cr/Ge)26. The recent 
development of LiNbO3 fabrication technology enables robust 
refractive index modulation in microdisks via digital electrical sig-
nals47,48 or complementary metal–oxide–semiconductor-compatible 
voltages48. Those techniques compatible with integrated photonic 
platforms have the potential for robustly steering a microdisk to 
two types of EPs with chirality −1 and 1, and overcoming the ther-
mal noise and non-equilibrium problems in conventional methods. 
Hence, the chirality of EPs could help realize state-controlled EIT 
with a high operation rate and fidelity.
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Methods
Theoretical framework under the experimental condition. We consider the specific 
situation where the intrinsic perturbations are induced by nanoparticles and the 
external perturbation is induced by a nanotip25,32,49,50. Besides the intermodal coupling 
within a resonator, the perturbations induce mode shift and linewidth broadening 
that were not explicitly specified in the ideal model equations (1)–(4). With these 
factors taken into consideration, the coupled mode equations are given by:

d
dt

a1
a2

 
¼

�iω1 � γ0;1þγ1;1
2 � iϵa1 � iϵa2 �i ϵa1e�i2maβa1 þ ϵa2e�i2maβa2

� 

�i ϵa1ei2maβa1 þ ϵa2ei2maβa2
� 

�iω1 � γ0;1þγ1;1
2 � iϵa1 � iϵa2

 !
a1
a2

 

� ffiffiffiffiffiffiffi
γ1;1

p ain
eiθ ffiffiffiffiffiffiffi

γ1;2
p b2

 !

ð8Þ

d
dt
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b2

 
¼

�iω2 � γ0;2þγ1;2
2 � iϵb �iϵbe�i2mbβb

�iϵbei2mbβb �iω2 � γ0;2þγ1;2
2 � iϵb

 !
b1
b2

 

� ffiffiffiffiffiffiffi
γ1;2

p eiθ
ain þ ffiffiffiffiffiffiffi
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0

  ð9Þ

We define the effective resonant frequencies as ω0
1 ¼ ω1 � Re ϵa1ð Þ � Re ϵa2ð Þ
I

 
and ω0

2 ¼ ω2 � Re ϵbð Þ
I

, and redefine the frequency detuning as 

Δ1 ¼ ω� ω1 � Re ϵa1ð Þ � Re ϵa2ð Þ
I

 and Δ2 ¼ ω� ω2 � Re ϵbð Þ
I

. Taking Δ1 = Δ2 = Δ, 
the result of transmission is given by:

T ¼ � γ00;1�2iΔð Þ2þγ21;1�4κa21κa12
� �

� γ00;2�2iΔð Þ2þγ21;2�4κb21κb12
� �

Pþ γ00;1þγ1;1�2iΔð Þ2þ4κa21κa12
� �

γ00;2þγ1;2�2iΔð Þ2þ4κb21κb12
� �

����
����
2

ð10Þ

where P = 16γ1,1γ1,2κa21κb12e2iθ, and effective loss rates 
γ00;1 ¼ γ0;1 � 2Im ϵa1 þ ϵa2ð Þ
I

 and γ00;2 ¼ γ0;2 � 2ImðϵbÞ
I

. This result is exactly the 
same as equation (6) except that we have explicitly included the mode-broadening 
effect induced by perturbations. The frequency shifts can be cancelled by adjusting 
the detuning frequency between the two resonators, and thus have no effect on the 
experimental results.

Data availability
The data represented in Figs. 1–4 are available in Supplementary Data 1–4.  
All other data that support the plots within this paper and other findings of this 
study are available from the corresponding author upon reasonable request.
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A. Theoretical model of EPAT & EPAA 

A1. General model 

We provide a theoretical model describing the system of indirectly coupled microresonators based on 

the coupled mode theory1. The configuration describing the system is shown in the diagram in Fig. S1. We 

consider both clockwise and counterclockwise modes for the left microresonator μR1 and the right 

resonator μR2, respectively, with the intracavity mode fields 𝑎1,2 and 𝑏1,2. The two resonators have 

resonant frequencies marked by 𝜔1,2 and intrinsic loss rates 𝛾0,1 and 𝛾0,2, respectively. Due to the 

existence of intrinsic or external perturbations, 𝑎1 and 𝑎2 are coupled by coupling strengths 𝜅𝑎12 and 

𝜅𝑎21, and 𝑏1 and 𝑏2 are coupled by coupling strengths 𝜅𝑏12 and 𝜅𝑏21. The field amplitudes in each 

port are given by 𝑎𝑖𝑛, 𝑎𝑜𝑢𝑡
′ , 𝑒𝑖𝜃𝑎𝑜𝑢𝑡

′ , 𝑎𝑜𝑢𝑡, 𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡
′ , 𝑒𝑖𝜃 𝑏𝑜𝑢𝑡

′  and 𝑏𝑜𝑢𝑡, as shown in the diagram. The 

resonators are coupled to the same fibre taper by the coupling strengths 𝛾1,1 and 𝛾1,2, respectively. The 

dynamics of the field amplitudes are described by the coupled mode theory2–4. 

 

Fig. S1 | Schematic diagram of the indirectly coupled resonators. The resonators support clockwise 

and counterclockwise modes, respectively, and are coupled to the same fibre taper. There are forward and 

backward channels of light flow in the taper which are plotted separately by the forward and backward 

arrow lines. Light travelling in the taper by the distance between the resonators will have a phase shift 𝜃.  
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By converting Eqs. (S1)-(S4) into the frequency domain, we obtain  
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−𝑖𝜅𝑏12 𝑖Δ2 −
γ0,2 + γ1,2

2

)(
𝑏1[𝜔]

𝑏2[𝜔]
) − √𝛾1,2 (

𝑒𝑖𝜃𝑎𝑜𝑢𝑡
′ [𝜔]
0

) , (S7) 

(
𝑎𝑜𝑢𝑡[𝜔]

𝑏𝑜𝑢𝑡
′ [𝜔]

) − (𝑒
𝑖𝜃𝑎𝑜𝑢𝑡

′ [𝜔]

0
 ) = √𝛾1,2 (

𝑏1[𝜔]

𝑏2[𝜔]
) , (S8) 

where 𝛥1 = 𝜔 −𝜔1, 𝛥2 = 𝜔 −𝜔2, and 𝑥[𝜔] represents the Fourier transform of 𝑥 (𝑥 can be 𝑎𝑖𝑛, 

𝑎𝑜𝑢𝑡
′ , 𝑎𝑜𝑢𝑡, 𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡

′ , 𝑏𝑜𝑢𝑡, 𝑎1, 𝑎2, 𝑏1 or 𝑏2). By solving Eqs. (S5)-(S8), we obtain the transmission 

spectrum as 

𝑇 = |𝑡|2 = |
𝑎𝑜𝑢𝑡[𝜔]

𝑎𝑖𝑛[𝜔]
|

2

= |(𝑆1)1,1(𝑆2)1,1 {1 + (𝑆1)1,2(𝑆2)2,1[1 − (𝑆2)2,1(𝑆1)1,2]
−1
}|
2
, (S9) 

where 

𝑆1 =

(

  
 
1 −

2𝑖𝛾1,1 (𝛾0,1 + 𝛾1,1 − 2𝑖𝛥1)

𝑖(𝛾0,1 + 𝛾1,1 − 2𝑖𝛥1)
2
 + 4𝑖𝜅𝑎21𝜅𝑎12 

−
4𝛾1,1𝜅𝑎21𝑒

𝑖𝜃 

𝑖(𝛾0,1 + 𝛾1,1 − 2𝑖𝛥1)
2
 + 4𝑖𝜅𝑎21𝜅𝑎12

−
4𝛾1,1𝜅𝑎12

𝑖(𝛾0,1 + 𝛾1,1 − 2𝑖𝛥1)
2
 + 4𝑖𝜅𝑎21𝜅𝑎12

𝑒𝑖𝜃 −
2𝑖𝛾1,1 (𝛾0,1   + 𝛾1,1 − 2𝑖𝛥1)𝑒

𝑖𝜃

𝑖(𝛾0,1 + 𝛾1,1 − 2𝑖𝛥1)
2
 + 4𝑖𝜅𝑎21𝜅𝑎12)

  
 
, (S10) 

𝑆2  =

(

  
 
 𝑒𝑖𝜃  −

2𝑖𝛾1,2(𝛾0,2 + 𝛾1,2 − 2𝑖𝛥2)𝑒
𝑖𝜃 

𝑖(𝛾0,2 + 𝛾1,2 − 2𝑖𝛥2)
2
+ 4𝑖𝜅𝑏21𝜅𝑏12

−
4𝛾1,2𝜅𝑏21

𝑖(𝛾0,2 + 𝛾1,2 − 2𝑖𝛥2)
2
+ 4𝑖𝜅𝑏21𝜅𝑏12

−
4𝛾1,2𝜅𝑏12𝑒

𝑖𝜃

𝑖(𝛾0,2 + 𝛾1,2 − 2𝑖𝛥2)
2
+ 4𝑖𝜅𝑏21𝜅𝑏12

1 −
2𝑖𝛾1,2(𝛾0,2  + 𝛾1,2 − 2𝑖𝛥2)

𝑖(𝛾0,2 + 𝛾1,2 − 2𝑖𝛥2)
2
+ 4𝑖𝜅𝑏21𝜅𝑏12)

  
 
. (S11) 

We assume the resonant frequency detuning between two resonators is zero, i.e., 𝛥1 = 𝛥2 = 𝛥. Then we 

obtain the transmission spectrum as  

𝑇 = |
(−(𝛾0,1 − 2𝑖𝛥)

2
+ 𝛾1,1

2 − 4𝜅𝑎21𝜅𝑎12) (−(𝛾0,2 − 2𝑖𝛥)
2
+ 𝛾1,2

2 −  4𝜅𝑏21𝜅𝑏12)

16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒2𝑖𝜃 + ((𝛾0,1 + 𝛾1,1 − 2𝑖𝛥)
2
 + 4𝜅𝑎21𝜅𝑎12)((𝛾0,2 + 𝛾1,2 − 2𝑖𝛥)

2
+ 4𝜅𝑏21𝜅𝑏12)

|

2

. (S12) 

From here, it is obvious that the term 16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃  plays the critical role of inducing 

interference effect which could lead to a transparency window out of a wide dip in either EIT or EPAT 

case. Without this term, the transmission will be decoupled to cascaded coupling between a taper and two 

resonators, given by 
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𝑇 = |
(−(𝛾0,1 − 2𝑖𝛥)

2
+ 𝛾1,1

2 − 4𝜅𝑎21𝜅𝑎12)(−(𝛾0,2 − 2𝑖𝛥)
2
+ 𝛾1,2

2 −  4𝜅𝑏21𝜅𝑏12)

((𝛾0,1 + 𝛾1,1 − 2𝑖𝛥)
2
 + 4𝜅𝑎21𝜅𝑎12) ((𝛾0,2 + 𝛾1,2 − 2𝑖𝛥)

2
+ 4𝜅𝑏21𝜅𝑏12)

|

2

. (S13) 

And thus no interference effect will happen.  

We discuss different cases when the chirality of μR1 is tuned, from which we can see the effect of 

the loop coupling coefficient 16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃.  

1) μR1 is only subject to intrinsic perturbations and the chirality is not broken. Therefore 𝜅𝑎21,  𝜅𝑎12, 

𝜅𝑏21 and 𝜅𝑏12 are all nonzero. Under the condition 𝛾1,2~𝛾0,2 and 𝛾1,1 ≤ 𝛾0,1, we observe EIA with 

splitting (results shown in Section C1 in Supplementary Information). Under the condition 𝛾1,2~𝛾0,2 

and 𝛾1,1 ≫ 𝛾0,1, we are able to observe EIT with splitting.  

2) μR1  is tuned to the exceptional point with chirality -1 ( EP− ), i.e., 𝜅𝑎21 = 0 . The term 

16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃 vanishes. The two resonators are decoupled and the transmission will give 

rise to EPAA, a narrow dip out of a broad dip, in all coupling regimes.  

3) μR1  is tuned to the exceptional point with chirality 1 ( EP+ ), i.e., 𝜅𝑎12 = 0 . The term 

16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃 is nonzero. The interference effect could lead to EPAT under certain coupling 

conditions described in the main text. 

A2. Theoretical limit of the peak in EPAT  

We study the zero detuning point 𝛥 = 0, at which the transmission becomes 

𝑇 = |
(−𝛾0,1

2 + 𝛾1,1
2 − 4𝜅𝑎21𝜅𝑎12)(−𝛾0,2

2 + 𝛾1,2
2 −  4𝜅𝑏21𝜅𝑏12)

16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒2𝑖𝜃 + ((𝛾0,1 + 𝛾1,1)
2
 + 4𝜅𝑎21𝜅𝑎12) ((𝛾0,2 + 𝛾1,2)

2
+ 4𝜅𝑏21𝜅𝑏12)

|

2

. (S14) 

We first set the low-Q resonator to be critically coupled to the fibre taper, i.e., 𝛾1,2 ≈ 𝛾0,2, which yields  

𝑇 = |
(− 𝛾0,1

2 + 𝛾1,1
2 − 4𝜅𝑎21𝜅𝑎12)𝜅𝑏21𝜅𝑏12

4𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒2𝑖𝜃 + ((𝛾0,1 + 𝛾1,1)
2
 + 4𝜅𝑎21𝜅𝑎12) (𝛾1,2

2 + 𝜅𝑏21𝜅𝑏12)
|

2

. (S15) 

At EP+, 𝜅𝑎12 = 0. Furthermore, if the coupling strength between the high-Q resonator and the taper is 

strong, i.e., 𝛾1,1 ≫ 𝛾0,1, √4𝜅𝑎21𝜅𝑎12, then 

𝑇 = |
𝛾1,1𝜅𝑏21𝜅𝑏12

4𝛾1,2𝜅𝑎21𝜅𝑏12𝑒2𝑖𝜃 + 𝛾1,1𝛾1,2
2 + 𝛾1,1𝜅𝑏21𝜅𝑏12

|

2

. (S16) 

The transmission gets close to 1 when the following condition is satisfied 

𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃 = −𝛾1,1𝛾1,2/4. (S17) 

Thus with properly chosen parameters, it is theoretically possible to see a high narrow peak with 𝑇 → 1 

emerging out of a broad dip. We thus summarize the condition to have a higher peak of transparency at 

𝛥 = 0 when the low-Q resonator is nearly critically coupled to the taper: 

1) The high-Q resonator has a quality factor significantly larger than the low-Q resonator.  



5 
 

2) The high-Q resonator is overcoupled to the taper, i.e., 𝛾1,1 ≫ 𝛾0,1. 

3) The coupling strength between μR1 and the taper is much larger than the average coupling rate 

between CW and CCW in μR1, i.e., 𝛾1,1 ≫ √4𝜅𝑎21𝜅𝑎12. This condition is naturally satisfied at EP+ 

because 𝜅𝑎12 = 0.  

4) The coupling term 𝜅𝑎21𝜅𝑏12  has the amplitude close to 𝛾1,1𝛾1,2/4 , and the phase 𝜃 =

1

2
arg(−𝛾1,1𝛾1,2/4𝜅𝑎21𝜅𝑏12) =

1

2
arg(−1/𝜅𝑎21𝜅𝑏12). 

By numerically solving the equations under parameters satisfying the conditions above, we obtain the 

estimated EPAT spectrum where the transmission at zero detuning approaches 1 (Fig. S2a). Also, as 

expected, the EPAT periodically changes with the phase 𝜃, and only reaches the maximum when 𝜃 is 

properly chosen to match the phases of the terms 𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃 and −𝛾1,1𝛾1,2/4 (Fig. S2b). 

 

Fig. S2 | EPAT under the ideal conditions. a, Transmission spectrum at EP+. Parameters: 𝛾0,1 = 21.69,

𝛾0,2 = 5.33 × 10
3, 𝜅𝑎21 = 11.79 + 74.31i,  𝜅𝑎12 = 0, 𝜅𝑏21 = 𝜅𝑎12 = 1.30 × 10

2 − 2.60 × 103i, 𝜃 =

0.5171π. b, Transmission spectrum at EP+ with the variation of 𝜃 under the ideal conditions. Inset: 

transmission at 𝛥 = 0 vs. 𝜃. Parameters are the same as in a except that 𝜃 is a variable. 

A3. Model of the system under the experimental condition 

The above analysis provides a general framework for transparency and absorption, but does not 

specify how the parameters 𝜅𝑎21 and 𝜅𝑎12 are determined in realistic systems. Under our experimental 

conditions, the intrinsic perturbations are induced by nanoparticles and the external perturbation is 

induced by a nanotip5. We use 𝜖𝑎1 and 𝜖𝑏  to denote the intrinsic perturbations on μR1 and μR2 

respectively, and 𝜖𝑎2 to denote the external perturbation on μR1 induced by the nanotip. The coupled 

mode equations are given by  

𝑑

𝑑𝑡
(
𝑎1
𝑎2
) = (

−𝑖𝜔1 −
𝛾0,1 + 𝛾1,1

2
− 𝑖𝜖𝑎1 − 𝑖𝜖𝑎2 −𝑖(𝜖𝑎1𝑒

−𝑖2𝑚𝑎𝛽𝑎1 + 𝜖𝑎2𝑒
−𝑖2𝑚𝑎𝛽𝑎2)

−𝑖(𝜖𝑎1𝑒
𝑖2𝑚𝑎𝛽𝑎1 + 𝜖𝑎2𝑒

𝑖2𝑚𝑎𝛽𝑎2) −𝑖𝜔1 −
𝛾0,1 + 𝛾1,1

2
− 𝑖𝜖𝑎1 − 𝑖𝜖𝑎2

)(
𝑎1
𝑎2
)

−√𝛾1,1 (
𝑎𝑖𝑛

𝑒𝑖𝜃𝑏𝑜𝑢𝑡
′ ) , (S18)
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𝑑

𝑑𝑡
(
𝑏1
𝑏2
) = (

−𝑖𝜔2 −
γ0,2 + γ1,2

2
− 𝑖𝜖𝑏 −𝑖𝜖𝑏𝑒

−𝑖2𝑚𝑏𝛽𝑏

−𝑖𝜖𝑏𝑒
𝑖2𝑚𝑏𝛽𝑏 −𝑖𝜔2 −

γ0,2 + γ1,2
2

− 𝑖𝜖𝑏

)(
𝑏1
𝑏2
) − √𝛾1,2 (

𝑒𝑖𝜃𝑎𝑜𝑢𝑡
′

0
) , (S19) 

where 𝛽𝑎1 and 𝛽𝑎2 are the azimuthal positions of the nanoscatters on μR1 and 𝛽𝑏 is the azimuthal 

position of the nanoscatter on μR2, with 𝑚𝑎 and 𝑚𝑏 being the azimuthal mode numbers of μR1 and 

μR2, respectively. Incorporating Eqs. (S18)-(S19) with Eqs. (S2) and (S4), we can arrive at Eqs. (8)-(9) in 

the Methods. By defining 𝜔1
′ = 𝜔1 − 𝑅𝑒(𝜖𝑎1) − 𝑅𝑒(𝜖𝑎2),  𝜔2

′ = 𝜔2 − 𝑅𝑒(𝜖𝑏),  𝛥1 = 𝜔 −𝜔1 −

𝑅𝑒(𝜖𝑎1) − 𝑅𝑒(𝜖𝑎2), 𝛥2 = 𝜔 −𝜔2 − 𝑅𝑒(𝜖𝑏) and taking 𝛥1 = 𝛥2 = 𝛥, we get 

𝑇 = |
(−(𝛾0,1

′ − 2𝑖𝛥)
2
+ 𝛾1,1

2 −  4𝜅𝑎21𝜅𝑎12)(−(𝛾0,2
′ − 2𝑖𝛥)

2
+ 𝛾1,2

2 −  4𝜅𝑏21𝜅𝑏12)

𝑃 + ((𝛾0,1
′ + 𝛾1,1 − 2𝑖𝛥)

2
 + 4𝜅𝑎21𝜅𝑎12)((𝛾0,2

′ + 𝛾1,2 − 2𝑖𝛥)
2
+ 4𝜅𝑏21𝜅𝑏12)

|

2

, (S20) 

which is shown by Eq. (10) in the Methods, where 𝑃 = 16𝛾1,1𝛾1,2𝜅𝑎21𝜅𝑏12𝑒
2𝑖𝜃 , 𝛾0,1

′ = 𝛾0,1 −

2𝐼𝑚(𝜖𝑎1 + 𝜖𝑎2), 𝛾0,2
′ = 𝛾0,2 − 2𝐼𝑚(𝜖𝑏).  

Now the question is whether the peak of EPAT can get close to 1 under the real experimental 

conditions. To achieve this, perturbation for the high-Q resonator needs to have a large real part 

comparable to γ1,1 and a small imaginary part. To make 𝑇 → 1, we have  

(𝜖𝑎1 + 𝜖𝑎2𝑒
−𝑖2𝑚𝑎𝛽𝑎2)𝜖𝑏𝑒

−𝑖2𝑚𝑏𝛽𝑏𝑒2𝑖𝜃 = −𝛾1,1𝛾1,2/4, (S21) 

(𝜖𝑎1 + 𝜖𝑎2𝑒
𝑖2𝑚𝑏𝛽𝑎2) = 0, (S22) 

where Eq. (S21) is a specific form of Eq. (S17), and Eq. (S22) describes the condition for EP+. By 

choosing 𝛽𝑏 = 0, we have 

𝜖𝑎2𝑠𝑖𝑛(2𝑚𝑎𝛽𝑎2)𝜖𝑏𝑒
𝑖(2𝜃+

𝜋
2
)
= 𝛾1,1𝛾1,2/8. (S23) 

This condition is hard to be achieved by experimental parameters. 

A4. Standing wave approximation for 𝛍𝐑𝟐 

In some cases, μR2 can be regarded as a standing wave (SW) resonator, which will simplify the 

calculation and be able to give rise to more prominent EPAT effect. We now offer the analysis of how this 

approximation will be valid. Generically, the loss of μR2 is composed of the intrinsic loss of the 

resonator (including material absorption and radiation loss) and the scattering loss induced by the Raleigh 

scatters on the surface of the resonator. The eigenvalues of the two supermodes in μR2 are given by 

𝜔2 − 𝑖𝛾0,2/2 and 𝜔2 − 𝑖𝛾0,2/2 + 2𝜖𝑏, respectively. If the scattering loss plays a dominant role in the 

total loss, which corresponds to the condition that 2𝐼𝑚(𝜖𝑎) ≫ 𝛾0,1, then the two supermodes will have 

vastly different loss rates, 𝛾0,2/2  and 𝛾0,2/2 − 2𝐼𝑚(𝜖𝑏), respectively.6 Therefore, under the same 

coupling strength, the two modes may be under different coupling regimes7. For example, the less lossy 

one is critically coupled to the taper, and the lossy one is undercoupled to the taper. Under this case, if the 

real part of 𝜖𝑏 is much smaller than the imaginary part, the supermodes also have a large overlap in the 

transmission spectrum. As a result, only the less lossy supermode is observable, and plays a dominant role 



7 
 

when interacting with the modes in μR1 indirectly through the taper. Therefore, we can neglect the lossy 

supermode directly from the very beginning. The model will be composed of a chirality-broken WGM 

resonator coupled indirectly to a SW cavity. This approximation not only reveals the possibility of having 

single SW mode structure in WGM cavities, but also enables the system to mimic the coupling between 

Fabry-Perot cavities which support SW modes. This model opens up the potential scenario of fundamental 

studies and applications in WGM resonators and the coupling systems.  

We now offer a rigid proof of the equivalence between the direct treatment of μR2 as a SW cavity 

and the approximation that scattering loss is large.  

By treating μR2 as a SW cavity, the coupled mode equations become 

𝑑𝑎1
𝑑𝑡

= −𝑖𝜔1𝑎1 −
𝛾0,1 + 𝛾1,1

2
𝑎1 − 𝑖𝜅𝑎21𝑎2 −√𝛾1,1𝑎𝑖𝑛, (S24) 

𝑑𝑎2
𝑑𝑡

= −𝑖𝜔1𝑎2 −
𝛾0,1 + 𝛾1,1

2
𝑎2 − 𝑖𝜅𝑎12𝑎1 − 𝑒

𝑖𝜃√𝛾1,1𝛾1,2𝑏, (S25) 

𝑑𝑏

𝑑𝑡
= −𝑖𝜔2𝑏 −

𝛾0,2 + 2𝛾1,2
2

𝑏 − 𝑒𝑖𝜃√𝛾1,1𝛾1,2𝑎1 − 𝑒
𝑖𝜃√𝛾1,2𝑎𝑖𝑛. (S26) 

In the frequency domain, 

0 = (𝑖𝛥1 −
𝛾0,1 + 𝛾1,1

2
)𝑎1[𝜔] − 𝑖𝜅𝑎21𝑎2[𝜔] − √𝛾1,1𝑎𝑖𝑛[𝜔], (S27) 

0 = (𝑖𝛥1 −
𝛾0,1 + 𝛾1,1

2
)𝑎2[𝜔] − 𝑖𝜅𝑎12𝑎1[𝜔] − 𝑒

𝑖𝜃√𝛾1,1𝛾1,2𝑏[𝜔], (S28) 

0 = (𝑖𝛥2 −
𝛾0,2 + 2𝛾1,2

2
)𝑏[𝜔] − 𝑒𝑖𝜃√𝛾1,1𝛾1,2𝑎1[𝜔] − 𝑒

𝑖𝜃√𝛾1,2𝑎𝑖𝑛[𝜔], (S29) 

where 𝛥1 = 𝜔 −𝜔1 and 𝛥2 = 𝜔 −𝜔2. The output is given by: 

𝑎𝑜𝑢𝑡 = 𝑒
𝑖𝜃(𝑎𝑖𝑛 +√𝛾1,1𝑎1) + √𝛾1,2𝑏. (S30) 

From here, when 𝛥 = 𝛥1 = 𝛥2, we can obtain the transmission as 

𝑇 = |
|(𝑖𝛥 −

𝛾0,2
2
)

(𝑖𝛥 −
𝛾0,1
2 )

2

− (
𝛾1,1
2 )

2

+ 𝜅𝑎21𝜅𝑎12

−𝑖𝛾1,1𝛾1,2𝜅𝑎21𝑒2𝑖𝜃 + [(𝑖𝛥 −
𝛾0,1 + 𝛾1,1

2 )
2

+ 𝜅𝑎21𝜅𝑎12] (𝑖𝛥 −
𝛾0,2 + 2𝛾1,2

2 )
|
|

2

. (S31) 

On the other hand, we start from the general model we provided in Section A1. The transmission spectrum 

under the condition |𝐼𝑚(𝜖𝑏)| ≫ 𝛾0,2, |𝑅𝑒(𝜖𝑏)| is given by  

𝑇 ≈ |
|

((𝑖𝛥 −
𝛾0,1
′

2 )
2

− (
𝛾1,1
2 )

2

+ 𝜅𝑎21𝜅𝑎12)((𝑖𝛥 −
𝛾0,2
′

2 )
2

− (
𝛾1,2
2 )

2

− (
𝛾0,2
′

2 )
2

)

𝛾1,1𝛾1,2𝜅𝑎21𝜖𝑏𝑒2𝑖𝜃 + ((𝑖𝛥 −
𝛾0,1
′ + 𝛾1,1
2 )

2

 + 𝜅𝑎21𝜅𝑎12)(𝑖𝛥 −
𝛾0,2
′ + 2𝛾1,2
2 ) (𝑖𝛥 −

𝛾0,2
′

2 )
|
|

2

. (S32) 
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Now by comparison of the results from two models, we can see that when 𝛥 is small, the transmission 

spectra described by Eq. (S31) and Eq. (S32) are the same, and thus the SW treatment of μR2 is valid in 

our study of the EPAT and EPAA. 

Furthermore, if 𝛥 = 0, 

𝑇 = |
𝛾1,2 (−(𝛾0,1 − 2𝐼𝑚(𝜖𝑎1 + 𝜖𝑎2))

2
+ 𝛾1,1

2 −  4𝜅𝑎21𝜅𝑎12)

16𝛾1,1𝜅𝑎21𝜖𝑏𝑒2𝑖𝜃 + (4𝜖𝑏
′′ + 𝛾1,2) ((𝛾0,1 + 𝛾1,1 − 2𝐼𝑚(𝜖𝑎1 + 𝜖𝑎2))

2
 + 4𝜅𝑎21𝜅𝑎12)

|

2

. (S33) 

Thus, under SW approximation for μR2, we can study the trend of the peak of EIT or EPAT using Eq. 

(S33).  

B. Effect of polarization 

In our theoretical and experimental study, we found that the mismatch of polarizations in the two 

resonators could significantly modify the transmission spectrum. Here we offer an analysis of the system 

given that the polarizations in two resonators do not align with each other.  

We choose the polarization of modes in μR2 in the x direction, and the polarization of modes in 

μR1 to have an angle 𝜙 with respect to the x direction. If the incident light has a polarization in the x 

direction, the coupled mode equations are modified as8:  

𝑑

𝑑𝑡
(
𝑎1
𝑎2
) = (

−𝑖𝜔1 −
γ0,1 + γ1,1

2
−𝑖𝜅𝑎21

−𝑖𝜅𝑎12 −𝑖𝜔1 −
γ0,1 + γ1,1

2

)(
𝑎1
𝑎2
) − √𝛾1,1 cos(𝜙) (

𝑎𝑖𝑛
𝑒𝑖𝜃𝑏𝑜𝑢𝑡𝑥

′ ) , (S34) 

(
𝑎𝑜𝑢𝑡𝑥
′

𝑏𝑜𝑢𝑡𝑥
) − (

𝑎𝑖𝑛
𝑒𝑖𝜃𝑏𝑜𝑢𝑡𝑥

′ ) = √𝛾1,1 cos(𝜙) (
𝑎1
𝑎2
) , (S35) 

(
𝑎𝑜𝑢𝑡𝑦
′

𝑏𝑜𝑢𝑡𝑦
) − (

0
0
) = √𝛾1,1 sin(𝜙) (

𝑎1
𝑎2
) , (S36) 

𝑑

𝑑𝑡
(
𝑏1
𝑏2
) = (

−𝑖𝜔2 −
𝛾0,2 + 𝛾1,2

2
−𝑖𝜅𝑏21

−𝑖𝜅𝑏12 −𝑖𝜔2 −
𝛾0,2 + 𝛾1,2

2

)(
𝑏1
𝑏2
) − √𝛾1,2 (

𝑒𝑖𝜃𝑎𝑜𝑢𝑡𝑥
′

0
) , (S37) 

(
𝑎𝑜𝑢𝑡𝑥
𝑏𝑜𝑢𝑡𝑥
′ ) − (𝑒

𝑖𝜃𝑎𝑜𝑢𝑡𝑥
′

0
 ) = √𝛾1,2 (

𝑏1
𝑏2
) , (S38) 

(
𝑎𝑜𝑢𝑡𝑦
𝑏𝑜𝑢𝑡𝑦
′ ) − (

𝑒𝑖𝜃𝑎𝑜𝑢𝑡𝑦
′

0
 ) = 0, (S39) 

where 𝑎𝑜𝑢𝑡𝑥, 𝑎𝑜𝑢𝑡𝑦, 𝑎𝑜𝑢𝑡𝑥
′ , 𝑎𝑜𝑢𝑡𝑦

′ , 𝑏𝑜𝑢𝑡𝑥, 𝑏𝑜𝑢𝑡𝑦, 𝑏𝑜𝑢𝑡𝑥
′  and 𝑏𝑜𝑢𝑡𝑦

′  are 𝑥 and 𝑦 components of 𝑎𝑜𝑢𝑡, 

𝑎𝑜𝑢𝑡
′ , 𝑏𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡

′ , respectively. By numerically solving Eqs. (S34)-(S39) in frequency domain, we can 

obtain the values of 𝑎𝑜𝑢𝑡𝑥 and 𝑎𝑜𝑢𝑡𝑦 and calculate the transmission by 



9 
 

𝑇 = |𝑡𝑥|
2 + |𝑡𝑦|

2
= |𝑎𝑜𝑢𝑡𝑥/𝑎𝑖𝑛|

2 + |𝑎𝑜𝑢𝑡𝑦/𝑎𝑖𝑛|
2
. (S40) 

In our study of EPAA and EPAT, the polarization mismatch 𝜙 is minimized as small as 0.03𝜋 to 

avoid significant influence on the transmission signal. When the polarization mismatch is large, the 

spectrum can exhibit a high peak within a broad absorption dip even without any interference effect. This 

kind of polarization effect is different from EIT9–22, OMIT23–27, Brillouin scattering induced transparency 

(BSIT)28,29 or EPAT which are based on classical or quantum interference30–32 and have led to slow 

light12,33–42. But the sharp peak in the spectrum may also be used for sensing applications9,43. 

Theoretically, we could also obtain EPAA and EPAT without polarization mismatch. The dependence 

of splitting type of EIT, EPAA and EPAT on the phase angle 𝜃 is shown in Fig. S3. As predicted in the 

main text, EPAA is invariant with 𝜃, whereas EIT and EPAT change periodically with 𝜃. 

 

Fig. S3 | Theoretical study of interference effect with perfect polarization match between resonators. 

a-c, Simulation result of the transmission spectrum in splitting case (a), EP− case (b) and EP+ case (c). 

d, Transmission signal at zero detuning point (𝛥 = 0) vs. phase angle 𝜃.  

C. Extended experimental and simulation results  

C1. EIT and EIA with splitting 

As mentioned in Section A1, we not only studied the case of EP− and EP+, but also the case when 

μR1 has unbroken chiral symmetry without external perturbation to the microtoroid μR1. We align the 

resonant frequencies of μR2 to that of μR1 by tuning the temperature of μR2 via the TEC44. 𝛾1,2 is 

tuned by adjusting the gap between μR2 and the taper to make μR2 weakly coupled to the taper. When 
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the coupling between μR1 and the fibre taper is weak (𝛾1,1 ≪ 𝛾0,1), the transmission spectrum exhibits a 

broad dip (from μR2) overlapping with a narrow dip (from μR1) at the zero detuning (Fig. S4a). By 

increasing 𝛾1,1, i.e., moving μR1 close to the fibre taper, the narrow dip in the transmission spectrum 

goes upwards, gradually disappears, and then is turned into a narrow peak out of a wide absorption dip, 

similar to an EIT lineshape (Fig. S4b). Here in both absorption and transparency windows, the mode 

splitting is observed, indicating that each supermode in μR1 couples with the supermodes in μR2. The 

splitting in the broad dip is indistinguishable due to the large linewidths. Therefore, we verified that the 

interactions between four supermodes corresponding to the levels 𝜔1,± and 𝜔2,± could result in the 

splitting type of EIT. Moreover, in the above two mentioned cases shown in Figs. S4a and S4b, the phase 

θ was chosen by adjusting the distance between resonators so that the destructive interference occurs in 

the output waveguide channel, judged by observing the shallowest dip and the highest peak, respectively. 

When we fix μR1 to be close to the waveguide and tune 𝜃 periodically via adjusting the distance 

between the resonators, the interference varies between destructive and constructive periodically. This is 

clearly shown by observing the periodic alternation between absorption and transparency when the 

distance is changed under the condition that 𝛾1,1 is large (Fig. S4c). This periodic appearance of splitting 

types of EIT and EIA is also found theoretically by changing 𝜃 with a period of 2π (Fig. S4d). To match 

the experimental result, a polarization mismatch of 0.08π is introduced in the theoretical model. We note 

that when the polarization mismatch is large, EIT-like transmission spectrum could appear even without 

any loop interference, which has been discussed before. Similar to the conventional system with EIT, the 

transparency peaks observed here will evolve into Fano resonances when there is a deviation between the 

resonant frequencies of μR1 and μR2. Additionally, under the weak coupling condition (𝛾1,1 ≪ 𝛾0,1), 

dips do not turn into peaks but their depths also vary periodically with phase change.  

 

Fig. S4 | Transmission spectra for indirectly coupled resonators without nanotip. a, Transmission 

spectrum when the coupling between μR1 and the taper is weak. b, Transmission spectrum when the 
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coupling between μR1 and the taper is strong. c, Experimentally obtained evolution of transmission 

spectra with variation of the distance between the two resonators. From top to bottom the distance is 

changed by a step of 50 nm. d, Theoretical result of the evolution of transmission spectra with different 

values of phase shift 𝜃. Parameters: 𝛾0,1 = 2.992MHz, 𝛾0,2 = 0.1316 GHz, 𝛾1,1 = 5.984 MHz, 𝛾1,2 =

0.4343 GHz,  𝜅𝑎21 = 𝜅𝑎12 = (3.565 −  0.0159i) MHz , 𝜅𝑏21 = 𝜅𝑏12 = (0.1337 −  0.0306i) GHz , 

polarization mismatch 𝜙 = 0.08π. 

C2. Effect of frequency detuning between two resonators 

Similar to the conventional EIT, the interference in indirectly coupled resonators could also induce 

Fano resonance3,8,18,45. Fano resonance occurs when a discrete state interferes with a continuum. It has 

been proposed for many useful applications including slow light and sensing. Here when the resonances of 

μR1 lie within the range of the wide spectrum of μR2, the sharp high-Q state is coupled to the low-Q 

state with a broad linewidth which could be regarded as a continuum state, thus yielding Fano resonance. 

In the main text and Section C1 of Supplementary Information, Fano lineshapes have already been 

observed in the study of EPAT and the splitting type of EIT, when the phase 𝜃 is not optimized for 

destructive or constructive interference. Here we found in experiment that the Fano resonance could also 

appear when the frequency detuning between μR1 and μR2 is nonzero (Fig. S5). The parameters, such 

as coupling strengths and backscattering rates, are similar to those in the study of EPAT and the splitting 

type of EIT.  

 

Fig. S5 | Experimental results of Fano resonance. From top to bottom the coupling between μR2 and 

the taper is increased, which also results in a red shift of the broad absorption dip.  
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C3. Effect of coupling strengths between the resonators and the fibre taper 

Within the parameter range in our experiment, the larger coupling strengths between the resonators 

and the taper are favorable for the interference effect. As shown in Fig. S6a, when the coupling strength 

between μR1 and the taper is weak, EIT has a very small peak. By decreasing the gap between μR1 and 

the taper, 𝛾1,1 becomes larger, which leads to a higher peak in the EIT lineshape. Furthermore, 𝛾1,2 has a 

similar effect on interference (Fig. S6b). Initially when 𝛾1,2 is small, transmission spectrum shows the 

narrow resonance of the high-Q mode in μR1, as well as two broad dips corresponding to the widely 

splitting supermodes in μR2. We align the frequencies of the high-Q resonance with one of the low-Q 

resonance so that the narrow dip overlaps with one of the broad dips in the spectrum. Initially when γ1,2 

is small, transmission spectra show absorption with no signature of interference. When 𝛾1,2 increases, the 

two broad dips are dragged downwards and gradually merge into one, while the interference effects (Fano 

resonance) become observable. Here the red shift of the broad dips becomes increasingly obvious with 

stronger coupling, due to the larger resonance scattering induced by the taper46.   

 

Fig. S6 | Experimental results of the effect of coupling strengths between resonators and the taper. a, 

Transmission spectra with different coupling strengths 𝛾1,1. From top to bottom the gap between μR1 

and the taper is decreased by as step of 50nm, corresponding to increasing 𝛾1,1. b, Transmission spectra 

with different coupling strengths 𝛾1,2. From top to bottom the gap between μR1 and the taper is 

decreased by as step of 50 nm, corresponding to increasing 𝛾1,2.  

We also numerically study the influence of 𝛾1,1 on EPAT, as shown in Fig. S7. The corresponding 

experimental results are shown in Fig. 4c of the main text.  
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Fig. S7 | Numerical study of the effect of the coupling strength 𝜸𝟏,𝟏. Parameters: 𝜅𝑎21 = (92.77 −

32.12i) MHz , 𝜅𝑎12 = 0 , 𝜅𝑏21 = 𝜅𝑏12 = (0.1337 −  0.0306i) GHz , 𝜃 = 0.6𝜋 , 𝛾0,1 = 3.024 MHz , 

polarization mismatch 𝜙 = 0.03𝜋. 

C4. Tuning between chiral states 

The tuning between the two chiral states (1 and -1) of μR1 in our system can be achieved by 

adjusting the azimuthal position of the nanotip to change the relative phase angle (𝛽𝑎2 − 𝛽𝑎1). The relation 

between chirality and relative phase angle has been experimentally shown by Peng et al47. Here we 

numerically show the relation between chirality and the phase angle 𝛽𝑎2 (with fixed 𝛽𝑎1) in Fig. S8. 

Note that this kind of chirality tuning is different from the asymmetric mode switching when dynamically 

encircling an EP48–50. 

 

Fig. S8 | Numerical study of the relation between chirality and the relative phase angle (𝜷𝒂𝟐 −𝜷𝒂𝟏). 

Parameters: azimuthal mode number 𝑚 = 200 , 𝜖𝑎1 = (3.557 − 0.01210𝑖) MHz , 𝜖𝑎2 = (2.865 −

 2.101𝑖) MHz. 
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