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Abstract—We are concerned with the problem of designing
large families of subsets over a common labeled ground set
that have small pairwise intersections and the property that
the maximum discrepancy of the label values within each
of the sets is less than or equal to one. Our results, based
on transversal designs, factorizations of packings and Latin
rectangles, show that by jointly constructing the sets and
labeling scheme, one can achieve optimal family sizes for
many parameter choices. Probabilistic arguments akin to
those used for pseudorandom generators lead to significantly
suboptimal results when compared to the proposed combina-
torial methods. The design problem considered is motivated
by applications in molecular data storage.

I. INTRODUCTION

In his seminal work [2], Beck introduced the notion of
the discrepancy of a finite family of subsets over a finite
ground set as the smallest integer d for which the elements
in the ground set may be labeled by ±1 so that the sum
of labels in each subset is at most d in absolute value. Set
discrepancy (bicoloring) theory has since been studied and
generalized in a number of different directions [6], [11]
and has found applications in pseudorandomness and in-
dependent permutation generation [17], ε-approximations
and geometry [13], bin packing, lattice approximations and
graph spectra [16], [19].

The goal of these, and almost all other studies of
discrepancies of set families, was to establish bounds on
the largest size of families of d-discrepancy sets for a
given ground set, or to construct large set families with
prescribed discrepancy values. The sets were assumed to
have no special structural constraints other than those that
ensure desired discrepancy properties. An exception in this
context is the work of Colbourn et al. [5] concerning the
problem of bicoloring Steiner triple systems (STSs) [4].
Steiner triple systems are set systems in which the sub-
sets of interest satisfy additional intersection constraints,
ensuring that each pair of distinct elements of the ground
set appears in exactly one subset of the system. The key
finding is that STSs are inherently impossible to bicolor,
as proved in [4].

Recently, the authors proposed a number of coding
techniques for molecular storage platforms [8], [10], [14],
[18], [23], [24]. In one such paradigm, data is recorded in
terms of the locations of nicks (cuts) in naturally occurring
DNA strands (see Figure 1 for an illustration). In order
to correct readout errors, information is encoded into sets
of nicking positions that have small overlaps, i.e., into
sets with small intersections. As the DNA-strand is of the

Figure 1: Nicking of native DNA. A nick is a cut in one
of the two sugar-phosphate strings, at a designated site.
If many closely placed cuts are made only on one strand
(top) the DNA may disassociate. To avoid this problem,
balancing cuts on both strands is desirable (bottom).

form of a double helix, i.e., composed of two strands (a
sense and antisense strand), nicks may be introduced on
either of the two entities. To prevent disassociation of the
strands due to nicking, it is desirable to distribute the nicks
equally on both strands. Such a problem setting leads to a
constructive set discrepancy problem, in which one desires
to construct a large family of subsets of a ground set that
have small intersection and small discrepancy d. In this
setting, each set gives rise to two codewords in which the
labels are complements of each other, as nicks on different
strands can be easily distinguished from each other in the
sequencing and alignment phase [15].

To address the problem, we proceed in two directions.
First, we examine existing (near-optimally) sized families
of sets with small intersections, such as the Bose-Bush and
Babai-Frankl families [1] and Steiner systems [4]. For the
former case, we show that one can achieve the smallest
possible discrepancy (d = 0 for even-sized sets and d = 1
for odd-sized sets) in a natural manner, by using the
properties of the defining polynomials of the sets. Second,
we generalize the results of [5] to show that no Steiner
system can have optimal discrepancy. We establish upper
bounds on the size of optimal discrepancy intersecting
families and then proceed to describe several constructions
based on packings that have optimal discrepancy values.
In the process, we invoke graph-theoretic arguments, and
properties of orthogonal arrays. Note that an alternative
approach to address the code construction problem for
fixed set sizes is to use specialized ternary constant weight
codes, but we find the set discrepancy formulation easier
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to work with and generalize.
The paper is organized as follows. In Section II we

precisely formulate the problem and provide simple ar-
guments that show how near-optimal families of sets with
small intersection constructed by Bose-Bush and Babai-
Frankl may be balanced. Section III is devoted to studying
upper bounds on the size of optimal discrepancy families
of intersecting sets, while Section IV discusses various set
constructions. Due to lack of space, the proofs of all the
presented results are omitted, but may be found in the
extended manuscript [7].

II. PROBLEM STATEMENT AND A SAMPLING OF
RESULTS

Let [v] denote the set of integers {1, 2, . . . , v}. A family
of subsets of [v], Fv = {F1, . . . , Fs}, s ≥ 2, is k-regular
if for all 1 ≤ j ≤ s, |Fj | = k. Otherwise, the family is
irregular. The sets in Fv have t-bounded intersections if
for all pairs of distinct integers i, j ∈ [s], |Fi∩Fj | ≤ t−1.
Naturally, when Fv is k-regular, we require that t < k.

Let L : [v]→ {+1,−1} be a labeling of the elements in
[v]. The discrepancy of a set Fj ∈ Fv under the labeling
L is DL(Fj) =

∑
i∈Fj

L(i). For fixed values of v and
t, our goal is to find the largest size s of a t-bounded
intersection family Fv for which there exists a labeling L
such that DL(Fj) ∈ {−1, 0,+1} for all 1 ≤ j ≤ s. We
refer to such a set system as an extremal balanced family.

Sets with bounded pairwise intersections have been ex-
tensively studied in the past [1], [4]. Well-known examples
include Steiner systems, corresponding to k-regular fami-
lies Fv with the property that each t-subset of [v] belongs
to exactly one member of the family [4], and C-intersecting
families of sets described in [1]. In the latter, the cardi-
nalities of the intersections of the sets are restricted to
lie in a predetermined set C. Very little is known about
discrepancies of intersecting sets and extremal balanced
families in particular. The problem at hand is difficult, and
it appears hard to construct extremal families for arbitrary
parameter values. We therefore mostly focus on some
specific choices of the parameter sets.

Some families of t-bounded intersection sets with (near)
optimal size have inherently simple labelings that ensure
the balancing property. We identify one such family, de-
scribed in [1], and in what follows describe a simple proof
that this family is indeed a balanced family.

Construction [1, Thm. 4.11]. Let q be a prime power
and 1 ≤ t ≤ k ≤ q. Set v = kq. Let ξ be a primitive ele-
ment of the finite field Fq and set A = {0, 1, ξ, . . . , ξk−2},
so that |A| = k. For each polynomial f ∈ Fq[x], define a
set of pairs of elements

Af
4
= {(a, f(a)) : a ∈ A}.

Then |Af | = k. Let

C(k, q) 4= {Af : f ∈ Fq[x], deg(f) ≤ t− 1}.

Then C(k, q) is a collection of qt k-subsets of the set X 4
=

A× Fq such that every two sets intersect in at most t− 1
elements, because two distinct polynomials of degree ≤
t − 1 cannot intersect in more than t − 1 points. When v

is large, the Babai-Frankl construction requires q = v/k
to be large as well.

The Ray-Chauduri-Wilson Theorem [1] (Theorem 4.10),
asserts that the size of any family Fv of k-regular sets with
k ≥ t whose pairwise intersection cardinalities lie in some

set of cardinality t that satisfies |Fv| ≤
(
v
t

)
. As an

example, the set of all t-subsets of [v] forms a (t − 1)-
intersection bounded t-regular family. This result can be
strengthened when the set of allowed cardinalities equals
{0, 1, . . . , t− 1}, provided that v > 2k2, for fixed k and
t. This is the best known such bound, and it is met by
the Babai-Frankl construction described above. It is easy
to see that the size of the family is roughly equal to vt

kt ,
which has the same growth rate with respect to v as the
approximate upper bound of Ray-Chauduri and Wilson
vt

(2k)t , and dominates the other terms provided that v is
sufficiently large and k, t are kept constant.

Proposition 1. There exists a labeling L of points
(a, f(a)) of the set X so that every set in C(k, q) has
discrepancy equal to 0 when k is even, and discrepancy
equal to ±1 when k is odd.

Proof. We prove the statement by constructing suitable
labelings for elements of X . When k is even, for ev-
ery a ∈ A and b ∈ Fq , the pair (a, b) is mapped
to −1 for a ∈ {0, 1, ξ, . . . , ξk/2−2} ⊂ A and 1 for
a ∈ {ξk/2−1, . . . , ξk−2} ⊂ A. Then, every set in C(k, q)
has half of the elements mapped to −1 and half mapped
to +1. Equivalently, the discrepancy of every set is equal
to 0. When k is odd, the pair (a, b) is mapped to −1
for a ∈ {0, 1, ξ, . . . , ξ(k−1)/2−2} ⊂ A and to 1 for
a ∈ {ξ(k−1)/2−1, . . . , ξk−2} ⊂ A. The discrepancy of
every set is equal to 1 in this case. �

A few remarks are in order. First, the labeling presented
is solely based on the set A, and the first entry in
each pair partitions the set X into k-groups. Hence, the
balancing property is inherited from the partition of A,
which suggests a close connection with constructions of
transversal designs.

A transversal design TD(t, k, v)1 consists of
1) A set V of kv elements (called points);
2) A partition of V into sets {Gi : i ∈ [k]}, where each

Gi contains v points and is called a group;
3) A set B of k-subsets called blocks for which a) every

block and every group intersect in exactly one point
(“blocks are transverse to groups”); and b) every t-
subset of V either occurs in exactly one block or
contains two or more points from a group (but not
both).

Because no t-subset of elements can appear in two or more
blocks, any two distinct blocks of a TD(t, k, v) intersect
in at most t− 1 elements. It is well known that
• Whenever q is a prime power and 1 ≤ t ≤ k ≤ q+1,

there exists a TD(t, k, q).

1A TD(t, k, v) is equivalent to a OA(t, k, v) orthogonal array, which
in turn is equivalent to k− 2 mutually orthogonal Latin squares of order
n when t = 2 [9]. We refer to all these entities as transversal designs.
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• Whenever q is a power of 2 and 1 ≤ k ≤ q+ 2, there
exists a TD(3, k, q).

• For any positive integers v and t, both TD(t, t+1, v)
and TD(t, t, v) exist.

Whenever a TD(t, k, v) exists, one can assign positive
labels to the points in half of the groups and negative labels
to the points in the other half of the groups when k is even,
or nearly half when k is odd. This automatically leads
to a well-defined balanced family of sets, as necessarily
every block meets every group in a single point. It is
straightforward to see that the Babai-Frankl construction
produces a transversal design, as outlined in [20]. However,
this construction is not optimal in general, since it may be
possible to add k-blocks to the design that intersect the
groups in more than one point.

One can add additional k-blocks to the designs as
follows. For simplicity, assume that k is even and that
t ≥ 3. Pick one group of the design that lies within the
set of positively labeled elements P+ and one group of
the design that lies within the set of negatively labeled
elements P−. There are

(
k
2

)2
such pairs of groups. By

construction, any k-subset with k
2 points from the first

group and k
2 points from the second group intersects each

block of the TD in at most two points. Furthermore, each
pair of such blocks intersects in at most dk2 e points, so
that as long as t > max{k2 , 2}, the augmented TD is
both balanced and satisfies the intersection constraint2.
This observation illustrates the fact that extremal balanced
families of sets with small intersections cannot be directly
derived from TDs.

Henceforth, we focus on investigating the problem of
jointly constructing large intersecting families with label-
ings that ensure that the set discrepancies are contained
in {0,±1}. Since it is known that Steiner triple systems
cannot be balanced, i.e., that for any bicoloring of a Steiner
triple system there exists one “monochromatic” set (i.e., a
set with discrepancy +3 or −3) [5], we focus our attention
on packings instead [4].

A packing C(t, k, v) with parameters (t, k, v) is a k-
regular family of subsets F of [v] with the property
that each t-element subset of [v] appears in at most one
subset. This automatically ensures that any two distinct
Fi, Fj ∈ Fv satisfy |Fi ∩ Fj | ≤ t − 1. It is customary
to refer to the subsets as blocks, and we employ both
terms. In the sections to follow, we establish the existence
of packings with perfect balancing properties based on
explicit constructions that rely on orthogonal arrays and
factorizations of graphs [3].

The problem of determining large families of t-bounded
intersecting sets has also been independently studied in
the theoretical computer science literature, where such sets
were considered for generating pseudorandom strings [22].
Most approaches use the probabilistic method. In one such
setting [22], the ground set [v] is divided into k disjoint

2We can generalize this argument to form new blocks using s > 2
groups, half of which are labeled +1 and half of which are labeled −1.
As long as t > max{ k

s
, s}, the new blocks are valid provided that any

two collections of s groups have fewer than t
k/s

groups in common. To

avoid notational clutter, we assume that k
s

is an integer.

intervals of size v
k . A subset S ⊆ [v] is termed “structured”

if it contains exactly one element from each interval.
A structured set S is generated by picking uniformly at
random, with replacement, one element from each interval
and adding it to S. A probabilistic argument reveals that
there exists a set of

(
vt
k2

)t
structured sets, each pair

of which intersects in at most t positions. This bound,
compared to the Ray-Chauduri-Wilson bound, is smaller
by a factor of

(
t
k2

)t
, but balancing the sets is even easier:

points in half of the intervals can be labeled by +1 and
points in the other half by −1 (or vice versa). If the number
of intervals is even, the discrepancy of each set is 0; if the
number of intervals is odd, the discrepancy is ±1.

III. UPPER BOUNDS

We first derive upper bounds on the size of extremal
balanced regular packings (which we refer to as balanced
packings for shorthand), and then proceed to establish
constructive lower bounds for some given choices of
parameters.

For ease of notation, for a given labeling L, let P+ =
{i ∈ [v] : L(i) = +1}, P− = {i ∈ [v] : L(i) = −1}, p+ =
|P+|, and p− = |P−| = v−p+. Without loss of generality,
we assume that p+ ≥ p−. We use A(t, k, v) to denote the
largest size of a balanced packing with parameters (t, k, v).
The following simple upper bound on A(t, k, v) is based
on standard counting arguments.

Lemma 1. For any labeling L with label classes of size
p+ and p− such that p+ ≥ 2d t+1

2 e, and for t < k, one
has

A(t, k, v) ≤

(
p+
bt/2c

)(
p−
dt/2e

)
(
dk/2e
bt/2c

)(
bk/2c
dt/2e

) .
As may be observed from Lemma 1, the maximum size

of a regular (t, k, v) packing depends only on the values
of p+ and p−. The next simple corollary establishes which
values of these parameters maximize the upper bound. The
obtained bound has the same asymptotic growth as the
Ray-Chaudhuri-Wilson bound,

(
v
k

)t
, although it addresses

both the intersection and discrepancy constraints. It also
shows that the construction by Bose-Bush and Frankl-
Babai is near extremal in terms of satisfying both joint
intersection and balancing conditions, although the con-
struction itself was proposed for addressing intersection
constraints only.

Corollary 1. For t < k,

A(t, k, v) ≤

(
dv/2e
bt/2c

)(
bv/2c
dt/2e

)
(
dk/2e
bt/2c

)(
bk/2c
dt/2e

) .
In what follows, we focus our attention on constructing

balanced (t, k, v) packings that meet the bound from
Corollary 1 with equality. Given that one can perfectly
balance the Babai-Frankl sets, the natural question arises
if all or some Steiner systems, in which every t-subset is
required to appear in exactly one block, can be perfectly
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balanced. Theorem 1 states that the answer to this question
is negative: perfectly balanced systems necessarily have
cardinalities smaller than that of Steiner systems with the
same parameters. This result complements and extends the
findings of [5] which pertain to Steiner triple systems only
and are considered in the setting of colorability of Steiner
systems.

Theorem 1. For t < k < v where p+ > k+1
2 and v > 2,

A(t, k, v) < S(t, k, v).

IV. OPTIMAL CODE CONSTRUCTIONS

Next, we describe extremal balanced intersecting fam-
ilies of sets (i.e., families of sets that meet the bound in
Corollary 1) for several parameter choices. In particular,
we exhibit extremal balanced set constructions based on
Latin rectangles for all values of v and t = 2, k = 3.

A. Extremal balanced systems with (t = 2, k = 3, v)

We consider a simple construction for the parameters
t = 2, k = 3 is in terms of factorizations of graphs. Recall
that a factor of a graph is a subgraph with the same set of
vertices as the graph. If the spanning subgraph is r-regular,
it is an r-factor. A graph is r-factorizable if its edges can
be partitioned into disjoint r-factors. Then, a 1-factor of
a graph is a perfect matching, and a 1-factorization is a
partition of the graph into matchings. Equivalently, a 1-
factorization of a d-regular graph is a proper coloring of
the edges with d colors. Suppose that Kp+

is a complete
graph with vertex set P+. Let Φ = {Φ1, . . . ,Φp+−1} be
a 1-factorization of Kp+

. Let the triples be of the form
{i, a1, a2}, where i ∈ [p−] and where the edge (a1, a2) ∈
Φi. It is straightforward to see that the resulting system is
a partial (2, 3, v) system consisting of triples defined over
[v]. When p− 6= p+, we have the following result followed
by an example which highlights the main ideas.

Lemma 2. Suppose that p+ is even and that p− < p+.
Then, A(2, 3, v) = p+ p−

2 .

Example 1. Let P+ = 6 and P− = 3, and for
simplicity, assume that P+ = {1, 2, 3, 4, 5, 6} and
P− = {a, b, c}. Then, Φ = {Φ1, . . . ,Φ5} is a 1-
factorization of K6 where Φ1 =

{
{1, 2}, {3, 4}, {5, 6}

}
,

Φ2 =
{
{1, 4}, {2, 6}, {3, 5}

}
, Φ3 ={

{1, 6}, {2, 3}, {4, 5}
}

, Φ4 =
{
{2, 4}, {1, 5}, {3, 6}

}
,

Φ5 =
{
{1, 3}, {2, 5}, {4, 6}

}
. The triples are formed

by adding a to each set in Φ1, adding b to each set
in Φ2, and adding c to each set in Φ3. This leads
to the following triples: {a, 1, 2}, {a, 3, 4}, {a, 5, 6},
{b, 1, 4}, {b, 2, 6}, {b, 3, 5}, {c, 1, 6}, {c, 2, 3}, {c, 4, 5}.
Hence, the construction outlined in Lemma 2 achieves the
bound A(2, 3, v) = 9 of Lemma 1.

Next, we turn to the case where p+ = p− and p+
is even. A simple, yet tedious argument reveals that for
these parameter choices, one cannot use the factorization
approach outlined in Example 1. Hence, we propose a
new construction that relies on a special type of Latin

rectangles; in our setting, a Latin rectangle is defined as
an array of dimension p+ × p+ with entries belonging
to a set of cardinality 2p+ and such that every element
appears at most once in each row and column of the
array. The rows of the array are indexed by elements
from P+ = {0, 1, . . . , p+ − 1}, while the columns are
indexed by elements from the same set, but “boxed” P− ={

0 , 1 , . . . , p+ − 1
}

, so as to distinguish them from
the elements in P+. Our choice of notation is governed
by the fact that we will use the values in P+ and P− -
unboxed or boxed - to describe indices and placements of
the elements within the array. An additional requirement
on the Latin rectangles is that they do not have fixed points,
i.e., elements in the array that are equal to the index of their
respective row or column. To more precisely describe the
fixed point constraint, let `i,j denote the element of the
Latin rectangle with row index i ∈ P+ and column index
j ∈ P−. Obviously, triples of the form {i, j, `i,j} constitute
a balanced packing as long as a) there are no fixed points
in the array, in which case one would have `i,j = i or
`i,j = j and therefore have the same point repeated twice
and b) the triples are distinct. Clearly, only half of the
entries of the rectangle may be included in the packing.

The concept of Latin rectangles without fixed points is
illustrated by the next example for which v = 16 and
p+ = p− = 8.

0 1 2 3 4 5 6 7

0 7 5 5 4 3 2 3 1
1 6 4 3 2 1 4 2 0
2 3 2 1 0 5 3 1 7
3 1 0 7 6 4 2 0 2

4 7 6 7 5 3 1 1 0

5 5 0 6 4 2 0 7 6

6 1 7 5 3 7 6 5 4

7 0 6 4 6 5 4 3 2

.

The above Latin rectangle leads to 32 distinct triples.
For instance, from the first column of the above
Latin rectangle, we can recover the following set of
triples: {0, 7, 0 }, {1, 6, 0 }, {2, 3 , 0 }, {3, 1 , 0 },
{4, 7 , 0 }, {5, 5 , 0 }. It is straightforward to check
that the set of unique triples from this Latin rectangle
constitutes a balanced (2, 3, 16) packing of maximum size.

In our extended work, we show how to construct Latin
rectangles without fixed points for a wide range of param-
eter choices, which implies the following result.

Theorem 2. For any v ≥ 8, A(t, k, v) =
⌊
b v2 cd

v
2 e

2

⌋
.

B. Constructions based on transversal designs

Next, we return to the approach outlined at the beginning
of our discussion, in which balanced families of sets with
small intersections are obtained using transversal designs
(akin to the Babai-Frankl method). The next lemma ad-
dresses the case k = 4 and t = 3 by specifying how to
add blocks to the design so that the result is optimal.
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Lemma 3. Suppose that there exists a TD(t, k, v) with
v = 4m and m even. Then,

A(3, 4, v) =

(
v/2
2

)(
v/2
1

)
2

=
v2(v/2− 1)

16
.

C. Constructions using maximal disjoint Steiner systems

When the sets in F can be partitioned into classes
F1, . . . ,Fn so that (V,Fi) is a (t′, k, v) packing for
each 1 ≤ i ≤ n, we say that (V,F) is t′-partitionable
with partition classes F1, . . . ,Fn. Let (V1,F1) be a
(t1, k1, v1) packing that is t1-partitionable with parti-
tion classes F1

1 , . . . ,F1
n. Similarly, let (V2,F2) be a

(t2, k2, v2) packing that is t2-partitionable with partition
classes F2

1 , . . . ,F2
n. Suppose that V1 and V2 are disjoint.

Form a new packing with blocks {B ∪D : B ∈ F1
i , D ∈

F2
i , 1 ≤ i ≤ n}. This packing has v = v1+v2 points. Each

block has k = k1+k2 points. Two distinct blocks can share
at most max(k2+t1−1, k1+t2−1) points. Hence, the re-
sulting structure is a (max(k2+t1, k1+t2), k1+k2, v1+v2)
packing. By setting V1 = P+ and V2 = P−, each block
has discrepancy |k1 − k2|. Therefore, we need to choose
k1 and k2 to have values as close as possible.

1) Balanced sets with parameters (2, 3, v): A 1-
factorization is a (2, 2, 2m) packing that is 1-partitionable
into 2m− 1 classes. A set of 2m− 1 points, each forming
a block of size one, is a (1, 1, 2m − 1) packing that is
0-partitionable into 2m − 1 classes. Hence, using this
factorization approach we can obtain a (2, 3, 4m − 1)
packing with discrepancy 1 having m(2m − 1) blocks,
or roughly, 1

8 v
2 blocks. In comparison, a Steiner triple

system would have (4m − 1)(4m − 2)/6 blocks, which
roughly equals 8

3m
2 ( 16 v

2).
2) Balanced sets with parameters (3, 4, v): A 1-

factorization is a (2, 2, 2m) packing that is 1-partitionable
into 2m− 1 classes. Hence, we have a (3, 4, 4m) packing
with discrepancy 0 and m2(2m − 1) blocks, or roughly,
1
32 v

3 blocks. In comparison, a Steiner quadruple system
would have (4m)(4m − 1)(4m − 2)/24 blocks, which
roughly equals 8

3m
3 ( 1

24 v
3).

3) Balanced sets with parameters (4, 5, v): A 1-
factorization is a (2, 2, 2m) packing that is 1-partitionable
into 2m−1 classes. A large set of Steiner triple system or
maximal disjoint Steiner system [12], [21] is a (3, 3, v)
packing that is 2-partitionable into v − 2 classes, or
equivalently, a set of v − 2 Steiner triple systems that
have disjoint block sets. Such a systems exists whenever
(2m + 1 =) v ≡ 1, 3 (mod 6) (with six exceptions,
see [12], [21]). So we obtain a (4, 5, 4m + 1) packing
with discrepancy 1 having (2m−1)m2(2m+1)/6 blocks,
which is roughly 1

384v
4 blocks. A Steiner quintuple system

would have (4m+ 1)(4m)(4m− 1)(4m− 2)/120 blocks,
which roughly equals 32

15m
4 ( 1

120v
4).

4) Balanced sets with parameters (5, 6, v): A large set
of Steiner triple systems is a (3, 3, v) system that is 2-
partitionable into v− 2 classes, when (2m+ 1 =) v ≡ 1, 3
(mod 6) (with six exceptions, see [12], [21]). So we obtain
a (5, 6, 4m+2) packing with discrepancy 0 having roughly

(2m− 1)
(

(2m+1)m
3

)2
≈ 8

3m
5 blocks. A Steiner sixtuple

system would have (4m+ 1)(4m)(4m− 1)(4m− 2)/120
blocks, which roughly equals 32

15m
4 ( 1

120v
4).
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