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Abstract—Cortical regions without direct neuronal con-
nections have been observed to exhibit synchronized
dynamics. A recent empirical study has further revealed
that such regions that share more common neighbors are
more likely to behave coherently. To analytically investigate
the underlying mechanisms, we consider that a set of n
oscillators, which have no direct connections, are linked
through m intermediate oscillators (called mediators), form-
ing a complete bipartite network structure. Modeling the
oscillators by the Kuramoto-Sakaguchi model, we rigor-
ously prove that mediated remote synchronization, i.e.,
synchronization between those n oscillators that are not
directly connected, becomes more robust as the number
of mediators increases. Simulations are also carried out to
show that our theoretical findings can be applied to other
general and complex networks.

Index Terms—Remote synchronization, Kuramoto-
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I. INTRODUCTION

SYNCHRONIZATION has been pervasively observed in
the human brain. Synchronized central pattern gener-

ates (CPGs) drive coordinated locomotion behaviors [1].
Particularly, synchrony between cortical regions is believed to
facilitate neuronal communication [2]. Various patterns of syn-
chronization have been observed for different cognitive tasks
that require distinct communication structure [3]. Also, tran-
sient patterns of synchrony can subserve information routing
between cortical regions [4]. The underlying anatomical brain
network has been shown to play a fundamental role in shaping
various patterns of synchrony [5]. Interestingly, there exists
strong evidence that cortical regions without direct axonal
links exhibit synchrony [6]. Such synchronization is known
as remote synchronization. Morphological symmetry in the
anatomical network is a mechanism besides some others, e.g.,
cytoarchitectonic similarity [7] and gene co-expression [8],
that are believed to account for the emergence of remote
synchronization [9].

It is shown in [10] that two distant neuronal regions sym-
metrically connected through a third one surprisingly display
zero-lag synchronization even in the presence of large synap-
tic delays. The third region, acting as a mediator (a term used
in [11]), plays a crucial role. A recent empirical study fur-
ther shows that the level of synchrony between two remote
regions significantly correlates with the number of such medi-
ators in the anatomical network [12]. However, a theoretical
explanation is still missing, which motivates us to analyti-
cally investigate the effect of the number of mediators on
remote synchronization. With this aim, we single out the
mediator-mediated structure from complicated brain networks
and consider a simplified and analytically tractable type of
network (i.e., a complete bipartite network with two disjoint
sets of size n and m, respectively). We then study how stable
remote synchronization can arise between the set of n oscilla-
tors through the mediation of the other oscillators set (which
we refer to as mediators).

Related Work: While complete synchronization has been
extensively studied (see [13] for a survey), some attention has
recently also been paid to partial or cluster synchronization
due to its broad applications [14]–[17]. As a particular form
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of partial synchronization, remote synchronization has also
attracted considerable interest, e.g., [18]–[20]. Particularly,
some studies are dedicated to remote synchronization in bipar-
tite networks or networks with bipartite subgraphs, in which
the effects of time delays [21] and parameter mismatch of
mediators [22] are investigated. Yet the influence of the num-
ber of mediators remains unknown. To analytically study this
influence, we employ the Kuramoto-Sakaguchi model [23] to
describe cortical oscillations. Unlike amplitude-phase models
such as the Stuart-Landau model, the Kuramoto-Sakaguchi
does not model amplitude dynamics. Therefore, it can only
be used in some circumstances where amplitudes of cortical
oscillations are ignored for simplification. In [19], amplitudes
are believed to be crucial in giving rise to stable remote syn-
chronization. However, time delays are not considered in that
study. By contrast, time delays are taken into account in the
Kuramoto-Sakaguchi model since the phase shift term is often
used to model small synaptic delays [24], [25]. Numerical
studies show that the Kuramoto-Sakaguchi model, although it
ignores amplitude dynamics, can reproduce remote synchro-
nization of brain regions observed in empirical data [9], [12].
We believe that the phase shift plays an important role.

Contributions: The contribution of this letter is fourfold.
First, it is the first attempt, to the best of our knowledge,
to theoretically study remote synchronization of Kuramoto-
Sakaguchi oscillators coupled by a complete bipartite network.
Second, we show that the stability of remote synchronization
depends crucially on the phase shift, for which a threshold is
identified. A phase shift beyond this threshold can prevent sta-
ble remote synchronization. Moreover, this threshold increases
with the number of mediators, indicating that more mediators
make remote synchronization more robust against phase shifts.
This observation provides an analytical explanation for the
simulated and empirical findings in [12], and help to under-
stand the role of the anatomical network in shaping patterns of
synchrony in the brain. Third, in sharp contrast to most of the
existing results, e.g., [26], [27], which only provide sufficient
conditions for the existence of exponentially stable frequency
synchronization, we present an almost sufficient and necessary
condition. Fourth and finally, we find through simulations that
remote synchronization remains stable for any phase shift if
there are more mediators than mediated oscillators. Also, our
simulation results show that bipartite structure in more com-
plex networks play important roles in facilitating robust remote
synchronization.

Paper Organization: The remainder of this letter is orga-
nized as follows. The considered problems are formulated
in Section II. Our main results are provided in Section III.
Some simulation studies are presented in Section IV. Finally,
concluding remarks are offered in Section V.

Notation: Let R, R+, and N denote the sets of reals, positive
reals, and positive integers, respectively. Given any m ∈ N,
let Nm = {1, 2, . . . , m}, and let 1m, 0m and Im denote the m-
dimensional all-one vector, all-zero vector, and identity matrix,
respectively. Let the unit circle be denoted by S

1, a point of
which is phase. Let Sm denote the m-torus.

II. PROBLEM FORMULATION

Consider a network of N coupled oscillators whose dynam-
ics are described by

Fig. 1. Two networks: (a) multiple mediators; (b) one mediator.

θ̇i = ωi +
N∑

j=1

aij sin(θj − θi − α), (1)

where: θi ∈ S
1 are the phases of the oscillators; ωi ∈ R are the

natural frequencies; aij is the coupling strength between oscil-
lators i and j; and α ∈ (0, π/2) is the phase shift, which is used
to model small synaptic delays [24]. Let the graph G = {V, A}
describe the network structure, where V = {1, . . . , N} is the
collection of the nodes, and the weighted adjacency matrix
A = [aij] describes the edges and their weights (there is an
edge of weight aij between oscillators i and j if aij > 0).
In the presence of α, complete synchronization is usually not
possible. However, it has been shown that oscillators located
at morphologically symmetric positions in a network, despite
not being directly connected, can be synchronized. This phe-
nomenon is called remote synchronization [18]. If the phase
shift α is small, then remote synchronization appears to be
stable; otherwise, it becomes unstable [9].

In this letter we let G be a complete bipartite graph (see
Fig. 1(a)). The dynamics of the oscillators coupled by the
network described by G then become

θ̇i = ωi +
m∑

q=1

airq sin(θrq − θi − α), i ∈ Nn, (2a)

θ̇rp = ωrp +
n∑

j=1

ajrp sin(θj − θrp − α), p ∈ Nm, (2b)

where1 m < n and n + m = N. The peripheral oscilla-
tors, 1, . . . , n, are connected via some intermediate oscillators
(colored red in Fig. 1(a)). We call those intermediate oscil-
lators mediators, since they are mediating the dynamics of
the peripheral oscillators. The peripheral oscillators are called
mediated oscillators. Following [11], we also refer to the syn-
chronization of mediated oscillators, 1, 2, . . . , n, as mediated
remote synchronization. When there is only 1 mediator, the
network reduces to a star (see Fig. 1(b)). A threshold of the
phase shift α, beyond which mediated remote synchronization
becomes unstable, has been obtained in [28] for a star network
with two mediated oscillators.

We aim to extend this result to a general case in which
there can be more than 2 mediated oscillators (i.e., n ≥ 2).
Interestingly, we also allow for more than 1 mediator (i.e.,
m ≥ 1) and study how the number of mediators affects the
threshold for stability on the phase shift α.

Let θ = (θ1, . . . , θn, θr1 , . . . , θrm)�, and for any i and p
denote the right-hand sides of (2a) and (2b) by fi(θ) and gp(θ),
respectively. Then, (2) can be rewritten as θ̇i = fi(θ), θ̇rp =

1We restrict our analysis to the case where m < n in this letter. Outcomes
for the case where m ≥ n are shown in simulations in Section IV, and suggest
interesting theoretical questions.
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gp(θ). For simplicity of analysis, we make the following
assumption (which later is partially relaxed).

Assumption 1: Assume ωi = ωrp = ω and airp = 1, ∀i, p.
Under this assumption, the mediated oscillators are located

at symmetric positions. Notice that our results and analysis in
the rest of this note remain unchanged if airp = a, for any
a > 0, because this operation would preserve symmetry.

Next, let us first define the (mediated) remote synchroniza-
tion manifold, denoted by M. For θ ∈ S

N , define M := {θ ∈
S

N : θi = θj,∀i, j ∈ Nn}. A solution θ(t) to (2) is said to be
remotely synchronized if θ(t) ∈ M for all t ≥ 0. Note that
the phases θi(t) are not required to equal θrp(t) for all t ≥ 0
in a remotely synchronized solution. We also say that remote
synchronization has taken place if a solution to (2) is remotely
synchronized.

Remote synchronization is categorized into two types,
depending on whether the phases are locked. A solution
is phase-locked if every pair-wise phase difference involv-
ing the mediators is constant, or, equivalently, when all the
frequencies are synchronized. In contrast, the mediators are
allowed to have different frequencies from the θ̇i’s in the case
of phase-unlocked remote synchronization. We are exclusively
interested in studying phase-locked remote synchronization in
this letter, and thus we refer to it just as remote synchroniza-
tion for brevity. The (phase-locked) remote synchronization
manifold is then defined as follows.

Definition 1 (Remote Synchronization Manifold): For θ ∈
S

N , the remote synchronization manifold is defined by ML :=
{θ ∈ M : fi(θ) = gp(θ),∀i ∈ Nn, p ∈ Nm}.

III. MAIN RESULTS

In this section, we provide our main results. The thresh-
old for the phase shift α, which ensures stability and depends
on the numbers of mediated oscillators and mediators, is
presented in the following theorem.

Theorem 1 (Threshold of α for Stable Remote
Synchronization): For the dynamics of oscillators (2),
the following statements hold under Assumption 1:

(i) there exists a unique exponentially stable remote syn-
chronization manifold in ML if2

α < arctan(
√

n + m/n − m). (3)

(ii) The remote synchronization manifold ML is unstable if

α > arctan(
√

n + m/n − m). (4)

Theorem 1 implies that a sufficiently large phase shift α

(or a large time delay, equivalently) prevents stable remote
synchronization. It can be seen that arctan

√
(n + m)/(n − m)

is monotonically decreasing with respect to n and monotoni-
cally increasing with respect to m. Thus, a larger n (i.e., more
mediated oscillators) results in a narrower range of phase shifts
such that an exponentially stable remote synchronization mani-
fold exists. Also, limn→∞ arctan

√
(n + m)/(n − m) = π/4 for

any given m, which means that exponentially stable remote
synchronization always exists regardless of the number of
mediated oscillators as long as α < π/4. In contrast, a larger m
(i.e., more mediators) creates a wider range of α for a given n.

2A bifurcation occurs when α = arctan
√

(n + m)/(n − m), but the ques-
tion of whether there exists an exponentially stable remote synchronization
manifold in ML remains unanswered.

In other words, more mediators make remote synchronization
more robust against phase shifts.

Next, we construct the proof of Theorem 1. Before provid-
ing the proof, we present some interesting intermediate results,
which will be used to construct the proof.

A. Intermediate Results
Unlike the classic Kuramoto model, e.g., [26], [27], the

usual linearization method cannot be directly used to con-
struct the proof in our case, since the oscillators’ frequencies
converge to a value that is distinct from the simple average
of the natural frequencies [29] due to the presence of the
phase shift α. To overcome this problem, we define some new
variables. Let xi = θi+1 − 1

n

∑n
j=1 θj for all i ∈ Nn−1, and

yp = θrp − 1
n

∑n
j=1 θj for all p ∈ Nm. Following (2), the time

derivatives of these new variables are

ẋi=
m∑

q=1
sin(yq − xi − α) − 1

n

n−1∑
j=1

m∑
q=1

sin(yq − xj − α)

− 1
n

m∑
q=1

sin(yq +
n−1∑
j=1

xj − α), (5a)

ẏp=
n−1∑
j=1

sin(xj − yp − α) + sin(−yp −
n−1∑
j=1

xj − α)

− 1
n

n−1∑
j=1

m∑
q=1

sin(yq − xj − α) − 1
n

m∑
q=1

sin(yq +
n−1∑
j=1

xj − α),

(5b)

where i ∈ Nn−1 and p ∈ Nm. Denote x := [x1, . . . , xn−1]� ∈
S

n−1 and y := [y1, . . . , ym]� ∈ S
m. From Definition 1, a

solution θ(t) to (2) is remotely synchronized if and only if :
1) x = 0, and 2) ẋ = 0 and ẏ = 0. Any (x, y) satisfying
1) and 2) is an equilibrium of (5). The following proposition
states how the stability of remote synchronization in (2) can
be analyzed by studying that of the equilibrium points of (5).

Proposition 1 (Connections Between Remote
Synchronization in (2) and Equilibria of (5)): The equi-
libria that satisfy x = 0 of the system (5) in S

N−1 are given
by3

e1 = [
0�

n−1, c(α)1�
m1

, (π − c(α) − 2α)1�
m2

]�
, (6)

e2 = [
0�

n−1, (π + c(α))1�
m1

, (−c(α) − 2α)1�
m2

]�
, (7)

with

c(α) = − arctan

(
(n − m1) sin α + m2 sin 3α

(n + m1) cos α + m2 cos 3α

)
, (8)

where m1 = 0, 1, . . . , m, m2 = m − m1 if m ≥ 2, and m1 = 1,

m2 = 0 if m = 1. There exists a unique exponentially stable
remote synchronization manifold in ML if and only if one of
these equilibria is stable. Furthermore, ML is unstable if and
only if all the equilibria in (6) and (7) are unstable.

Proof: Substituting xi = 0 into the right-hand side of (5a)
yields, as expected, ẋi = 0 for any i ∈ Nn−1. Substituting xi =
0 into the right-hand side of (5b) leads to ẏp = −n sin(yp+α)−∑m

q=1 sin(yq−α) for all p ∈ Nm. Since at remote synchroniza-
tion all ẏp are zero, we have sin(yp+α) = − 1

n

∑m
q=1 sin(yq−α)

for any p, which means sin(yp + α) = sin(yq + α) for any

3The equilibria given in (6) and (7) do no exhaust all the possible equilibria
of (5). Other equilibria that do not satisfy x = 0 may also exist.
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p, q ∈ Nm. Then, for a given pair of p, q, either yp = yq or
yp +α = π − (yq +α) needs to hold. Consequently, at remote
synchronization the elements in y are not necessarily identi-
cal, but can be clustered into two groups. Assume that the
sizes of these two groups are m1 and m2, respectively, where
0 ≤ m1 ≤ m and m1 + m2 = m. Without loss of generality,
let yp = y∗

e for p = 1, . . . , m1, and yp = π − y∗
e − 2α for

p = m1 + 1, . . . , m. Substituting these yp’s into the equations
−n sin(yp + α) − ∑m

q=1 sin(yq − α) = 0 and solving them
we obtain two sets of solutions in S

1, i.e., 1) y∗
e = c(α), and

2) y∗
e = π +c(α), where c(α) is given in (8). Then, (6) and (7)

follow subsequently. Because all the equilibria in (6) and (7)
together exhaust all the possible equilibria satisfying x = 0
of (5) in S

N−1 and each corresponds to a remote synchro-
nization manifold in ML, there exists a unique exponentially
stable remote synchronization manifold in ML if and only if
one of these equilibria is stable, and the remote synchroniza-
tion manifold ML is unstable if and only if all the equilibria
are unstable.

For notational simplicity, let s1 = (n−m1) sin α+m2 sin 3α,

s2 = (n + m1) cos α + m2 cos 3α, and S =
√

s2
1 + s2

2. Then, it
follows from (8) that

sin c(α) = − s1
S , cos c(α) = s2

S
. (9)

The stability of the equilibria given in (6) and (7) can in the
first instance be examined using the Jacobian matrix of (5)
evaluated at x = 0:

J(y) =
[

R1(y) 0
0 R2(y)

]
, (10)

where

R1(y) = −
m∑

q=1

cos(yq − α)In−1, (11)

R2(y) = −D(y) − C(y), (12)

with C(y) = 1m[ cos(y1 − α), . . . , cos(ym − α)] and

D(y) =

⎡

⎢⎢⎣

n cos(y1+α) 0 . . . 0
0 n cos(y2 + α) . . . 0
...

...
. . .

...

0 0 . . . n cos(ym+α)

⎤

⎥⎥⎦.

Accordingly, we investigate the eigenvalues of J(y) at

y =
[
c(α)1�

m1
, (π − c(α) − 2α)1�

m2

]�
:= ey

1, (13)

y =
[
(π + c(α))1�

m1
, (−c(α) − 2α)1�

m2

]�
:= ey

2, (14)

for all the allowed pairs of m1, m2. Since J(y) has a block
diagonal form, its eigenvalues are composed of those of R1
and R2. Using this property, we find that some of the equilibria
in (6) and (7) are always unstable.

Proposition 2 (Unstable Equilibria): Let m ≥ 2. Then, all
the equilibria in (6) and (7) are unstable for any α ∈ (0, π/2)

and any m1 satisfying 0 ≤ m1 < m.
Proof: We construct the proof by showing that for any m1

satisfying 0 ≤ m1 < m either R1(y) or R2(y) has at least one
positive eigenvalue no matter whether they are evaluated at
y = ey

1 or at y = ey
2.

First, we consider the case when y = ey
1. For any i, it follows

that Cij = cos(c(α)−α) for j = 1, . . . , m1, Cij = − cos(c(α)+
3α) for j = m1, . . . , m, and Dii = n cos(c(α) + α) for i =

1, . . . , m1, Dii = −n cos(c(α)+α) for i = m1 + 1, . . . , m. For
notational simplicity, let a = cos(c(α)+α), b = cos(c(α)−α),
and c = − cos(c(α) + 3α), and then R1(y), D, and C can be
rewritten as

R1(y) = −((m − 1)b + c)In−1, (15)

C = 1m[b1�
m1

, c1�
m2

], and D =
[

naIm1 0
0 − naIm2

]
. (16)

We then show that D + C has a negative eigenvalue in both
the following two cases: a) when m1 ≤ m − 2; b) when m1 =
m − 1. We start with the case a). Let v1 := [0�

m−1,−1, 1]�,
and then (D + C)v1 = Dv1 + 0 = −nav1, which means that
−na is an eigenvalue of D + C. As a consequence, J(y) has
at least one positive eigenvalue. We then study the case b),
and show that either R1(y) or R2(y) has a positive eigenvalue.
From (15), all the eigenvalues of R1(y) are identical and equal
to −((m − 1)b + c). To ensure that all the eigenvalues of
J(y) have negative real parts, ((m − 1)b + c) > 0 needs to
hold. We then prove that even when ((m − 1)b + c) > 0 the
matrix R2(y) still has a positive eigenvalue. We prove that
fact by showing that there is φ such that v2 := [1�

m−1, φ]� is
the eigenvector of D + C and it is associated with a negative
eigenvalue (denoted by λ). Let (D+C)v2 = λv2, and we obtain
[na1�

m−1,−naφ]� + ((m − 1)b + cφ)1m = λ[1�
m−1, φ]�, from

which we have the following two equations

na+(m − 1)b+cφ = λ,−naφ+(m − 1)b+cφ = λφ. (17)

We then show that there is a pair of solutions φ and λ to the
above equations, satisfying λ < 0. Canceling φ in the above
equations we obtain the equation of λ as follows

λ2 − ((m − 1)b + c)︸ ︷︷ ︸
w1

λ − na ((m − 1)b + na − c)︸ ︷︷ ︸
w2

= 0.

The solutions to the above quadratic equation are λ1 =
w1+

√
w2

1+4naw2

2 and λ2 = w1−
√

w2
1+4naw2

2 . Since w2 > 0 from
Proposition 3 in the Appendix and a > 0 from Lemma 1 in
the Appendix, it is not hard to see that λ2 < 0. Substituting
λ2 into (17), one can compute the solution φ, which means
that λ2 is an eigenvalue of D + C that is associated with the
eigenvector v2 := [1�

m−1, φ]�. Therefore, we have proven that
J(y) evaluated at y = ey

1 has at least one positive eigenvalue
for any m1 < m.

Finally, following similar steps as above one can prove
that J(y) evaluated at y = ey

2 also has at least one positive
eigenvalue, which completes the proof.

B. Proof of Theorem 1
Proof of Theorem 1: From Proposition 1, we construct the

proof by showing that: I) when m1 < m (which implies m ≥ 2,
since by definition m1 = m when m = 1), all the equilibria
in (6) and (7) are unstable for any α, and II) when m1 = m (for
any m ≥ 1), e1 is exponentially stable under (3) and unstable
under (4), and e2 is unstable for any α.

First, the proof of I) follows directly from Proposition 2.
Second, when m1 = m, c(α) in (8) becomes c(α) =

− arctan( n−m
n+m tan α), and e1, e2 become e1 = [0�

n−1, c(α)1�
m]�

and e2 = [0�
n−1, (π − c(α))1�

m]�, respectively. We prove II)
by showing the following two facts: a) J(y), evaluated at
y = ey

1 = c(α)1�
m , is Hurwitz under (3), and has positive eigen-

values under (4); b) J(y), evaluated at y = ey
2 = (π −c(α))1�

m ,
has positive eigenvalues for any α.
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To prove a), we investigate the eigenvalues of R1(y) and
R2(y) at y = c(α)1m. It follows from (11) and (12) that

R1(y) = −m cos(c(α) − α)In−1, (18)

R2(y) = −n cos(c(α) + α)Im − cos(c(α) − α)1m1�
m . (19)

All the eigenvalues of R1 are −m cos(c(α) − α). Moreover,

cos(c(α) − α) = 1
S

(
(n + m) cos2 α − (n − m) sin2 α

)
, (20)

The right-hand side of (20) is positive (negative, respectively)
under (3) ((4), respectively), which means that the eigenvalues
of R1 are all negative (positive, respectively). Turning now to
R2, observe that rank(1m1�

m) = 1 and 1m1�
m · 1m = m1m, and

thus the matrix 1m1�
m has m − 1 eigenvalues that equal 0 and

one eigenvalue that is m. Consequently, given η1, η2 ∈ R,
the matrix η1Im + η21m1�

m has m − 1 eigenvalues being η1
and one eigenvalue being η1 +mη2. Denote the eigenvalues of
R2(y) by μi, i ∈ Nm; then evidently μi = −n cos(c(α)+α) for
i = 1, . . . , m−1, and μm = −n cos(c(α)+α)−m cos(c(α)−α).
For s1 and s2 given in (9), s1 = (n − m) sin α and s2 = (n +
m) cos α, and then n cos(c(α)+α)+m cos(c(α)−α) = 1

S ((n+
m)2 cos2 α+(n−m)2 sin2 α), which is positive for any α. Also,
cos(c(α)+α) > 0 for any α from Lemma 1 in the Appendix,
and thus the eigenvalues of R2 are negative for any α. Overall,
J(y), evaluated at y = e1, is Hurwitz under (3), and has positive
eigenvalues under (4).

We finally prove b). At y = (π + c(α))1m, following sim-
ilar steps as above, the eigenvalues of R2(y) are μ1 = · · · =
μm−1 = n cos(c(α)+α), μm = n cos(c(α)+α)+m cos(c(α)−
α). Then, all the eigenvalues of R2(y) are positive for any α,
which subsequently means that J(y) has positive eigenvalues
for any α. The proof is complete. �

We have proven in Theorem 1 that exponentially stable
remote synchronization is possible only when m1 = m (under
a certain condition on α). Note that m1 = m implies that the
mediators have an identical phase. Therefore, to ensure the
exponential stability of phase-locked remote synchronization,
the mediators themselves have to be synchronized, but their
phases usually differ from the mediated oscillators’. In the
phase-unlocked case, however, the mediators can be incoherent
while still guaranteeing stable remote synchronization, which
will be shown numerically in the next section. Finally, the
equilibrium e1, when m1 = m, is the only equilibrium which
can be exponentially stable, and its stability depends only on
R1(y) in (18) as R2(y) is always Hurwitz. The calculation
in (20) shows that, as α approaches arctan

√
(n + m)/(n − m)

from below, R1(y) → 0, so that the system has a progressively
smaller degree of stability.

If the oscillators and the coupling strengths in (2) are hetero-
geneous (Assumption 1 not satisfied), the mediated oscillators
usually cannot be exactly synchronized. However, if there are
small positive numbers δω and δa such that max |ωi −ωj| < δω

and max |airp −ajrq | < δa, approximate remote synchronization
(phases remain close but not identical) occurs, which can be
proven by analyzing a perturbed system of (5) using standard
perturbation theory [30, Ch. 9].

IV. SIMULATION RESULTS

In this section, we present a set of illustrative simula-
tions that go beyond our theoretical results, and provide some
interesting observations.

Fig. 2. (a) trajectories of the phase differences (PDs) when n = m = 3;
(b) trajectories of PDs when n = 3, m = 4 and α = α1, α2; (c) trajecto-
ries of the frequencies when n = 3, m = 4 and α = α1; (d) a network
with a bipartite component (1, 2 mediated by r1, r2, r3); (e) trajectories
of θ2 − θ1 for α = β1, β2, β3 with red dashed edges in (d); (f) trajectories
of θ2 − θ1 for α = 0.9 without red dashed edges in (d).

First, we investigate the situation when m ≥ n. Phase dif-
ferences in the case of m = n = 3 are plotted in Fig. 2(a).
It appears that complete (not just remote) synchronization
can occur for any α ∈ (0, π/2), since it is observed for a
very large α, i.e., π/2 − 0.1. When n = 3 and m = 4,
it can be observed from Fig. 2(b) that phase synchroniza-
tion of the mediated oscillators always takes place even when
the phase shift α is large (α1 = 1.35, α2 = 1.4). However,
the frequencies of the mediated oscillators’ converge to a
dynamically changing value that is quite distinct from those
of the mediators (see Fig. 2(c)). This implies that phase-
unlocked remote synchronization has occurred. Moreover, the
frequencies of the mediators stay distinct from one another,
which implies that their phases also remain distinct. This
phenomenon is known as a Chimera state [25], since synchro-
nization and desynchronization coexist in the same network.
Interestingly, simulation results confirm the occurrence of
remote synchronization for any α. We conjecture that the
mediators’ quantitative advantage creates a powerful structure,
which can eliminate the effect of any phase shift or time delay,
making remote synchronization always stable.

Clearly, complete bipartite networks are a special class of
networks. Real networks, such as brain networks, are certainly
not bipartite. Yet, bipartite subnetworks can be found in com-
plex networks including brain networks, and reasonably might
play a role in enforcing synchronization. Then, we consider a
network with a bipartite subgraph in Fig. 2(d). It is shown in
Fig. 2(e) that the oscillators 1 and 2, mediated by r1, r2, and
r3, gradually become synchronized for a wide range of phase
shift α (the cases when α equals β1 = 0.6, β2 = 0.8, β3 = 1,

and β4 = 1.2 are plotted). However, if we reduce the number
of mediators by removing the red dashed edges in Fig. 2(d), we
find that remote synchronization cannot appear anymore even
when the phase shift α is as small as 0.9. From the simula-
tions, we confirm that a bipartite subgraph in a network plays
an important role in ensuring stable remote synchronization.
Moreover, more mediators make remote synchronization more
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robust against phase shifts (or time delays), as suggested by
our theoretical findings for bipartite networks.

V. CONCLUSION

Cortical regions without apparent neuronal links exhibit
synchronized behaviors, and the common neighbors that
they share seem to play crucial roles in giving rise to
this phenomenon. Motivated by these empirical observations,
we have analytically studied mediated remote synchroniza-
tion of Kuramoto-Sakaguchi oscillators coupled by bipartite
networks. A larger number of mediators has been shown to
make remote synchronization more robust to phase shifts or
time delays. Simulation results confirm that this finding also
applies to more complex networks with bipartite subnetworks.
Moreover, remote synchronization seems to be stable for any
phase shift if there are more mediators than the mediated oscil-
lators in a bipartite network. This aspect is left as the subject
of future investigation.

APPENDIX

Lemma 1: Let c(α) be defined in (8), then cos(c(α)+α)>0
for any m1 and any α ∈ (0, π/2).

Proof: There holds that cos(c(α) + α) = cos c(α) cos α −
sin c(α) sin α. Substituting (9) into the right-hand side of
this inequality we can compute cos(c(α) + α) = 1

S (n −
m1 + 2m1 cos2 α + m2 cos 2α) = 1

S (n − m + 2m cos2 α),
where the last equality has used the double-angle formula
cos 2α = 2 cos2 α − 1 and the equality m1 + m2 = m. Then,
cos(c(α) + α) > 0 for any α and m1 since m < n by
hypothesis.

Proposition 3: Let a = cos(c(α) + α), b = cos(c(α) − α),
and c = − cos(c(α) + 3α), where c(α) is given by (8). Given
m ≥ 2, suppose m1 = m − 1, then (m − 1)b + na − c > 0 for
any α ∈ (0, π/2).

Proof: Substituting (8) into (m − 1)b + na − c and after
some algebra one can obtain S((m−1)b+na− c) = (n−m+
1)(n − m − 1 + 2(m + 1) cos2 α)) + 2(m − 1)(8 cos4 α + (n +
m − 7) cos2 α) + 1. If m = 2, then n ≥ 3 by hypothesis, and
subsequently, n−m+1 ≥ 2, n−m−1 ≥ 0, and n+m−7 ≥ −2,
which means that S((m−1)b+na−c) ≥ 16 cos4 α+8 cos2 α+
1 > 0. If m ≥ 3, then n ≥ 4, which subsequently means
that n − m + 1 ≥ 2, n − m − 1 ≥ 0, and n + m − 7 ≥ 0.
Consequently, S((m − 1)b + na − c) ≥ 4(m + 1) cos2 α +
16(m−1) cos4 α+1 > 0. Since S > 0, it follows naturally that
(m − 1)b + na − c > 0.
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