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Large eddy simulations (LES) of low Reynolds number flow ('4=50,000) over a NACA0018

airfoil are performed to investigate flow control at the stall angle of attack (15 degrees) by

low-amplitude surface waves (actuations) of different type (backward/forward traveling and

standingwaves) on the airfoil’s suction side. It is found that the backward (toward downstream)

traveling waves, inspired from aquatic swimmers, are more effective than forward traveling

and standing wave actuations. The results of simulations show that a backward traveling wave

with a reduced frequency 5 ∗ = 4 ( 5 ∗ = 5 !/*, 5 : frequency, !: chord length, *: free flow

velocity) a nondimensional wavelength _∗ = 0.2 (_∗ = _/!, _: dimensional wavelength), and a

nondimensional amplitude 0∗ = 0.002 (0∗ = 0/!, 0 : dimensional amplitude) can suppress stall.

In contrast, the flow over the airfoil with either standing or forward traveling wave actuations

separates from the leading edge similar to the baseline. Consequently, the backward traveling

wave creates the highest lift to drag ratio. For traveling waves at a higher amplitude (0∗=0.008),

however, the shear layer becomes unstable from the actuation point and creates periodic

coherent structures. Therefore, the lift coefficient decreases compared to the low amplitude

case.

Nomenclature

! = airfoil chord length

B = 0.1! = airfoil spanwise length

* = free flow velocity

d = density of the fluid
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a = kinematic viscosity

? = pressure

0 = maximum amplitude of oscillation

�$� = angle of attack

_ = wavelength

_∗ = _/! = nondimensional wave length

5 = frequency

5 ∗ = 5 !/* = reduced frequency

� = 5 _ = wave speed

�∗ = �/* = nondimensional wave speed

�� = mean drag force per unit of the span of the airfoil

�! = mean lift force per unit of the span of the airfoil

�� =
��

0.5d*2!
= mean drag coefficient

�! =
�!

0.5d*2!
= mean lift coefficient

�?> = power coefficient

'4 = !*/a = Reynolds number

Dg = friction velocity

I. Introduction

Low Reynolds number ('4 < 500, 000) aerodynamics is an active research area as it has applications in micro-air

vehicles (MAVs) and small unmanned aerial vehicles (UAVs) [1, 2]. At a low Reynolds number, the momentum

of the laminar boundary layer on the upper surface of the airfoil (suction side) decreases due to viscous forces [3].

The decrease of flow momentum near the surface of an airfoil results in boundary layer separation, which generates

performance losses, i.e., an increase in the drag and a decrease in the lift. By increasing the angle of attack (�$�)

beyond the stall angle, lift coefficient decreases and drag increases significantly. Various active flow control techniques

such as steady blowing [4–6], periodic suction and blowing [7–12], and surface morphing [13–17] have been applied to

delay stall. These flow control techniques have been studied experimentally [12, 13, 18, 19] and numerically using
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Fig. 1 The schematic of backward wave traveling wave surface morphing. The backward traveling wave
propagates from the leading edge toward the trailing edge.

different turbulence modeling approaches such as direct numerical simulation (DNS) [20, 21], large eddy simulation

(LES) [22–24], and Reynolds-Averaged-Navier-Stokes (RANS) [23].

The concept of changing the shape of an airfoil using flaps and slats, or vibrating its surface is called morphing.

The morphing can be employed in several forms, including trailing edge flaps (TEF) [15, 17, 25, 26], leading edge

flaps (LEF) [14, 16, 27], and suction side vibrations [13, 20, 21, 28, 29]. The leading edge and trailing edge flaps

conventionally work based on adapting the shape of an airfoil by changing either the radius of the leading edge, or the

camber of the trailing edge [30]. Typically, changing the shape of an airfoil requires large deformations which can

be done by servomotors. In contrast to TEF and LEF, morphing by surface vibrations, which is referred to as surface

morphing hereafter, can be performed using light, low-power piezoelectric actuators [18, 19].

Flow control via surface morphing has been investigated in several studies [20, 21, 28, 29]. Munday et al. [28, 31]

reported up to 60% decrease in flow separation. Recently, Jones et al. [13] reported a delay in the onset of stall by

morphing the suction side of a NACA4415 airfoil in which the fibers of piezoelectric materials covered about 80%

of the whole suction side. In these studies, the oscillations of the surface were in the form of a standing wave [13]

or a simple vibration [28], which accelerates the fluid adjacent to the surface along its normal direction. These types

of surface morphing reduce flow separation by triggering the boundary layer instability and increasing the mixing

of high momentum fluid of the separated shear layer to the low momentum fluid of the reverse flow zone [8, 13],

similar to other periodic excitation methods. Nevertheless, the morphing can increase the boundary layer momentum

directly if the surface vibrations be in the form of backward (opposite direction to the forward motion of an airfoil, i.e.,

toward downstream) traveling waves (Fig. 1) because traveling waves can increase the fluid momentum along their

propagation direction [32, 33], e.g., backward traveling waves, in which the wave is propagated from the leading edge

toward the trailing edge, can increase the streamwise momentum. Previous studies [33–35] has shown that backward
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traveling wave deformations can reduce flow separation. Recently, Akbarzadeh and Borazjani [35] observed that low

amplitude (0 = 0.01!) high frequency ( 5 ∗ = 5 !/* = $ (20)) backward traveling waves can reduce flow separation

over an inclined plate.

Using traveling waves to control flow separation is inspired from aquatic swimmers as they propel themselves by

undulations in the form of backward traveling waves [36, 37]. It has been observed that traveling waves can reduce flow

separation in different flow regimes and applications, including the turbulent boundary layer of a turbulent channel

[32, 33] and bluff bodies such as a circular cylinder [34] and an inclined plate [35]. Recently, Akbarzadeh and Borazjani

[38] performed large eddy simulations (LES) of flow over a NACA0018 airfoil at prestall angle of attack of 10> to

investigate the role of traveling oscillations on the suction side. They observed that the lift coefficient might increase

up to 4% by backward traveling wave oscillations. However, flow control is more effective at higher angles of attack,

i.e., near the stall angle [7]. Inspired from the impact of traveling waves on reducing flow separation over bluff bodies

and recent developments in smart materials [18, 39, 40], which have facilitated the generation of such low-amplitude

traveling waves [41], our previous work is extended to investigate the impact of oscillations on the suction side with

different waveforms, including backward/forward traveling and standing waves for NACA0018 at the stall angle of attack

(�$� = 15>).

Previous studies on surface morphing with standing waves [13, 21, 29] have shown that the amplitude and frequency

of the oscillations are the main parameters affecting flow separation. However, when the oscillations are in the form

of traveling waves, wavelength and wave speed (product of wavelength and frequency) can also influence the flow

separation [35, 36]. For example, it is found that increasing the wave speed by increasing the frequency decreases the

flow separation [32, 33, 36], but increasing the wave speed by increasing the wavelength does not necessarily decrease

the flow separation [35]. Here, the effect of amplitude, frequency, and wave speed of traveling waves at a constant

wavelength (_ = 0.2!; ! : chord length) is studied.

The rest of this manuscript is organized as follows. In §II the governing equations and numerical method for solving

the turbulent flow is illustrated. The results, including time-averaged and instantaneous ones are presented in §III.

Finally, the concluding remarks are expressed in section IV.
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II. Methods

Numerical simulations are performed for a thick airfoil (NACA0018) and the angle of attack is chosen to be 15> as

it has been observed that NACA0018 stalls near 15> [23, 42, 43]. The simulation set-up and the numerical method

for solving the problem is the same as our previous publication [38], in which the airfoil was at a prestall condition

(�$� = 10>). The free stream velocity (*) and the airfoil chord length (!) are, respectively, the characteristic velocity

and length. The simulation set-up, including the fluid mesh and the airfoil geometry, is presented in Fig. 2. The flow is

in a Cartesian frame (Fig. 2), in which G, H and I are along streamwise, vertical and spanwise directions, respectively.

The suction side of the airfoil undergoes an actuation which can be either a traveling or standing wave deformation, as it

is shown in Fig. 2b. To calculate the new position of the suction side of the airfoil under motion in the original Cartesian

frame (G, H, I), a local frame (-,., /) is defined, i.e., its origin is at the leading edge and is rotated by the angle of

attack (Fig. 2b). The backward traveling wave oscillation (ℎ(-, C)) prescribed along . direction, is:

ℎ∗ (-, C) = 0∗ (-) sin(2c( 5 ∗C∗ − -∗/_∗)), (1)

where ℎ∗ = ℎ/! is the nondimensional displacement of the suction-side, 5 ∗ = 5 !/* is the reduced frequency, _∗ = _/!

is the nondimensional wavelength, and C∗ = C*/! is the nondimensional time, -∗ = -/! is the nondimensional

streamwise length that starts from the leading edge, and 0∗ (-) = 0(-∗)/! is the amplitude of the wave which starts

from - = 0.1! to - = 0.85!. The amplitude is constant and equal to its maximum value 0∗ = 0/! from - = 0.2!

to - = 0.8! and decreases linearly toward leading and trailing edges. Here, the parameters with (*) symbol are

nondimensional. The schematic of a backward traveling wave, in which the wave propagates with wave speed �∗ from

the leading edge toward the trailing edge is depicted in Fig. 1. To investigate the effect of actuation type, a standing and

a forward traveling wave actuation have also been employed on the suction side. The corresponding equation for a

forward traveling wave, in which the wave propagates towards upstream, is:

ℎ∗ (-, C) = 0∗ (-) sin(2c( 5 ∗C∗ + -∗/_∗)), (2)

and the standing wave oscillation has the following deformation:
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ℎ∗ (-, C) = 0∗ (-) sin(2c 5 ∗C∗) sin(2c-∗/_∗), (3)

where the parameters of Eqns.2 and 3 are same as Eqn. 1.

Equations governing the flow are unsteady, three-dimensional, incompressible, filtered Navier-Stokes and continuity

equations. The governing equations are given in curvilinear coordinates (b8 = b8 (G1, G2, G3)). Here, (b1, b2, b3) is the

tensor notation representation of the curvilinear coordinate (b, [, Z ), and (G1, G2, G3) is the tensor notation representation

of Cartesian coordinate (G, H, I), as shown in Fig. 2a. The governing equations in the curvilinear coordinate reads as

follows in the tensor notation (8, 9 , <, = = 1, 2, 3):

�
m*8

mb8
= 0,

m*8

mC
= b89

( m

mb=
(−*=D 9 ) −

m

mb=
( 1
d

b=
9

�
?) + m

mb=
((a + aC )

6=<

�

mD 9

mb<
)
)
.

(4)

Here, d is the fluid density, a is the kinematic viscosity, � = |m (b1, b2, b3)/m (G1, G2, G3) | is the determinant of the

Jacobian of the transformation b 9< = mb 9/mG<; 6=< is the contravariant metric of the transformation, 6=< = b=
9
b<
9
; ?

is the filtered pressure; *= = D<b=</� is the contravariant velocity of the fluid and aC is the subgrid-scale turbulent

viscosity, which is modeled using the dynamic subgrid-scale model [44] as follows:

aC = 2�BΔ
2 ( |B |)B8 9 , (5)

where B8 9 = 0.5( mD8mG 9
+ mD 9

mG8
), |B | = (

√
2B8 9 B8 9 . Here, a box filter with size of Δ = �−

1
3 , and �B is the Smagorinsky

coefficient computed dynamically [45] as follows

�B =
1

2

< !8 9"8 9 >

< "8 9"8 9 >
, (6)

where

!8 9 = −D̃8D 9 + D̃8 D̃ 9

"8 9 = Δ̃
2 B̃8 9 |̃B | − Δ2�B8 9 |B |, (7)

where (<>) denotes averaging along the homogeneous direction, which is the spanwise direction (I) in this study,
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and (~) represents the test filter which is twice of the grid filter (Δ̃ = 2Δ). Several studies have shown the suitability

of dynamic subgrid-scale modeling for turbulent and transitional flows [46]. Our LES modeling is also validated

extensively for fully developed turbulent [33] and transitional flows, e.g., flows over pitching airfoils, inclined plates

[35], and circular cylinders [47].

ζ

(b)

Fig. 2 The simulation set-up configuration, (a) flow and airfoil in the curvilinear and Cartesian coordinates,
(b) representation of an undulating airfoil as an immersed boundary (red line) within the O-grid mesh. Every
10th point , and every 5th point in [ and b directions are presented, respectively.

The moving boundaries are handled using the sharp-interface immersed boundary (IB) method described in detail in

previous publications [48, 49]. In this method, the background grid is fixed and does not move with the boundaries, i.e.,

the airfoil surface (Fig. 2b) with the prescribed motion (Eqn. 1) is discretized by the triangular mesh and placed as a

sharp-interface IB over the fixed background grid. The grid nodes inside the immersed boundary (solid nodes) are

blanked out, while the velocity on the nodes that are exterior to, but adjacent to, the immersed boundary (IB nodes) are

reconstructed using an interpolation along the normal to the boundary [50]. The background grid nodes are classified

into solid, fluid and IB nodes by an efficient ray-tracing algorithm [49]. The classification of the grid nodes is performed

once in the whole simulation for the static wall and once in each time step for the moving wall. The method is fully

validated for flows with moving boundaries [49, 51, 52] and it has been used in various applications, including biological

flows [53–57].

The Reynolds number, in the entire study, is chosen '4 = !*/a = 50, 000 based on the free flow velocity (*),

airfoil chord length (!) and kinematic viscosity (a). The fluid grid is an O-type grid (Fig. 2b) generated in the curvilinear

frame (b, [, Z), where [ is normal to the airfoil surface, and b is parallel to the airfoil surface. This two dimensional
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domain is extruded in the Z = I direction for 0.1! to generate a 3D domain. Note that, in regular body fitted grids [ = 0

is attached to the surface of the airfoil, but here it is inside the immersed airfoil to capture the motion of the surface,

i.e., [ = 0 has a minimum normal distance of 0.012 from the surface of the airfoil (see the grids inside the immersed

boundary in Fig. 2b). The boundary condition along b, Z is periodic, and it is defined on [(#[) (outer boundary) as

follows: It is inlet (DG = *) in the upstream, (x<0), and it is Newman with a mass flux correction in the downstream

(x>0). Note that the span size of the domain is chosen to be small to reduce computational costs. Therefore, the focus of

this work is on spanwise-averaged results due to the limitation for capturing three-dimensional effects with this span

size.

Table 1 The details of grid and time-step size of the simulation. R is the approximate radius of the O-type grid
in Fig. 2a. #b , #[ , and #Z are the number of points along b, [, and Z directions, respectively. Δ;<8=

b
, Δ;<8=[ , and

Δ;<8=
Z

are the minimum grid spacing along b, [, and Z directions, respectively.

grid ' #b #[ #Z Δ;<8=
b

Δ;<8=[ Δ;<8=
Z

1 15! 421 281 21 0.001! 0.0003! 0.005!

The simulation set-up configuration, including the domain size and grid size are summarized in Table 1. The grid

resolution is maintained 0.0003! along the [ direction in the vicinity of the airfoil surface which is equivalent to a wall

unit spacing of [+ = 0.9, where [+ = X;[Dg/a, X;[ is the normal distance between the surface and first fluid node, and

Dg is the friction velocity. With this resolution, the viscous sublayer ([+ < 11.0) of the boundary layer has at least 12

grid points along wall normal direction ([). The grid spacing remains constant up to [ = 0.022, then it increases with a

hyperbolic function to the boundaries. Using the curvilinear O-type grid in conjunction with the immersed boundary

is suitable for low amplitude morphing simulations since it can capture the low amplitude oscillations with a lower

computational cost compared to a Cartesian mesh. The time step is 0.0005!/* for the unactuated case and it ranges

from 0.00032!/* to 0.00048!/* for the actuated cases, which corresponds to Courant-Friedrichs-Lewy numbers

(CFL=*XC/ΔG) less than 0.5.

The case studies are presented in Table 2. The first case is an unactuated airfoil and the wavelength of the actuated

cases is _∗ = 0.2. Cases 2 to 4 are backward traveling wave actuated airfoils with constant amplitude and different

reduced frequency ( 5 ∗) ranging from 5 ∗ = 2.0 to 5 ∗ = 8, i.e., corresponding to wave speeds �∗ = 0.4 to �∗ = 1.6. Case

5 is a high amplitude traveling wave actuation (0∗ = 0.008, 5 ∗ = 4.0, and �∗ = 0.8), case 6 is the forward traveling wave

actuation (0∗ = 0.002, 5 ∗ = 4.0, and �∗ = −0.8), and case 7 is a standing wave actuation (0∗ = 0.002, 5 ∗ = 4.0). Note
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Table 2 The case studies, including unactuated airfoil, standing wave, forward traveling wave and backward
traveling wave actuation with various frequencies and amplitudes. �! , �� , and �%> are nondimensional, lift,
drag and power coefficients, respectively. The wavelength is _∗ = 0.2 for all cases.

case actuation type 5 ∗ 0∗ �∗ �! �� �!/�� �%>

1 unactuated − − - 0.676 0.279 2.42 0.0
2 backward traveling wave 2.0 0.002 0.4 0.730 0.221 3.53 0.00012
3 backward traveling wave 4.0 0.002 0.8 0.886 0.096 9.23 0.00017
4 backward traveling wave 8.0 0.002 1.6 0.935 0.088 10.62 0.00027
5 backward traveling wave 4.0 0.008 0.8 0.824 0.125 6.59 0.00035
6 forward traveling wave 4.0 0.002 -0.8 0.807 0.276 2.92 0.00019
7 standing wave 4.0 0.002 - 0.817 0.206 3.96 0.00017

that the positive and negative signs of the wave speeds correspond to forward and backward traveling waves, respectively.

III. Results

The mean lift, drag, lift to drag, and power coefficients for all cases are presented in Table 2. Lift coefficient is

�! = �!/(0.5d*2!), where �! is the mean dimensional per unit of the span of the airfoil force acting on the airfoil

along the H direction, and the mean drag coefficient is �� = ��/(0.5d*2!), where �� is the mean dimensional per

unit of the span of the airfoil force acting on the airfoil along the G direction. The power coefficient is the mean power

required to accelerate the fluid near the oscillating surface which is calculated as follows:

�%> =
1

(0.5d*3)�)

∫
)

(∫
�

−?=. ¤ℎ3�
)
3C. (8)

where ¤ℎ is the time derivative of the lateral displacement (. direction), i.e., the velocity of the surface oscillation, =. is

the . component of the surface normal, ? is the fluid pressure on the oscillating surface, 3� is the area of the surface

element, � is the actuated area of the airfoil’s suction side, and ) is the integration time which is equivalent to about 80

cycles for the actuated cases and 35 nondimensional time (!/*) for the unactuated case.

The mean lift coefficients (�!) and drag coefficient (��) are presented in Table 2, which shows that the lift coefficient

increases and the drag coefficient decreases by any actuation. The lowest lift increase (7.4%) is for case 2 which has the

lowest 5 ∗, and the highest lift enhancement (38.3%) is for case 4, which has a high frequency backward traveling wave.

Comparing the lift and drag coefficients of cases 2 to 4, which have a constant amplitude with different frequencies,

indicates that the lift coefficient increases and the drag coefficient decreases by increasing the frequency, e.g., �! has
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Fig. 3 The (a) mean spanwise-averaged pressure and (b) skin friction coefficients of the unactuated airfoil
(case 1), the morphing airfoil with backward traveling wave actuations of f∗ = 4.0, a∗ = 0.002 (case 3) and
f∗ = 8.0, a∗ = 0.002 (case 4), and a standing wave actuation f∗ = 4.0, a∗ = 0.002 (case 7).

increased by 16.4%, 31.0%, and 38.3% compared to the unactuated airfoil and �� has decreased by 20.7%, 65.5%, and

68.4% compared to the unactuated airfoil, in cases 2, 3, and 4, respectively. By increasing the amplitude from 0.002, in

case 3, to 0.008, in case 5, the lift coefficient has decreased and the drag coefficient has increased compared to the lower

amplitude case, i.e., �! has increased by 21.4% and �� has decreased by 55.2% compared to the unactuated airfoil.

Table 2 shows that the backward traveling wave actuation is more effective than either a forward traveling wave or a

standing wave actuation in terms of improving the aerodynamic performance. The lift coefficient of case 3 is higher

than cases 6 (forward traveling wave) and 7 (standing wave). The lift coefficient of cases 3, 6 and 7 has increased 31.0%,

19.3% and 20.4% compared to the unactuated case, respectively. In addition, �� of these cases have reduced by 65.5%,

1.1%, and 26.1%, respectively, compared to the unactuated airfoil. Among these cases, case 4 has the highest lift to

drag ratio, e.g., �!/�� = 10.62 which is about 4 times greater than the unactuated case (Table 2). In addition, among

the cases with the same frequency but different actuation type, i.e., cases 3, 5, 6 and 7, the low amplitude traveling

wave actuation (case 3) has the highest �!/�� of 9.23 and the forward traveling wave actuation (case 6) has the lowest

one, i.e., it is only 20.6% higher than the unactuated case. In fact, based on the aerodynamic performance observed in

Table 2, the low-amplitude traveling wave actuations are more effective than either forward traveling wave or standing

wave actuations. The required power for these oscillations is small compared to the drag power loss (* × ��). For

instance, the �%> is less than 0.0004 for all cases while the drag loss power is O(0.1).

The enhancement of lift coefficient by the actuations in Table 2 can better be observed by the distribution of

the mean pressure coefficient around the circumference of the airfoil. The pressure coefficient can be expressed as
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Fig. 4 The profile of the mean spanwise-averaged streamwise velocity (DG) for cases 1, 3, 4, and 7 at 8 different
sections spaced by 0.1!, starting from L1 at 0.1! to L8 at 0.8! of the airfoil’s leading edges.

�? = 2?/(d*2), where the reference pressure (zero pressure) is pressure at leading edge (-,. = 0). The mean pressure

coefficient (�?) is computed by averaging the pressure of the grid point adjacent to the surface. The mean pressure

coefficient is plotted for cases 1, 3, 4, and 7 in Fig. 3a. The profile of �? (Fig. 3a) shows that the lift coefficient of

the actuated airfoil increases because �? of the suction side of the airfoil decreases in the vicinity of the leading edge,

i.e., the negative �? contributes to lift. The profile of the pressure coefficient of the unactuated case shows the stall

condition. For instance, on the suction side of the unactuated airfoil, the �? decreases from the leading edge, i.e., it

has a peak at G = 0.03, then it has a flat-like profile at 0.05 < G < 0.83, and finally, it decreases again near the trailing

edge, similar to the �? profile reported by Puri et al. [23]. When a backward traveling wave actuation (cases 3 and

4) is applied, the peak of �? increases substantially (pressure decreases) compared to the unactuated airfoil, i.e., lift

coefficient increases. In case 4, there is a pressure recovery from the peak (G = 0.03) up to the trailing edge. However,

for cases 3, there is a plateau from G = 0.10 to G = 0.18, and then the pressure recovery occurs toward the trailing edge.

When a standing wave actuation (case 7) is applied, the peak is higher than the unactuated airfoil but it is lower than the

one generated by the traveling wave actuations (cases 3 and 4).

Flow over an airfoil at the stall angle of attack becomes separated from the leading edge [58]. By using a
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flow control technique, the flow separation might decrease either by delaying the separation to further backward or

reattaching the separated flow further backward. The flow separation and reattachment is an unsteady process and,

consequently, the separation/reattachment location varies with time. Here, to quantify the effect of actuations on

the flow separation, the separation/reattachment is defined based on the mean skin friction (� 5 ). The mean skin

friction is the mean spanwise-averaged of instantaneous skin friction on the points adjacent to the surface, where

the instantaneous skin friction is � 5 = 2/'4(mD∗G/mH∗) and the velocity gradient in the curvilinear coordinates is

mD∗G/mH∗ = (mD∗G/mb) (mb/mH∗)+ (mD∗G/m[) (m[/mH∗)). Based on the mean skin friction, the separation and reattachment

location on the suction side are defined as the points where the mean skin friction (� 5 ) becomes negative and positive,

respectively. The distribution of � 5 indicates a high positive value on the suction side near the trailing edge, e.g.,

G > 0.9!. However, this positive value does not account for a flow reattachment. In fact, the positive � 5 at those

locations e.g., G/! > 0.9 is due to a strong trailing edge vortex which is present in the mean flow similar to the

instantaneous ones (Fig. 5a). The � 5 plot indicates that the traveling wave actuations moves the separation point

further backward toward the trailing edge. Based on Fig. 3b, the flow of the unactuated airfoil becomes separated from

G = 0.05! without reattachment. The skin friction of case 7 is similar to case 1, i.e., flow separates from the leading

edge without reattachment. In case 3, flow separates at G = 0.1!, and reattaches at G = 0.18!, where the plateau region

for pressure coefficient is created (Fig. 3a). Afterwards, flow becomes separated at G = 0.78!. Nevertheless, in case 4,

flow remains attached from the leading edge up to G = 0.75!. The flow attachment for cases 3 and 4 results in a lower

pressure coefficient at those sections as it was shown in Fig. 3a.

In addition to the location of the separation point, the profile of the mean streamwise velocity can demonstrate

effects of the actuations on flow separation by quantifying the reverse flow on the suction side. The profile of the mean

spanwise-averaged streamwise velocity (DG) for the unactuated airfoil and actuated cases 3, 4, and 7 are presented in

Fig. 4. As it can be observed in Fig. 4, there is a strong reverse flow at section L2 to L6 for the unactuated and standing

wave cases, whereas there is no reverse flow at that locations for the traveling cases (cases 3 and 4). Note that the

standing wave actuation does not suppress the flow separation similar to the traveling wave one, but it reduces the

reverse flow relative to the unactuated case. Flow becomes separated for cases 3 and 4 near the trailing edge (section L8)

while the reverse flow is less than the unactuated and standing wave cases, as it was also observed in Fig. 3b.

To visualize the instantaneous flow separation and attachment more clearly, the spanwise-averaged instantaneous
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Fig. 5 Instantaneous flow field visualized by the contours of out-of-plane vorticity (lI).

out-of-plane vorticity of the seven cases (Table 2) at four different time instants are presented in Fig. 5. Flow is fully

separated over the suction side of the unactuated airfoil, i.e., the shear layer separates from the leading edge and sheds to

the wake, and on the trailing edge an unstable counter clockwise vortex (trailing edge vortex) is generated (Fig. 5a3).

Both the shear layer and trailing edge separation decrease when any type of actuation is applied. Similar to the mean

flow (Fig. 4), the separation reduction is more significant when a traveling wave actuation with 5 ∗ ≥ 4 (cases 3 and 4) is
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applied, i.e., the shear layer is closer to the airfoil’s surface near the leading edge.

When the low frequency traveling actuation (case 2) is applied, the flow separates from the leading edge. Nevertheless,

the separated shear layer is closer to the airfoil surface, and the trailing edge vortex is smaller compared to the unactuated

airfoil (compare Fig. 5b3 and Fig. 5a3). By increasing the frequency to 4 and 8, the shear layer separation decreases

(Fig. 5c1 to c4 and Fig. 5d1 to d4), and size of the trailing edge vortex decreases due to delayed separation. By

increasing the amplitude to 0.008 in case 5, the shear layer becomes unstable near the actuation point (G > 0.1). The

higher amplitude traveling wave oscillations generates large coherent structures that become separated from the airfoil

surface and shed periodically with the oscillations frequency into the wake. Nevertheless, the traveling wave oscillations

increase the axial momentum and reduce the flow separation near the trailing edge. The generation of the coherent

structures by the traveling waves have also been reported in the previous studies [34, 35]. The forward traveling wave

actuation (case 6), in contrast to the backward traveling wave one does not reduce flow separation (Fig. 5f). In case

6, the shear layer is fully separated while a large trailing edge vortex is generated at the trailing edge, similar to the

unactuated case (Fig 5a). The standing wave actuation brings the shear layer closer to the airfoil surface (Fig. 5g) but

not as closer as the traveling wave one (Fig. 5c).

(b)
(a)

O f l i i

Fig. 6 Three dimensional vortical structures visualized by the instantaneous isosurfaces of the &-Criterion
(&=20) colored by the out-of-plane vorticity for (a) case 1 (unactuated airfoil) and, (b) case 4 (traveling wave
morphing airfoil with f∗ = 8.0, a∗ = 0.002).

Figure 6 presents the three dimensional turbulent flow structure (vortices) visualized using iso-surface of Q-criterion

that colored by out-of-plane vorticity for unactuated airfoil (case 1) and morphing airfoil with 5 ∗ = 8.0, 0∗ = 0.002

(case 4). By comparing Fig. 6a and Fig. 6b, it can be observed that the low amplitude traveling wave morphing reduces

the flow separation, similar to the observation of 2D flow field in Fig. 5.
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IV. Discussion and Conclusion

Previous studies [33, 59, 60] have shown that backward traveling waves can increase the streamwise fluid momentum

and decrease the drag force, which theoretically scales with (0∗ 5 ∗)2 (1 − 1/�∗2) [35, 60]. Recently, Akbarzadeh and

Borazjani [35] observed that traveling wave oscillations with significantly higher amplitudes (0∗ = 0.01) and frequency

( 5 ∗ = 20) but the same wavelength (_∗ = 0.2) as of this study on an inclined plate could reduce the flow separation and

drag coefficient but they could not postpone the stall and reattach the flow to the leading edge because of the plate’s

sharp leading edge. However, in this study, it was shown that a surface morphing in the form of backward traveling

waves can suppress the static stall and delay separation. The results of our LES show that a low amplitude traveling

wave (0 = 0.002!) with reduced frequencies 4.0 and 8.0, and _∗ = 0.2 can suppress the stall and increases the lift

coefficient by about 34%. The lift enhancement is high compared to our previous study for this airfoil at �$� = 10> in

which the lift increased only by about 4% [59] because flow control is, typically, more effective at stall and post stall

angles where the flow is massively separated [7].

The flow visualizations (Figs. 4 and 5) indicate that the backward traveling wave actuations are more effective than

other actuations because they accelerate the fluid adjacent to the surface along the streamwise direction [35], i.e., increase

the momentum of the fluid near the surface directly, similar to a swimming fish [60]. While the backward traveling

waves with frequency greater than 4, e.g., cases 3 and 4, suppress the stall, a lower frequency of 5 ∗ = 2 (case 2) does not

influence the flow separation significantly. Based on the results of cases 2, 3 and 4, it can be concluded that the frequency

needs to be high enough to control the flow separation because, theoretically, the axial force created by traveling waves

scales with ((0 5 )2 (1 − 1/(_ 5 )2)) [35, 60]. However, by increasing the wave amplitude in case 6, the shear layer is only

attached up to the actuation point and it becomes unstable after that point. Afterwards, the unstable shear layer sheds

into the wake in the form of large periodic coherent structures. Therefore, the flow separation has increased in case 6

compared to case 3, although the amplitude has increased. The reason for the shear layer destabilization in case 6 is,

probably, the high wave steepness (0/_) as the shear layer separates from the first trough of the traveling wave (Fig. 5e).

In fact, a steep surface deformation can destabilize an attached shear layer and enhance the separation [33, 61]. In

contrast to the backward traveling waves, the forward traveling wave actuation is the least effective actuation because it

increases the reverse flow near the wavy surface [32, 33]. Finally, the standing wave actuation (case 7) reduced the flow

separation though it does not increase the boundary layer’s streamwise momentum directly. Standing waves reduce the
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flow separation by triggering the Kelvin-Helmholtz instability [13] and enhancing the mixing of the separated shear

layer with the low momentum flow of near the surface similar to periodic excitation flow control mechanism [7]. Note

that this mixing occurs for other actuations, including backward and forward traveling waves, because the airfoil surface

oscillates. The oscillating surface induces a normal velocity that scales with 0.05* < D. = $ (2c 5 0) < 0.1* which is

close the velocity induced by the surface in previous studies [13]. In fact, in traveling wave actuation cases, both (i) the

axial momentum induced to the flow and (ii) the triggering of instabilities affect the flow separation. Nevertheless,

understanding the effect of each of these two terms, i.e., axial momentum induced to the flow versus triggering the

instabilities, on the flow separation, or investigating the effects of wavelength at the stall and post stall angles of attack

can be an interesting topic for future studies.
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