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Abstract. We study the geometry of a class of n-dimensional smooth projective varieties
constructed by Schreieder for their noteworthy Hodge-theoretic properties. In particular,
we realize Schreieder’s surfaces as elliptic modular surfaces and Schreieder’s threefolds as
one-dimensional families of Picard rank 19 K3 surfaces.

1. Introduction

If X is a smooth complex projective variety of dimension n, then for any
k < 2n, the singular cohomology of X comes equipped with a decomposition
into complex subspaces given by H*(X,Q) ® C = @, H”(X), where
HP9(X) = H1(X, Q';(). In [23], Schreieder considered the question of whether
any set of Hodge numbers 47 := dim H?-9(X), subject to the necessary symme-
tries imposed by the Hard Lefschetz Theorem, can be realized by a smooth complex
projective variety.

To this end, Schreieder [23, Section 8] constructed, among others, n-
dimensional smooth projective varieties X, ,, depending on a parameter ¢ > 1,
with particularly pathological Hodge numbers in that X, ,, has positive 40 = p0"
and all other K74 = O for p # g. The X, are smooth models of a quotient Cy /G,
for Cg; a genus g = 3LT_1 hyperelliptic curve and G a finite group.

Schreieder’s construction generalized a construction of Cynk and Hulek in [5,
Section 3] in the ¢ = 1 case, who proved that the X , are Calabi—Yau. From
Cynk and Hulek’s inductive construction, it follows that the X; , may be real-
ized as families of Calabi—Yau varieties over P!. Additionally, they proved that
these Calabi—Yau varieties are modular, a result which was generalized to all of
Schreieder’s varieties in [8, Corollary 3.8].

In addition to having these noteworthy Hodge-theoretic and arithmetic proper-
ties, the varieties X , are also special from a cycle-theoretic point of view. Laterveer
and Vial recently showed in [15] that the subring of the Chow ring of X, , gen-
erated by divisors, Chern classes, and intersections of two positive-dimensional
cycles injects into cohomology via the cycle class map. Moreover they show that
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in the surface case, the small diagonal of Z. > admits a decomposition similar to
that of K3 surfaces proved by Beauville—Voisin [3].

In this paper, we investigate in detail the geometry of the varieties X , for
¢ > 1. We generalize Cynk and Hulek’s result for the ¢ = 1 case by showing in
Proposition 4.1 that for any ¢ > 2, although X, , has Kodaira dimension 1 instead
of 0, the Iitaka fibration of X, , equips the variety Z. ,, birational to X, ,, with a
fibration over P! by hypersurfaces of Kodaira dimension 0.

In particular, in the cases of dimension n = 2 and n = 3, we obtain a moduli-
theoretic interpretation of Schreieder’s varieties via the following two main results.

Theorem. (5.7) For ¢ > 2, the minimal model Z. > of X2 is the elliptic modular
surface attached to an explicit non-congruence subgroup I'c C SL(2, Z).

Theorem. (6.1) Forc > 2, the general smooth fibers of the litaka fibration Z. 3 —
P! associated to X3 are K3 surfaces of Picard rank 19.

The notion of an elliptic modular surface is due to Shioda [24], who attaches
to any finite index subgroup I of SL(2, Z) not containing —Id a corresponding
extremal elliptic surface Sr. This Sr is fibered over the modular curve Cr, given
by I'\'H together with finitely many cusps, such that Sr is a universal family for the
moduli space of elliptic curves parametrized by the curve Cr. Therefore, Theorem
5.7 implies that the surface Z, > is a universal family for the moduli curve Cr.

In terms of the threefold Z. 3 fibered by K3 surfaces of Picard rank 19, for S a
general smooth K3 fiber, consider the Neron-Severi group NS(S) := H 2(8,Z)N
H'1(S) and the transcendental lattice Ts = NS(S)+ in H%(S, Z). Because N S(S)
has rank 19, it follows from results of Morrison [17] and Nikulin [19] that there is a
unique moduli curve parametrizing the K3 surfaces with this fixed transcendental
lattice Ts. Hence, in analogy with our result in the two-dimensional case, Theorem
6.1 implies that the threefold Z. 3 may be viewed as a finite cover of the universal
family of the moduli curve parametrizing K3 surfaces with this transcendental
lattice (see Corollary 6.2).

More generally, it would be interesting to see if for any n > 2 the litaka fibration
Zcn — Plisafinite cover of the universal family of the moduli curve parametrizing
Calabi—Yau varieties with some fixed Hodge-theoretic data. However, the singular-
ities of the quotient C /G are non-canonical and thus understanding the geometry
and Hodge theory of these fibers becomes difficult as n grows.

The organization of the paper is as follows. In Sect. 2 we outline Schreieder’s
construction in [23] of the varieties X, ,. Then in Sect. 3 we show that that for ¢ > 2
the varieties X, , have Kodaira dimension 1. In Sect. 4 we analyze the geometry
of the Iitaka fibration of X, ,, proving that its image is the curve . In Sect. 5, we
focus just on the n = 2 case and analyze in detail the elliptic fibration resulting from
the Iitaka fibration studied in Sect. 4 and show that it equips Z. » with the structure
of an elliptic modular surface. Lastly in Sect. 6 we focus on the n = 3 case, proving
that the smooth fibers of the litaka fibration Z, 3 — P! are K3 surfaces of Picard
rank 19 and discussing the moduli interpretations of this result.
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2. Construction of X, ,

For a fixed ¢ > 2 consider the complex hyperelliptic curve C, of genus g = VT*I

given by the smooth projective model of the affine curve
{y2 =x2&+ 1)

obtained by adding a point at co. This point is covered by an affine piece {v?> =
w2 4y}, suchthat x = u~'and y = v-u~%~'. One may verify that x is a local
coordinate in the patch {y? = x2¢*1 4 1} and that v is a local coordinate in the
patch {v? = u?8+2 4+ u}.

Fix ¢ a primitive 3°th root of unity. The curve C, then comes equipped with an
automorphism r, of order 3 = 2g + 1 given by

(x,y) = (&x,y)

(. v) > (€ u, £8).
Consider the action on the n-dimensional product C, given by the group

G :={yg x - x Y a1+ +a, =0mod 3},

where the automorphism w;i acts on the ith factor in the product. Note that G =
(Z)3°7)"".

The smooth projective variety X , whose construction we detail below is then a
smooth model of the quotient Cy / G. This n-dimensional variety X, is constructed
inductively as a pair (X n, ¢c.n), Where ¢, is a distinguished automorphism of
Xen.

The inductive construction of (X, ,, ¢.,) detailed in [23, Section 8] pro-
ceeds as follows. Suppose the pairs of varieties and distinguished automorphisms
(Xe¢,ny» @ny) and (X¢ 5y, ¢n,) have both been constructed. We then detail the con-
struction of the pair (Xc n;4ny, Dc.ny4n2)-

Consider the subgroup of Aut(X, ,, < X ,,) given by

H:= (¢} xid,id X ¢¢p,).

c,ny

Foreachi = 1, ..., c, consider the element of order 3! inside of H given by

0= (Peny X bem)
Thus 7n; generates a cyclic subgroup H; := (1;) C H, which gives a filtration
O0=HCcH C---CH,= (¢C_'il Xd’c,ng)

such that each quotient H;/H;_1 is cyclic of order 3.
Now, let
Yo = Xc,nl X Xc,nza
Y, = Blow up of Y along Fixy, (1),
Y} = Blow up of ¥ along Fixy, ().
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Observe that since the action of the group H restricts to an action on Fixy, (171), the
action of H on Yy lifts to an action on Y and then similarly to an action on Y.
Here, by abuse of notation, we let (11) denote both the subgroups of Aut(Y,)) and
Aut(Y') generated by the action of ny € H.

Define fori € {1, ..., c}:

Y, = Y,‘N_1/<77i>,
Y/ = Blow up of ¥; along Fixy, (i+1),
Y/" = Blow up of ¥/ along Fixy:(1i41).

Namely we have the following diagram

1" "
YO yk—l

SN ‘\Y/'\Y/ ~

where each arrow to the left in the above diagram corresponds to a sequence of
two blow-up maps and each arrow to the right corresponds to a 3:1 cover.

Schreieder proves in [23, Proposition 19] that each Y;4 is a smooth model of
Y;/(n;) and thus, in particular, the variety X; »,4n, := Y, is a smooth model of
YO/(¢Z,111 X @c.ny). The distinguished automorphism @¢ 45, 00 X¢ 5 4n, 1S then
defined to be the one induced by the automorphism id x ¢ ,, on Yp.

The inductive construction of the pairs (X, ,, ¢¢ ) is then as follows. When
n = 1, the pair (X¢ 1, ¢¢,1) is the curve X 1 := C, equipped with the distinguished
automorphism ¢, 1 := v,. Hence, by the above construction, if one can construct
the pair (X, », ¢c.n), one can construct the pair (X 41, ¢c.n+1). Namely one can
construct (Xc ,, ¢cn) foralln > 1.

3. The Kodaira dimension of X ,

For a smooth algebraic variety V and any m > 0, the mth plurigenus of V is
given by P, = hO(V, K{?m). The Kodaira dimension k of V is —oo if P, = 0
for all m > 0 and otherwise it is the minimum & such that P,,/m* is bounded. If
V has dimension n, then the Kodaira dimension of V is either —oo or an integer
0<k <n.

In order to compute the Kodaira dimension of the variety X, for ¢ > 2,
we thus wish to consider the plurigenera P, = hO(XC,,l, K f?g”;) form > 0. We
show in Proposition 3.4, by inducting on the dimension #, that the plurigenera P,
grow linearly with m and hence that the varieties X, , for ¢ > 2 have Kodaira
dimension 1.

As detailed in Sect. 2, the variety X, is constructed from Cy by a sequence
of blow-ups and quotients. We thus have an injection of global sections of powers
of the canonical bundle induced by the rational map Cg‘ --» X n. To compute the
P,,, one then just needs to determine which of the G-invariant global sections of
K %{" descend to global sections of K ;?C"L To accomplish this, it is necessary first
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in Sects. 3.1 and 3.2 to establish what happens to global sections of powers of the
canonical bundle of Cy; under blow-ups and quotients.

Itis also necessary to understand the local action of the group G and in particular
the relationship between the local action in the n-dimensional case in relation to
the n + 1-dimensional case. Thus in Sect. 3.3 we analyze the local action of the
automorphism ¢. , on X.,. We then use this in Sects. 3.4 and 3.5 to identify
distinguished coordinate patches R, and S. on X, , on which we may describe
the vanishing of a form in H O(Xc,n, Kf?c””l ) in relation to the vanishing of the
corresponding form on Yy := C, x XM_I,.

The ingredients of Sects. 3.1-3.5 are then used in the proof of Proposition 3.4
to trace the vanishing of forms corresponding to global sections of powers of the
canonical bundle of C g,’ through the construction detailed in Sect. 2. We determine

that the only global sections of K&," that descend to global sections of K" are
8 c,n

those of the form x{w; x x§wz X - -+ x xj w, for 0 < a < m(g — 1), where (x;, y;)
®@m

. . . d
are coordinates on the ith factor in the product C; and w; = ot and hence the

Ji

Kodaira dimension of X , is 1.

3.1. Forms under quotients

Recalling the notation from the construction of X, , in Sect. 2, consider the 3:1
cover maps f; : Y/ — Y;;1, where Y/ and ¥; | have dimension n. The Riemann-
Hurwitz formula yields

ap — 1
Ky =ff | Kvin+ ) D e)
DeDiv(Yit1)

where for each D € Div(Y;41), the number ap is the order of the group of auto-
morphisms of Y/ fixing the components of f;* D pointwise.

By construction, the group H;y1/H; acting on Y/ is isomorphic to Z/3Z.
Namely for every irreducible divisor D € Div(Y;41), either ap = 1 orap = 3.
Moreover, the irreducible D for which a = 3 are exactly the images of the irre-
ducible components of the exceptional divisors E; obtained from the blow-up
map Y/ — Y/, where it should be noted that it may happen that E;" = E!. Let
E/ ..., E/; be the irreducible components of E;’. Observe that since 71 fixes
each of the El” ., each component El” j descends to an irreducible divisor on Y;11.
Equation (1) then yields:

ki
Kyr = f7 (Ky,,) + ZzElffj.
j=1
This gives:

ki
Kl =Y 2mE]; = f; (K%’jl) : )
j=1
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For an algebraic variety V with a coordinate patch (z, ..., z,) having the
standard action of G}, on C", we say that a pluriform w is foric on the patch
(21, - .., zn) if the divisor of zeros of w is invariant under the action of G/,,.

Definition 3.1. A toric form @ on a coordinate patch (zj,...,z,) of an alge-
braic variety V has vanishing sequence (B, ..., B,) on the point (21, ...,2,) =
0, ..., 0) if o vanishes to order B; along the hypersurface z; = 0.

Now consider an H; 1-invariant pluriform o on Y. Suppose Y/ has local coordi-
nates (z1, ..., Z,) around some El” j fixed by the action of H; such that without
loss of generality El” j is given by z; = 0. Consider the point R = (0, ...,0) on
El” j and suppose the vanishing sequence of ¢ on R is («q, ..., &y). Then, using
Eq. (2), the vanishing sequence of the descent of ¢ to Y;4 has vanishing sequence
on the image of R in Y; 4| given by

(%(al —2m),a2,...,an). 3)

3.2. Forms under blow-ups

Let V be an n-dimensional variety with local coordinates (zy, ..., z,). Suppose
Z is a subvariety of V of codimension k > 2 given locally by z; = -+ = zx =
0. Suppose o is a global section of K {‘?m for m > 1 with vanishing sequence
(o1, ...,0,0,...,0) on Z. Namely, the pluriform o is given locally by

f@i, s z)dzr - dzy)®™,

where the polynomial f has vanishing sequence (o1, ..., o, 0,...,0) on z1 =
e — Zk — O.
Blowing up V at Z introduces new coordinates (2}, ..., z;), with ziz’j. =2z;2;

for all i, j. Hence, on the coordinate patch of the blown-up variety V' given by
z; # 0, we have coordinates

(Zty oy Zim1s Zis Zigls oo Zho Tkt 1o -+ -5 Zn)s
!

~ Z; ~ . .
where z; = Z—{ and thus z; = z;Z;. Thus, locally around the exceptional divisor E,

the pluriform o pulls back to the pluriform:

mk—1) ;. = - - -
z; F(ZiZ1s ooy ZiZim1s Zis ZiZidls -+ s ZiZks Zhtls - - -5 Zn)

dZy---dZi_1dzidZiyy - - - dZxdzisr - - - dz,)®™.

In the new coordinates (Z1, ..., Zi—1, Zi» Zi+1s - - - » Zk» Zk+1s - - - » Zn), cONsider
the point R = (0, ..., 0). Then the vanishing sequence on R of the pullback of o
to V' is given by:

k

@1v i, Y o+ mk— 1), a1, .. o). 4)
=1
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3.3. Local action of ¢,

Consider the curve C, together with its action by the automorphism .. Observe
that the fixed set of the action of v, on C, consists of 3 points. Indeed, in the
coordinate patch given by {y? = x2¢*! + 1} we have two fixed points

Pr:(x,y)=(@©,1)and P>: (x,y) = (0, —1)
and in the coordinate patch given by {v> = u?¢*2 4 u}, we have a third fixed point
Q: (u,v) =(0,0).

Now recall the construction of the variety X , and its distinguished automorphism
@c,n from the curve C, and its automorphism v, detailed in Sect. 2. In the following
lemma, we detail the local action of ¢, , and the corresponding vanishing of forms
on two particular coordinate patches on X, ;.

Lemma 3.2. For any ¢ > 2 and n > 1, there exist coordinate patches U, and V,,
onFixx, , (¢c,n), withlocal coordinates (uy, . .., uy) and (vy, . . ., vy) respectively,
satisfying:

(1) The automorphism ¢, acts with Z/3°Z-weights (0,...,0,1) on U, and
©,...,0,8)onV,
(2) Forany T € HO(C;}_I, K?ﬁl) and o € HO(Cg, K?;") such that o vanishes
8
to order a on the point Py and to order  on Q, the global section of K?’Z
induced by the form Tt x o vanishes to order « on the hypersurface u, = 0 and
to order 3 on the hypersurface v, = 0

Proof. We proceed by induction on the dimension n. By the implicit function
theorem, one may verify that the coordinate x is a local coordinate in the patch
U on the curve C, given by {y* = x?¢*1 4+ 1} and the coordinate v is a local
coordinate in the coordinate patch V; given by {v? = u?$7% + u}. Hence the
automorphism ¢ | := v, acts with Z/3°Z-weight 1 on U; and weight g on V;.
Since Fixx, , (¢c,1) = {P1, P2, O}, this verifies the statement of the lemma in the
n =1 case.

Assume the result holds in the n — 1 case and let U,_; and V,,_; be the cor-
responding coordinate patches on Fixy, ,_, (¢c n—1). Now recall the inductive con-
struction of the pair (X, , ¢c,,) from the pair (X ,—1, ¢¢,n—1) detailed in Sect. 2.
Let Yo = C¢ x X, »—1 and consider the patches on Fixy, (¥, X ¢¢ ,—1) given by

Ro:=U; xV,_1and Sy := Vi1 x Uy,_1.

By assumption the automorphism 7. := ¥, I x @¢,n—1 acts on these patches
respectively with Z/3¢Z-weights

(-1,0,...,0,g)and (—g,0,...,0, 1)
and the automorphism id x ¢. ,—1 acts respectively with Z/3°Z-weights

©,...,0,g)and (0,...,0,1).
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Now consider the images of Ry and Sy along the sequence of blow-ups and
quotients detailed in Sect. 2. Observe that because 7 acts with weight O in all but
two of the local coordinates around Ry and Sp, for each i € {1, ..., ¢} the fixed
locus of n; on the images of Ry and Sy will have codimension at most 2.

When the codimension is less then 2, then the blow-up map is an isomorphism
and so the local weights are unaffected. When the codimension is exactly 2, the
blow-up map locally introduces new coordinates which we denote (r{, r,,) and
(51, §,) respectively.

Inductively, taking the 7| 7~ 0 and §1 # O patches in the new blown-up coordi-
nates ensures that id x ¢, ,—1 still acts with weights (0, ..., 0, g) and (0, ...,0, 1)
on these new patches. Moreover, the Z/3¢Z-weights of id x ¢, ,—1 on the image
of these coordinate patches under the 3:1 quotient maps will be unaffected since
neither g nor 1 is divisible by 3.

Hence let V,, and U, be the coordinate patches on Y, := X, obtained by
locally choosing the 71 # 0 and §; # O patches respectively at each stage in
the sequence of blowups. It then follows that the image of id x ¢, ,—1 acts with
Z/3°Z-weights (0, ...,0,g) on V, and (0, ..., 0, 1) on U,. Since ¢, , is exactly
the image of id X ¢, ,—1 in X, », this finishes the first part of the proof. The second
part follows from the formulas in Egs. (3) and (4). O

3.4. The patches R and S; on X

Consider the product Yy := C,; x X, ,—1 together with its actions by the auto-
morphisms 7; := (¥, U5 ¢en—1)>"". In particular, let us consider the action of

Ne =Yg ' ¢¢.n—1. We now use Lemma 3.2 to identify two distinguished patches
on X, ,, which we will denote by R. and S..

Let Uy and V;,— be the coordinate patches on Fixy, ,_, (¢c,n—1) and U} and
V1 be the coordinate patches on C, determined in Lemma 3.2. It follows that the
automorphism 7. acts with Z/3Z-weights (—1,0,...,0, g) on Ry := Uy x V,,_;
and with Z/3Z-weights (—g,0,...,0,1) on Sy := V| x U,_1.

The blow-up map Yé — Yy introduces new local coordinates (i, 7,) and
(51, 5,) respectively on Ry and Sp and 7. acts with weights

(_(g+1)’05"'707g)
on the 7, # 0 patch R;, of the strict transform of Ry and with weights
(_gvo""’O)g—'_ 1)

on the §1 # 0 patch S, of the strict transform of Sp. Similarly, the blow-up map

Yy — Y introduces new local coordinates (;51, 7,) and (§1, §,1) such that . acts
with weights

(—-2g+1),0,...,0,2) =(0,0,...,0,2)
on the 7, # 0 patch R( of the strict transform of R(, and with weights

(_g705""072g+1)=(_g507-"7050)
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on the 5| # 0 patch S; of the strict transform of ).

Let Ry and S be the images of R and S; under the 3:1 quotient map Y/’ — Y7.
Then 5. acts on Rj with Z/3"_IZ-weights 0,0,...,0, g)andon S; with Z/3C_IZ-
weights (—g,0,...,0,0).

In particular, the fixed locus under this 7.-action has codimension 1 in both
these patches. Namely the blow-up maps ¥;" — Y| — ¥; are isomorphisms on R|
and S;. Inductively defining R; and S; to be the images under the 3:1 quotient map
Y i/ " | — Yi of R;_; and S;_; respectively, we then have that in fact the blow-up
maps Y/ — Y/ — Y; are all isomorphisms on the coordinate patches R; and ;.

Namely, the coordinate patch R, is obtained from R; simply by performing
a sequence of ¢ — 1 quotients by Z/3Z and the coordinate patch S, is similarly
obtained from S by performing a sequence of ¢ — 1 quotients by Z/3Z.

3.5. Vanishing of forms on R. and S,

In the notation of Sect. 3.4, consider a form o with vanishing sequence (a1, ..., o)
on the point (0,...,0) of the coordinate patch Ry and vanishing sequence
(B1, - -, Bn) on the point (0, ..., 0) of the coordinate patch Sp.

By Eq. (4), the form o has vanishing sequences at the origins of R, and S,
respectively given by

(o1, ...,00—1,01 + 0y +m)and (B1 + Bn +m, B2, ..., Bn)
and vanishing sequences at the origins of R and S respectively given by
(aq, ..., ap—1, 201 +a, +2m) and (B1 + 2B, +2m, B, ..., Bu).

By Eq. (3), the form o then has vanishing sequences at the origins of R and
S respectively given by

1 1
(@1, - a1, 3 Qan + ) and (FBr+2Bn), Brr - Bu)-

But as established in Sect. 3.4, the coordinate patch R, is obtained from R;
simply by performing a sequence of ¢ — 1 quotients by Z/3Z and the coordinate
patch S, is similarly obtained from S; by performing a sequence of ¢ — 1 quotients
by Z/37Z. Hence it follows that o has vanishing sequence at the origin in R, given
by

1 1,1
o, ..., 01, —(-~~(—(—(2a1 + o) —Zm)-n) —Zm)
3 3°3
1 .
= (al, ce, O, ;(2011 +a, —m(3° — 3))) ()
and has vanishing sequence at the origin in S, given by

1 1,1
<§(~-(§(§(/31 +26,) —2m) ) —2m),ﬂz,...,ﬁn>

1 o
= <3_c(’31 + 28, — m(3¢ —3))”32,...,/3”). (6)
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3.6. Kodaira dimension computation for X ,,

We now make use of what we have established in Sects. 3.1-3.5 to prove in Propo-
sition 3.4 that the varieties X, , have Kodaira dimension 1. To do this we use the
following theorem of Kock and Tait.

Theorem 3.3. [13, Theorem 5.1] Let C be a hyperelliptic curve of genus g > 2 of

the form y> = f(x) and let » € K?m be given by v = d;im. Then an explicit

basis for HO(C, K?’") is given by the following:

w,xw, ..., x5 o ifm=1
w, X0, X’ ifm=2and g =2.
w, xw, ..., x"E D YW, Xyw, ..., x(”"”(g*l)’zya) otherwise

Proposition 3.4. For any ¢ > 2 and n > 2, the variety X., has Kodaira
dimension 1.

Proof. Fix some m > 0 and consider the form on the affine patch U; := {y? =

x28F1 41} of the curve C, given by

dx®m
wi=——
y

By Theorem 3.3, we are interested in global sections of K ?:1 of the form x“w,
where 0 < a < m(g—1) or of the form x? yw, where 0 <a < (im—1)(g—1) —2.

Note that since the variable x is a local coordinate near the v/, -fixed points P
and P, of Cg, the form w has order of vanishing equal to O at Py and P,. Hence
both x“w and x“yw have order of vanishing equal to a at the fixed points P; and
bp;.

On the affine patch V := {v2 = u28t2 4 u}, the variable v is a local coordinate
near the v/,-fixed point Q and the form w is given by

(=DdumE=Dgy®m

Um

The equation v? = u?82 4y yields 2v-dv = ((2g+2)u*6T' +1)-du. Namely, du
and v vanish to the same order. Moreover, u has order of vanishing 2 with respect
to v, hence the order of vanishing of w at the point Q is 2m(g — 1) = m(3¢ — 3).
Thus a form x*@ = u~%w has order of vanishing at Q given by

m@3¢—3) —2a
and a form x? yw = u~@T8+Dyw has order of vanishing at Q given by
2m(g—1)—2(a+g+1)+1=m@B°—3) —2a — 3°.

Since global sections of K 5‘?’" inject into global sections of K ?,f" via the rational

c,n g
map C;’ --+ X, n, in order to prove that the varieties X, , have Kodaira dimension
1, it is enough to show that global sections of K f?(mn correspond to global sections
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of K?,f" of the form x{w; x x§wy x -+ x xfw, for0 < a < m(g — 1). Here we
8
implicitly use the natural map HO(Cg, ch)®" — HY(C", K?nm).
8
More precisely we will show that any global section of K g?nm which descends to
8

a global section of Kf?c””l must be of the form x{ w x x§wy X - - - x xffw, for0 < a <
m(g — 1). Since the number of such forms is linear in m, the Kodaira dimension of
X, n is at most 1. However, by construction, we have hO(XC,,,, Kx.,) = g, where
we know g > 4. In particular, this means P; = hO(XC,,,, Kx.,)is greater than 1, so
the Kodaira dimension of X , is at least equal to 1. Hence, the Kodaira dimension
of X, , is exactly equal to 1.

In order to prove that any global section of K ?{” which descends to a global

sectlonofof”" must be of the form x{ @y xx§Jwy X - - - x x5 w, for0 < a < m(g—1),
we will induct on the dimension 7 of the variety X, ,.

So let us begin with the n = 2 case and consider Yy = C; x C,. Let o
be a global section of Ky ®m K @™ with vanishing sequence («, @) on the

point (0,0) = (P;, Q) of Ro and w1th vanishing sequence (81, 82) on the points
(0,0) = (Q, P;) of Sy, where Ry and Sy are the coordinate patches of Y defined
in Sect. 3.4. Then by Eqgs. (5) and (6), the form ¢ has vanishing sequences

1 . 1 .
(Otl, 3—0(2011 +or —m3 - 3))) and <3—C(,31 + 2B —m(3° = 3)), ﬂz)

at the origins of the patches R, and S, respectively in X, . Therefore, if o cor-
responds to a global section of Kf?:’i , it must have non-negative vanishing at the
origins of R, and S, and so '

a1 >0 and 20 + s —m(3° —3) > 0. 7
B2 >0 and By +2p —m(3° —3) > 0. (®)

If o is of the form x{" | x x3%w;, then (a1, ) = (a1, 3(3° — 3) — 2a;) and
(B1, B2) = (m(3° — 3) — 2ay, ap). Hence after simplification, Equations (7) and
(8) yield a; = a3.

If o is the form x{' wy x x32 yo2, then (a1, @) = (ay, 3m (3~ —1)—2a, —3°)
and (B1, B2) = 3m B 1=1)=2ay, a). After simplification, Egs. (7) and (8) yield
2ap > 2ap + 3¢, which is impossible. So no such ¢ can exist.

Finally, if o is of the form xf‘ yio1 X xgz yowo, then (a1, o) = (aq, 3m(3>”_1 —
1) —2a> — 3¢ and (B1, B2) = Bm (3~ — 1) —2a; — 3¢, ay). After simplification,
Egs. (7) and (8) yield 2a> > 2a; + 2 - 3¢, which is impossible. So no such o can
exist.

Therefore the only global sections of K -, ®" that can correspond to global sections

of K@””2 are those of the form x{w; x xjw> for 0 <a <m(g — 1), which finishes

the proof of the base case.
So assume that global sections of K%.”;,l correspond to global sections of

K?ﬂl of the form x{w; X -+ x x4_,w,—1 where 0 < a < m(g — 1). Letting
8
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Yo = Cg X X 51, it follows that a global section & of K %’" corresponds to a
global section of K ?,f" of the form
8

8 X xjwy X -+ X xjwy,

where § is a global section of K ?gm.

We have established that the form x;!_,w,_ has order of vanishing 0 at P;
and order of vanishing m (3¢ — 3) — 2a at Q. By Lemma 3.2 there exist coordinate
patches U, and V,,—; on Fixy, ,_, (¢c n—1), with local coordinates (u2, ..., u,)
and (vy, ..., v,) respectively, on which ¢, ,—1 acts with weights (0, ..., 0, g) and
O, ...,0, 1) respectively. Moreover the global section of K ?:';4 corresponding to

the form x§wy X -+ x xj;w, has vanishing sequence at the point (uz, ..., u,) =
0, ..., 0) of the form

(VZ! ) yn—21 a)

for some non-negative y», ..., ¥s—1 € Z, and vanishing sequence at the point
(va,...,vy) =(0,...,0) of the form

()“2’ R )"7172’ m(3C - 3) - 26!)

for some non-negative 1>, ..., A,—1 € Z.
It follows that 5, := 1//8_1 X ¢e.n—1 has Z/37Z-weights on Ry := Uy x V,,_1
and So := V1 x U,—1 given by (—1,0,...,0,g) and (—g,0, ..., 1) respectively.
Let ooy be the order of vanishing of the form § at the point P; in U; and let §;
be the order of vanishing of § at the point Q in V;. Then, the form ¢ has vanishing
sequence at the point (0, ..., 0) in Ry given by

(a1, 22, s hn—2, m(3° = 3) — 2a)
and vanishing sequence at the point (0, ..., 0) in Sy given by

B1,v2, .-y VYn—2,a)

Suppose the form ¢ corresponds to a global section of K %’:’Z . Then the vanishing

of ¢ on the patches R, and S. defined in Sect. 3.5 must be non-negative. So by
Egs. (5) and (6):

%(20{1 —2a)>0 C)

%(/31 +2a—-m@3°-=3)>0 (10)
Now by Theorem 3.3, the form § is either of the form xbw, where 0 < b <
m(g — 1) or of the form xbya), where 0 <b < (m—1)(g—1)—2.
In the first case, namely when § is of the form xbw, we have o] = a and
B1 = m(3° — 3) — 2b. Hence Egs. (9) and (10) yield after simplification the
condition a = b.
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In the second case, namely when § is of the form xb yw, we have a1 = a and
B1 = m (3¢ —3) —2b — 3°. Equations (9) and (10) then yield the conditions b > a
and 2a — 2b — 3¢ > 0, which is impossible.

Therefore, as desired, we have shown that if ¢ is a global section of K %f" which

descends to a global section of K ;‘?"Z then & must be of the form xi’wl X xga)z X
cxfw, for0O <a <m(g—1). O

4. The litaka fibration of C; /G
Consider the litaka fibration of the quotient variety Cg,’ /G
f:C}/G - P(H(CY, K%’"))G,
given by sending a point x to its evaluation on a basis of G-invariant global sections

of K ?,f". See [14, Section 2.1.C] for general facts on the Iitaka fibration of a normal
8

projective variety. By Proposition 3.4, the variety C; / G and hence X , has Kodaira
dimension 1, thus the image of f is a curve. Note that after passing to a resolution
fi1Zew — PHZ.p, K?if’r‘l)) for m sufficiently divisible, the smooth fibers of

f have Kodaira dimension O (see [14, Theorem 2.1.33]).
Proposition 4.1. For any ¢ > 2, n > 2, the rational map f: Cg/G -

P(HO(C?, K?,,m))G has image P'. Moreover f has reducible singular fibers above
8

the points 0 and oo and has singular fibers with an isolated singular point above
the 3¢ roots 0ft3c — (=D

Proof. We have the following diagram:
Ccr/G ----- » PHO(CY LK)

g
1 s 0 p®m
Cy ——— P(H(CY, K&x), an

where the horizontal map f is the Iitaka fibration for Cq.
Consider the composition obtained from the above diagram

o: Cg -=> P(H(Cy. KEM)C.

Recall from Theorem 3.3 that global sections of K ?g’” are of the form x%w
for 0 < a < m(g — 1). Observe that the only points of C,; on which the form
x%w can vanish are the points P;: (x,y) = (0, 1) and P>: (x, y) = (0, —1) in the
coordinate patch on C, given by {y? = x2*1 £ 1} and the point Q : (u, v) = (0, 0)
in the coordinate patch given by {v? = u?¢+? 4 u}. In fact, we have:

dx"ifa=0

a _
o) = {0 otherwise, (12)
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appy - | (=DMdx" ifa =0

xlo(P) = {0 otherwise, -
) [ Dmifa=mg—1)

o (Q) = {0 otherwise. (14)

Recall from the proof of Proposition 3.4 that G-invariant global sections of
K& are of the form
8

Sa = X{w1 X - xjtw,

for0 < a < m(g —1). Thus we may view the map a: C}y --» PHO(C, KEM)C
8
as the rational map sending:

(Z17 "'7Zn) H [SO(ZI’ ""Zn): te : Sm(g*l)(zl’ "'7Zn)]'

Say that P(H(C", K?l"))G has coordinates [wg: ---: Wyg—1)]- Then on
8
the affine patch of P(H%(C”, K?J"))G given by wo # 0, the image of « is of
8

the form (r,12,...,t"€~D) where t = x(z1)---xn(z,). The images on the
other affine patches of P(H Ocen, K %I"))G take similar forms. Hence the image of
a: Cr--> P(HO(CE, K%{"))G is the rational curve P! from which it follows that
the image of f: Cj — PHO(C™, K%ﬁ"))G is P! as well.

Consider the codimension 1 subvarieties of Cg of the form C;’_l x P; for
i € {1, 2} up to permutation of factors. Observe from (12) to (14) that « sends the
open subset (Cy — 0)"~! x P; of such a subvariety to the point [1: 0: - : 0]
inP(HY(C", K ?,f” )€, which corresponds to the point [1: 0] in P'. Moreover for
the different perrilutations of the position of the P;, the action of the group G on
C; does not identify these various open subvarieties. Namely, the fiber of f above
the point [1: 0] contains all 2n of these open subvarieties. In particular, the fiber of
[1: 0] is singular and reducible.

Similarly, consider the n subvarieties of Cy; of the form Cg,'_l x Q. Then « sends
the open subsets (C, — { Py, P>})"~! x Q of these subvarieties to the point [0: 1]
in P! and since the action of the group G does not identify these open subsets, they
all lie in the fiber of [0: 1] under f. In particular, the fiber of [0: 1] is singular and
reducible.

Now let us consider the fibers of « away from the points [1: 0] and [0: 1]
in P!. Note that away from these two points, the image of « is given by points
(t, 1%, ..., "8 D) where t = x1(z1) - - xn(z) is not equal to zero. Hence the
fibers of & away from [1: 0] and [0: 1] are then the G-invariant hypersurfaces F;
in Cy given by x; - - - x, = . In other words, these fibers are defined by the affine

equations in (A2)":
2 2g+1 2 2g+1 2 2¢+1
(ylleg +1, y2=x2g —|—1,...,yn=xng + 1, xp---xp =1),

(15)

where we are assuming ¢ # 0.



Geometry of Schreieder’s varieties and some elliptic and K3 moduli curves 417

On the affine patch we have described, such fibers F; have Jacobian:

Qg+ Hx® 2y 0 0 - 0 0

0 0 Qg+ Dx® 2y - 0 0

0 0 0 0 - Qg+ Dx® 2y,

X2 Xp 0 xix3-x, 0 -+ xy--:xp—1 O
Hence the fiber F; is singular if yj = --- = y, = 0. When this is the case,
then for each i = 1, ..., n we have that x; satisfies the equation xi2g+l +1=0,

namely x; is of the form £2%*!1 where & is a primitive 2 - 3¢th root of unity and
0 < y; <3¢ — 1. Namely we have

t = £ @i vi)+m)
and so
tSC — sn-3c — (_1)}1

In other words, it # € C* is such that > = (—1)", then the fiber F, is singular
and has singularities at the points of the form

(X1, Y1)s -y (s y0)) = (EFL0), .., 2T 0)).

Note that since ¢ is an even power of &, the action of the group G permutes
these singular points on F;. Namely, in the image of F; in C; /G these points are
all identified to a single singular point.

Note that if we consider some other affine patch of the fiber F;, we substitute

in (15) equations of the form vi2 = uizg+2 + u; and then the equation x1 - - - x,, =t

becomes % = t. Considering the Jacobian as above yields that the fiber F;
J1 Je

is singular if y;;, = --- =y, = v;, = --- = vj, = 0. Since ij:,’; =,
we know that none of the uj, can be equal to zero. Hence the points described
by yi = -+ =y, = vj = --- = vj, = 0 are in fact the same points as those
described by just y; = - - - = y, = 0. Since we have already shown that these points
are identified to a single singular point in the image of F; in C ;,’ /G, it follows that

the image of F; in C g /G has a single singular point. O

5. The elliptic surface case

We now focus our attention on the case when n = 2. In this case, for m sufficiently
divisible, the rational map f: CgZ/G --» P! ¢ P(HY(C?, K?{"))G studied in
14

Proposition 4.1, can be resolved to yield an elliptic fibration f 2 Zepy —> P!. To
better understand this minimal elliptic surface Z. >, we will make use of the fact
that minimal resolutions of cyclic quotient singularities are well-understood in
dimension 2.

The action of e = ¥, Ux Y on the product C, x C, has 9 fixed points: five
of the form (P;, P;) or (Q, Q), which we refer to as Type [ fixed points, and four
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of the form (P;, Q) or (Q, P;), which we refer to as Type II fixed points. We will
also refer to these points as the Type I and Type Il singular points, respectively, of
the quotient CZ/G = (C, x Cy)/(nc).

Observe that 7. acts around Type I fixed points with Z/3¢Z-weights (—1, 1) in
the (P;, P;) case and Z/3°Z-weights (—g, g) in the (Q, Q) case. Similarly 7, acts
around Type II fixed points with Z/3°Z-weights (—1, g) in the (P;, Q) case and
Z./3°Z-weights (—g, 1) in the (Q, P;) case. In particular then, note that the Type
II singular points are non-canonical singularities.

5.1. Resolving the singular points of C§/G

To understand the resolutions of the singular points of Cg /G, we make use of
established facts about surface cyclic quotient singularities and Hirzebruch—Jung
resolutions. A brief survey of these can be found in [12, Section 2.4] and more
detailed explanations can be found in [1,21].

Suppose the cyclic group Z/rZ acts on C? via (z1,72) — (€71, €%22), for
some a coprime to r, where € is a primitive rth root of unity. Then the minimal
resolution of the singularity at (0, 0) in the quotient C?/Z/rZ is encoded by the
continued fraction expansion:

r b 1

e ——

a e v
2b37%

More precisely, the minimal resolution of this singularity is a chain of s 4 1 excep-
tional curves Eg, E1, ..., E; with nonzero intersection numbers E;.E; = —b; and
E;.E;11 = 1[12, Proposition 2.32]. The sequence [bg, b1, b2, b3, ... bs] is called
the Hirzebruch-Jung expansion of the singularity.

Therefore since 7. acts around Type I fixed points with Z/3°Z-weights (—1, 1)
and (—g, g), the Type I fixed points have Hirzebruch-Jung expansion

[2,...,2].

—
(3¢—1)—times

Thus the Type I singular points of Cg /G are DuVal singularities of type Azc_
whose minimal resolutions consist of a chain of 3¢ — 1 rational curves, each with
self-intersection —2.

Similarly, since the Type II fixed points are acted on by 71, with weights (—1, g)
and (—g, 1), the Type II singular points of Cé / G have Hirzebruch-Jung expansion
[2, g + 1]. Hence the minimal resolution of each Type II singular point consists of
a chain of two rational curves, one denoted 7" with self-intersection —2 and one
denoted S with self-intersection —(g + 1).
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5.2. Weights and vanishing on the curves T and S

Since the Type II singular points of Cf, /G are not canonical singularities, they
will be of special interest to us in understanding both the geometry of the surface
Z. > and of the threefold Z, 3. In this section, we thus pay special attention for use
later to the local action of the automorphisms 7. and ¢. > on the images of Type II
singular points in X, and Z; ».

Without loss of generality, let us consider a Type II point on C, x Cg of the
form P; x Q forsomei € {1, 2}. Asdiscussed in Sect. 3.3, this point is covered by a
coordinate patch Rp with local coordinates (zo,1, zo,2) on which the automorphism
Ne =Yg Ix Ve acts with Z/3°Z-weights (—1, g) and the automorphism id x ¥,
acts with Z/3¢Z-weights (0, g).

After performing a sequence of two blow-ups along the fixed locus of 7., we
have that . acts on the resulting coordinate patches with Z/3°Z-weights

(=l.g+2) (=(€+2.g+1D (=(+1,0) 0,2
and hence that id x v, acts with corresponding Z/3°Z-weights

0,8 (—g. 8 (—g.29) (—2g.9).

Note that coordinate patch on which 7, acts with weights (0, g) is exactly
the coordinate patch R introduced in Sect. 3.4. We showed in that section that
the image R. of R(] in Y, is obtained by taking a sequence of ¢ — 1 quotients
by Z/37Z since all subsequent blow-up maps will be isomorphisms on this patch.
Hence the automorphism 7, acts on R, with weights (0, g) and the automorphism
id x v acts on R. with weights (—2g, g) = (1, g). Moreover, since a global
section s, = x{w; X x5w; of K?zm has vanishing sequence on P; x Q given by
(a,m@(3¢ —3) — 2a), the form s, lfas vanishing sequence at the origin of R, given
by (a, 0).

Now consider the coordinate patch ;)" of ¥ on which 7. acts with weights
(-Lg+2) = (-1, 3CT+3). Let 77 denote the image of this patch after taking the
Z./3Z-quotient needed to pass from Y to Y1. Then 5. acts on 71 with weights
(—1, %) Suppose that the sequence of two blow-ups needed to obtain Y

from Yy introduced new local coordinates [16‘1 : Zf),z] followed by [zg,1 : 16’52]
such that the 7" patch is given by z;, | # 0 followed by zi | # 0.

Inductively, if the sequence of blowups ¥/” — Y/ — ¥; introduces new local
coordinates [z;’1 : Z;,z] and [z;fl : z;fz], define T; to be the image in Y; of the
z;_y; # O patch followed by the z | | # 0 patch. Suppose 7 acts with weights

(—1, %) on T;. Then after one blow-up 7. acts with weights (—1, %)

on the Z§,1 # 0 patch. Since —¥ is divisible by 3, the blow-up Y/ — Y/

1
is an isomorphism on the z; ; # 0 patch, and thus 7. indeed acts with weights

c—(i+1)
(1220 o,

Hence by induction, we have that indeed 7, acts with weights (— 1, %) on
T; for each 1 <i < ¢ and that to pass from 7; to T;1; we perform one non-trivial
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blow-up followed by one Z/37Z quotient. In particular, the automorphism 7, acts
with weights (=1, 1) on the patch T; in Y. = X, > and the automorphism id x v/,
acts with weights (0, g) on 7.

Using the inductive construction of the coordinate patch 7, together with Eqs.
(3) and (4), we deduce that a global section of K?{" with vanishing sequence

g
(a1, p) on P; x Q has vanishing sequence on the origin of 7, given by

1 1,1
(g(...(g(g((xl—|—2a2)+0{2—m)...+a2—m),012)

1 3¢ +1 3¢ -3
= ;(otl-i- > o) —m > ),0(2.

In particular, the form s, has vanishing sequence on the origin of 7, given by
1 X )
(z(m(3° —-3)— 2a), m(3¢—3) — 2a> .

Now by construction of Y. = X2, the image of the point P; x Q in X,
consists of a chain of rational curves, one extreme end of which is covered by the
patch R, and the other extreme end of which is covered by the patch 7. Passing
from X > to the minimal surface Z ;> involves contracting all but the two extremal
curves in the chain, which become the curves T and S in Z 5.

This chain of 2 curves, the curve T followed by the curve S, is then covered by
three coordinate patches: the patch 7;., anew patch W, and then the patch R.. Hence
our calculations yield that the automorphism 7, acts respectively on these patches
with local Z/3°Z weights (—1, 1), (—1, 0), and (0, g) and that the automorphism
@c,2 = id X g acts respectively with weights

(Os g)v (_g’_l)s and (11 g) (16)

Moreover, our calculations together with Eq. (4) yield that the form s, has vanish-
ing sequence at the origins of the three coordinate patches 7., W,, and R, given
respectively by
! 3—-3)-2 3-3) -2 0 ! 3-3)-2 d(a,0
E(m( —3)—2a),m(3°=3) —2a ), ,E(m( —3)—2a)), and (a,0).
a7

5.3. The canonical bundle K 7,

From the above calculations we observe the following about the canonical bundle
K7z, , of the minimal surface Z .

Proposition 5.1. For ¢ > 2, the canonical bundle K 7, , is basepoint free.
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Proof. Consider the rational map h: Z.» --» P(HO(ZCVQ, K7z.,)) induced by the
canonical bundle Kz, ,. Observe that & fits into a diagram

h
ZC,Z -—=> ]P)(HO(ZC,QJ KZC2))

! I as)
Cg - P(H(C. Kc2)),

where the horizontal maps are given by evaluation on forms s, := x{w| x xjw>
for 0 < a < g — 1 and the rational vertical map on the left is the sequence of
blow-ups, blow-downs, and quotients needed to obtain X, > from Cg followed by
the birational map X.» — Z.».

Observe that the points of Cé on which all the s, vanish are exactly the Type II
fixed points. Thus to prove that Kz, , is basepoint free, we just need to ensure that
not all of the s, vanish on the image in Z, > of a Type II fixed point. But the image
in Z.» of a Type II fixed point is the pair of curves T and § covered by the three
coordinate patches 7., W,, and R, defined in Sect. 5.2. So the result follows from
Eq. (17). O

5.4. The elliptic fibration h: Z., — P!

It follows from Proposition 5.1 that the litaka fibration f t Zep — P! c
IP’(HO(ZC,Z, K%_";)) obtained by resolving the rational map f: C;/G --» P!
P(H(C?, K %’”))G studied in Proposition 4.1 may be obtained by letting m = 1.

In this case, we just obtain the map h: Z.» — ]P’(HO(ZC,Z, Kz, ,)) from Proposi-
tion 5.1. In Proposition 5.2 below, we study in detail the geometry of this elliptic
fibration, which we illustrate in Fig. 1.

We make use of Kodaira’s classification, in [10,11], of the possible singular
fibers of an elliptic surface. For a survey of the possible fiber types, see [16, 1.4]
and [25, Section 4].

As we will see, the two kinds of singular fibers that appear in the fibration A
are singular fibers of type I, for b > 0 and singular fibers of type I} for b > 0.
Singular fibers of type I, consist of b smooth rational curves meeting in a cycle,
namely meeting with dual graph the affine Dynkin diagram Ap. Singular fibers of
type I;; consist of b + 5 smooth rational curves meeting with dual graph the affine
Dynkin diagram Dj_4.

Recall that each Type II singularity in the quotient Cé /G yields two rational
curves T and Sin Z, >, where T has self-intersection —2 and S has self-intersection
—(g+1).Leté; = Q0 x P1,8 =0 x P,63 = P; x Q,and 84 = P, x Q denote
these four Type II singular points and let S, Sz, S3, and S4 denote each of their
respective —(g + 1)-curves in Z. > and 71, T», T3, and T4 their respective (—2)-
curves in Z. 3.

In the dimension 2 case, Proposition 4.1 then yields:
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Fig. 1. The elliptic surface h: Z. , — P!

Proposition 5.2. For ¢ > 2, the elliptic surface h: Z., — P! has 3¢ 4 2 singular
fibers: one of type I4.3 located at 0, one of type I3 located at 0o, and the remaining
3¢ of type I and located at the points &', for ¢ a primitive 3°th root of unity. Addi-
tionally, each of the rational curves Sy, S3, S3, and S4 coming from the resolution
of a Type 11 singular point corresponds to a section of f.

Proof. Consider the diagram

h
Zep —— P CP(H(Z. 5, K7,.,))

| T

C%/G Ls Pt c PO, Ke2)© (19
o JEN— » P(HY(CG, Ke2)),

where f is the rational map studied in Proposition 4.1 and the rational map
Cg /G --+ Z. on the top left of the diagram is obtained by resolution of sin-

gularities.
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By Proposition 4.1, the rational map f has singular fibers at 0, 0o, and ¢/ in
P!. Thus we consider the fibers of 4 above these points. Let us begin by focusing
on the fibers of / above the points 0 and co.

Consider the rational map o : Cg - Pl c P(HO(C?, KC§)G from the proof
of Proposition 4.1. Recall that @ may be viewed as the rational map given by
(z1,22) ¥ [s0(z1,22) o -+ §g—1(21, 22)], where 54 := x{w) X xjwy for0 < a <
g — 1. We know that the points of Cé% on which all the s, vanish are exactly the
Type II fixed points.

For any set of points A on the curve Cg, let C; — A denote the complement
in Cg of this set of points. Then from what we have established, we know that the
preimage under o of the point [1 : O : - - - : 0] consists of the union of open curves

(P1 x (Cg —{@)) U (P2 x (Cg —{0})
U((Cg —{0} x P U((Cg —{Q}) x P2). (20)

Similarly, the preimage under « of the point [0 : - - : 0 : 1] contains the union of
open curves

(@ x QU(Q x(Cyg —{P1, D) U(Cq = {P1, P2}) x Q). 2D

In particular, the image under « of the fixed points in Cé of the form (P;, Pj) is
the point 0 in P!. Each such point has image in Z,. > consisting of a chain of 3¢ — 1
rational curves and so by the Diagram (19), the fibration h: Z. > — P! must send
all of these 3 — 1 rational curves to the point 0.

Moreover, using Diagram (19) in conjunction with Eq. (20), since 4 is a mor-
phism we must have that the strict transforms in Z,. ;> of the curves Py x Cg, Pr x Cy,
Cg x Py, and C, x P> also get sent to 0. Note that the strict transform of C, x P;
will intersect the chain of rational curves resolving the singularity P; x P; at one
end of the chain and the strict transform of P; x C, will intersect the chain at the
other end of the chain.

Similarly, by Eq. (21) the image of the fixed point (Q, Q) in Cg will be sent by
« to the point oo in P!, Since such a fixed point has image in Z. ; consisting of a
chain of 3° — 1 rational curves, Diagram (19) yields that f must send all of these
rational curves to the point co.

Moreover, by Diagram (19) in conjunction with (21), since 4 is a morphism we
must have that the strict transforms in Z, » of the curves Q x C; and Cg x Q get
sent to 0o as well. Again, the strict transform of Q x C, will intersect the chain of
rational curves resolving the singularity (Q, Q) at one end and the strict transform
of Cy x Q will intersect the chain at the other end.

Therefore we have established that 4 sends to the point 0 in P! the strict trans-
forms in Z. > of the curves

P1 x Cq, P, x Cq, Cg x P, and Cg x P> (22)
and sends to the point co the strict transforms of the curves

0 x Cgand Cq x Q. (23)
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Each of the four Type II fixed points &1, &2, 63, and d4 in C; has one of the
curves in (22) and one of the curves in (23) passing through it. Note for instance
that if §; is of the form Q x P;, then its resolution in Z, > intersects the curve
0 x C, at the end of the curve T; away from §; and intersects the curve Cy, x P;
at the end of §; away from 7.

Moreover, by the adjunction formula, the curves on Z. » contracted by the map
h are exactly those with self-intersection —2, meaning that 4 contracts the curves
T; and maps the curve S; to all of P! foreach 1 < J < 4. Since each curve S;
intersects either the curve Q x C, or the curve C, x Q, both of which get sent to
the point oo by a, it follows that f sends all the S; curves tooco as well.

In summary, the fiber of & above the point 0 in P! is a cycle consisting of the
four sets of 3° — 1 rational curves coming from the resolutions of the points P; x P;
together with the four curves in (22). Hence the fiber consists of 4(3¢ — 1) +4 = 4-3¢
rational curves and thus is a fiber of type I4.3c in Kodaira’s classification. Similarly,
the fiber above the point oo consists of the 3¢ — 1 rational curves resolving the
singularity Q x Q together with the curves in (23) and the four (—2)-curves 77,
T,, T3, T4. Hence, the fiber consists of a chain of 3¢ + 1 rational curves, where each
curve on the ends of the chain has two additional curves coming off it. This is a
fiber of type I3.. See Fig. 1 for a pictorial representation of this arrangement.

It remains to identify the fibers of 4 occurring above the points ¢. Note that
by the proof of Proposition 4.1 the fibers of f above the ¢/ have a singularity at
the single point on the fiber which is the image in Cf, /G of the points in Céz, of
the form ((x1, 0), (x2, 0)), where the x; are of the form £2it! for & a primitive
2 - 3“th root of unity and 0 < y; < 3¢ — 1. In particular, x; # %1 and so while
the corresponding point in Cé% / G is singularity of the fiber of f, it is not a singular
point of the surface C g /G. In particular, it remains a singular point of the fiber of
above ¢'. So h has fibers with an isolated singular point above the points ¢/ in P!.
To determine these fibers more precisely, note that from [4, Proposition 5.16], for a
complex elliptic surface ¢ : S — C with fiber F, at v € C having m, components,
we have

Xiop(S) = Y _e(Fy), (24)

veC

where e(F,) is 0 if F), is smooth, is m,, if F), is of type I,,, and is m, + 1 otherwise.
Since the surface Z » has ¢ = 0 and geometric genus p, = g, its geometric Euler
number is g + 1, and so by Noether’s formula xop(Z¢2) = 12(g+1) = 6-3°+6.
Moreover, the identified fibers of & of type I4.3¢ and I3, above 0 and oo respectively
contribute 4-3¢+ ((34+5)+1) = 5-3°+6 to the right hand side of Eq. (24). Hence
the 3¢ singular fibers of # with an isolated singularity contribute exactly 3¢ to the
right hand side of Eq. (24). It follows that m, = 1 for each of these singular fibers,
meaning that each such fiber is of type I; in Kodaira’s classification, as claimed.
This completes the analysis of the singular fibers of 4.

It thus only remains to verify that each of the curves S; for 1 < j < 4 corre-
sponds to a section of /. Since we know that 2 maps §; surjectively onto P!, it just
remains to verify that for each r € P! there is a unique s € §; such that h(s) =¢.
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Without loss of generality suppose that the point §; is of the form O x P;, as
a symmetric argument will work for points of the form P; x Q. Lett € P! and
consider the fiber F; = h~!(¢). Since we have already determined the points of
intersection of F¢ and Fo, with §; we may assume ¢ # 0, co.

Now F; istheimagein Z. 7 of the curve F; in Cg, given by the equation xjx; = ¢.
Recall that Q x P; is given in local coordinates by (v, x2) = (0, 0) and so near
d; the curve F; is given by uflxz = t. We may rewrite this as y(vl)_lxz =t, for
¥ (v1) a continuous function of degree 2 in v;. Hence, close to §;, the curve F; has
coordinates given by (v1, 1y (v1)). Thus the slope of F; at §; is limy, % =0.

It follows that the strict transform F of F; in the blow-up of C2 at §; intersects
the exceptional curve E{ with coordinates [16,1 : 1672] at the point [16,1 : Z(/),z] =
[1 : O]. Taking the coordinate patch Z6,1 # 0 yields local coordinates (v1, 16’2)
and F} intersects E(/) at the point (vq, z6 ») = (0, 0). Moreover, near this point, the

ty(v1)

o ), since vz, , = 2, ;X2. Hence

curve F/ has coordinates (v, z(, ,) = (vl,

the slope of F; at the point (v1, z;,,) = (0, 0) is lim,, ¢ ”’5—;’1) =.
’ 1

Since the point (vy, 1612) = (0, 0) gets blown up in the transformation Y — Yo,
the strict transform F,” of the curve F; after this blowup intersects the exceptional
curve at the point with coordinate ¢. Moreover, observe that this point with coordi-
nate ¢ is covered by the coordinate patch R(j introduced in Sect. 3.4 and discussed
in more detail in the surface case in Sect. 5.2. Since the coordinate patch R, in
Y. = X, is obtained from R; by a sequence of ¢ — 1 quotients by Z/3Z, this

point corresponds to the point with coordinate 3" onthe image of this exceptional
curve in X, 2. But since this exceptional curve does not get contracted in passing
from X, » to Z. > (see Sect. 5.2), this intersection point is also the point with coor-
dinate 13" on the image of this exceptional curve in Z, >, which is just the curve
S;. It follows that the curve F; intersects S; at the point of S; with coordinate
37" Hence s = 13 is the unique point in S ; such that h(s) = t and therefore
S indeed corresponds to a section of 4. |

The Mordell-Weil group of an elliptic fibration ¢ : § — C is the group of K-
rational points on the generic fiber of ¢, where K = C(C). Such an elliptic surface
S is called extremal if it has maximal Picard rank p(S), meaning p(S) = 1),
and its Mordell-Weil group has rank r = 0.

Schreieder proves in [23, Section 8.2] that for any n,c > 2 the group
HP-P(X,,n) is generated by algebraic classes, thus in particular the surface Z, »
satisfies p(Z.2) = hl’l(chz). As a consequence of Proposition 5.2 we in fact
obtain:

Corollary 5.3. Forc > 2, the surfaceh : Z. 2 — P! is an extremal elliptic surface.

Proof. For the fibration h : Z.» — P! and for any v € P!, let F, denote the fiber
Rl (v) and let m, denote the number of components of F,. Define

R = {v € P! | F, is reducible}.
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The Shioda-Tate formula [25, Corollary 6.13] expresses the Picard number p(Z.2)
in terms of the reducible singular fibers and the rank r of the Mordell-Weil group
of f:Z:.2— P!

p(Zea) =24 (my—1)+r. (25)
VER

We know from Proposition 5.2 that / has two reducible singular fibers: one of
type I4.3¢ at 0 and one of type /3. at co. Therefore

Dmy -1 =43 -1+ (3 +4)=5-3+3.
veER
So then Eq. (25) becomes p(Z.2) =5-3+5+r.
We showed in the proof of Proposition 5.2 that xwp(Ze2) = 12(g + 1) =
6 -3¢ + 6. Since h10(Z.5) = h%1(Z,2) = 0 and h*0(Z. ) = h%%(Z.,) = g, it
follows that i1 (Z. 5) = 10(g+1) = 5-3°45. Thereforer = Oand p(Z. ) = h'!
(ZC,2)- O

5.5. The j-invariant of h: Z.p — P!

In order to eventually prove that the extremal elliptic surface &: Z., — P! is in
fact an elliptic modular surface, it will be necessary to first describe the j-invariant
of the fibration 4.

For an elliptic fibration ¢: § — C without multiple fibers, consider the ratio-
nal map j: C --» P! given by sending each point P € C such that ¢~!(P) is
nonsingular to the j-invariant of the elliptic curve ¢ ~! (P). This rational map j can
in fact be extended to all of C (see for instance [11]). The morphism j: C — P!
is called the j-invariant of the elliptic surface ¢: § — C.

If P € Cissuchthat ~!(P)is singular, then we have the following (reproduced
from [9]):

Fiber type over P J(P)
Iy # 00
[b,ll;k(b>0) 00
11,1V, IV* IT* 0
I, 11r* 1728

Lemma 5.4. For ¢ > 2, the j-invariant j: P! — P! of h: Zeo — P! is non-
constant.

Proof. From Proposition 5.2, all of the singular fibers of i: Z.» — P! are of type
I, or Ib* with b > 0. Hence the j-invariant of h: Z.» — P! satisfies Jj(P) =0
forall P € P! such that h~!(P) is singular. However, since generically for P € P!
the j-invariant j(P) is the j-invariant of the elliptic curve A~!(P), generically j
cannot be co. Thus j is non-constant. O
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Proposition 5.5. For ¢ > 2, the j-invariant j : P! — P! of h : Z., — P! has
degree 6 - 3¢ and is ramified at the points 0, 1728, and co. There are 2 - 3¢ branch
points above 0, all of ramification index 3. There are 3 - 3 branch points above
1728, all of ramification index 2. Finally, there are 2 branch points above 00, one
with ramification index 4 - 3¢ corresponding to the point 0 € P! and one with
ramification index 3¢ corresponding to the point oo € P'.

Proof. This follows directly from results of Mangala Nori in [20]. In particular,
Nori proves in [20, Theorem 3.1] that an elliptic fibration S — B with non-
constant j-invariant is extremal if and only if the fibration has no singular fibers of
type I, II, I11,or IV and its j-invariant is ramified only over 0, 1728, and oo
with ramification index e, for v € B satisfying e, = 1, 2, or 3 if j(v) = 0 and
ey =1lor2if j(v) =1.

We know from Corollary 5.3 that h: Z.» — P! is extremal and from Lemma
5.4 that it has non-constant j-invariant. Hence, it follows from [20, Theorem 3.1]
that j : P! — P! is ramified only over the points 0, 1728, and co. Moreover

deg(j) =Y b+ b,
Iy Ig‘

where the two sums occur over all the singular fibers of f of type I, and of type
1} respectively.

From Proposition 5.2, the fibration h: Z., — P! has one fiber of type I4.3c,
one fiber of type /3, and 3¢ fibers of type /1. Thus deg(j) = 6 - 3¢.

Now let

Ro=1{veP'|jw) =0)
Rins = {v e P' | j(v) = 1728).

If e, denotes the ramification index of a point v € P!, let

Ry= ) (ev—1)

veRy

Rimg= ) (e,—1)

veR 1728

Then since Proposition 5.2 implies that / has no singular fibers of type 11, I 1%,
II1,111*, 1V,or IV* Nori’s calculations in the proof of [20, Lemma 3.2] yield
the following three equations:

7 -deg(j
Ro+ Ri728 = Tg(]) (26)
2. deg(j
Ro — %(]) >0 @7)
deg(j)
Rims — —292 > 0 (28)
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Observe that z'dzg(j ) 4 degz(j ) — 7'deég(j). Therefore we must have equality in
Egs. (27) and (28). It follows that

2 deg(j .
Ry = —Zg(] LN (29)
deal
Ris = SEU) _ 3 5, (30)

Moreover, because equality holds in (27), Nori’s proof in [20, Lemma 3.2] implies
that deg(j) = 3|Ro|. Hence we have

|Ro|l =2 - 3€. (31)

Now from [20, Theorem 3.1], for any v € R, we must have e;, < 3. Hence using
(31), it follows that Ry < 4-3¢. But we have already shown in Eq. (29) that equality
holds, therefore we must have e, = 3 for all v € Ry.

Since Z. ; is extremal and  : Z., — P! has no singular fibers of type 111*,
Nori’s results [20, Theorem 3.1] also imply that e, = 2 for all v € R1728.

Finally, we know j has a pole of order b; at points v; € P! where the fiber over
v; is of type I, or of type I,;‘l_ . Hence the result follows from Proposition 5.2. O

5.6. Preliminaries on elliptic modular surfaces

We begin by giving a brief introduction to elliptic modular surfaces as defined by
Shioda [24]. Following Nori [20], for an elliptic surface ¢ : § — C with j-invariant
j: C — P!, let us define

C' = C\j 0, 1728, 0o}.

In particular, for every v € C/, the fiber F, = <p_l(v) is smooth. The sheaf
G = R'¢,Z on C is the homological invariant of the elliptic surface S. The
restriction of G to C’ is then a locally constant sheaf of rank two Z-modules.
Consider the monodromy homomorphism p: 7;(C’) — SL(2, Z) associated to
¢: S — C. Observe that p both determines and is determined by the sheaf G.
Conversely, let j: C — P! be a holomorphic map from an algebraic curve
CtoP'andlet C' = C\j'{0,1728,00}. Let H = {z € C | Im(z) > 0} be
the upper half-plane in C and consider the elliptic modular function J: H —
P\ {0, 1728, co}. Finally let U’ be the universal cover of C’. Then there exists a
holomorphic map w: U’ — H such that the following diagram commutes:

U ——H
| L (32)

c' —L PI\(0, 1728, c0}.

This map w thus induces a homomorphism o: 7{(C') — PSL(2, Z).
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Now suppose p: w1(C’) = SL(2,7Z) is a homomorphism making the follow-
ing diagram commute:

m(C') —— SLQ2.7)
N

PSL(2,7)

Then it is possible to construct a unique elliptic surface ¢ : § — C having j-
invariant given by the holomorphic map j: C — P! and having homological
invariant given by the sheaf G associated to the homomorphism p [11, Section 8].

So now consider any finite-index subgroup I' of the modular group SL(2, Z)
not containing —Id. Then I acts on the upper half plane H and the quotient I'\'’H,
together with a finite number of cusps, forms an algebraic curve Cr. For any other
such subgroup I/, if ' C I, then the canonical map I'\'H — I'"\'H extends to a
holomorphic map Cr — Crv. In particular, taking I'' = SL(2, Z) and identifying
Cr with P! via the elliptic modular function J, we get a holomorphic map

jr: Cr — P

Hence, as discussed, there exists a w: U’ — H fitting into a diagram (32) which
induces a representation p: m1(C’) — I' C PSL(2,Z), where T is the image of
I'in PSL(2, Z). Because I" contains no element of order 2, this homomorphism p
lifts to a homomorphism p: 1 (C’) — SL(2, Z), which then gives rise to a sheaf
GronCr.

Definition 5.6. [24] For any finite index subgroup I' of SL(2, Z) not containing
—Id, the associated elliptic surface ¢ : Sr — Cr having j-invariant jr and homo-
logical invariant Gt is called the elliptic modular surface attached to I'.

5.7. The surface Z. 3 is elliptic modular

We now return to considering the elliptic surface 4: Z., — P!. Let us define the
following elements Ag, Aj ..., Az, Axo of SL(2, Z) as elements of the following
conjugacy classes:

e[ weae (O] aee (W3]

Then consider the subgroup I'. of index 6 - 3¢ in SL(2, Z) with the following
presentation:

Fe:=(Ao, A1, ..., A3c, Aoo | AgA1 -+ A3zc Ao = 1d).

We remark that I'. is not a congruence subgroup as it does not appear on the list in
[7] of the genus 0 congruence subgroups of SL(2, Z) (see [6] for more details on
such subgroups).
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Theorem 5.7. For ¢ > 2, the surface Z. > is the elliptic modular surface attached
toI'..

Proof. In[20, Theorem 3.5], Mangala Nori proves that an extremal elliptic surface
¢: § — C with a section and with non-constant j-invariant is an elliptic modular
surface aslongas ¢ : S — C has no singular fibers of type I 1* or I I* in Kodaira’s
classification. Therefore, since the surface h: Z. 2 — P! is extremal (by Corollary
5.3), has a section (by Proposition 5.2), has non-constant j-invariant (by Lemma
5.4), and only has fibers of type I, and I;7 (by Proposition 5.2), we know Z is
indeed an elliptic modular surface.

So let T" be the finite-index subgroup of SL(2, Z) attached to Z. ». By Propo-
sition 5.5, the degree of the j-invariant of 4 : Z.» — P! is 6 - 3. Hence the group
I" has index 6 - 3¢ in SL(2, Z).

Now consider the j-invariant j : P! — P! of Z..», which we have investigated
in Proposition 5.5. Let C’ = P'\{0, 1728, co}.

Because Z,  is elliptic modular, its j-invariant induces a homomorphism

p:m(CY—=T CSLQ2,7).
Let us write the set
710, 1728, 00} = {v1, ..., vs).

By Proposition 5.5, we know s = 5 - 3¢ 4+ 2. For each point v; let «; be the
loop element in 71(C’) going around v;. Then 71 (C’) is the free group on these
generators «fp, . .., & subject to the relation (taken in cyclic order) a1 - - - oty = 1
[2, Lemma 2.1].

In [20, Proposition 1.4], Nori describes, for an elliptic surface S — C with
loop elements «; € 71(C) around v; € C, the possible values of p(«;) depending
on the values of j(v;). By Proposition 5.5, for our surface h: Z.» — P! all of the
points v; such that j (v;) = 0 have ramification index 3. Hence by [20, Proposition
1.4], for the corresponding «;, we have p(«;) = £Id. However since Z,. » is elliptic
modular, the subgroup I" cannot contain —Id. Hence, for all i such that j(v;) =0,
we must have p(o;) = Id.

Similarly, by Proposition 5.5 all of the points v; such that j(v;) = 1728 have
ramification index 2. But then by [20, Proposition 1.4], for all such i, we have
p(o;) = %Id and thus, in fact, p(¢;) = Id.

Therefore the only points v; € j~!{0, 1728, oo} that contribute non-identity
elements to ' are the points sent to co by j. These are exactly the points of P!
underneath the singular fibers of h: Z,» — Pl

From [24, Proposition 4.2], if a point v; has singular fiber of type I, with b > 0,

then
e[ (3]

If a point v; has singular fiber of type I with b > 0, then

pla) € [(‘Ol :’j)]
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Therefore, using Proposition 5.2, in the case of h: Z.» — P!, the point O con-
tributes a generator Ag of I" in the conjugacy class of

14.3¢
0 1

in SL(2, Z). Each point ¢, for ¢ a 3°th root of unity, contributes a generator A; 4
in the conjugacy class of

11

01)"

Finally, the point co contributes a generator A, in the conjugacy class of

(0 2):

Then T is the free group on these generators Ag, Ay, ..., Azc, Aso subject to
the relation

ApAp - Az A = 1d.

Hence we indeed have that I is the group I',. defined above. O

6. The threefold case

We now consider the case of the threefold X 3, which by construction is a smooth
model of the quotient X3 := Cg X Z¢2 /(¥ I'x @¢,2). For m sufficiently divisible
the rational map

f1CG - P c P(HO(CS, KEM)©
4
studied in Proposition 4.1 can be resolved to obtain a morphism
fiZes— P CPHZes, KZM)).

In this threefold case, since the abundance conjecture is known, we may assume
that Z. 3 is a minimal model of X 3. In order to study the fibration f, we will need
some information about the minimal model Z. » and its elliptic fibration studied in
Sect. 5.
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6.1. The rational map B: Cq x Zc» --» P(H* (X, 3, K%’m )
3
We now consider the product Cy; X Z. . As in (11), we have a diagram

Xey =mmmmmmn » P(HO(Xc3. KZ"))

T 7 (33)

Co X Zeny — ]P(HO(Cg X Zep, K?g”;ZC,Z))

Here the horizontal maps are the litaka fibrations and the vertical map on the left
is the quotient by the group (¢, I'x Dc2).
We then consider the composition

B:Cyx Zep —-> P(H(Xe3. KZ")).

Recall from Theorem 3.3 that global sections of K ?m are of the form x%w for
0 < a < m(g—1). Moreover, from the proof of Proposition 3.4, global sections s,
of K S"; for 0 < a < m(g — 1) correspond to global sections of K ?Zm of the form

x{w1 x x§w;. Hence we may view B: Cg X Zg 5 --» P(H(X. 3, K%m})) as the

rational map given by

(21,22, 23) = [w1(z1) X s0(22, 23) : (x101)(21) X 51(22, 23)

S V01 (21) X Smig—1y (22, 23)] (32)

6.1.1. The images of Cq¢ x T and Cy x § Our main interest here will be the
images under g of the surfaces of the form C; x T and Cg x S'in Cg x Z », where
recall from Sect. 5.1 that 7 and S are the rational curves with self-intersection
—2 and —(g + 1) respectively in the resolution of the Type II singular points of
CexCo/(Yy Iy ¥¢). We provide a pictorial representation of the main facts about
these images in Fig. 2 below, where one color represents regions sent to 0, one
color represents regions sent to oo, and one color represents regions where f is
undefined.

Begin by considering the elliptic fibration h: Z., — P! from Sect. 5. As
discussed in the proof of Proposition 5.2, the map 4 sends each curve T to the point
oo in P!, while the curves S corresponds to sections of /. In particular, there exists a
mapo: P! — Ssuchthathoo = Idp: . In particular, for local coordinates (z2, z3)
on S, wehave so(z2, z3) = Oifand onlyif (z2, z3) = o (00) and s, (4—1)(22,23) =0
if and only if (z2, z3) = 0 (0).

Moreover, as discussed in the proof of Proposition 4.1, the only points of Cg
on which the form xfa)l can vanish are the points P;, P, and Q. More precisely, as
established in (12)—(14), we have x{w;(P;) = Oifandonlyif 1 <a <m(g—1)
and x{w1(Q) =0ifandonlyif 0 <a <m(g—1) — L.

Let us first consider the surfaces of the form C, x T in Cy X Z. 3. We know
that the fibration : Z. > — P! sends the curve T to the point co, meaning that for
local coordinates (z2, z3) € T we have s,,;(;—1)(22, 23) # 0 and s4(z2, z3) = 0 for
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Q
Cg
P;
a(0)
S
B
[ L ]
0 00
]P>1

Fig. 2. Images of Cg x S and Cg x T under 8

all other 1 < a < m(g — 1) — 1. In particular, using the description of g in (32),
for any point W € Cg such that W # P; fori € {1, 2}, we have B(W x T) =
[0:.. : 1], which corresponds to the point oo € P! ¢ P(H(X, 3, K®m )).

In other words, we have 8((C; — {P1, P2}) x T) = oo and B is not defined on the
curves Py x T and P, x T.

Now consider the surfaces of the form C; x Sin Cg x Z. 5. Let U = Cy —
{P1, P2, Q}. Then since x{ w1 does not vanish on U forany 0 < a < m(g—1) and
f> sends S surjectively onto P!, we have that 8 sends U x S surjectively onto P!.
In particular, we have S(U x ¢(0)) = 0 and S(U x o(00)) = 00

It thus remains to determine what happens to the curves of the form P; x §,
P, x §,and Q x S. However we know that for local coordinates (z3, z3) on S, we
have so(z2, z3) = 0 if and only if (z2, z3) = 0(00) and s,,(g—1)(22, z3) =(0ifand

only if (z2, z3) = 0(0). It follows that B(P; X (S—o(00)) =[1:0: : 0], which
corresponds to the point 0 € P! ¢ P(H(X . 3, K®’” )), and B(Q x (S —0(0)) =
[0:---:0: 1], which corresponds to the point co € P!. Hence the only points

of Cy x S on which B is not defined are the points Q x o(0) and P; x o (c0) for
i e{l,2}.

Note however that since the curves S and T intersect at the point o (c0) € S,
the assertion that § is not defined at the points P; x o (00) is already covered by
the previous assertion that 8 is not defined on the curves P; x T.
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In summary, we have established the following about the rational map 8: C, x
Zeo ——» P!

(1) BUCg —={P1, P2}) xT) =00
(2) Bsends (Cg — {P1, P2, Q}) x § surjectively onto P! and in particular
(@ BU x0(0) =0
() BU x 0(00)) =00
(3) B(P; x (S —o0(c0)) =0fori e (1,2}
@) B(Q x(S—0(0) =00
(5) B is undefined on the curves P; x T and P> x T and on the point Q x o (0)

6.2. The K3 fibration f : Zey —> P!

We will now use this understanding of the rational map f in order to show that the
fibration f: Z.3 — P! is indeed a K3 fibration.

Theorem 6.1. For ¢ > 2 and m sufficiently divisible, the general smooth fibers of
the fibration

fiZes— P CPHZe3, KS™))

are K3 surfaces with Picard rank 19. Moreover, the fibers of f above the 3¢ roots
of t*° + 1 are (possibly singular) K3 surfaces with Picard rank 20.

Proof. Fort e P!, let F; be a general smooth fiber of the fibration f 2 Ze3z —> Pl
In order to show that F; is a K3 surface of Picard rank 19 we will identify a
configuration of 21 curves on F; whose intersection matrix has rank 19. Since the
Picard rank p of a general smooth fiber of f can be at most 19, this yields that
p(Fi) =19.

We will identify these 21 curves on F; by first identifying 21 hypersurfaces in
Z. 3 that surject onto P! via f . Begin by considering the diagram (33) and, using
the notation of Sect. 6.1.1, two hypersurfaces of the form C, x T and C, x S in
Cg x Zcp. Asin Sect. 6.1.1, let o': P! — S denote the section corresponding to
the curve S of the ellitpic fibration fo: Z. 2 — P!. Hence the surfaces of the form
Cg; x T and C, x § intersect along the curve C, x 0 (00).

Recall the calculations of Sect. 6.1.1 about the images of the surfaces C; x T
and C, x S under the rational map

B: Cyx Zep — P(H(Cy x Zep KBy )~ B! CP(H(Xe 3, K%"})).
In particular, recall that we established that the open subset
(Ce x8) —{P1 x0(0), P, x0(0), 0 xo(c0)} CCq xS

is sent surjectively onto P! by 8. Consider the image of this open subset in Z 3
and let G denote its closure. Then by the diagram (33) and since f: Z; 3 — P! is
a morphism, we have that G C Z, 3 surjects onto P! via f.
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Consider the curve on the fiber F; given by y = F; NG. Recall that the curve S
in Z, > is obtained from a point of the form P; x Q in Cg. In particular, the surface

g lies in the image in Z. 3 of the curve C, x P; x Q in Cg. As discussed in the
proof of Proposition 4.1, the fiber F; arises as the image in Z,. 3 of the hypersurface
F; in Cf, cut out by the equation xjxx3 = ¢. Note that the intersection of F; and
the curve Cg; x P; x Q has dimension 0. Hence the curve y is contracted to a point
in the singular variety C ; /G.

Now note that from the construction of the fibration f as the litaka fibration
of Z. 3 we know that the fiber 7; has Kodaira dimension 0. In particular, from the
classification of algebraic surfaces, we know that Kz, is torsion. It follows from
the adjunction formula that because y is a curve on J; that can be contracted to a
point, the curve y must be rational with self-intersection —2.

Hence we have identified a rational (—2)-curve on the fiber F; arising from a
curve of the form C, x P; x Q in C;. Symmetrically, any permutation of these
factors will also yield a (—2)-curve on JF;. There are thus 6 such curves for each
choice of i € {1, 2}, meaning there are 12 such curves total on F;.

Now recall from Sect. 6.1.1 that the rational map S is not defined on curves of the
form P; x T and P> x T and on the point Q x ¢ (0). In order to understand the images
of these in Z. 3, we would like to understand their action by the automorphism
Ve I x ¢¢,2. Recall the description of the local action of ¢, > on the curves T" and
S established in (16) of Sect. 5.2. Note in particular that the curve T lies in the
fixed locus of ¢, . Hence, the curves P; x T and P, x T lie in the fixed locus
of ¥, ' % ¢¢.2. Blowing-up this part of the fixed locus, will then yield exceptional
divisors of codimension 2 in Z. 3. Namely, the images in Z. 3 of the curves of the
form P; x T and P, x T will intersect F; in at most points and so will not contribute
to the Picard rank of F;.

It thus remains to consider the image in Z, 3 of a point of the form Q x ¢ (0).
From the description of the local action of ¢, 2 on S given in (16) of Sect. 5.2, we
have that Ve Ix ¢c.2 acts locally around the point Q x o (0) with Z/3Z-weights
(—g, 1, g). Note that this implies that Q x ¢ (0) is an isolated terminal singularity
in the quotient (Cy x Zc,z)/(lﬂg_1 X ¢¢2) [18, Remark 2.5(1)]. In particular, the
resolution of this point in Z. 3 has codimension 1. Moreover, we established in
Sect. 6.1.1 that the rational map f sends the curve (C; — Q) x o(0) to the point
0 € P! and sends the curve Q x (S — o (0)) to the point co € P!. Hence by
continuity since the morphism f : Ze3 — P! is defined everywhere, the resolution
of O x o(0) in Z, 3 surjects onto P! via f. In particular, this resolution contains
some hypersurface H surjecting onto P! via f.

Consider the curve on the fiber F; given by § = F; NH. Observe that since the
hypersurface H can be contracted to a point, so can the curve §. Hence as in the
case of the curve y, because Kz, is torsion, the adjunction formula yields that § is
a rational (—2)-curve on F;.

Hence we have identified a rational (—2)-curve on JF; arising from a point of
the form Q x P; x Q in Cg. Symmetrically, any permutation of these factors will
also yield a (—2)-curve on F;. There are thus 3 such curves for each choice of
i € {1, 2}, meaning there are 6 such curves total on F;.
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Thus for the moment we have identified 18 rational (—2)-curves on JF;, where
for each choice of i € {1, 2}, there are 9 such curves: six of the form y and three
of the form §. We now determine the configuration of these 18 curves.

For a given choice of i € {1, 2}, let y1, ..., ¥ denote the six (—2)-curves on
F; associated respectively to the curves Cy X P; x Q, P; x Cg x Q, P; x O x Cy,
Ce X Q X Pi, Q x Cg x Pi,and Q x P; x Cg in C}. Let 81, 82, and §3 denote
the three (—2)-curves on F; associated respectively to the points P; x Q x Q,
OxQOxP,and Q x P, x QinC 2 . Hence y; meets y», which possibly meets
81, which possibly meets y3, which then meets y4, which possibly meets 6;, which
possibly meets y5, which then meets yg, which possibly meets 83, which possibly
meets y;. Let M denote the configuration matrix of these 9 curves y1, y2, 81, ¥3,
V4, 82, vs, Ye. If all of the §; meet their neighboring y, then these 9 curves form a
cycle which has intersection matrix the rank-8 circulant matrix

-2 1 0 0 0 0 0 0 1
1 -2 1 0 0 O O O O
o 1 -2 1 0 0 0 0 O
o o0 1 -2 1 0 0 0 O
o o0 o0 1 -2 1 0 O O
o o0 o0 o0 1 -2 1 0 O
o o0 o0 o0 o 1 -2 1 0
o 0 0 o0 o o0 1 -2 1
!1 0 0 0 O 0O 0 1 =2

Note thatif any of the §; fail to meet a neighboring yy, then the resulting intersection
matrix M has rank 9. Namely, we have rank (M) > 8. Note that this already yields
that the Picard rank p of the fiber F; is at least 16. Since we know the surface F;
has Kodaira dimension 0, it follows from the classification of algebraic surfaces
that F; is a K3 surface.

We now identify three additional curves on the smooth fiber ;. Consider the
three classes in Pic(Cg) given by [pt x Cy x Cgl, [Cg x pt X Cg], and [Cy x
C, x pt]. Note that these classes are G-invariant and thus each descends to yield a
hypersurface class in Z. 3. Denote these three hypersurface classes by [ D], [D2],
[D3]. Moreover, a general hypersurface H € [ D;] intersects the smooth fiber F; in
acurve ;. Note that the curve &; will not intersect any of the previously identified
(—2)-curves of the form y or §. Moreover since the fiber F; arises as the image in
Z. 3 of the hypersurface F; in C; cut out by the equation xjx3x3 = ¢, it follows
that .6, = 2 where the two intersection points correspond to the two points of
C, with the same x-value. Thus we need only compute the self-intersections 8? for
je{l,2,3}

To compute these self-intersections SJZ-, let us without loss of generality consider
the curve ¢1 = H N F; for H a general hypersurﬁace in [Dq], where [ D] arises
from the class [pt x C; x Cg] in Pic(Cg). Let H € [pt x Cg x Cg] be in the
preimage of H in C ;’ and let €] = F; N H be in the preimage of &, where recall

that F; arises as the image in Z. 3 of the hypersurface F; in C;’ . Let €1 be the
image of €1 in C4 x Z». Namely, we have a sequence of Z/3°Z-quotients given
by T — & — €.
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Suppose that for H e [pt x Cg x C,] the chosen point in the first factor is
given by local coordinates (xi, y;) = («o, Bo). Then the curve €1 in C 2 is cut out
by the equations x; = «g and xpx3 = % (note that we may assume oy # 0). This
yields an isomorphism between the image curve g1 in Cy X Z, > and the fiber of
the two-dimensional litaka fibration f2: Z.» — P! above the point Olt_() e Pl.In
particular, the curve €1 has genus 1. It follows that the curve €1 has genus at most
1.

However, since the curve g1 lies on the surface F;, which we have established
is a K3 surface, the adjunction formula yields

K¢ =(Kr, + H)lp = H|g.

In particular, we have 2g(e1) — 2 > 0, meaning that g(e1) > 1. Hence the curve ¢
has genus equal to 1. Applying the adjunction formula on a K3 surface again then
yields that ¢ has self-intersection 0. An identical argument yields that the same is
true of the curves &, and 3.

Therefore, the intersection matrix of the configuration of three curves €1, &3,
and &3 is the rank 3 matrix

02 2
N=120 2
220

Namely, we have identified a configuration of 21 curves on a general smooth
fiber F; of the fibration f: Z.3 — P! having intersection matrix

M 0 O
I=|0 M O
0 0 N

In particular, the matrix / has rank at least 8 + 8 + 3 = 19, so the Picard rank p of
F; is at least 19. However, since the fiber F; varies with z, we know that p(F;) is
at most 19, meaning we have p(F;) = 19.

The statement about the fibers of f above the roots of 3° + 1 follows from
Proposition 4.1 and its proof. Indeed, we know that a fiber of f: Cg /G - Pl C

P(HO(C3, K?;”))G above a point ¢ € P! such that £3° + 1 has an isolated singular
8

point at the image in Cg/G of a point in Cg3 of the form ((x1, 0), (x2, 0), (x3, 0)),
where the x; are of the form £2vit] for £ a primitive 2 - 3°th root of unity and
0 < y; <3¢ — 1. In particular, x; # %1 and so while the corresponding point in
CS, /G 1is a singularity of the fiber of f, it is not a singular point of C;’ /G. Thus
depending on the birational model Z. 3, such a point either remains a singular
point of the fiber of f above ¢’ or aquires a curve resolving the singularity. Since
the fibers of f above ¢! contain the configuration of 21 curves identified above,
it follows that the (after possible resolving the singular point), these fibers have
Picard number 20. O
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6.3. Moduli of K3 surfaces

Here we follow [22, Section 2.3]. Recall that if S is an algebraic K3 surface then
the group H2(S, Z) together with its intersection pairing has the structure of a
unimodular lattice isometric to the K3 lattice

A=Es(-D)®? o U®,

where Eg is the unique postive-definite, even, unimodular lattice of rank 8 and U is
01
10

map to the coarse moduli space given by the quadric in P?!

the hyperbolic plane given by U := ( ) Moreover, there is a surjective period

Q={lw] e PARC | (w,w) =0, (v, w) > 0}.

Namely if ws € H>?(S), then wy yields a class in €2 and conversely every point in
Q2 is the period point of some K3 surface. If L C A is some sublattice of signature
(1, p — 1), then the subspace

Qp ={lw]l € 2| (w,A) =0forall A € L}

has dimension 20 — p = 20 — rank(L).

If L is the Neron-Severi group NS(S) := H*(S,Z) N H"1(S) and p = 19,
then the embedding of the transcendental lattice Ts := N S ()L in A is unique up
to an isometry of A [17, Corollary 2.10] and the moduli curve 2; is determined
by Ts.

Note moreover that in this case, the CM points of the curve 2; correspond to
singular K3 surfaces, meaning K3 surfaces with Picard rank 20 whose Neron-Severi
group contains the Neron-Severi group of a general member of the curve 2y .

We thus obtain the following corollary from Theorem 6.1.

Corollary 6.2. The one-dimensional family f : Zey — P! of K3 surfaces of Picard
rank 19 is a finite cover of the universal family of the moduli curve Q r, isomorphic
to P! parametrizing K3 surfaces with transcendental lattice TF,, where F; denotes
a general fiber of f, and the fibers of f at the 3¢ roots of the polynomial t>° + 1
correspond to CM points of Qr,.
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