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Conditions for Feedback Linearization
of Network Systems

Tommaso Menara

Abstract—Feedback linearization allows for the local
transformation of a nonlinear system to an equivalent lin-
ear one by means of a coordinate transformation and a
feedback law. Feedback linearization of large-scale non-
linear network systems is typically difficult, since existing
conditions become harder to check as the network size
becomes larger. In this letter, we provide novel condi-
tions to test whether a nonlinear network is feedback-
linearizable. Specifically, given some dedicated control
inputs injected to a set of network nodes, we derive an
easy-to-check algebraic condition that can be tested on
the Jacobian matrix of the network dynamics evaluated
at some desired working point. Furthermore, our require-
ments are sufficient for (local) controllability, and thus
provide a testable condition for controllability of large-scale
nonlinear networks. Finally, we validate our findings by
enforcing the formation of desired synchronization patterns
in networks of coupled oscillators.

Index Terms—Control of networks, feedback lineariza-
tion, algebraic/geometric methods.

[. INTRODUCTION

HE ABILITY to effectively control complex nonlinear
Tsystems is still an outstanding engineering challenge.
In fact, despite the ubiquitous presence of large-scale non-
linear network systems, both in the technological [1] and
the natural [2] fields, a full characterization of controllability
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has remained elusive. This is due to the fact that, in gen-
eral, checking the known sufficient conditions becomes harder
(intractable, even) as the size of the system increases [3]. In
this letter, we address this issue by providing algebraic condi-
tions for nonlinear control problems that leverage the system’s
internal interconnection structure. Specifically, we resort to the
theory of feedback linearization, which allows for the local
transformation of a nonlinear system into an equivalent linear
one by means of a coordinate transformation and a feedback
loop [4]. This, in turn, enables the extensive array of control-
theoretic tools for linear systems to be used for the control of
nonlinear network systems.

While there exists a vast amount of literature on control-
lability of linear systems evolving on networks, the line of
work studying the nonlinear counterpart is much narrower
(e.g., [5], [6]). This letter complements the latter line of work
and presents conditions to test whether a nonlinear network
system is feedback-linearizable from a set of dedicated control
inputs. Our conditions can be evaluated on the Jacobian matrix
of the system computed at a desired working point, instead
of complex differential geometric quantities as in classical
tests, which also consist of more restrictive conditions. Finally,
motivated by our interest in controlling the synchronization
capabilities of neuronal networks in biological systems, we
illustrate how our results can be used to achieve cluster syn-
chronization in regular and multiplex networks of oscillatory
neuronal ensembles [7], [8].

Related Work: This letter aims at narrowing the gap between
controllability of large-scale network systems and the feedback
linearization method. After the early theoretical developments,
fewer works have surfaced on the topic of nonlinear con-
trollability, [9], [10]. Recent papers address this problem
for systems evolving on networks [5], [6], [11]-[14]. For
instance, [13], [14] study accessibility of network systems.
However, accessibility is a weaker notion than controllability,
and thus may be of limited use in practice [15].

Feedback linearization is a classical topic in nonlinear
control theory developed during the decades between the 1960
and the 1990 [16], [17]. Applications can be found in several
engineering systems, including robotic mechanisms [18] and
power networks [19]. Some recent work promotes the usage
of data-driven methods to achieve feedback linearization
whenever the model is not known exactly [20], [21]. Relevant
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studies on model-based feedback linearization include [22],
where the authors give conditions based on differential
geometry, and [23], where conditions are given for a single-
input-single-output system with delays. The work that is
most closely related to ours is [19], where the authors study
feedback linearization of a chain network governed by a class
of nonlinear dynamics.

Paper Contribution: The contribution of this letter is two-
fold. First, by exploiting a system’s interconnected structure,
we provide sufficient algebraic conditions to test for the
feedback linearization of nonlinear systems controlled by
linear vector fields. That is, given a set of dedicated con-
trol inputs, we derive conditions that can be tested on the
Jacobian matrix of the nonlinear system. Our conditions can be
used to test for (local) controllability of large-scale nonlinear
network systems. Additionally, the use of feedback lineariza-
tion enables the evaluation of the state space region in which
the linearized system is defined; note that this is a computation
not possible when using Jacobian linearization.

Second, we exploit our results to address the challenging
problem of controlling oscillatory networks [8], [24], [25].
We show that a class of nonlinearly coupled oscillators is
feedback-linearizable and, through feedback linearization, we
control the formation of desired synchronization patterns.

[I. PROBLEM SETUP AND PRELIMINARY NOTIONS

In this letter, we study feedback linearization and control-
lability of nonlinear systems governed by the dynamics

i = f(x) + Bu, (1)

where x = [xl,...,x,,]T € R" is the system state, f is
a smooth vector field that describes the dynamics of the
system, and B € R"™ is the input matrix through which
the control signals u are administered to the system. We let

K = {ki,....kn} € {1,...,n} be the control set, and let
B = ek, ... ex,|. with ¢; denoting the i-th canonical vector.
Without loss of generality, we choose K = {1,...,m}, thus
B =e1,...,en]. Finally, we assume that (1) has at least one

equilibrium. That is, there exists x such that f(x) = 0.

In this letter, we make use of a graphical representation
of the dynamic interdependence of the system’s components.
Namely, the inference diagram [26] consists of a graph G =
{V, &}, with ¥V = {1, ..., n} being the set of n nodes where
each node corresponds to a state of the system, and £ C V xV
being the set of edges connecting the nodes as follows. For all
i,j € V, there exists an unweighted directed edge from node
J to node i if i # j and x; appears in x;’s differential equation.
The adjacency matrix that describes the interconnection struc-
ture of the inference diagram is the sparse matrix A = [a;],
with a;; = 1 if there is an edge between j and i, and a;; = 0
otherwise. Fig. 1 illustrates the procedure to generate an infer-
ence diagram, which describes the underlying topology of the
state interactions for the nonlinear system x = f(x) in (1),
but can equivalently represent the interconnection structure of
nonlinearly interacting agents in a network system.

Let A be the adjacency matrix of G, let path(i,j) denote
a path on G from node i to node j, and let |path(i,j)|

1
i fi(ze,z4) | oa,
2| _ | fo(z1,22) ﬂ Q/O 3
i f3(22,4) /'Q
T4 f4(x17333) 40

Fig. 1. This figure illustrates the process of generating an inference
diagram from a generic nonlinear system described by the vector field
f(x). The inference diagram depicted in this example is a graph in which
there is an edge from node j to node i if X; is a function of x; and i # j.
Notice that we do not allow self-loops in the inference diagram.

be the number of edges of path(i,j). Notice that K rep-
resents the set of control nodes in G. Define the distance
between a subset of nodes S C V and the control set K as
dist(S, £) = min{|path(i,j)| : i € K,j € S}. Without loss
of generality, we order the nodes according to their distance
from the set of control nodes. In particular, we define a posi-
tive integer N so that V = UY |V, with V;NV; = @ if i # j,
and dist(V;, K) =i — 1 for all i € {1, ..., N}. According to
the partition {V1, ..., Vy}, the adjacency matrix reads as

Al A 0 0
Ayl A Ap 0
A= 0 A3z s 2)
: . Ay_in—1 An-anN
0 cee e ANN-1 AN

where A;; € R|Vi|X|Vi|, Ai—1; € RW”XW"“', and A; ;1 €
RWVirtlxWVil “with V| denoting the cardinality of V;.

In this letter, we address the following problem, whose
solution is intimately tied to finding conditions for the local
controllability of nonlinear systems.! Given a nonlinear system
in the form (1), we investigate whether there exists a state
feedback control law # = a(x) + B(x)v and a change of coor-
dinates z = ®(x) that transform the nonlinear system (1) into
an equivalent controllable linear system of the form

Z = AlinZ + Biinv,

where Aj, € R™" and By, € R™™,

To answer this question, we will make use of some notions
from geometric control theory [3], [27]. Given two vector
fields f(x) and g(x), both defined in an open subset of R”,
we define the operation [ f, g] as the Lie bracket between f(x)
and g(x), which yields the smooth vector field

0 0
[f. g1(x) = %f(x) - %g(x).

To avoid confusing notation such as [f,[f,...,[f, gll]l, we
use the following recursive definition:

adfg(x) = [f, adf ™' gl(v),

where ad})g(x) = g(x). Note that the directions in which the
state may be moved around an initial condition are those
belonging to the set of all vector fields that can be obtained by

LN system in the form (1) is locally controllable at X if there exists a
neighborhood Bj; of X such that for all xy € By, there exist 7 > 0 and a
control input u that brings x(0) = x to x(T) = xy.
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iteratively computing the Lie brackets of the system’s dynam-
ics and the control vector fields. Further, given a real-valued
function A(x) and a vector field f(x), both defined in an open
set of R", we define the derivative of ) along f:

oA
3(x)f<x>.
X

If the function A is differentiated k times along f, we write

k—
9 (Lf a:\ (x))f(x).

For the sake of simplicity, we will omit the argument x
when it is clear from the context. A (smooth) distribution is
the assignment of the subspace spanned by the values at x
of some smooth vector fields f1, ..., f; that are defined in an
open set X C R", and is denoted by & = span{f, ..., fs}. In
other words, a distribution assigns a vector space to each point
x of the set X. A distribution ¢ is involutive if, whenever
f.g € ¥, also [f,g] € ¥. Finally, the distribution ¢ has
constant dimension in a set X € R” whenever its dimension
remains the same at all points in X.

L) =

L =

Il1. STRUCTURAL CONDITIONS FOR
FEEDBACK LINEARIZATION

In this section, we show that if the inference diagram of a
nonlinear system belongs to a well-defined class of networks,
then there exists a change of coordinates such that the origi-
nal controlled nonlinear system (1) can be transformed into
a controllable linear system by means of a feedback law.
Clearly, these conditions constitute a sufficient test for local
controllability of nonlinear systems.

Before presenting our results, notice that the Jacobian
Jx) = PO of (1) reads as

ox
Di(x) Ui 0 aE 0
Li(x) Dx(x) Us(x) a 0
Jx)=| 0 Ly (x) : ,
: - Dy_1(x) Un—1(®)
0 . . Ly_1(x)  Dy(x)

3)

where the blocks have the same size of the blocks in the matrix
A in (2). We are now ready to present our main result.

Theorem 1 (Condition for Feedback Linearization):
Consider the dynamics (1). Let x be such that f(x) = 0 and
let the Jacobian J(x) = % read as in (3). The system
is feedback-linearizable at x if rank(L;(x)) = |Viy1]| for all
i={1,...,N—1}.

Theorem 1 implicitly requires a certain network structure to
hold true, as we elucidate in the following remark.

Remark 1 (Necessary Network Structure for the Condition
in Theorem 1): Theorem 1 requires the subdiagonal blocks
of J(X) to be full row rank. Note that a necessary condition
for this to hold true is that |[Viy1| < |Vi| for all i € {1,...,
N — 1} (see Fig. 2 for an example). Furthermore, every node
in partition Vi1 must have at least one incoming connection
from nodes in V;. Clearly, this interconnection requirement

U AN
U2 N~
U3 N~
Uy N~
U N~

S Y

S
Q"'ll

L XIROK T X<
CF S K
,‘.I"IAA:’Ié\ ,"IQTAA\'

SIS
1//,‘\\\\‘1//,‘\\\\

Ug N\

Fig. 2. Network system with tridiagonal adjacency matrix as in (2)
and node partition satisfying |V1| < |Vo| < --- < |Vp|. Examples
of networks with this topology are artificial neural networks, multiplex
networks and, in general, all grid-like networks with layers of equal or
decreasing cardinality.

prevents the network topology to produce zero rows in L;(X)
forallie{l,...,N—1}.

Before proving Theorem 1 we introduce a lemma that
relates the distribution of the Lie brackets of the dynamics (1)
to the image of a block triangular matrix.

Lemma 1 (Block Upper Triangular Distribution): Consider
the dynamics (1). Let ¥ = span{ad}ez 0<r<kl<
¢ <m}, k € {0,...,N — 1}. The distribution ¥(x) can be
written as

Ep1(x) ® e ®
0 E>2(x) :
4 =1 . . . ,
k(x) =Im : . . ®
0 0 Ertirr1®
0 0 0
Gy (x)

where Im denotes the image of a matrix, Go(x) = B, so that
Epi®) =1, Ejj(x) = Lioi(0E;i_1,;-1(x) € RV @ is
any real matrix-valued function of x of suitable dimension,
and 0 is a zero matrix of suitable dimension.

Proof: Consider first ¥%o(x), and notice that, since
ad}?egzeg, for ¢ = 1,....,m, Go(x) = [el,...,em] = B.
Next, because of the definition of ¥ (x), at each new step

ke{l,...,N— 1}, m new vector fields of the form
dad e, )
ko 09 f k=1
ad ey = Tf — aadf ey, (4)
with £ = 1,...,m, add to {ad;eg 0<r<k1<f¢<m}to

generate the distribution ¥ (x). The space spanned by these
new vector fields corresponds to the space spanned by the
last |Vi41| columns of Gi(x), which encompass the block
Ejt1k+1(x). In what follows we show that, because of the
(block) tridiagonal structure of A, only the second part of (4)
contributes to the definition of these columns, and, therefore,
of the block Ej41 x+1(x). To see this, consider the Lie bracket
ad]’f-eg (x) and notice that its first term reads as

dadi e
[g—xﬂ W = [[Ag‘ 8}/} @
]

=[® ---® 0 --- 0],
—— —

n
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where M is 71 x 71, with 2 = Y%_, |Vi|. Note that the definition
of n follows from the node labeling and the fact that, for all
Jj € {l,...,N — 1}, the nodes in V; can only be connected
with at most [V;;1]| nodes in V1. Thus, since the first term
of each Lie bracket (4) does not affect the last [Vj;1] entries
of the second term, the equation Ej;(x) = L1 (x)Ej_1 j—1(x)
follows by direct computation of the second term in (4), and
the claimed statement follows. ]

In brief, the result in Lemma 1 states that each new
Y1 (x) “discovers” |Vi41| new columns of Gi(x) containing
the entries of the block Ej41 x+1(x). We use this finding to
prove our main result.

Proof Theorem 1: For some nonnegative integer k, we let
Gy = Span{ad;eg 10 <r <k 1<t < m} The system (1)
is feedback-linearizable if and only if the following three
conditions hold [3, Th. 5.2.3]:

1) ¢,_1 has dimension n at X;

2) for each 0 < k < n—1, ¢} has constant dimension in a

neighborhood of x; and

3) for each 0 <k <n—2, ¥ is involutive,
where n = |V|. Condition 1) follows directly from Lemma 1
and from the assumption rank(L;(x)) = |V;+1| by noticing that
each diagonal block E; ;(x) is full rank for all i € {1, ..., k+1}.
More in detail, let P € R™"*™ and Q € R™*™; the fact
rank(PQ) = rank(P) if rank(Q) = ny implies the full rank of
E;i(xX) = Li-1(0)Ei-1,i-1(X).

In regards to condition 2), from the assumption
rank(L;(x)) = |Vit1], the continuity of singular values,
and the definition of E;; in Lemma 1, it follows that the
blocks E;;(x) are full row rank in a neighborhood of x.
Thus, in such a neighborhood, the definition of the matrix Gy
ensures that the dimension of ¥, for each 0 < k < n — 1,
remains constant, and condition 2) holds.

Finally, to show that condition 3) holds, we observe that
due to the structure of ¢;(x) in Lemma 1, the Lie brackets
between any two vector fields in ¥ (x), 0 < k < N—1, cannot
have nonzero rows greater than 7 = Zf:ll [Vil. Thus, the Lie
bracket ad, _leg can only contain states up to 71, and ¥ (x) must
be involutive for all 0 < kK < N — 1. Note that, for k > N — 1,
9 clearly remains involutive. This concludes the proof. H

A few comments are in order. First, Theorem 1 is construc-
tive, can be used to check whether a network is feedback-
linearizable, and also to design networks that satisfy such
a property. Second, Theorem 1 implies that there exist a
linearizing feedback of the form u = «(x) + B(x)v and a
diffeomorphism z = &(x) that solve the state-space exact
linearization problem [3, Sec. 5.2]. That is, it is possible to
transform (1) into an equivalent linear system z = Ajjnz+ Blinv
with rank[Bjin AtinBlin - - - Aﬁ;lBlin] = n. Thus, being the pair
(Afin, Biin) controllable, Theorem 1 can also be used to assess
local controllability of (1) at x.

Corollary 1 (Condition for Nonlinear Controllability):
Consider the dynamics (1), and let x be such that f(x) = 0.
If the lower diagonal blocks L;(x), i = {1, ..., N — 1}, of the
Jacobian (3) have full row rank, then the system (1) is locally
controllable at Xx.

Notice that, because the linear system z = Ajinz + Blinv
is defined in an open set that depends on the nonlinear

21 =x3(1 +32) +u u N\ @1
T2 =1 -
d:g:x2(1+a:1) 204—03

Fig. 3. This figure illustrates the inference diagram obtained from the
system in Example 2. The controlled node, which corresponds to xq,
is filled in black. Since |{2,3}| > |{1}], the condition in Theorem 1 can-
not be satisfied. Yet, the system is feedback-linearizable, as we show in
Example 2.

feedback and change of coordinates, we can evaluate the
size of the region of the state space in which the linear
transformation holds. In fact, if ®(x), a(x), and B(x) are
defined in an open neighborhood U/ of X, then the linear
system is defined in the open set ®(U/). This fact enables
the exact characterization of the operating regions for the
feedback-linearized system. Conversely, Jacobian linearization
is only exact at the equilibrium point at which the Jacobian
matrix is computed. It is also worth noting that Jacobian
linearization does not yield the same system as the feedback-
linearized one.

Example 1 (Difference in Local Controllability Between
Jacobian and Feedback Linearization): Consider the
system (1), with f(x) = [O X1 X2 —{-x%/Z] and b = e;. It is
easy to see that the controllability matrix of the linearized
system at the origin is full rank. Thus, the system is locally
controllable around x = [0 0 O]T. Yet, since the distribution
%1(x) = span{eq, [f, e1]} is not involutive, by [3, Th. 5.2.3],
the system is not feedback-linearizable at Xx.

Is should be noted that the condition in Theorem 1 enables
a general structural approach to assess feedback-linearizability
of nonlinear systems with dynamics (1). Yet, it is only
sufficient, as we show in the next example.

Example 2 (Non-necessity of Theorem 1): Consider the
system in Fig. 3 with control vector b = e;. Notice that such
a system does not satisfy Theorem 1 at x = 0. Yet, it can be
verified that the matrix? G,(X) = {b,1f, 0], Lf,Lf, D1} (x) =
diag(1, —1, 1), is full rank, and that x 4| = span{b, [f, b]} =
[<1) 91 )?2 ]T is involutive. Thus, by [3, Th. 5.2.3], this system is
feedback linearizable at the origin.

IV. APPLICATION TO CLUSTER SYNCHRONIZATION OF
NONLINEARLY COUPLED OSCILLATORS

In this section, we apply the results developed in Section III
to the important problem of controlling the emergence of clus-
ters of neural units with synchronized activity. Specifically,
we use feedback linearization to divide networks of nonlinear
oscillators into distinct synchronized groups. We achieve this
goal without resorting to the prescriptive conditions required
by previous work [28], [29].

A. Network of Kuramoto Dynamics

Patterns of correlated activity among neural units play a
role in the correct execution of cognitive functions and in
the abnormal dynamics of a class of neurological disorders,
such as Parkinson’s disease and epilepsy [30], [31]. A clas-
sical model used to represent the oscillatory behavior of

2We denote with diag(-) a diagonal matrix.
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Fig. 4. This figure represents the network of oscillators studied in  Fig. 5. These figures show phases evolution for the three oscillators

Section IV-A. Each node represents an oscillator, whose dynamics are
defined by the natural frequency » and the interactions with neighbor-
ing oscillators. The first node receives the control input u, and is filled
in black to represent KK = {1}. We choose a simple topology because
it allows us to easily illustrate the results of Section Ill, which can be
extended to larger systems.

brain activity is the Kuramoto model of diffusively-coupled
oscillators [8], [32]. The dynamics of the i-th oscillator is

6= w+ Z hij sin(6; — 6)), (5)
J#
where o represents the natural frequency of the oscillators,
0; is the phase of the i-th oscillator, and h; € R denotes
the coupling strength between interconnected oscillators, with
R. ¢ indicating the set of positive real numbers.
Interconnected systems of diffusively-coupled oscillators
evolve on a network that is described by a weighted adja-
cency matrix H = [h;], where h; € R if (j,i) € £, and
hij = 0 otherwise. Here, we choose the vector field

w + hyp sin(6y — 6;)
w + hy1 sin(0; — 02) + hp3 sin(63 — 67) |,
w + h3p sin(6y — 63)

) =

where hip = hy1 = 1, hpz3 = h3p = 2, and the control input
is injected into the first oscillator through a control vector
field b = [1 0 0]". It is worth noting that for all diffusively-
coupled oscillators, the inference diagram is also described
by the adjacency matrix H after all weights are binarized.?
The adjacency matrix for this illustrative example reads as
A = [e2, e1 + e3, e2]. and the network is depicted in Fig. 4.

With the aid of a rotating reference frame with angular
velocity w, we can study the equilibria of (5) as fixed points.
We choose to stabilize the unstable equilibrium O=[rx O]T,
but we remark that this network satisfies Theorem 1 at all
equilibria. We start the derivation of the linearizing feed-
back law from the Lie brackets adsb and ad]%b, which read

as adfb = [h12 COS(GQ — 91) —h21 COS(G] — 92) O]T, and

h12(h12 + ha1 — ho3 sin(62 — 01) sin(63 — 62)
ad;b = * ,
‘ —h32h21 cos(6) — 62) cos(6h — 63)

with x = hy1(hpp Sin2(92 — 01) + h21 + 2hp3sin () —
6h) sin(63 —6p) —hyp cos? (6, —61)). To linearize the Kuramoto
network around 6, we must compute the linearizing feedback
o (@) + B(O)v, where a(f) and B() can be derived

u —=

3That is, the weight associated with the edge (j, i) in the inference diagram
adjacency matrix is set to 1 if A;; > 0, and zero otherwise.

in Fig. 4 in a reference framework that rotates with natural frequency w.
(a) The convergence of the phases to the equilibrium 6 = [z = O]T aftera
stabilizing feedback v = —Kz is applied to the system. The eigenvalues
for the matrix Aji, + bK are —1, —2, and —3, which are obtained with the
feedback gains K = [6 11 6]. (b) The different convergence rates asso-
ciated with different eigenvalues of Ajj, + bK. The dotted lines represent
the phases of the three oscillators when the eigenvalues are the same
as in (a), whereas the solid lines are associated with eigenvalues —0.6,
—0.7, and —0.8, and hence with slower dynamics.

L}, 1

) __ L _ i
from [3, Sec. 4]: a(0) = L,,L}"ldn , BO) = L;,L}"l@.’ with
®,;(0) = L;*]CDI(H), and ®;(#) is such that
1, o 2P ip =0 a 22 £0. (6)
= a = an a .
30 © e T T a0

The choice ®1(0) = z1 = 63 satisfies (6), and yields
L;,L]%CI>1 = hp1h3p cos(01 — 6) cos(6r — 63). From the lat-
ter, we derive «(f) and B(0), which we omit here in the
interest of space. As a proof of concept, we can easily com-
pute the state space region where the feedback-linearized
system is defined. Such a region corresponds to the open set
0:160;—06;] < % for all i}, the boundary points of whose clo-
sure are the only coordinates for which «(6) and (@) are not
defined. Finally, we can assign the poles of z = Ajinz + BlinVv
via classical static feedback v = —Kz (see Fig. 5).

B. Multiplex Network With Multi-Body Interactions

Multiplex networks explicitly incorporate multiple channels
of connectivity in a system. In the following, we study a 2-
layer multiplex network where the two layers contain neurons
with three- and two-body interaction, respectively [33], [34].
Importantly, three-body interactions are thought to play a cru-
cial role in heterosynaptic plasticity [35]. We represent neurons
as oscillatory units that obey the dynamics

m m
. K1 )
b=+ § 1: k§ 1: sin(6; + 64 — 263),
j: —

m
) K2 . :
bi=w+— E 1 sin(g; — @) +dsin0; — @), (7)
j:

where w is the natural frequency, and «i,k2,d € R are
coupling strengths. We choose m = 3 and we apply a control
input to the 6 layer of the network (see Fig. 6(a)), so that B =
[e1, e2, e3]. Further, we fix the constants k] = ko =d = 1. By
writing the state of the network as x = [0 02 63 ¢1 @2 (p3]T,
it can be shown that x =[7 7w 7 0 0 O]T is an unstable equi-
librium point of (7). It holds that J(x) = [ diag(— f’_d’_d) g].
Hence, the condition in Theorem 1 is satisfied and the
system is feedback-linearizable at x. Along the lines of [3,
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Fig. 6. (a) The 2-layer multiplex network studied in Section IV-B.
The 6 layer consists of neurons connected with three-body interactions,
whereas the ¢ layer consists of neurons connected with two-body inter-
actions. (b) The convergence of the system’s state to the desired point
after feedback linearization. The eigenvalues of A, + B, K are assigned
to the left half plane, thus making X = [x = = 00 0] locally stable in the
reference frame rotating with velocity w.

Proof of Lemma 5.2.2], we compute the dummy output func-
tions A1 (x) = @1, A2(x) = @2, and A3(x) = @3, from which we
obtain the local change of coordinates ¢,i(x) = lef_l)»,-(x), 1<
k <2,1 <i<3, and finally the linearizing feedback law [3,
Sec. 5]. The code for this simulation can be downloaded
at [36]. In Fig. 6(b), the computed feedback partitions the
network into two distinct clusters. This result extends existing
work on the control of cluster synchronization in networks
of nonlinearly-interacting oscillators (see, e.g., [8]) to more
complex types of interactions.

V. CONCLUSION AND FUTURE DIRECTIONS

We have derived sufficient structural conditions to test
for feedback-linearizability of large-scale nonlinear network
systems. These conditions also constitute a test for local
controllability. The results contained in this letter are partic-
ularly suited for large networks, such as multi-agent systems,
neuronal networks, and artificial neural networks.

Because of striking topological similarities, future research
could investigate the link between feedback-linearizable
and strongly structurally controllable networks [37]. Finally,
another interesting research direction is the characterization of
the gap between locally controllable and feedback-linearizable
systems [38].
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