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Abstract. We study the geometry of a class of n-dimensional smooth projective varieties
constructed by Schreieder for their noteworthy Hodge-theoretic properties. In particular,
we realize Schreieder’s surfaces as elliptic modular surfaces and Schreieder’s threefolds as
one-dimensional families of Picard rank 19 K3 surfaces.

1. Introduction

If X is a smooth complex projective variety of dimension n, then for any
k ≤ 2n, the singular cohomology of X comes equipped with a decomposition
into complex subspaces given by Hk(X,Q) ⊗ C ∼= ⊕

p+q=k H
p,q(X), where

H p,q(X) ∼= Hq(X,!p
X ). In [23], Schreieder considered the question of whether

any set of Hodge numbers h p,q := dim H p,q(X), subject to the necessary symme-
tries imposed by the Hard Lefschetz Theorem, can be realized by a smooth complex
projective variety.

To this end, Schreieder [23, Section 8] constructed, among others, n-
dimensional smooth projective varieties Xc,n , depending on a parameter c ≥ 1,
with particularly pathological Hodge numbers in that Xc,n has positive hn,0 = h0,n

and all other h p,q = 0 for p %= q. The Xc,n are smooth models of a quotientCn
g/G,

for Cg a genus g = 3c−1
2 hyperelliptic curve and G a finite group.

Schreieder’s construction generalized a construction of Cynk and Hulek in [5,
Section 3] in the c = 1 case, who proved that the X1,n are Calabi–Yau. From
Cynk and Hulek’s inductive construction, it follows that the X1,n may be real-
ized as families of Calabi–Yau varieties over P1. Additionally, they proved that
these Calabi–Yau varieties are modular, a result which was generalized to all of
Schreieder’s varieties in [8, Corollary 3.8].

In addition to having these noteworthy Hodge-theoretic and arithmetic proper-
ties, the varieties Xc,n are also special froma cycle-theoretic point of view.Laterveer
and Vial recently showed in [15] that the subring of the Chow ring of Xc,n gen-
erated by divisors, Chern classes, and intersections of two positive-dimensional
cycles injects into cohomology via the cycle class map. Moreover they show that
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in the surface case, the small diagonal of Zc,2 admits a decomposition similar to
that of K3 surfaces proved by Beauville–Voisin [3].

In this paper, we investigate in detail the geometry of the varieties Xc,n for
c > 1. We generalize Cynk and Hulek’s result for the c = 1 case by showing in
Proposition 4.1 that for any c ≥ 2, although Xc,n has Kodaira dimension 1 instead
of 0, the Iitaka fibration of Xc,n equips the variety Zc,n , birational to Xc,n , with a
fibration over P1 by hypersurfaces of Kodaira dimension 0.

In particular, in the cases of dimension n = 2 and n = 3, we obtain a moduli-
theoretic interpretation of Schreieder’s varieties via the following two main results.

Theorem. (5.7) For c ≥ 2, the minimal model Zc,2 of Xc,2 is the elliptic modular
surface attached to an explicit non-congruence subgroup "c ⊂ SL(2,Z).

Theorem. (6.1) For c ≥ 2, the general smooth fibers of the Iitaka fibration Zc,3 →
P1 associated to Xc,3 are K3 surfaces of Picard rank 19.

The notion of an elliptic modular surface is due to Shioda [24], who attaches
to any finite index subgroup " of SL(2,Z) not containing −Id a corresponding
extremal elliptic surface S" . This S" is fibered over the modular curve C" , given
by "\H together with finitely many cusps, such that S" is a universal family for the
moduli space of elliptic curves parametrized by the curve C" . Therefore, Theorem
5.7 implies that the surface Zc,2 is a universal family for the moduli curve C"c .

In terms of the threefold Zc,3 fibered by K3 surfaces of Picard rank 19, for S a
general smooth K3 fiber, consider the Neron-Severi group NS(S) := H2(S,Z) ∩
H1,1(S) and the transcendental lattice TS = NS(S)⊥ in H2(S,Z). Because NS(S)
has rank 19, it follows from results of Morrison [17] and Nikulin [19] that there is a
unique moduli curve parametrizing the K3 surfaces with this fixed transcendental
lattice TS . Hence, in analogy with our result in the two-dimensional case, Theorem
6.1 implies that the threefold Zc,3 may be viewed as a finite cover of the universal
family of the moduli curve parametrizing K3 surfaces with this transcendental
lattice (see Corollary 6.2).

More generally, it would be interesting to see if for any n ≥ 2 the Iitaka fibration
Zc,n → P1 is a finite cover of the universal family of themoduli curve parametrizing
Calabi–Yau varieties with some fixed Hodge-theoretic data. However, the singular-
ities of the quotient Cn

g/G are non-canonical and thus understanding the geometry
and Hodge theory of these fibers becomes difficult as n grows.

The organization of the paper is as follows. In Sect. 2 we outline Schreieder’s
construction in [23] of the varieties Xc,n . Then in Sect. 3 we show that that for c ≥ 2
the varieties Xc,n have Kodaira dimension 1. In Sect. 4 we analyze the geometry
of the Iitaka fibration of Xc,n , proving that its image is the curve P1. In Sect. 5, we
focus just on the n = 2 case and analyze in detail the elliptic fibration resulting from
the Iitaka fibration studied in Sect. 4 and show that it equips Zc,2 with the structure
of an elliptic modular surface. Lastly in Sect. 6 we focus on the n = 3 case, proving
that the smooth fibers of the Iitaka fibration Zc,3 → P1 are K3 surfaces of Picard
rank 19 and discussing the moduli interpretations of this result.
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2. Construction of Xc,n

For a fixed c ≥ 2 consider the complex hyperelliptic curve Cg of genus g = 3c−1
2

given by the smooth projective model of the affine curve

{y2 = x2g+1 + 1}.

obtained by adding a point at ∞. This point is covered by an affine piece {v2 =
u2g+2 + u}, such that x = u−1 and y = v · u−g−1. One may verify that x is a local
coordinate in the patch {y2 = x2g+1 + 1} and that v is a local coordinate in the
patch {v2 = u2g+2 + u}.

Fix ζ a primitive 3cth root of unity. The curve Cg then comes equipped with an
automorphism ψg of order 3c = 2g + 1 given by

(x, y) ,→ (ζ x, y)

(u, v) ,→ (ζ−1u, ζ gv).

Consider the action on the n-dimensional product Cn
g given by the group

G := {ψa1
g × · · · × ψan

g | a1 + · · · + an ≡ 0 mod 3c},

where the automorphism ψ
ai
g acts on the i th factor in the product. Note that G ∼=

(Z/3cZ)n−1.
The smooth projective variety Xc,n whose constructionwe detail below is then a

smoothmodel of the quotientCn
g/G. This n-dimensional variety Xc,n is constructed

inductively as a pair (Xc,n, φc,n), where φc,n is a distinguished automorphism of
Xc,n .

The inductive construction of (Xc,n, φc,n) detailed in [23, Section 8] pro-
ceeds as follows. Suppose the pairs of varieties and distinguished automorphisms
(Xc,n1 , φn1) and (Xc,n2 , φn2) have both been constructed. We then detail the con-
struction of the pair (Xc,n1+n2 , φc,n1+n2).

Consider the subgroup of Aut(Xc,n1 × Xc,n2) given by

H := 〈φ−1
c,n1 × id, id × φc,n2〉.

For each i = 1, . . . , c, consider the element of order 3i inside of H given by

ηi := (φ−1
c,n1 × φc,n2)

3c−i
.

Thus ηi generates a cyclic subgroup Hi := 〈ηi 〉 ⊂ H, which gives a filtration

0 = H0 ⊂ H1 ⊂ · · · ⊂ Hc = 〈φ−1
c,n1 × φc,n2〉

such that each quotient Hi/Hi−1 is cyclic of order 3.
Now, let

Y0 = Xc,n1 × Xc,n2 ,

Y ′
0 = Blow up of Y0 along FixY0(η1),

Y ′′
0 = Blow up of Y ′

0 along FixY ′
0
(η1).
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Observe that since the action of the group H restricts to an action on FixY0(η1), the
action of H on Y0 lifts to an action on Y ′

0 and then similarly to an action on Y ′′
0 .

Here, by abuse of notation, we let 〈η1〉 denote both the subgroups of Aut(Y ′
0) and

Aut(Y ′′
0 ) generated by the action of η1 ∈ H .

Define for i ∈ {1, . . . , c}:

Yi = Y ′′
i−1/〈ηi 〉,

Y ′
i = Blow up of Yi along FixYi (ηi+1),

Y ′′
i = Blow up of Y ′

i along FixY ′
i
(ηi+1).

Namely we have the following diagram

Y ′′
0 Y ′′

1 · · · Y ′′
k−1

Y0 Y1 Y2 Yk−1 Yk ,

where each arrow to the left in the above diagram corresponds to a sequence of
two blow-up maps and each arrow to the right corresponds to a 3:1 cover.

Schreieder proves in [23, Proposition 19] that each Yi+1 is a smooth model of
Yi/〈ηi 〉 and thus, in particular, the variety Xc,n1+n2 := Yc is a smooth model of
Y0/〈φ−1

c,n1 × φc,n2〉. The distinguished automorphism φc,n1+n2 on Xc,n1+n2 is then
defined to be the one induced by the automorphism id × φc,n2 on Y0.

The inductive construction of the pairs (Xc,n, φc,n) is then as follows. When
n = 1, the pair (Xc,1, φc,1) is the curve Xc,1 := Cg equipped with the distinguished
automorphism φc,1 := ψg . Hence, by the above construction, if one can construct
the pair (Xc,n, φc,n), one can construct the pair (Xc,n+1, φc,n+1). Namely one can
construct (Xc,n, φc,n) for all n ≥ 1.

3. The Kodaira dimension of Xc,n

For a smooth algebraic variety V and any m > 0, the mth plurigenus of V is
given by Pm = h0(V, K⊗m

V ). The Kodaira dimension κ of V is −∞ if Pm = 0
for all m > 0 and otherwise it is the minimum κ such that Pm/mκ is bounded. If
V has dimension n, then the Kodaira dimension of V is either −∞ or an integer
0 ≤ κ ≤ n.

In order to compute the Kodaira dimension of the variety Xc,n for c ≥ 2,
we thus wish to consider the plurigenera Pm = h0(Xc,n, K⊗m

Xc,n
) for m > 0. We

show in Proposition 3.4, by inducting on the dimension n, that the plurigenera Pm
grow linearly with m and hence that the varieties Xc,n for c ≥ 2 have Kodaira
dimension 1.

As detailed in Sect. 2, the variety Xc,n is constructed from Cn
g by a sequence

of blow-ups and quotients. We thus have an injection of global sections of powers
of the canonical bundle induced by the rational map Cn

g !!" Xc,n . To compute the
Pm , one then just needs to determine which of the G-invariant global sections of
K⊗m
Cn
g

descend to global sections of K⊗m
Xc,n

. To accomplish this, it is necessary first
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in Sects. 3.1 and 3.2 to establish what happens to global sections of powers of the
canonical bundle of Cn

g under blow-ups and quotients.
It is also necessary to understand the local action of the groupG and in particular

the relationship between the local action in the n-dimensional case in relation to
the n + 1-dimensional case. Thus in Sect. 3.3 we analyze the local action of the
automorphism φc,n on Xc,n . We then use this in Sects. 3.4 and 3.5 to identify
distinguished coordinate patches Rc and Sc on Xc,n on which we may describe
the vanishing of a form in H0(Xc,n, K⊗m

Xc,n
) in relation to the vanishing of the

corresponding form on Y0 := Cg × Xc,n−1.
The ingredients of Sects. 3.1–3.5 are then used in the proof of Proposition 3.4

to trace the vanishing of forms corresponding to global sections of powers of the
canonical bundle of Cn

g through the construction detailed in Sect. 2. We determine
that the only global sections of K⊗m

Cn
g

that descend to global sections of K⊗m
Xc,n

are

those of the form xa1ω1 × xa2ω2 ×· · ·× xanωn for 0 ≤ a ≤ m(g−1), where (xi , yi )

are coordinates on the i th factor in the product Cn
g and ωi = dx⊗m

i
ymi

, and hence the
Kodaira dimension of Xc,n is 1.

3.1. Forms under quotients

Recalling the notation from the construction of Xc,n in Sect. 2, consider the 3:1
cover maps fi : Y ′′

i → Yi+1, where Y ′′
i and Yi+1 have dimension n. The Riemann-

Hurwitz formula yields

KY ′′
i
= f ∗

i



KYi+1 +
∑

D∈Div(Yi+1)

aD − 1
aD

D



 (1)

where for each D ∈ Div(Yi+1), the number aD is the order of the group of auto-
morphisms of Y ′′

i fixing the components of f ∗
i D pointwise.

By construction, the group Hi+1/Hi acting on Y ′′
i is isomorphic to Z/3Z.

Namely for every irreducible divisor D ∈ Div(Yi+1), either aD = 1 or aD = 3.
Moreover, the irreducible D for which a = 3 are exactly the images of the irre-
ducible components of the exceptional divisors E ′′

i obtained from the blow-up
map Y ′′

i → Y ′
i , where it should be noted that it may happen that E ′′

i
∼= E ′

i . Let
E ′′
i,1 . . . , E

′′
i,ki

be the irreducible components of E ′′
i . Observe that since ηi+1 fixes

each of the E ′′
i, j , each component E ′′

i, j descends to an irreducible divisor on Yi+1.
Equation (1) then yields:

KY ′′
i
= f ∗

i
(
KYi+1

)
+

ki∑

j=1

2E ′′
i, j .

This gives:

K⊗m
Y ′′
i

−
ki∑

j=1

2mE ′′
i, j = f ∗

i

(
K⊗m
Yi+1

)
. (2)
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For an algebraic variety V with a coordinate patch (z1, . . . , zn) having the
standard action of Gn

m on Cn , we say that a pluriform ω is toric on the patch
(z1, . . . , zn) if the divisor of zeros of ω is invariant under the action of Gn

m .

Definition 3.1. A toric form ω on a coordinate patch (z1, . . . , zn) of an alge-
braic variety V has vanishing sequence (β1, . . . , βn) on the point (z1, . . . , zn) =
(0, . . . , 0) if ω vanishes to order βi along the hypersurface zi = 0.

Now consider an Hi+1-invariant pluriform σ on Y ′′
i . Suppose Y

′′
i has local coordi-

nates (z1, . . . , zn) around some E ′′
i, j fixed by the action of Hi+1 such that without

loss of generality E ′′
i, j is given by z1 = 0. Consider the point R = (0, . . . , 0) on

E ′′
i, j and suppose the vanishing sequence of σ on R is (α1, . . . , αn). Then, using

Eq. (2), the vanishing sequence of the descent of σ to Yi+1 has vanishing sequence
on the image of R in Yi+1 given by

(
1
3
(α1 − 2m), α2, . . . , αn

)
. (3)

3.2. Forms under blow-ups

Let V be an n-dimensional variety with local coordinates (z1, . . . , zn). Suppose
Z is a subvariety of V of codimension k ≥ 2 given locally by z1 = · · · = zk =
0. Suppose σ is a global section of K⊗m

V for m ≥ 1 with vanishing sequence
(α1, . . . , αk, 0, . . . , 0) on Z . Namely, the pluriform σ is given locally by

f (z1, . . . , zn)(dz1 · · · dzn)⊗m,

where the polynomial f has vanishing sequence (α1, . . . , αk, 0, . . . , 0) on z1 =
· · · = zk = 0.

Blowing up V at Z introduces new coordinates (z′1, . . . , z
′
k), with zi z′j = z j z′i

for all i, j . Hence, on the coordinate patch of the blown-up variety V ′ given by
z′i %= 0, we have coordinates

(z̃1, . . . , z̃i−1, zi , z̃i+1, . . . , z̃k, zk+1, . . . , zn),

where z̃ j =
z′j
z′i
and thus z j = zi z̃ j . Thus, locally around the exceptional divisor E ,

the pluriform σ pulls back to the pluriform:

zm(k−1)
i f (zi z̃1, . . . , zi z̃i−1, zi , zi z̃i+1, . . . , zi z̃k, zk+1, . . . , zn)

(dz̃1 · · · dz̃i−1dzid z̃i+1 · · · dz̃kdzk+1 · · · dzn)⊗m .

In the new coordinates (z̃1, . . . , z̃i−1, zi , z̃i+1, . . . , z̃k, zk+1, . . . , zn), consider
the point R = (0, . . . , 0). Then the vanishing sequence on R of the pullback of σ

to V ′ is given by:

(α1, . . . , αi−1,

k∑

l=1

αl + m(k − 1), αi+1, . . . , αn). (4)
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3.3. Local action of φc,n

Consider the curve Cg together with its action by the automorphism ψg . Observe
that the fixed set of the action of ψg on Cg consists of 3 points. Indeed, in the
coordinate patch given by {y2 = x2g+1 + 1} we have two fixed points

P1 : (x, y) = (0, 1) and P2 : (x, y) = (0,−1)

and in the coordinate patch given by {v2 = u2g+2+u}, we have a third fixed point

Q : (u, v) = (0, 0).

Now recall the construction of the variety Xc,n and its distinguished automorphism
φc,n from the curveCg and its automorphismψg detailed in Sect. 2. In the following
lemma, we detail the local action of φc,n and the corresponding vanishing of forms
on two particular coordinate patches on Xc,n .

Lemma 3.2. For any c ≥ 2 and n ≥ 1, there exist coordinate patches Un and Vn
on FixXc,n (φc,n), with local coordinates (u1, . . . , un) and (v1, . . . , vn) respectively,
satisfying:

(1) The automorphism φc,n acts with Z/3cZ-weights (0, . . . , 0, 1) on Un and
(0, . . . , 0, g) on Vn

(2) For any τ ∈ H0(Cn−1
g , K⊗m

Cn−1
g

) and σ ∈ H0(Cg, K
⊗m
Cg

) such that σ vanishes

to order α on the point P1 and to order β on Q, the global section of K⊗m
Xc,n

induced by the form τ ×σ vanishes to order α on the hypersurface un = 0 and
to order β on the hypersurface vn = 0

Proof. We proceed by induction on the dimension n. By the implicit function
theorem, one may verify that the coordinate x is a local coordinate in the patch
U1 on the curve Cg given by {y2 = x2g+1 + 1} and the coordinate v is a local
coordinate in the coordinate patch V1 given by {v2 = u2g+2 + u}. Hence the
automorphism φc,1 := ψg acts with Z/3cZ-weight 1 on U1 and weight g on V1.
Since FixXc,1(φc,1) = {P1, P2, Q}, this verifies the statement of the lemma in the
n = 1 case.

Assume the result holds in the n − 1 case and let Un−1 and Vn−1 be the cor-
responding coordinate patches on FixXc,n−1(φc,n−1). Now recall the inductive con-
struction of the pair (Xc,n, φc,n) from the pair (Xc,n−1, φc,n−1) detailed in Sect. 2.
Let Y0 = Cg × Xc,n−1 and consider the patches on FixY0(ψg × φc,n−1) given by

R0 := U1 × Vn−1 and S0 := V1 ×Un−1.

By assumption the automorphism ηc := ψ−1
g × φc,n−1 acts on these patches

respectively with Z/3cZ-weights

(−1, 0, . . . , 0, g) and (−g, 0, . . . , 0, 1)

and the automorphism id × φc,n−1 acts respectively with Z/3cZ-weights

(0, . . . , 0, g) and (0, . . . , 0, 1).
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Now consider the images of R0 and S0 along the sequence of blow-ups and
quotients detailed in Sect. 2. Observe that because η1 acts with weight 0 in all but
two of the local coordinates around R0 and S0, for each i ∈ {1, . . . , c} the fixed
locus of ηi on the images of R0 and S0 will have codimension at most 2.

When the codimension is less then 2, then the blow-up map is an isomorphism
and so the local weights are unaffected. When the codimension is exactly 2, the
blow-up map locally introduces new coordinates which we denote (r̃1, r̃n) and
(s̃1, s̃n) respectively.

Inductively, taking the r̃1 %= 0 and s̃1 %= 0 patches in the new blown-up coordi-
nates ensures that id×φc,n−1 still acts with weights (0, . . . , 0, g) and (0, . . . , 0, 1)
on these new patches. Moreover, the Z/3cZ-weights of id × φc,n−1 on the image
of these coordinate patches under the 3:1 quotient maps will be unaffected since
neither g nor 1 is divisible by 3.

Hence let Vn and Un be the coordinate patches on Yc := Xc,n obtained by
locally choosing the r̃1 %= 0 and s̃1 %= 0 patches respectively at each stage in
the sequence of blowups. It then follows that the image of id × φc,n−1 acts with
Z/3cZ-weights (0, . . . , 0, g) on Vn and (0, . . . , 0, 1) on Un . Since φc,n is exactly
the image of id×φc,n−1 in Xc,n , this finishes the first part of the proof. The second
part follows from the formulas in Eqs. (3) and (4). 45

3.4. The patches Rc and Sc on Xc,n

Consider the product Y0 := Cg × Xc,n−1 together with its actions by the auto-
morphisms ηi := (ψ−1

g × φc,n−1)
3c−i

. In particular, let us consider the action of
ηc = ψ−1

g × φc,n−1. We now use Lemma 3.2 to identify two distinguished patches
on Xc,n , which we will denote by Rc and Sc.

Let Un−1 and Vn−1 be the coordinate patches on FixXc,n−1(φc,n−1) and U1 and
V1 be the coordinate patches on Cg determined in Lemma 3.2. It follows that the
automorphism ηc acts with Z/3cZ-weights (−1, 0, . . . , 0, g) on R0 := U1 × Vn−1
and with Z/3cZ-weights (−g, 0, . . . , 0, 1) on S0 := V1 ×Un−1.

The blow-up map Y ′
0 → Y0 introduces new local coordinates (r̃1, r̃n) and

(s̃1, s̃n) respectively on R0 and S0 and ηc acts with weights

(−(g + 1), 0, . . . , 0, g)

on the r̃n %= 0 patch R′
0 of the strict transform of R0 and with weights

(−g, 0, . . . , 0, g + 1)

on the s̃1 %= 0 patch S′
0 of the strict transform of S0. Similarly, the blow-up map

Y ′′
0 → Y ′

0 introduces new local coordinates ( ˜̃r1, ˜̃rn) and ( ˜̃s1, ˜̃sn) such that ηc acts
with weights

(−(2g + 1), 0, . . . , 0, g) = (0, 0, . . . , 0, g)

on the ˜̃rn %= 0 patch R′′
0 of the strict transform of R′

0 and with weights

(−g, 0, . . . , 0, 2g + 1) = (−g, 0, . . . , 0, 0)
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on the ˜̃s1 %= 0 patch S′′
0 of the strict transform of S′

0.
Let R1 and S1 be the images of R′′

0 and S
′′
0 under the 3:1 quotient map Y ′′

0 → Y1.
Thenηc acts on R1 withZ/3c−1Z-weights (0, 0, . . . , 0, g) and on S1 withZ/3c−1Z-
weights (−g, 0, . . . , 0, 0).

In particular, the fixed locus under this ηc-action has codimension 1 in both
these patches. Namely the blow-up maps Y ′′

1 → Y ′
1 → Y1 are isomorphisms on R1

and S1. Inductively defining Ri and Si to be the images under the 3:1 quotient map
Y ′′
i−1 → Yi of Ri−1 and Si−1 respectively, we then have that in fact the blow-up

maps Y ′′
i → Y ′

i → Yi are all isomorphisms on the coordinate patches Ri and Si .
Namely, the coordinate patch Rc is obtained from R1 simply by performing

a sequence of c − 1 quotients by Z/3Z and the coordinate patch Sc is similarly
obtained from S1 by performing a sequence of c − 1 quotients by Z/3Z.

3.5. Vanishing of forms on Rc and Sc

In the notation of Sect. 3.4, consider a form σ with vanishing sequence (α1, . . . , αn)

on the point (0, . . . , 0) of the coordinate patch R0 and vanishing sequence
(β1, . . . , βn) on the point (0, . . . , 0) of the coordinate patch S0.

By Eq. (4), the form σ has vanishing sequences at the origins of R′
0 and S′

0
respectively given by

(α1, . . . , αn−1, α1 + αn + m) and (β1 + βn + m, β2, . . . , βn)

and vanishing sequences at the origins of R′′
0 and S′′

0 respectively given by

(α1, . . . , αn−1, 2α1 + αn + 2m) and (β1 + 2βn + 2m, β2, . . . , βn).

By Eq. (3), the form σ then has vanishing sequences at the origins of R1 and
S1 respectively given by

(α1, . . . , αn−1,
1
3
(2α1 + αn)) and (

1
3
(β1 + 2βn), β2, . . . , βn).

But as established in Sect. 3.4, the coordinate patch Rc is obtained from R1
simply by performing a sequence of c − 1 quotients by Z/3Z and the coordinate
patch Sc is similarly obtained from S1 by performing a sequence of c− 1 quotients
by Z/3Z. Hence it follows that σ has vanishing sequence at the origin in Rc given
by

(
α1, . . . , αn−1,

1
3

(
· · ·

(1
3

(1
3
(2α1 + αn) − 2m

)
· · ·

)
− 2m

))

=
(

α1, . . . , αn−1,
1
3c

(2α1 + αn − m(3c − 3))
)

(5)

and has vanishing sequence at the origin in Sc given by
(
1
3

(
· · ·

(1
3

(1
3
(β1 + 2βn) − 2m

)
· · ·

)
− 2m

)
, β2, . . . , βn

)

=
(
1
3c

(β1 + 2βn − m(3c − 3)), β2, . . . , βn

)
. (6)
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3.6. Kodaira dimension computation for Xc,n

We now make use of what we have established in Sects. 3.1–3.5 to prove in Propo-
sition 3.4 that the varieties Xc,n have Kodaira dimension 1. To do this we use the
following theorem of Köck and Tait.

Theorem 3.3. [13, Theorem 5.1] Let C be a hyperelliptic curve of genus g ≥ 2 of
the form y2 = f (x) and let ω ∈ K⊗m

C be given by ω = dx⊗m

ym . Then an explicit

basis for H0(C, K⊗m
C ) is given by the following:






ω, xω, . . . , xg−1ω if m = 1
ω, xω, x2ω if m = 2 and g = 2
ω, xω, . . . , xm(g−1)ω; yω, xyω, . . . , x (m−1)(g−1)−2yω otherwise

.

Proposition 3.4. For any c ≥ 2 and n ≥ 2, the variety Xc,n has Kodaira
dimension 1.

Proof. Fix some m > 0 and consider the form on the affine patch U1 := {y2 =
x2g+1 + 1} of the curve Cg given by

ω := dx⊗m

ym
.

By Theorem 3.3, we are interested in global sections of K⊗m
Cg

of the form xaω,
where 0 ≤ a ≤ m(g−1) or of the form xa yω, where 0 ≤ a ≤ (m−1)(g−1)−2.

Note that since the variable x is a local coordinate near the ψg-fixed points P1
and P2 of Cg , the form ω has order of vanishing equal to 0 at P1 and P2. Hence
both xaω and xa yω have order of vanishing equal to a at the fixed points P1 and
P2.

On the affine patch V1 := {v2 = u2g+2+u}, the variable v is a local coordinate
near the ψg-fixed point Q and the form ω is given by

(−1)dum(g−1)du⊗m

vm

The equation v2 = u2g+2+u yields 2v ·dv = ((2g+2)u2g+1+1)·du. Namely, du
and v vanish to the same order. Moreover, u has order of vanishing 2 with respect
to v, hence the order of vanishing of ω at the point Q is 2m(g − 1) = m(3c − 3).
Thus a form xaω = u−aω has order of vanishing at Q given by

m(3c − 3) − 2a

and a form xa yω = u−(a+g+1)vω has order of vanishing at Q given by

2m(g − 1) − 2(a + g + 1)+ 1 = m(3c − 3) − 2a − 3c.

Since global sections of K⊗m
Xc,n

inject into global sections of K⊗m
Cn
g
via the rational

map Cn
g !!" Xc,n , in order to prove that the varieties Xc,n have Kodaira dimension

1, it is enough to show that global sections of K⊗m
Xc,n

correspond to global sections
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of K⊗m
Cn
g

of the form xa1ω1 × xa2ω2 × · · · × xanωn for 0 ≤ a ≤ m(g − 1). Here we

implicitly use the natural map H0(Cg, KCg )
⊗n → H0(Cn

g , K
⊗m
Cn
g
).

More precisely we will show that any global section of K⊗m
Cn
g
which descends to

a global section of K⊗m
Xc,n

must be of the form xa1ω1×xa2ω2×· · ·×xanωn for 0 ≤ a ≤
m(g− 1). Since the number of such forms is linear in m, the Kodaira dimension of
Xc,n is at most 1. However, by construction, we have h0(Xc,n, KXc,n ) = g, where
we know g ≥ 4. In particular, this means P1 = h0(Xc,n, KXc,n ) is greater than 1, so
the Kodaira dimension of Xc,n is at least equal to 1. Hence, the Kodaira dimension
of Xc,n is exactly equal to 1.

In order to prove that any global section of K⊗m
Cn
g

which descends to a global

section of K⊗m
Xc,n

must be of the form xa1ω1×xa2ω2×· · ·×xanωn for 0 ≤ a ≤ m(g−1),
we will induct on the dimension n of the variety Xc,n .

So let us begin with the n = 2 case and consider Y0 = Cg × Cg . Let σ

be a global section of K⊗m
Y0

= K⊗m
C2
g

with vanishing sequence (α1, α2) on the

point (0, 0) = (Pi , Q) of R0 and with vanishing sequence (β1, β2) on the points
(0, 0) = (Q, Pi ) of S0, where R0 and S0 are the coordinate patches of Y0 defined
in Sect. 3.4. Then by Eqs. (5) and (6), the form σ has vanishing sequences

(
α1,

1
3c

(2α1 + α2 − m(3c − 3))
)

and
(
1
3c

(β1 + 2β2 − m(3c − 3)), β2

)

at the origins of the patches Rc and Sc respectively in Xc,2. Therefore, if σ cor-
responds to a global section of K⊗m

Xc,n
, it must have non-negative vanishing at the

origins of Rc and Sc and so

α1 ≥ 0 and 2α1 + α2 − m(3c − 3) ≥ 0. (7)

β2 ≥ 0 and β1 + 2β2 − m(3c − 3) ≥ 0. (8)

If σ is of the form xa11 ω1 × xa22 ω2, then (α1, α2) = (a1, 3(3c − 3) − 2a2) and
(β1, β2) = (m(3c − 3) − 2a1, a2). Hence after simplification, Equations (7) and
(8) yield a1 = a2.

If σ is the form xa11 ω1×xa22 y2ω2, then (α1, α2) = (a1, 3m(3c−1−1)−2a2−3c)
and (β1, β2) = 3m(3c−1−1)−2a1, a2). After simplification, Eqs. (7) and (8) yield
2a2 ≥ 2a2 + 3c, which is impossible. So no such σ can exist.

Finally, if σ is of the form xa11 y1ω1× xa22 y2ω2, then (α1, α2) = (a1, 3m(3c−1−
1)−2a2 −3c) and (β1, β2) = (3m(3c−1 −1)−2a1 −3c, a2). After simplification,
Eqs. (7) and (8) yield 2a2 ≥ 2a2 + 2 · 3c, which is impossible. So no such σ can
exist.

Therefore the only global sections of K⊗m
C2
g
that can correspond to global sections

of K⊗m
Xc,2

are those of the form xa1ω1 × xa2ω2 for 0 ≤ a ≤ m(g − 1), which finishes
the proof of the base case.

So assume that global sections of K⊗m
Xc,n−1

correspond to global sections of

K⊗m
Cn−1
g

of the form xa1ω1 × · · · × xan−1ωn−1 where 0 ≤ a ≤ m(g − 1). Letting
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Y0 = Cg × Xc,n−1, it follows that a global section ε of K⊗m
Y0

corresponds to a
global section of K⊗m

Cn
g

of the form

δ × xa2ω2 × · · · × xanωn,

where δ is a global section of K⊗m
Cg

.
We have established that the form xan−1ωn−1 has order of vanishing 0 at P1

and order of vanishing m(3c − 3)− 2a at Q. By Lemma 3.2 there exist coordinate
patches Un−1 and Vn−1 on FixXc,n−1(φc,n−1), with local coordinates (u2, . . . , un)
and (v2, . . . , vn) respectively, on which φc,n−1 acts with weights (0, . . . , 0, g) and
(0, . . . , 0, 1) respectively. Moreover the global section of K⊗m

Xc,n−1
corresponding to

the form xa2ω2 × · · · × xanωn has vanishing sequence at the point (u2, . . . , un) =
(0, . . . , 0) of the form

(γ2, . . . , γn−2, a)

for some non-negative γ2, . . . , γn−1 ∈ Z, and vanishing sequence at the point
(v2, . . . , vn) = (0, . . . , 0) of the form

(λ2, . . . , λn−2,m(3c − 3) − 2a)

for some non-negative λ2, . . . , λn−1 ∈ Z.
It follows that ηc := ψ−1

g × φc,n−1 has Z/3cZ-weights on R0 := U1 × Vn−1
and S0 := V1 ×Un−1 given by (−1, 0, . . . , 0, g) and (−g, 0, . . . , 1) respectively.

Let α1 be the order of vanishing of the form δ at the point P1 in U1 and let β1
be the order of vanishing of δ at the point Q in V1. Then, the form ε has vanishing
sequence at the point (0, . . . , 0) in R0 given by

(α1, λ2, . . . , λn−2,m(3c − 3) − 2a)

and vanishing sequence at the point (0, . . . , 0) in S0 given by

(β1, γ2, . . . , γn−2, a)

Suppose the form ε corresponds to a global section of K⊗m
Xc,n

. Then the vanishing
of ε on the patches Rc and Sc defined in Sect. 3.5 must be non-negative. So by
Eqs. (5) and (6):

1
3c

(2α1 − 2a) ≥ 0 (9)

1
3c

(β1 + 2a − m(3c − 3)) ≥ 0 (10)

Now by Theorem 3.3, the form δ is either of the form xbω, where 0 ≤ b ≤
m(g − 1) or of the form xb yω, where 0 ≤ b ≤ (m − 1)(g − 1) − 2.

In the first case, namely when δ is of the form xbω, we have α1 = a and
β1 = m(3c − 3) − 2b. Hence Eqs. (9) and (10) yield after simplification the
condition a = b.



Geometry of Schreieder’s varieties and some elliptic and K3 moduli curves 415

In the second case, namely when δ is of the form xb yω, we have α1 = a and
β1 = m(3c − 3)− 2b− 3c. Equations (9) and (10) then yield the conditions b ≥ a
and 2a − 2b − 3c ≥ 0, which is impossible.

Therefore, as desired, we have shown that if ε is a global section of K⊗m
Cn
g
which

descends to a global section of K⊗m
Xc,n

, then ε must be of the form xa1ω1 × xa2ω2 ×
· · · xanωn for 0 ≤ a ≤ m(g − 1). 45

4. The Iitaka fibration of Cn
g/G

Consider the Iitaka fibration of the quotient variety Cn
g/G

f : Cn
g/G !!" P(H0(Cn

g , K
⊗m
Cn
g
))G,

given by sending a point x to its evaluation on a basis ofG-invariant global sections
of K⊗m

Cn
g
. See [14, Section 2.1.C] for general facts on the Iitaka fibration of a normal

projective variety. ByProposition 3.4, the varietyCn
g/G and hence Xc,n hasKodaira

dimension 1, thus the image of f is a curve. Note that after passing to a resolution
f̃ : Zc,n → P(H0(Zc,n, K⊗m

Zc,n
)) for m sufficiently divisible, the smooth fibers of

f̃ have Kodaira dimension 0 (see [14, Theorem 2.1.33]).

Proposition 4.1. For any c ≥ 2, n ≥ 2, the rational map f : Cn
g/G !!"

P(H0(Cn
g , K

⊗m
Cn
g
))G has image P1. Moreover f has reducible singular fibers above

the points 0 and ∞ and has singular fibers with an isolated singular point above
the 3c roots of t3

c − (−1)n.

Proof. We have the following diagram:

(11)

where the horizontal map f ′ is the Iitaka fibration for Cn
g .

Consider the composition obtained from the above diagram

α : Cn
g !!" P(H0(Cn

g , K
⊗m
Cn
g
))G .

Recall from Theorem 3.3 that global sections of K⊗m
Cg

are of the form xaω
for 0 ≤ a ≤ m(g − 1). Observe that the only points of Cg on which the form
xaω can vanish are the points P1 : (x, y) = (0, 1) and P2 : (x, y) = (0,−1) in the
coordinate patch onCg given by {y2 = x2g+1+1} and the point Q : (u, v) = (0, 0)
in the coordinate patch given by {v2 = u2g+2 + u}. In fact, we have:

xaω(P1) =
{
dxm if a = 0
0 otherwise,

(12)
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xaω(P2) =
{
(−1)mdxm if a = 0
0 otherwise,

(13)

xaω(Q) =
{
(−1)m if a = m(g − 1)
0 otherwise.

(14)

Recall from the proof of Proposition 3.4 that G-invariant global sections of
K⊗m
Cn
g

are of the form

sa = xa1ω1 × · · · xanωn,

for 0 ≤ a ≤ m(g−1). Thus we may view the map α : Cn
g !!" P(H0(Cn

g , K
⊗m
Cn
g
))G

as the rational map sending:

(z1, . . . , zn) ,→ [s0(z1, . . . , zn) : · · · : sm(g−1)(z1, . . . , zn)].

Say that P(H0(Cn
g , K

⊗m
Cn
g
))G has coordinates [w0 : · · · : wm(g−1)]. Then on

the affine patch of P(H0(Cn
g , K

⊗m
Cn
g
))G given by w0 %= 0, the image of α is of

the form (t, t2, . . . , tm(g−1)), where t = x1(z1) · · · xn(zn). The images on the
other affine patches of P(H0(Cn

g , K
⊗m
Cn
g
))G take similar forms. Hence the image of

α : Cn
g !!" P(H0(Cn

g , K
⊗m
Cn
g
))G is the rational curve P1 from which it follows that

the image of f : Cn
g → P(H0(Cn

g , K
⊗m
Cn
g
))G is P1 as well.

Consider the codimension 1 subvarieties of Cn
g of the form Cn−1

g × Pi for
i ∈ {1, 2} up to permutation of factors. Observe from (12) to (14) that α sends the
open subset (Cg − Q)n−1 × Pi of such a subvariety to the point [1 : 0 : · · · : 0]
in P(H0(Cn

g , K
⊗m
Cn
g
))G , which corresponds to the point [1 : 0] in P1. Moreover for

the different permutations of the position of the Pi , the action of the group G on
Cn
g does not identify these various open subvarieties. Namely, the fiber of f above

the point [1 : 0] contains all 2n of these open subvarieties. In particular, the fiber of
[1 : 0] is singular and reducible.

Similarly, consider the n subvarieties ofCn
g of the formCn−1

g ×Q. Then α sends
the open subsets (Cg − {P1, P2})n−1 × Q of these subvarieties to the point [0 : 1]
in P1 and since the action of the group G does not identify these open subsets, they
all lie in the fiber of [0 : 1] under f . In particular, the fiber of [0 : 1] is singular and
reducible.

Now let us consider the fibers of α away from the points [1 : 0] and [0 : 1]
in P1. Note that away from these two points, the image of α is given by points
(t, t2, . . . , tm(g−1)), where t = x1(z1) · · · xn(zn) is not equal to zero. Hence the
fibers of α away from [1 : 0] and [0 : 1] are then the G-invariant hypersurfaces Ft
in Cn

g given by x1 · · · xn = t . In other words, these fibers are defined by the affine
equations in (A2)n :

(y21 = x2g+1
1 + 1, y22 = x2g+1

2 + 1, . . . , y2n = x2g+1
n + 1, x1 · · · xn = t),

(15)

where we are assuming t %= 0.
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On the affine patch we have described, such fibers Ft have Jacobian:




(2g + 1)x2g1 2y1 0 0 · · · 0 0
0 0 (2g + 1)x2g2 2y2 · · · 0 0
0 0 0 0 · · · (2g + 1)x2gn 2yn

x2 · · · xn 0 x1x3 · · · xn 0 · · · x1 · · · xn−1 0





Hence the fiber Ft is singular if y1 = · · · = yn = 0. When this is the case,
then for each i = 1, . . . , n we have that xi satisfies the equation x2g+1

i + 1 = 0,
namely xi is of the form ξ2γi+1, where ξ is a primitive 2 · 3cth root of unity and
0 ≤ γi ≤ 3c − 1. Namely we have

t = ξ(2(
∑n

i=1 γi)+m)

and so

t3
c = ξn·3

c = (−1)n .

In other words, it t ∈ C∗ is such that t3
c = (−1)n , then the fiber Ft is singular

and has singularities at the points of the form

((x1, y1), . . . , (xn, yn)) = ((ξ2γ1+1, 0), . . . , (ξ2γn+1, 0)).

Note that since ζ is an even power of ξ , the action of the group G permutes
these singular points on Ft . Namely, in the image of Ft in Cn

g/G these points are
all identified to a single singular point.

Note that if we consider some other affine patch of the fiber Ft , we substitute
in (15) equations of the form v2i = u2g+2

i + ui and then the equation x1 · · · xn = t
becomes

xi1 ···xik
u j1 ···u j2

= t . Considering the Jacobian as above yields that the fiber Ft

is singular if yi1 = · · · = yik = v j1 = · · · = v j2 = 0. Since
xi1 ···xik
u j1 ···u j2

= t ,
we know that none of the u jr can be equal to zero. Hence the points described
by yi1 = · · · = yik = v j1 = · · · = v j2 = 0 are in fact the same points as those
described by just y1 = · · · = yn = 0. Sincewe have already shown that these points
are identified to a single singular point in the image of Ft in Cn

g/G, it follows that
the image of Ft in Cn

g/G has a single singular point. 45

5. The elliptic surface case

We now focus our attention on the case when n = 2. In this case, for m sufficiently
divisible, the rational map f : C2

g/G !!" P1 ⊂ P(H0(C2
g, K

⊗m
C2
g
))G studied in

Proposition 4.1, can be resolved to yield an elliptic fibration f̃ : Zc,2 → P1. To
better understand this minimal elliptic surface Zc,2, we will make use of the fact
that minimal resolutions of cyclic quotient singularities are well-understood in
dimension 2.

The action of ηc = ψ−1
g × ψg on the product Cg × Cg has 9 fixed points: five

of the form (Pi , Pj ) or (Q, Q), which we refer to as Type I fixed points, and four
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of the form (Pi , Q) or (Q, Pi ), which we refer to as Type II fixed points. We will
also refer to these points as the Type I and Type II singular points, respectively, of
the quotient C2

g/G = (Cg × Cg)/〈ηc〉.
Observe that ηc acts around Type I fixed points with Z/3cZ-weights (−1, 1) in

the (Pi , Pj ) case and Z/3cZ-weights (−g, g) in the (Q, Q) case. Similarly ηc acts
around Type II fixed points with Z/3cZ-weights (−1, g) in the (Pi , Q) case and
Z/3cZ-weights (−g, 1) in the (Q, Pi ) case. In particular then, note that the Type
II singular points are non-canonical singularities.

5.1. Resolving the singular points of C2
g/G

To understand the resolutions of the singular points of C2
g/G, we make use of

established facts about surface cyclic quotient singularities and Hirzebruch–Jung
resolutions. A brief survey of these can be found in [12, Section 2.4] and more
detailed explanations can be found in [1,21].

Suppose the cyclic group Z/rZ acts on C2 via (z1, z2) ,→ (εz1, εaz2), for
some a coprime to r , where ε is a primitive r th root of unity. Then the minimal
resolution of the singularity at (0, 0) in the quotient C2/Z/rZ is encoded by the
continued fraction expansion:

r
a
= b0 − 1

b1 − 1
b2− 1

b3− 1···

.

More precisely, the minimal resolution of this singularity is a chain of s+ 1 excep-
tional curves E0, E1, . . . , Es with nonzero intersection numbers Ei .Ei = −bi and
Ei .Ei+1 = 1 [12, Proposition 2.32]. The sequence [b0, b1, b2, b3, . . . bs] is called
the Hirzebruch-Jung expansion of the singularity.

Therefore since ηc acts around Type I fixed points with Z/3cZ-weights (−1, 1)
and (−g, g), the Type I fixed points have Hirzebruch-Jung expansion

[2, . . . , 2]︸ ︷︷ ︸
(3c−1)−times

.

Thus the Type I singular points of C2
g/G are DuVal singularities of type A3c−1

whose minimal resolutions consist of a chain of 3c − 1 rational curves, each with
self-intersection −2.

Similarly, since the Type II fixed points are acted on by ηc with weights (−1, g)
and (−g, 1), the Type II singular points of C2

g/G have Hirzebruch-Jung expansion
[2, g+ 1]. Hence the minimal resolution of each Type II singular point consists of
a chain of two rational curves, one denoted T with self-intersection −2 and one
denoted S with self-intersection −(g + 1).
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5.2. Weights and vanishing on the curves T and S

Since the Type II singular points of C2
g/G are not canonical singularities, they

will be of special interest to us in understanding both the geometry of the surface
Zc,2 and of the threefold Zc,3. In this section, we thus pay special attention for use
later to the local action of the automorphisms ηc and φc,2 on the images of Type II
singular points in Xc,2 and Zc,2.

Without loss of generality, let us consider a Type II point on Cg × Cg of the
form Pi ×Q for some i ∈ {1, 2}. As discussed in Sect. 3.3, this point is covered by a
coordinate patch R0 with local coordinates (z0,1, z0,2) on which the automorphism
ηc = ψ−1

g × ψg acts with Z/3cZ-weights (−1, g) and the automorphism id × ψg
acts with Z/3cZ-weights (0, g).

After performing a sequence of two blow-ups along the fixed locus of ηc, we
have that ηc acts on the resulting coordinate patches with Z/3cZ-weights

(−1, g + 2) (−(g + 2), g + 1) (−(g + 1), 0) (0, g)

and hence that id × ψg acts with corresponding Z/3cZ-weights

(0, g) (−g, g) (−g, 2g) (−2g, g).

Note that coordinate patch on which ηc acts with weights (0, g) is exactly
the coordinate patch R′′

0 introduced in Sect. 3.4. We showed in that section that
the image Rc of R′′

0 in Yc is obtained by taking a sequence of c − 1 quotients
by Z/3Z since all subsequent blow-up maps will be isomorphisms on this patch.
Hence the automorphism ηc acts on Rc with weights (0, g) and the automorphism
id × ψg acts on Rc with weights (−2g, g) = (1, g). Moreover, since a global
section sa = xa1ω1 × xa2ω2 of K⊗m

C2
g

has vanishing sequence on Pi × Q given by

(a,m(3c − 3) − 2a), the form sa has vanishing sequence at the origin of Rc given
by (a, 0).

Now consider the coordinate patch T ′′
0 of Y ′′

0 on which ηc acts with weights
(−1, g + 2) = (−1, 3c+3

2 ). Let T1 denote the image of this patch after taking the
Z/3Z-quotient needed to pass from Y ′′

0 to Y1. Then ηc acts on T1 with weights(
−1, 3c−1+1

2

)
. Suppose that the sequence of two blow-ups needed to obtain Y ′′

0

from Y0 introduced new local coordinates [z′0,1 : z′0,2] followed by [z′′0,1 : z′′0,2]
such that the T ′′

0 patch is given by z′0,1 %= 0 followed by z′′0,1 %= 0.
Inductively, if the sequence of blowups Y ′′

i → Y ′
i → Yi introduces new local

coordinates [z′i,1 : z′i,2] and [z′′i,1 : z′′i,2], define Ti to be the image in Yi of the
z′i−1,1 %= 0 patch followed by the z′′i−1,1 %= 0 patch. Suppose ηc acts with weights(
−1, 3c−i+1

2

)
on Ti . Then after one blow-up ηc acts with weights

(
−1, 3c−i+3

2

)

on the z′i,1 %= 0 patch. Since − 3c−i+3
2 is divisible by 3, the blow-up Y ′′

i → Y ′
i

is an isomorphism on the z′i,1 %= 0 patch, and thus ηc indeed acts with weights(
−1, 3c−(i+1)+1

2

)
on Ti+1.

Hence by induction, we have that indeed ηc acts with weights
(
−1, 3c−i+1

2

)
on

Ti for each 1 ≤ i ≤ c and that to pass from Ti to Ti+1 we perform one non-trivial
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blow-up followed by one Z/3Z quotient. In particular, the automorphism ηc acts
with weights (−1, 1) on the patch Tc in Yc = Xc,2 and the automorphism id × ψg
acts with weights (0, g) on Tc.

Using the inductive construction of the coordinate patch Tc together with Eqs.
(3) and (4), we deduce that a global section of K⊗m

C2
g

with vanishing sequence

(α1, α2) on Pi × Q has vanishing sequence on the origin of Tc given by

(
1
3

(
· · ·

(1
3

(1
3
(α1 + 2α2)+ α2 − m

)
· · · + α2 − m

)
, α2

)

=
(
1
3c

(
α1 +

3c + 1
2

α2 − m
3c − 3

2

)
, α2

)
.

In particular, the form sa has vanishing sequence on the origin of Tc given by

(
1
2

(
m(3c − 3) − 2a

)
,m(3c − 3) − 2a

)
.

Now by construction of Yc = Xc,2, the image of the point Pi × Q in Xc,2
consists of a chain of rational curves, one extreme end of which is covered by the
patch Rc and the other extreme end of which is covered by the patch Tc. Passing
from Xc,2 to the minimal surface Zc,2 involves contracting all but the two extremal
curves in the chain, which become the curves T and S in Zc,2.

This chain of 2 curves, the curve T followed by the curve S, is then covered by
three coordinate patches: the patch Tc, a newpatchWc, and then the patch Rc. Hence
our calculations yield that the automorphism ηc acts respectively on these patches
with local Z/3cZ weights (−1, 1), (−1, 0), and (0, g) and that the automorphism
φc,2 = id × ψg acts respectively with weights

(0, g), (−g,−1), and (1, g). (16)

Moreover, our calculations together with Eq. (4) yield that the form sa has vanish-
ing sequence at the origins of the three coordinate patches Tc, Wc, and Rc given
respectively by

(
1
2

(
m(3c − 3)−2a

)
,m(3c−3) − 2a

)
,

(
0,

1
2

(
m(3c − 3) − 2a

))
, and (a, 0).

(17)

5.3. The canonical bundle KZc,2

From the above calculations we observe the following about the canonical bundle
KZc,2 of the minimal surface Zc,2.

Proposition 5.1. For c ≥ 2, the canonical bundle KZc,2 is basepoint free.
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Proof. Consider the rational map h : Zc,2 !!" P(H0(Zc,2, KZc,2)) induced by the
canonical bundle KZc,2 . Observe that h fits into a diagram

Zc,2 P(H0(Zc,2, KZc,2))

C2
g P(H0(C2

g, KC2
g
)),

h

(18)

where the horizontal maps are given by evaluation on forms sa := xa1ω1 × xa2ω2
for 0 ≤ a ≤ g − 1 and the rational vertical map on the left is the sequence of
blow-ups, blow-downs, and quotients needed to obtain Xc,2 from C2

g followed by
the birational map Xc,2 → Zc,2.

Observe that the points of C2
g on which all the sa vanish are exactly the Type II

fixed points. Thus to prove that KZc,2 is basepoint free, we just need to ensure that
not all of the sa vanish on the image in Zc,2 of a Type II fixed point. But the image
in Zc,2 of a Type II fixed point is the pair of curves T and S covered by the three
coordinate patches Tc, Wc, and Rc defined in Sect. 5.2. So the result follows from
Eq. (17). 45

5.4. The elliptic fibration h : Zc,2 → P1

It follows from Proposition 5.1 that the Iitaka fibration f̃ : Zc,2 → P1 ⊂
P(H0(Zc,2, K⊗m

Zc,2
)) obtained by resolving the rational map f : C2

g/G !!" P1 ⊂
P(H0(C2

g, K
⊗m
C2
g
))G studied in Proposition 4.1 may be obtained by letting m = 1.

In this case, we just obtain the map h : Zc,2 → P(H0(Zc,2, KZc,2)) from Proposi-
tion 5.1. In Proposition 5.2 below, we study in detail the geometry of this elliptic
fibration, which we illustrate in Fig. 1.

We make use of Kodaira’s classification, in [10,11], of the possible singular
fibers of an elliptic surface. For a survey of the possible fiber types, see [16, I.4]
and [25, Section 4].

As we will see, the two kinds of singular fibers that appear in the fibration h
are singular fibers of type Ib for b > 0 and singular fibers of type I ∗

b for b ≥ 0.
Singular fibers of type Ib consist of b smooth rational curves meeting in a cycle,
namely meeting with dual graph the affine Dynkin diagram Ãb. Singular fibers of
type I ∗

b consist of b+ 5 smooth rational curves meeting with dual graph the affine
Dynkin diagram D̃b+4.

Recall that each Type II singularity in the quotient C2
g/G yields two rational

curves T and S in Zc,2, where T has self-intersection−2 and S has self-intersection
−(g+ 1). Let δ1 = Q × P1, δ2 = Q × P2, δ3 = P1 × Q, and δ4 = P2 × Q denote
these four Type II singular points and let S1, S2, S3, and S4 denote each of their
respective −(g + 1)-curves in Zc,2 and T1, T2, T3, and T4 their respective (−2)-
curves in Zc,2.

In the dimension 2 case, Proposition 4.1 then yields:
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Fig. 1. The elliptic surface h : Zc,2 → P1

Proposition 5.2. For c ≥ 2, the elliptic surface h : Zc,2 → P1 has 3c + 2 singular
fibers: one of type I4·3c located at 0, one of type I ∗

3c located at∞, and the remaining
3c of type I1 and located at the points ζ i , for ζ a primitive 3cth root of unity. Addi-
tionally, each of the rational curves S1, S2, S3, and S4 coming from the resolution
of a Type II singular point corresponds to a section of f̃ .

Proof. Consider the diagram

Zc,2 P1 ⊂ P(H0(Zc,2, KZc,2))

C2
g/G P1 ⊂ P(H0(C2

g, KC2
g
))G

C2
g P(H0(C2

g, KC2
g
)),

h

f
(19)

where f is the rational map studied in Proposition 4.1 and the rational map
C2
g/G !!" Zc,2 on the top left of the diagram is obtained by resolution of sin-

gularities.
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By Proposition 4.1, the rational map f has singular fibers at 0, ∞, and ζ i in
P1. Thus we consider the fibers of h above these points. Let us begin by focusing
on the fibers of h above the points 0 and ∞.

Consider the rational map α : C2
g !!" P1 ⊂ P(H0(C2

g, KC2
g
)G from the proof

of Proposition 4.1. Recall that α may be viewed as the rational map given by
(z1, z2) ,→ [s0(z1, z2) : · · · : sg−1(z1, z2)], where sa := xa1ω1 × xa2ω2 for 0 ≤ a ≤
g − 1. We know that the points of C2

g on which all the sa vanish are exactly the
Type II fixed points.

For any set of points A on the curve Cg , let Cg − A denote the complement
in Cg of this set of points. Then from what we have established, we know that the
preimage under α of the point [1 : 0 : · · · : 0] consists of the union of open curves

(P1 × (Cg − {Q})) ∪ (P2 × (Cg − {Q}))
∪((Cg − {Q}) × P1) ∪ ((Cg − {Q}) × P2). (20)

Similarly, the preimage under α of the point [0 : · · · : 0 : 1] contains the union of
open curves

(Q × Q) ∪ (Q × (Cg − {P1, P2})) ∪ ((Cg − {P1, P2}) × Q). (21)

In particular, the image under α of the fixed points in C2
g of the form (Pi , Pj ) is

the point 0 in P1. Each such point has image in Zc,2 consisting of a chain of 3c − 1
rational curves and so by the Diagram (19), the fibration h : Zc,2 → P1 must send
all of these 3c − 1 rational curves to the point 0.

Moreover, using Diagram (19) in conjunction with Eq. (20), since h is a mor-
phismwemust have that the strict transforms in Zc,2 of the curves P1×Cg, P2×Cg,

Cg × P1, and Cg × P2 also get sent to 0. Note that the strict transform of Cg × Pj
will intersect the chain of rational curves resolving the singularity Pi × Pj at one
end of the chain and the strict transform of Pi × Cg will intersect the chain at the
other end of the chain.

Similarly, by Eq. (21) the image of the fixed point (Q, Q) in C2
g will be sent by

α to the point ∞ in P1. Since such a fixed point has image in Zc,2 consisting of a
chain of 3c − 1 rational curves, Diagram (19) yields that f must send all of these
rational curves to the point ∞.

Moreover, by Diagram (19) in conjunction with (21), since h is a morphism we
must have that the strict transforms in Zc,2 of the curves Q × Cg and Cg × Q get
sent to ∞ as well. Again, the strict transform of Q ×Cg will intersect the chain of
rational curves resolving the singularity (Q, Q) at one end and the strict transform
of Cg × Q will intersect the chain at the other end.

Therefore we have established that h sends to the point 0 in P1 the strict trans-
forms in Zc,2 of the curves

P1 × Cg, P2 × Cg, Cg × P1, and Cg × P2 (22)

and sends to the point ∞ the strict transforms of the curves

Q × Cg and Cg × Q. (23)
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Each of the four Type II fixed points δ1, δ2, δ3, and δ4 in C2
g has one of the

curves in (22) and one of the curves in (23) passing through it. Note for instance
that if δ j is of the form Q × Pi , then its resolution in Zc,2 intersects the curve
Q × Cg at the end of the curve Tj away from S j and intersects the curve Cg × Pi
at the end of S j away from Tj .

Moreover, by the adjunction formula, the curves on Zc,2 contracted by the map
h are exactly those with self-intersection −2, meaning that h contracts the curves
Tj and maps the curve S j to all of P1 for each 1 ≤ j ≤ 4. Since each curve S j
intersects either the curve Q × Cg or the curve Cg × Q, both of which get sent to
the point ∞ by α, it follows that f sends all the S j curves to∞ as well.

In summary, the fiber of h above the point 0 in P1 is a cycle consisting of the
four sets of 3c−1 rational curves coming from the resolutions of the points Pi × Pj
togetherwith the four curves in (22). Hence the fiber consists of 4(3c−1)+4 = 4·3c
rational curves and thus is a fiber of type I4·3c in Kodaira’s classification. Similarly,
the fiber above the point ∞ consists of the 3c − 1 rational curves resolving the
singularity Q × Q together with the curves in (23) and the four (−2)-curves T1,
T2, T3, T4. Hence, the fiber consists of a chain of 3c+1 rational curves, where each
curve on the ends of the chain has two additional curves coming off it. This is a
fiber of type I ∗

3c . See Fig. 1 for a pictorial representation of this arrangement.
It remains to identify the fibers of h occurring above the points ζ i . Note that

by the proof of Proposition 4.1 the fibers of f above the ζ i have a singularity at
the single point on the fiber which is the image in C2

g/G of the points in C2
g of

the form ((x1, 0), (x2, 0)), where the x j are of the form ξ2γ j+1 for ξ a primitive
2 · 3cth root of unity and 0 ≤ γ j ≤ 3c − 1. In particular, x j %= ±1 and so while
the corresponding point in C2

g/G is singularity of the fiber of f , it is not a singular
point of the surface C2

g/G. In particular, it remains a singular point of the fiber of h
above ζ i . So h has fibers with an isolated singular point above the points ζ i in P1.
To determine these fibers more precisely, note that from [4, Proposition 5.16], for a
complex elliptic surface ϕ : S → C with fiber Fv at v ∈ C havingmv components,
we have

χtop(S) =
∑

v∈C
e(Fv), (24)

where e(Fv) is 0 if Fv is smooth, is mv if Fv is of type In , and is mv + 1 otherwise.
Since the surface Zc,2 has q = 0 and geometric genus pg = g, its geometric Euler
number is g+1, and so by Noether’s formula χtop(Zc,2) = 12(g+1) = 6 · 3c+6.
Moreover, the identified fibers of h of type I4·3c and I ∗

3c above 0 and∞ respectively
contribute 4 ·3c+((3c+5)+1) = 5 ·3c+6 to the right hand side of Eq. (24). Hence
the 3c singular fibers of h with an isolated singularity contribute exactly 3c to the
right hand side of Eq. (24). It follows that mv = 1 for each of these singular fibers,
meaning that each such fiber is of type I1 in Kodaira’s classification, as claimed.
This completes the analysis of the singular fibers of h.

It thus only remains to verify that each of the curves S j for 1 ≤ j ≤ 4 corre-
sponds to a section of h. Since we know that h maps S j surjectively onto P1, it just
remains to verify that for each t ∈ P1 there is a unique s ∈ S j such that h(s) = t .
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Without loss of generality suppose that the point δ j is of the form Q × Pi , as
a symmetric argument will work for points of the form Pi × Q. Let t ∈ P1 and
consider the fiber Ft = h−1(t). Since we have already determined the points of
intersection of F0 and F∞ with S j we may assume t %= 0,∞.

NowFt is the image in Zc,2 of the curve Ft inC2
g given by the equation x1x2 = t .

Recall that Q × Pi is given in local coordinates by (v1, x2) = (0, 0) and so near
δ j the curve Ft is given by u−1

1 x2 = t . We may rewrite this as γ (v1)
−1x2 = t , for

γ (v1) a continuous function of degree 2 in v1. Hence, close to δ j , the curve Ft has
coordinates given by (v1, tγ (v1)). Thus the slope of Ft at δ j is limv1→0

tγ (v1)
v1

= 0.

It follows that the strict transform F ′
t of Ft in the blow-up of C

2
g at δ j intersects

the exceptional curve E ′
0 with coordinates [z′0,1 : z′0,2] at the point [z′0,1 : z′0,2] =

[1 : 0]. Taking the coordinate patch z′0,1 %= 0 yields local coordinates (v1, z′0,2)
and F ′

t intersects E
′
0 at the point (v1, z

′
0,2) = (0, 0). Moreover, near this point, the

curve F ′
t has coordinates (v1, z

′
0,2) =

(
v1,

tγ (v1)
v1

)
, since v1z′0,2 = z′0,1x2. Hence

the slope of F ′
t at the point (v1, z

′
0,2) = (0, 0) is limv1→0

tγ (v1)
v21

= t.

Since thepoint (v1, z′0,2) = (0, 0)gets blownup in the transformationY ′′
0 → Y0,

the strict transform F ′′
t of the curve F ′

t after this blowup intersects the exceptional
curve at the point with coordinate t . Moreover, observe that this point with coordi-
nate t is covered by the coordinate patch R′′

0 introduced in Sect. 3.4 and discussed
in more detail in the surface case in Sect. 5.2. Since the coordinate patch Rc in
Yc = Xc,2 is obtained from R′′

0 by a sequence of c − 1 quotients by Z/3Z, this
point corresponds to the point with coordinate t3

c−1
on the image of this exceptional

curve in Xc,2. But since this exceptional curve does not get contracted in passing
from Xc,2 to Zc,2 (see Sect. 5.2), this intersection point is also the point with coor-
dinate t3

c−1
on the image of this exceptional curve in Zc,2, which is just the curve

S j . It follows that the curve Ft intersects S j at the point of S j with coordinate
t3

c−1
. Hence s = t3

c−1
is the unique point in S j such that h(s) = t and therefore

S j indeed corresponds to a section of h. 45

The Mordell-Weil group of an elliptic fibration ϕ : S → C is the group of K -
rational points on the generic fiber of ϕ, where K = C(C). Such an elliptic surface
S is called extremal if it has maximal Picard rank ρ(S), meaning ρ(S) = h1,1(S),
and its Mordell-Weil group has rank r = 0.

Schreieder proves in [23, Section 8.2] that for any n, c ≥ 2 the group
H p,p(Xc, n) is generated by algebraic classes, thus in particular the surface Zc,2
satisfies ρ(Zc,2) = h1,1(Zc,2). As a consequence of Proposition 5.2 we in fact
obtain:

Corollary 5.3. For c ≥ 2, the surface h : Zc,2 → P1 is an extremal elliptic surface.

Proof. For the fibration h : Zc,2 → P1 and for any v ∈ P1, let Fv denote the fiber
h−1(v) and let mv denote the number of components of Fv . Define

R = {v ∈ P1 | Fv is reducible}.
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The Shioda-Tate formula [25, Corollary 6.13] expresses the Picard number ρ(Zc,2)

in terms of the reducible singular fibers and the rank r of the Mordell-Weil group
of f : Zc,2 → P1:

ρ(Zc,2) = 2+
∑

v∈R

(mv − 1)+ r. (25)

We know from Proposition 5.2 that h has two reducible singular fibers: one of
type I4·3c at 0 and one of type I ∗

3c at ∞. Therefore
∑

v∈R

(mv − 1) = (4 · 3c − 1)+ (3c + 4) = 5 · 3c + 3.

So then Eq. (25) becomes ρ(Zc,2) = 5 · 3c + 5+ r.
We showed in the proof of Proposition 5.2 that χtop(Zc,2) = 12(g + 1) =

6 · 3c + 6. Since h1,0(Zc,2) = h0,1(Zc,2) = 0 and h2,0(Zc,2) = h0,2(Zc,2) = g, it
follows that h1,1(Zc,2) = 10(g+1) = 5·3c+5.Therefore r = 0 andρ(Zc,2) = h1,1

(Zc,2). 45

5.5. The j-invariant of h : Zc,2 → P1

In order to eventually prove that the extremal elliptic surface h : Zc,2 → P1 is in
fact an elliptic modular surface, it will be necessary to first describe the j-invariant
of the fibration h.

For an elliptic fibration ϕ : S → C without multiple fibers, consider the ratio-
nal map j : C !!" P1 given by sending each point P ∈ C such that ϕ−1(P) is
nonsingular to the j-invariant of the elliptic curve ϕ−1(P). This rational map j can
in fact be extended to all of C (see for instance [11]). The morphism j : C → P1

is called the j-invariant of the elliptic surface ϕ : S → C .
If P ∈ C is such thatϕ−1(P) is singular, thenwehave the following (reproduced

from [9]):

Fiber type over P j (P)

I∗0 %= ∞
Ib, I∗b (b > 0) ∞
I I , I V , I V ∗, I I∗ 0
I I I , I I I∗ 1728

Lemma 5.4. For c ≥ 2, the j-invariant j : P1 → P1 of h : Zc,2 → P1 is non-
constant.

Proof. From Proposition 5.2, all of the singular fibers of h : Zc,2 → P1 are of type
Ib or I ∗

b with b > 0. Hence the j-invariant of h : Zc,2 → P1 satisfies j (P) = ∞
for all P ∈ P1 such that h−1(P) is singular. However, since generically for P ∈ P1

the j-invariant j (P) is the j-invariant of the elliptic curve h−1(P), generically j
cannot be ∞. Thus j is non-constant. 45
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Proposition 5.5. For c ≥ 2, the j-invariant j : P1 → P1 of h : Zc,2 → P1 has
degree 6 · 3c and is ramified at the points 0, 1728, and ∞. There are 2 · 3c branch
points above 0, all of ramification index 3. There are 3 · 3c branch points above
1728, all of ramification index 2. Finally, there are 2 branch points above ∞, one
with ramification index 4 · 3c corresponding to the point 0 ∈ P1 and one with
ramification index 3c corresponding to the point ∞ ∈ P1.

Proof. This follows directly from results of Mangala Nori in [20]. In particular,
Nori proves in [20, Theorem 3.1] that an elliptic fibration S → B with non-
constant j-invariant is extremal if and only if the fibration has no singular fibers of
type I ∗

0 , I I , I I I , or I V and its j-invariant is ramified only over 0, 1728, and ∞
with ramification index ev for v ∈ B satisfying ev = 1, 2, or 3 if j (v) = 0 and
ev = 1 or 2 if j (v) = 1.

We know from Corollary 5.3 that h : Zc,2 → P1 is extremal and from Lemma
5.4 that it has non-constant j-invariant. Hence, it follows from [20, Theorem 3.1]
that j : P1 → P1 is ramified only over the points 0, 1728, and ∞. Moreover

deg( j) =
∑

Ib

b +
∑

I ∗
b

b,

where the two sums occur over all the singular fibers of f of type Ib and of type
I ∗
b respectively.

From Proposition 5.2, the fibration h : Zc,2 → P1 has one fiber of type I4·3c ,
one fiber of type I ∗

3c , and 3c fibers of type I1. Thus deg( j) = 6 · 3c.
Now let

R0 = {v ∈ P1 | j (v) = 0}
R1728 = {v ∈ P1 | j (v) = 1728}.

If ev denotes the ramification index of a point v ∈ P1, let

R0 =
∑

v∈R0

(ev − 1)

R1728 =
∑

v∈R1728

(ev − 1)

Then since Proposition 5.2 implies that h has no singular fibers of type I I, I I ∗,
I I I , I I I ∗, I V , or I V ∗, Nori’s calculations in the proof of [20, Lemma 3.2] yield
the following three equations:

R0 + R1728 =
7 · deg( j)

6
(26)

R0 − 2 · deg( j)
3

≥ 0 (27)

R1728 − deg( j)
2

≥ 0 (28)



428 L. Flapan

Observe that 2·deg( j)
3 + deg( j)

2 = 7·deg( j)
6 . Therefore we must have equality in

Eqs. (27) and (28). It follows that

R0 = 2 · deg( j)
3

= 4 · 3c (29)

R1728 = deg( j)
2

= 3 · 3c. (30)

Moreover, because equality holds in (27), Nori’s proof in [20, Lemma 3.2] implies
that deg( j) = 3|R0|. Hence we have

|R0| = 2 · 3c. (31)

Now from [20, Theorem 3.1], for any v ∈ R0, we must have ev ≤ 3. Hence using
(31), it follows that R0 ≤ 4 ·3c.But we have already shown in Eq. (29) that equality
holds, therefore we must have ev = 3 for all v ∈ R0.

Since Zc,2 is extremal and h : Zc,2 → P1 has no singular fibers of type I I I ∗,
Nori’s results [20, Theorem 3.1] also imply that ev = 2 for all v ∈ R1728.

Finally, we know j has a pole of order bi at points vi ∈ P1 where the fiber over
vi is of type Ibi or of type I ∗

bi
. Hence the result follows from Proposition 5.2. 45

5.6. Preliminaries on elliptic modular surfaces

We begin by giving a brief introduction to elliptic modular surfaces as defined by
Shioda [24]. FollowingNori [20], for an elliptic surface ϕ : S → C with j-invariant
j : C → P1, let us define

C ′ = C\ j−1{0, 1728,∞}.

In particular, for every v ∈ C ′, the fiber Fv = ϕ−1(v) is smooth. The sheaf
G = R1ϕ∗Z on C is the homological invariant of the elliptic surface S. The
restriction of G to C ′ is then a locally constant sheaf of rank two Z-modules.
Consider the monodromy homomorphism ρ : π1(C ′) → SL(2,Z) associated to
ϕ : S → C . Observe that ρ both determines and is determined by the sheaf G.

Conversely, let j : C → P1 be a holomorphic map from an algebraic curve
C to P1 and let C ′ = C\ j−1{0, 1728,∞}. Let H = {z ∈ C | Im(z) > 0} be
the upper half-plane in C and consider the elliptic modular function J : H →
P1\{0, 1728,∞}. Finally let U ′ be the universal cover of C ′. Then there exists a
holomorphic map w : U ′ → H such that the following diagram commutes:

U ′ H

C ′ P1\{0, 1728,∞}.
π

w

J
j

(32)

This map w thus induces a homomorphism ρ : π1(C ′) → PSL(2,Z).
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Now suppose ρ : π1(C ′) → SL(2,Z) is a homomorphism making the follow-
ing diagram commute:

π1(C ′) SL(2,Z)

PSL(2,Z) .

ρ

ρ

Then it is possible to construct a unique elliptic surface ϕ : S → C having j-
invariant given by the holomorphic map j : C → P1 and having homological
invariant given by the sheaf G associated to the homomorphism ρ [11, Section 8].

So now consider any finite-index subgroup " of the modular group SL(2,Z)
not containing −Id. Then " acts on the upper half planeH and the quotient "\H,
together with a finite number of cusps, forms an algebraic curve C" . For any other
such subgroup "′, if " ⊂ "′, then the canonical map "\H → "′\H extends to a
holomorphic map C" → C"′ . In particular, taking "′ = SL(2,Z) and identifying
C"′ with P1 via the elliptic modular function J , we get a holomorphic map

j" : C" → P1.

Hence, as discussed, there exists a w : U ′ → H fitting into a diagram (32) which
induces a representation ρ : π1(C ′) → " ⊂ PSL(2,Z), where " is the image of
" in PSL(2,Z). Because " contains no element of order 2, this homomorphism ρ

lifts to a homomorphism ρ : π1(C ′) → SL(2,Z), which then gives rise to a sheaf
G" on C" .

Definition 5.6. [24] For any finite index subgroup " of SL(2,Z) not containing
−Id, the associated elliptic surface ϕ : S" → C" having j-invariant j" and homo-
logical invariant G" is called the elliptic modular surface attached to ".

5.7. The surface Zc,2 is elliptic modular

We now return to considering the elliptic surface h : Zc,2 → P1. Let us define the
following elements A0, A1 . . . , A3c , A∞ of SL(2,Z) as elements of the following
conjugacy classes:

A0 ∈
[(

1 4 · 3c
0 1

)]
A1, . . . , A3c ∈

[(
1 1
0 1

)]
A∞ ∈

[(−1 −3c

0 −1

)]

Then consider the subgroup "c of index 6 · 3c in SL(2,Z) with the following
presentation:

"c := 〈A0, A1, . . . , A3c , A∞ | A0A1 · · · A3c A∞ = Id〉.

We remark that "c is not a congruence subgroup as it does not appear on the list in
[7] of the genus 0 congruence subgroups of SL(2,Z) (see [6] for more details on
such subgroups).
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Theorem 5.7. For c ≥ 2, the surface Zc,2 is the elliptic modular surface attached
to "c.

Proof. In [20, Theorem 3.5], Mangala Nori proves that an extremal elliptic surface
ϕ : S → C with a section and with non-constant j-invariant is an elliptic modular
surface as long as ϕ : S → C has no singular fibers of type I I ∗ or I I I ∗ in Kodaira’s
classification. Therefore, since the surface h : Zc,2 → P1 is extremal (by Corollary
5.3), has a section (by Proposition 5.2), has non-constant j-invariant (by Lemma
5.4), and only has fibers of type Ib and I ∗

b (by Proposition 5.2), we know Zc,2 is
indeed an elliptic modular surface.

So let " be the finite-index subgroup of SL(2,Z) attached to Zc,2. By Propo-
sition 5.5, the degree of the j-invariant of h : Zc,2 → P1 is 6 · 3c. Hence the group
" has index 6 · 3c in SL(2,Z).

Now consider the j-invariant j : P1 → P1 of Zc,2, which we have investigated
in Proposition 5.5. Let C ′ = P1\{0, 1728,∞}.

Because Zc,2 is elliptic modular, its j-invariant induces a homomorphism

ρ : π1(C ′) → " ⊂ SL(2,Z).

Let us write the set

j−1{0, 1728,∞} = {v1, . . . , vs}.
By Proposition 5.5, we know s = 5 · 3c + 2. For each point vi let αi be the
loop element in π1(C ′) going around vi . Then π1(C ′) is the free group on these
generators α1, . . . , αs subject to the relation (taken in cyclic order) α1 · · ·αs = 1
[2, Lemma 2.1].

In [20, Proposition 1.4], Nori describes, for an elliptic surface S → C with
loop elements αi ∈ π1(C) around vi ∈ C , the possible values of ρ(αi ) depending
on the values of j (vi ). By Proposition 5.5, for our surface h : Zc,2 → P1 all of the
points vi such that j (vi ) = 0 have ramification index 3. Hence by [20, Proposition
1.4], for the corresponding αi , we have ρ(αi ) = ±Id. However since Zc,2 is elliptic
modular, the subgroup " cannot contain −Id. Hence, for all i such that j (vi ) = 0,
we must have ρ(αi ) = Id.

Similarly, by Proposition 5.5 all of the points vi such that j (vi ) = 1728 have
ramification index 2. But then by [20, Proposition 1.4], for all such i , we have
ρ(αi ) = ±Id and thus, in fact, ρ(αi ) = Id.

Therefore the only points vi ∈ j−1{0, 1728,∞} that contribute non-identity
elements to " are the points sent to ∞ by j . These are exactly the points of P1

underneath the singular fibers of h : Zc,2 → P1.
From [24, Proposition 4.2], if a point vi has singular fiber of type Ib with b > 0,

then

ρ(αi ) ∈
[(

1 b
0 1

)]
.

If a point vi has singular fiber of type I ∗
b with b > 0, then

ρ(αi ) ∈
[(−1 −b

0 −1

)]
.
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Therefore, using Proposition 5.2, in the case of h : Zc,2 → P1, the point 0 con-
tributes a generator A0 of " in the conjugacy class of

(
1 4 · 3c
0 1

)

in SL(2,Z). Each point ζ i , for ζ a 3cth root of unity, contributes a generator Ai+1
in the conjugacy class of

(
1 1
0 1

)
.

Finally, the point ∞ contributes a generator A∞ in the conjugacy class of

(−1 −3c

0 −1

)
.

Then " is the free group on these generators A0, A1, . . . , A3c , A∞ subject to
the relation

A0A1 · · · A3c A∞ = Id.

Hence we indeed have that " is the group "c defined above. 45

6. The threefold case

We now consider the case of the threefold Xc,3, which by construction is a smooth
model of the quotient Xc,3 := Cg × Zc,2/〈ψ−1

g ×φc,2〉. Form sufficiently divisible
the rational map

f : C3
g/G !!" P1 ⊂ P(H0(C3

g, K
⊗m
C3
g
))G

studied in Proposition 4.1 can be resolved to obtain a morphism

f̃ : Zc,3 → P1 ⊂ P(H0(Zc,3, K⊗m
Zc,3

)).

In this threefold case, since the abundance conjecture is known, we may assume
that Zc,3 is a minimal model of Xc,3. In order to study the fibration f̃ , we will need
some information about the minimal model Zc,2 and its elliptic fibration studied in
Sect. 5.
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6.1. The rational map β : Cg × Zc,2 !!" P(H0(Xc,3, K⊗m
Xc,3

))

We now consider the product Cg × Zc,2. As in (11), we have a diagram

Xc,3 P(H0(Xc,3, K⊗m
Xc,3

))

Cg × Zc,2 P(H0(Cg × Zc,2, K⊗m
Cg×Zc,2

))

(33)

Here the horizontal maps are the Iitaka fibrations and the vertical map on the left
is the quotient by the group 〈ψ−1

g × φc,2〉.
We then consider the composition

β : Cg × Zc,2 !!" P(H0(Xc,3, K⊗m
Xc,3

)).

Recall from Theorem 3.3 that global sections of K⊗m
Cg

are of the form xaω for
0 ≤ a ≤ m(g−1).Moreover, from the proof of Proposition 3.4, global sections sa
of K⊗m

Zc,2
for 0 ≤ a ≤ m(g − 1) correspond to global sections of K⊗m

C2
g

of the form

xa1ω1 × xa2ω2. Hence we may view β : Cg × Zc,2 !!" P(H0(Xc,3, K⊗m
Xc,3

)) as the
rational map given by

(z1, z2, z3) ,→ [ω1(z1) × s0(z2, z3) : (x1ω1)(z1) × s1(z2, z3)

: · · · : (xm(g−1)
1 ω1)(z1) × sm(g−1)(z2, z3)] (32)

6.1.1. The images of Cg × T and Cg × S Our main interest here will be the
images under β of the surfaces of the form Cg ×T and Cg × S in Cg × Zc,2, where
recall from Sect. 5.1 that T and S are the rational curves with self-intersection
−2 and −(g + 1) respectively in the resolution of the Type II singular points of
Cg ×Cg/〈ψ−1

g ×ψg〉. We provide a pictorial representation of the main facts about
these images in Fig. 2 below, where one color represents regions sent to 0, one
color represents regions sent to ∞, and one color represents regions where β is
undefined.

Begin by considering the elliptic fibration h : Zc,2 → P1 from Sect. 5. As
discussed in the proof of Proposition 5.2, the map h sends each curve T to the point
∞ inP1, while the curves S corresponds to sections of h. In particular, there exists a
map σ : P1 → S such that h ◦σ = IdP1 . In particular, for local coordinates (z2, z3)
on S, we have s0(z2, z3) = 0 if and only if (z2, z3) = σ(∞) and sm(g−1)(z2, z3) = 0
if and only if (z2, z3) = σ(0).

Moreover, as discussed in the proof of Proposition 4.1, the only points of Cg
on which the form xa1ω1 can vanish are the points P1, P2 and Q. More precisely, as
established in (12)–(14), we have xa1ω1(Pi ) = 0 if and only if 1 ≤ a ≤ m(g − 1)
and xa1ω1(Q) = 0 if and only if 0 ≤ a ≤ m(g − 1) − 1.

Let us first consider the surfaces of the form Cg × T in Cg × Zc,2. We know
that the fibration h : Zc,2 → P1 sends the curve T to the point ∞, meaning that for
local coordinates (z2, z3) ∈ T we have sm(g−1)(z2, z3) %= 0 and sa(z2, z3) = 0 for
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Fig. 2. Images of Cg × S and Cg × T under β

all other 1 ≤ a ≤ m(g − 1) − 1. In particular, using the description of β in (32),
for any point W ∈ Cg such that W %= Pi for i ∈ {1, 2}, we have β(W × T ) =
[0 : · · · : 0 : 1], which corresponds to the point ∞ ∈ P1 ⊂ P(H0(Xc,3, K

⊗m
Xc,3

)).

In other words, we have β((Cg − {P1, P2})× T ) = ∞ and β is not defined on the
curves P1 × T and P2 × T .

Now consider the surfaces of the form Cg × S in Cg × Zc,2. Let U = Cg −
{P1, P2, Q}. Then since xa1ω1 does not vanish onU for any 0 ≤ a ≤ m(g− 1) and
f2 sends S surjectively onto P1, we have that β sends U × S surjectively onto P1.
In particular, we have β(U × σ(0)) = 0 and β(U × σ(∞)) = ∞.

It thus remains to determine what happens to the curves of the form P1 × S,
P2 × S, and Q × S. However we know that for local coordinates (z2, z3) on S, we
have s0(z2, z3) = 0 if and only if (z2, z3) = σ(∞) and sm(g−1)(z2, z3) = 0 if and
only if (z2, z3) = σ(0). It follows that β(Pi ×(S−σ(∞)) = [1 : 0 : · · · : 0], which
corresponds to the point 0 ∈ P1 ⊂ P(H0(Xc,3, K⊗m

Xc,3
)), and β(Q × (S − σ(0)) =

[0 : · · · : 0 : 1], which corresponds to the point ∞ ∈ P1. Hence the only points
of Cg × S on which β is not defined are the points Q × σ(0) and Pi × σ(∞) for
i ∈ {1, 2}.

Note however that since the curves S and T intersect at the point σ(∞) ∈ S,
the assertion that β is not defined at the points Pi × σ(∞) is already covered by
the previous assertion that β is not defined on the curves Pi × T .
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In summary, we have established the following about the rational map β : Cg ×
Zc,2 !!" P1:

(1) β((Cg − {P1, P2}) × T ) = ∞
(2) β sends (Cg − {P1, P2, Q}) × S surjectively onto P1 and in particular

(a) β(U × σ(0)) = 0
(b) β(U × σ(∞)) = ∞

(3) β(Pi × (S − σ(∞)) = 0 for i ∈ {1, 2}
(4) β(Q × (S − σ(0)) = ∞
(5) β is undefined on the curves P1 × T and P2 × T and on the point Q × σ(0)

6.2. The K3 fibration f̃ : Zc,3 → P1

We will now use this understanding of the rational map β in order to show that the
fibration f̃ : Zc,3 → P1 is indeed a K3 fibration.

Theorem 6.1. For c ≥ 2 and m sufficiently divisible, the general smooth fibers of
the fibration

f̃ : Zc,3 → P1 ⊂ P(H0(Zc,3, K⊗m
Zc,3

))

are K3 surfaces with Picard rank 19. Moreover, the fibers of f̃ above the 3c roots
of t3

c + 1 are (possibly singular) K3 surfaces with Picard rank 20.

Proof. For t ∈ P1, let Ft be a general smooth fiber of the fibration f̃ : Zc,3 → P1.
In order to show that Ft is a K3 surface of Picard rank 19 we will identify a
configuration of 21 curves on Ft whose intersection matrix has rank 19. Since the
Picard rank ρ of a general smooth fiber of f̃ can be at most 19, this yields that
ρ(Ft ) = 19.

We will identify these 21 curves on Ft by first identifying 21 hypersurfaces in
Zc,3 that surject onto P1 via f̃ . Begin by considering the diagram (33) and, using
the notation of Sect. 6.1.1, two hypersurfaces of the form Cg × T and Cg × S in
Cg × Zc,2. As in Sect. 6.1.1, let σ : P1 → S denote the section corresponding to
the curve S of the ellitpic fibration f2 : Zc,2 → P1. Hence the surfaces of the form
Cg × T and Cg × S intersect along the curve Cg × σ(∞).

Recall the calculations of Sect. 6.1.1 about the images of the surfaces Cg × T
and Cg × S under the rational map

β : Cg × Zc,2 → P(H0(Cg × Zc,2, K⊗m
Cg×Zc,2

) !!" P1 ⊂ P(H0(Xc,3, K⊗m
Xc,3

)).

In particular, recall that we established that the open subset

(Cg × S) − {P1 × σ(0), P2 × σ(0), Q × σ(∞)} ⊂ Cg × S

is sent surjectively onto P1 by β. Consider the image of this open subset in Zc,3
and let G denote its closure. Then by the diagram (33) and since f̃ : Zc,3 → P1 is
a morphism, we have that G ⊂ Zc,3 surjects onto P1 via f̃ .
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Consider the curve on the fiberFt given by γ = Ft ∩G. Recall that the curve S
in Zc,2 is obtained from a point of the form Pi × Q in C2

g . In particular, the surface
G lies in the image in Zc,3 of the curve Cg × Pi × Q in C3

g . As discussed in the
proof of Proposition 4.1, the fiberFt arises as the image in Zc,3 of the hypersurface
Ft in C3

g cut out by the equation x1x2x3 = t . Note that the intersection of Ft and
the curve Cg × Pi × Q has dimension 0. Hence the curve γ is contracted to a point
in the singular variety C3

g/G.

Now note that from the construction of the fibration f̃ as the Iitaka fibration
of Zc,3 we know that the fiber Ft has Kodaira dimension 0. In particular, from the
classification of algebraic surfaces, we know that KFt is torsion. It follows from
the adjunction formula that because γ is a curve on Ft that can be contracted to a
point, the curve γ must be rational with self-intersection −2.

Hence we have identified a rational (−2)-curve on the fiber Ft arising from a
curve of the form Cg × Pi × Q in C3

g . Symmetrically, any permutation of these
factors will also yield a (−2)-curve on Ft . There are thus 6 such curves for each
choice of i ∈ {1, 2}, meaning there are 12 such curves total on Ft .

Now recall fromSect. 6.1.1 that the rationalmapβ is not defined on curves of the
form P1×T and P2×T and on the point Q×σ(0). In order to understand the images
of these in Zc,3, we would like to understand their action by the automorphism
ψ−1
g × φc,2. Recall the description of the local action of φc,2 on the curves T and

S established in (16) of Sect. 5.2. Note in particular that the curve T lies in the
fixed locus of φc,2. Hence, the curves P1 × T and P2 × T lie in the fixed locus
of ψ−1

g × φc,2. Blowing-up this part of the fixed locus, will then yield exceptional
divisors of codimension 2 in Zc,3. Namely, the images in Zc,3 of the curves of the
form P1×T and P2×T will intersectFt in at most points and so will not contribute
to the Picard rank of Ft .

It thus remains to consider the image in Zc,3 of a point of the form Q × σ(0).
From the description of the local action of φc,2 on S given in (16) of Sect. 5.2, we
have that ψ−1

g × φc,2 acts locally around the point Q × σ(0) with Z/3cZ-weights
(−g, 1, g). Note that this implies that Q × σ(0) is an isolated terminal singularity
in the quotient (Cg × Zc,2)/〈ψ−1

g × φc,2〉 [18, Remark 2.5(i)]. In particular, the
resolution of this point in Zc,3 has codimension 1. Moreover, we established in
Sect. 6.1.1 that the rational map β sends the curve (Cg − Q) × σ(0) to the point
0 ∈ P1 and sends the curve Q × (S − σ(0)) to the point ∞ ∈ P1. Hence by
continuity since the morphism f̃ : Zc,3 → P1 is defined everywhere, the resolution
of Q × σ(0) in Zc,3 surjects onto P1 via f . In particular, this resolution contains
some hypersurface H surjecting onto P1 via f̃ .

Consider the curve on the fiber Ft given by δ = Ft ∩H. Observe that since the
hypersurface H can be contracted to a point, so can the curve δ. Hence as in the
case of the curve γ , because KFt is torsion, the adjunction formula yields that δ is
a rational (−2)-curve on Ft .

Hence we have identified a rational (−2)-curve on Ft arising from a point of
the form Q × Pi × Q in C3

g . Symmetrically, any permutation of these factors will
also yield a (−2)-curve on Ft . There are thus 3 such curves for each choice of
i ∈ {1, 2}, meaning there are 6 such curves total on Ft .
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Thus for the moment we have identified 18 rational (−2)-curves on Ft , where
for each choice of i ∈ {1, 2}, there are 9 such curves: six of the form γ and three
of the form δ. We now determine the configuration of these 18 curves.

For a given choice of i ∈ {1, 2}, let γ1, . . . , γ6 denote the six (−2)-curves on
Ft associated respectively to the curves Cg × Pi × Q, Pi ×Cg × Q, Pi × Q ×Cg ,
Cg × Q × Pi , Q × Cg × Pi , and Q × Pi × Cg in C3

g . Let δ1, δ2, and δ3 denote
the three (−2)-curves on Ft associated respectively to the points Pi × Q × Q,
Q × Q × Pi , and Q × Pi × Q in C3

g . Hence γ1 meets γ2, which possibly meets
δ1, which possibly meets γ3, which then meets γ4, which possibly meets δ2, which
possibly meets γ5, which then meets γ6, which possibly meets δ3, which possibly
meets γ1. Let M denote the configuration matrix of these 9 curves γ1, γ2, δ1, γ3,
γ4, δ2, γ5, γ6. If all of the δ j meet their neighboring γk , then these 9 curves form a
cycle which has intersection matrix the rank-8 circulant matrix





−2 1 0 0 0 0 0 0 1
1 −2 1 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0
0 0 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
1 0 0 0 0 0 0 1 −2





.

Note that if any of the δ j fail tomeet a neighboring γk , then the resulting intersection
matrix M has rank 9. Namely, we have rank(M) ≥ 8. Note that this already yields
that the Picard rank ρ of the fiber Ft is at least 16. Since we know the surface Ft
has Kodaira dimension 0, it follows from the classification of algebraic surfaces
that Ft is a K3 surface.

We now identify three additional curves on the smooth fiber Ft . Consider the
three classes in Pic(C3

g) given by [pt × Cg × Cg], [Cg × pt × Cg], and [Cg ×
Cg × pt]. Note that these classes are G-invariant and thus each descends to yield a
hypersurface class in Zc,3. Denote these three hypersurface classes by [D1], [D2],
[D3]. Moreover, a general hypersurface H ∈ [Di ] intersects the smooth fiber Ft in
a curve ε j . Note that the curve ε j will not intersect any of the previously identified
(−2)-curves of the form γ or δ. Moreover since the fiber Ft arises as the image in
Zc,3 of the hypersurface Ft in C3

g cut out by the equation x1x2x3 = t , it follows
that ε j .εk = 2 where the two intersection points correspond to the two points of
Cg with the same x-value. Thus we need only compute the self-intersections ε2j for
j ∈ {1, 2, 3}.

To compute these self-intersections ε2j , let us without loss of generality consider
the curve ε1 = H ∩ Ft for H a general hypersurface in [D1], where [D1] arises
from the class [pt × Cg × Cg] in Pic(C3

g). Let H̃ ∈ [pt × Cg × Cg] be in the
preimage of H in C3

g and let ε̃1 = Ft ∩ H̃ be in the preimage of ε1, where recall
that Ft arises as the image in Zc,3 of the hypersurface Ft in C3

g . Let ε1 be the
image of ε̃1 in Cg × Zc,2. Namely, we have a sequence of Z/3cZ-quotients given
by ε̃1 → ε1 → ε1.
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Suppose that for H̃ ∈ [pt × Cg × Cg] the chosen point in the first factor is
given by local coordinates (x1, y1) = (α0, β0). Then the curve ε̃1 in C3

g is cut out
by the equations x1 = α0 and x2x3 = t

α0
(note that we may assume α0 %= 0). This

yields an isomorphism between the image curve ε1 in Cg × Zc,2 and the fiber of
the two-dimensional Iitaka fibration f2 : Zc,2 → P1 above the point t

α0
∈ P1. In

particular, the curve ε1 has genus 1. It follows that the curve ε1 has genus at most
1.

However, since the curve ε1 lies on the surface Ft , which we have established
is a K3 surface, the adjunction formula yields

Kε1 = (KFt + H)|H = H |H .

In particular, we have 2g(ε1)− 2 ≥ 0, meaning that g(ε1) ≥ 1. Hence the curve ε1
has genus equal to 1. Applying the adjunction formula on a K3 surface again then
yields that ε1 has self-intersection 0. An identical argument yields that the same is
true of the curves ε2 and ε3.

Therefore, the intersection matrix of the configuration of three curves ε1, ε2,
and ε3 is the rank 3 matrix

N =




0 2 2
2 0 2
2 2 0



 .

Namely, we have identified a configuration of 21 curves on a general smooth
fiber Ft of the fibration f̃ : Zc,3 → P1 having intersection matrix

I =




M 0 0
0 M 0
0 0 N



 .

In particular, the matrix I has rank at least 8+ 8+ 3 = 19, so the Picard rank ρ of
Ft is at least 19. However, since the fiber Ft varies with t , we know that ρ(Ft ) is
at most 19, meaning we have ρ(Ft ) = 19.

The statement about the fibers of f̃ above the roots of t3
c + 1 follows from

Proposition 4.1 and its proof. Indeed, we know that a fiber of f : C3
g/G !!" P1 ⊂

P(H0(C3
g, K

⊗m
C3
g
))G above a point t ∈ P1 such that t3

c + 1 has an isolated singular

point at the image in C3
g/G of a point in C3

g of the form ((x1, 0), (x2, 0), (x3, 0)),
where the x j are of the form ξ2γ j+1 for ξ a primitive 2 · 3cth root of unity and
0 ≤ γ j ≤ 3c − 1. In particular, x j %= ±1 and so while the corresponding point in
C3
g/G is a singularity of the fiber of f , it is not a singular point of C3

g/G. Thus
depending on the birational model Zc,3, such a point either remains a singular
point of the fiber of f̃ above ζ i or aquires a curve resolving the singularity. Since
the fibers of f̃ above ζ i contain the configuration of 21 curves identified above,
it follows that the (after possible resolving the singular point), these fibers have
Picard number 20. 45
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6.3. Moduli of K3 surfaces

Here we follow [22, Section 2.3]. Recall that if S is an algebraic K3 surface then
the group H2(S,Z) together with its intersection pairing has the structure of a
unimodular lattice isometric to the K3 lattice

8 := E8(−1)⊕2 ⊕U⊕3,

where E8 is the unique postive-definite, even, unimodular lattice of rank 8 andU is

the hyperbolic plane given by U :=
(
0 1
1 0

)
. Moreover, there is a surjective period

map to the coarse moduli space given by the quadric in P21

! := {[ω] ∈ P(8 ⊗ C | (ω, ω) = 0, (ω, ω) > 0}.

Namely if ωS ∈ H2,0(S), then ωS yields a class in ! and conversely every point in
! is the period point of some K3 surface. If L ⊂ 8 is some sublattice of signature
(1, ρ − 1), then the subspace

!L := {[ω] ∈ ! | (ω, λ) = 0 for all λ ∈ L}

has dimension 20 − ρ = 20 − rank(L).
If L is the Neron-Severi group NS(S) := H2(S,Z) ∩ H1,1(S) and ρ = 19,

then the embedding of the transcendental lattice TS := NS(S)⊥ in 8 is unique up
to an isometry of 8 [17, Corollary 2.10] and the moduli curve !L is determined
by TS .

Note moreover that in this case, the CM points of the curve !L correspond to
singularK3 surfaces,meaningK3 surfaceswith Picard rank 20whoseNeron-Severi
group contains the Neron-Severi group of a general member of the curve !L .

We thus obtain the following corollary from Theorem 6.1.

Corollary 6.2. The one-dimensional family f̃ : Zc,3 → P1 ofK3 surfaces of Picard
rank 19 is a finite cover of the universal family of the moduli curve!Ft isomorphic
to P1 parametrizing K3 surfaces with transcendental lattice TFt , whereFt denotes
a general fiber of f̃ , and the fibers of f̃ at the 3c roots of the polynomial t3

c + 1
correspond to CM points of !Ft .
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