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Abstract

Motivated by numerical methods for solving parametric partial differential equations,
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is in a certain sense optimal, and that these lower sets have a simple definition in terms
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1 Introduction

Polynomial and piecewise polynomial approximations are staples in numerical anal-
ysis. For example, approximation by piecewise polynomials on simplicial partitions
is the underpinning of Finite Element Methods. In that setting, one approximates the
solution u to a partial differential equation (PDE) on a domain D C R?, where d is
typically small (d = 1, 2, 3). The solution u to the PDE typically has limited regu-
larity, and the rate of approximation is of order O(n~"), where n is the number of
degrees of freedom in the approximation and r is small. This type of approximation
is well-understood by means of theorems which relate the approximation order r to
the smoothness order s of u in certain Sobolev and Besov spaces (see [6-9]). The
approximation rate takes the form r = s/d and therefore deteriorates as d increases.
This is commonly referred to as the curse of dimensionality.

The present paper is interested in a different setting that arises in other application
areas, in particular when using numerical methods for solving stochastic or paramet-
ric PDEs. In that setting, one wishes to approximate the solution u to the parametric
PDE which depends on input parameters y and takes values in a Banach space X. The
parameters y come from a set ¥ C R? where d is large or even infinite. Hence, it is
often crucial to perform a model reduction (dimension reduction) for the solution map
y — u(y) € X of the parametric PDE. One possible way to obtain such dimen-
sion reduction is to approximate u by Banach space valued polynomials in y. The
main property of u that makes such an approximation possible is that under standard
assumptions on the parametrized coefficients of the PDE, it is known that # admits an
analytic extension onto certain complex polydiscs that contain Y (see [13]). In other
words, u has a certain anisotropic analyticity. This motivates the study of approxi-
mation of anisotropic analytic functions by polynomials, which is the subject of the
present paper. Although we are motivated by parametric PDE applications, we formu-
late and study this subject as purely a problem in multivariate approximation. In this
way, we hope to draw the attention of the approximation community to this area of
research.

For the most part, we are interested in the case of an infinite number of parameters,
i.e.,d = . This allows us to prove results which are immune to the dimension d and
is a common setting in parametric PDEs. Specifically, we take parameters in the set
Y :=[—1, 1] , where N is the set of natural numbers. Sometimes we remark on the
case Yy :=[—1, l]d with d finite, in particular when we wish to compare our results
with other results in the literature established only for finite d.

Let F denote the set of all infinite sequences v = (vy,vz,...) with entries
v; € Ng := N U {0}, where only a finite number of the entries in v are allowed
to be nonzero. If  C F is a finite subset of F, we denote by P the space of X-
valued polynomials spanned by the monomials y", where the v come from the set
Thus, any element of P  has the form

P(y)= ',

ve
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where the coefficients ¢, come from X. Here and throughout the paper, we use standard
multivariate notation. In particular, y” := yl”1 ygz -+ Since v has only a finite number
of nonzero entries, any such product is finite.

Forany u € L (Y, X) and any finite set ~C F, we define the error of approxi-
mation of u by polynomials in P to be

E (u):= inf |lu—Plr v.,x), and vl v.x):=supllv(y)lx.
PeP er

where L (Y, X) consists of all functions v on Y that are bounded mappings into X.

If no conditions are imposed, then the potential sets = may be quite complex
and beyond the scope of numerical methods. For this reason, one usually imposes
additional structure on these sets such as fixed total degree or fixed coordinate degree
in the case d is finite. We are especially interested in the case where the sets  are
lower sets, that is, sets ~ with the property

if ve , then ue whenever wu; <v;, j=1,2,....
We consider the collection £, of lower sets with cardinality < n,
Lo:=0, L,={ CF: <mn, isalowerset}, n=1,2,...,

and for given compact class K of functions in L (Y, X), and any finite set C F,
we define

E (K):=sup E (u),
uek

and

Eo(K) :=sup [lullL (v.x), En(K):= 122 E (K), n=1,2,.... (L)
K 0

ue

Notice that in this definition the set ~ is allowed to depend on K, but cannot change for
the various u € K. So, as formulated, this is a problem of finding the best linear space
P to use when approximating K. Hence, the optimal performance E, (K) satisfies

dy(K)r v.x) < Eq(K),

where d,, denotes the Kolmogorov n-width of K in L (Y, X). The sets K are com-
monly called model classes. The case where the error of approximation is measured
inL,(Y,X),q < ,isalso interesting but not studied here.

Given the model class K, we are interested in several fundamental issues:

e First, what can we say about the rate of decay of E,(K) as n increases? By now,
there are several results in the literature that give upper bounds on E, (K) for
certain anisotropic analytic classes K of the type analyzed in this paper. Most
often these bounds have been developed in the setting where u is a solution to a
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parametric PDE. So part of our effort is to separate out which of these results are
simply a result of the analyticity of # and do not use any additional properties of
the PDE solution.

e A second importantissue is the optimality of the known bounds for E,, (K). Indeed,
the typical results only give upper bounds for E, (K) and sometimes only for n
sufficiently large.

e A third significant problem in this area of research is to give a recipe for finding
good lower sets ,, € L, such that E | (K) performs at or near E,(K). This can
be a nontrivial issue in numerical applications since, given a budget n, searching
over all lower sets in £, to find a suitable , is prohibitive.

As already noted, we are interested in model classes K described by some form
of anisotropic analyticity. We focus on X valued functions that are analytic on a
polydisc D, consisting of all complex sequences z = (z1, 22, ...), with |z;| < pj,
j=12,....Here, p = (p1, p2, ...) is always a nondecreasing sequence of positive
numbers with p; > 1. The functions in D,, have more smoothness in the variable z;
as j increases. In turn, the influence of this variable on the value of u at a pointin Y is
weaker. Any function in D, has Taylor coefficients that are elements of X. In Sect. 2,
we introduce a variety of spaces , ,, which differ in the assumptions imposed on the
Taylor coefficients. These spaces are motivated by recent work (see [1,15] and [13])
in parametric PDEs.

The remainder of the paper concentrates on understanding the rate of decay of
E, (K) for these model classes and understanding how to choose lower sets , C F
of cardinality n which attain E, (K). It turns out that the L (Y, X) norm is difficult
to work with and so we replace it by a certain surrogate majorant. In Sect. 3, we
show that estimating the error of approximating K in the surrogate norm and finding
optimal lower sets  ,, in this norm has a simple solution. Namely, given any € > 0, the
smallest lower set  for which P approximates K to accuracy ¢ is given by the set
of lattice points in a certain simplex S = S(e, p) determined by p and ¢. Therefore,
understanding the rate of decay of E,(K) is equivalent to counting the number of
lattice points in these simplices.

Of course, counting lattice points in simplices is a well studied problem in number
theory where several deep results are known. General results typically only hold for
n large when the number of lattice points can be estimated through the volume of the
simplex. In numerical applications, the pre-asymptotic region is the most important
since it corresponds to the only # which can be implemented in computation. Therefore,
we focus on counting lattice points when n is small. For results of this type, one needs
to have more specific information on the simplices, and therefore on the sequence p.
This leads us to consider specific anisotropic classes that arise in applications. These
correspond to sequences p which grow polynomially.

For s > 0, we define the sequence p(s) := (p;(s))j>1 with p;(s) := (j + 1)°,
Jj = 1. The problem of counting lattice points in the simplex associated with this
sequence is directly related to counting the number of multiplicative partitions of
integers. One can therefore use the results in [10] to do exact and asymptotic analysis
for the number of such lattice points. Exact counts on the number of multiplicative
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partitions of an integer n are known for certain values of n. Making such counts
becomes numerically more intensive as n increases.

It turns out that this situation can be alleviated some by slightly modifying the
sequence p(s). We modify this sequence to obtain a related sequence p*(s) with the
same asymptotic decay as p(s). The advantage of this modification is that the number
of lattice points of the modified sequence is related to the number of additive partitions
of an integer n rather than the multiplicative partitions. Finding additive partitions is
somewhat easier numerically. We show how one can do an exact count of lattice points
for p*(s) in Sect. 5. In Sect. 5.2, we give an asymptotic analysis for this count by using
known asymptotic bounds for the number of additive partitions of integers. In Sect. 6,
we give some simple recipes for how to find the optimal ,, for various sequences p.
Finally, in Sect. 7, we make some final remarks and compare out results with those in
[20].

We close this introduction by mentioning that the results in this paper have a large
intersection with several earlier papers. As we have already noted, our motivation for
the introduction of the spaces , , stems from several works on parametric PDEs,
see the survey [13] and the references therein. Let us also mention [5] and [17] which
study approximation of anisotropic analytic functions in a quite general tensor product
framework. There are several papers, most notably [5,20] and [22], that realize that
one method to construct approximations for solutions of parametric PDEs is related
to counting lattice points. In [20], this count is done for certain non-simplicial sets as
well. We touch more on some of these works later in the paper once our results are
formulated.

2 Anisotropic Analyticity and Motivation

In this section, we introduce a variety of model classes based on some form of
anisotropic analyticity. We recall that throughout this paper p = (p1, p2, ... ) denotesa
non-decreasing sequence of positive real numbers with p; > 1,andlim; , p; =
We call any sequence with these properties admissible. We recall the Banach spaces
£ (N) of all bounded complex valued sequences (z;);>1, with its usual norm
lzlle () :=sup;>y |z;|. We let U denote the unit ball of £ (N) in this section.
Perhaps the most natural class of anisotropic analytic functions is the fol-
lowing. We start with the complex (open) polydisc D,, which consists of all

z = (z1,22,...),z; € , for which |z;| < pj, j = 1,2,..., and define Bp as
the set of all z = (z1, z2,...) for which |z;| < pj,z; € ,j=1,2,.... We then
define

Hp :=Hy(X)

as the set of all functions # : £ (N) — X which are bounded on Bp, continuous on
D,, and holomorphic in each variable z;, j = 1,2, ..., on D,. We can equip this
space with the norm

lullz¢, := sup [lu(z)|x-
zeD,
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Because the sequence p is non-decreasing, we see that functions in H, have more
smoothness in the variable z; as j increases. These spaces are analogous to Hardy
spaces.

If v € F, then the support of v is finite and any u € H, has uniquely defined Taylor
coefficients

_9"u(0)

V.

mra velrF,

where again we are using standard multivariate notation. Note here that the definition
of , requires only the function u(zy, ..., zy,0, ...), for a suitable finite value of N.
Since this is an analytic function of a finite number of variables, these coefficients are
well defined from the usual theory of functions of a finite number of variables.

In what follows, we are interested in representing u in a Taylor series expansion

u(z) = 6z, 2.1)
veF

An important issue is the sense in which the above Taylor series converges. For this,
we follow Section 3.1 of [13]. It is shown in that paper that any rearrangement of this
series converges uniformly on &/ whenever (||f, | x)yer is in £1(F). This guarantees
that there is a function v defined on U/ such that any rearrangement of the terms in
the series in (2.1) converges in X uniformly to v. We call this type of convergence
uniform unconditional.

Convergence of the Taylor series associated with # does not guarantee that its limit
is equal to u. For this one requires additional structure. A sufficient condition is that
u has the following property:

Truncation Property: For all z € U, we have

u(z) = lim u(zy,...,zn,0,...).
N—

This property is known to hold for the solutions to parametric PDEs.
Our first observation is that whenever u is in H,,, then u has a bound on its Taylor
coefficients.

Lemma2X¥ Ifu € H,, then
(i) the Taylor coefficients t, € X of u satisfy the bounds

ltllx < llullp, 0" veF, (2.2)
(1) If, in addition, u has the Truncation Property and (||t, | x)veF is in £1(F), we
have
u@ = ', lzlle () =1,
veF

with uniform unconditional convergence of the series.
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Proof We use a slight modification of the proof of Lemma 3.14 in [13] accounting for
the fact that the assumptions of the lemma do not guarantee that « is holomorphic on
an open set containing 5,, as is required in that lemma of [13]. If we fix v € F and
any sequence § < p, we claim that

ltllx < llullpg, 67" (2.3)
Given v, let {I,...,J} contain the support of v . We consider the function
F(z1,...,27) = u(?), where z; 1= z; j = 1,...,J, and Z; is zero otherwise.

Then ¢, is the corresponding Taylor coefficient of F and the bound (2.3) is derived
from Cauchy’s formula as in [13]. Since this bound holds for any § < p and the
support of v is finite, we obtain (2.2) by letting §; — p;, for each j in the support
of v. The uniqueness of #, again follows from the fact that v has only a finite number
of nonzero coordinates and ¢, is determined by restricting « to the finite number of
coordinates corresponding to where v is nonzero. This proves (i).

For the proof of (ii), the assumption (||ty]x)ver € £1(F) guarantees the con-
vergence of the Taylor series and then the fact that its sum is u follows easily (see
Proposition 2.1.5 in [22]). O

This lemma motivates the definition of the following class of functions.
Definition of , : We say that a function u defined on Y and taking values in X, is
in the space , = , (Y)if u admits a representation

u(y)y= ty", yev,
veF

with the convergence of the series uniform unconditional on Y, and where the
t, = t,(u) € X are unique and satisfy

lull . :=supp’ltullx <
veF

Another type of restriction on functions u, derived in the context of parametric PDEs
(see [1]), is that

" lltnllx1* <
veF

This motivates the general definition of the following model classes.

Definition of , ,: Forany 0 < p < , we define the space , ,, as the set of all
u e L (Y,X) which admit a representation

M()’)I tvyvv er?
veF
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with the convergence of the series uniform unconditional on Y, and where the
t, = t,(u) € X are unique and satisfy

1/p
lull ,, = ( [,OUIIIVIIX]"> = (" Itv lx)verlle,F) <
veF

Notice that these classes get smaller as p decreases: , , C ,4 when p < g. We
study the approximation of the model classes , , in this paper.

We could similarly define anisotropic spaces using other sequence norms in place
of £, norms, for example, Lorentz space norms. However, we will not explore this in
the present paper.

Remark 22 We have introduced spaces of anisotropic analytic functions by imposing
conditions on Taylor coefficients. One could replace the Taylor basis y¥, v € F,
by other polynomial bases and define corresponding spaces of analytic functions.
A particularly interesting case is when the polynomial basis consists of Legendre
polynomials, since such expansions occur naturally in parametric PDEs (see [12]).

3 The Approximation of Functionsin

In this section, we give first estimates for the error in approximating functionsin , ,
by polynomialsin P , with alower set. We follow the ideas in [15] which treats the
case p = 2. Recall that in this paper we limit our discussion to the approximation of u
inthe L (Y, X) norm. This norm is not easy to access especially when X is a general
Banach space. However, if u has a Taylor expansion u(y) = )" . #,y", y € Y, then
it has a simple majorant given by

lulle v.x) < Inllx = ey ) llx =2 flull™
veF veF

The surrogate norm ||u||* is defined and finite only if u has a Taylor expansion valid
on Y and (||ty||x)ver is in £1(F). We assume that this is the case in going further in
this section. As we shall see below, this assumption is easy to verify whenu € , ,
under suitable assumptions on p. This leads us to consider the surrogate error

E*) = inf lu—PI*"= lnlx, (3.1
PeP
vé
and similarly
E*(K) := sup E* (u), (3.2)
uek
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for the surrogate performance on a compactset K C L (Y, X). Given any set , the
polynomial

T (y):= ty"

ve

provides an approximation to # which satisfies
E =<lu-T L vx)<llu=T |I"=E*(u). (3.3)

We now describe a simple way to find a lower set from £,, which gives the smallest
surrogate error for the unit ball ¢, , of , ,,0 < p < , among all lower sets from
L,. Given the sequence p and given any ¢ > 0, we define

(e,p)=veF:pV>e=heF:p’ <&l (3.4)

Notice that (¢, p) has the following properties:

° (e,p) < whenever ¢ > 0, since p is non-decreasing, with p; > 1 and
lim;, p;j=

e (g, p)isalowerset,sincepu <v= p7" < p™H

o (g, p)C (¢,p) whenevers' <e.

We define the sequence (8,)n>1 = (8,(0))n>1 to be a decreasing rearrangement of
the sequence (p~"),cx. Then,  (8,, p) > n. We further define

ni= ap (3.5)

as any lower set contained in (8, p) with cardinality » and which has the property
that it contains all v for which p™" > §,,(p). Such a lower set can be obtained from

(6n, p) by successively removing extreme points and thereby retaining the lower
set property. Note that , is not unique because of possible ties in the value of p™",
velF.

For any admissible p and any n > 1, we define

(Zoe P’”q)l/q = (Zjon 57>1/q’ f0<a< » 3¢

5n+17 q =

(Sn,q = an,q (p) ==
While , need not be unique, we always have a unique value for 8, 4 (o) for all choices
ofn,q,p.

Theorem3X For0 < p < , we have:

(i) the set . p, defined in (3.5), minimizes E* (U, p) over all lower sets € Ly,
and

En(up,p) <E n,p(up,p) =< E*n,p(up,p);
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(i1) if p = 1 and q is the conjugate index to p, i.e., 1/p +1/q = 1, then

E .Uy p) < E

n.p

Up.p) < E*, Upp) =bnyg.

Proof Let us first make some remarks about the structure of {,, , that hold for any
0<p< and any admissible p. Given any u € U, ,, we know that u(y) =
> ver vy’ and the Taylor coefficients 7, satisfy

Itullx =ap™" veF, (wver € UWyF)),

where U(£,(F)) is the unit ball of the space £,(F). Conversely, let
(av)yer € U(€,(F)) be a non-negative sequence and let ¢ € X with | gllx = L.
If we define 7, := gp~"a,, v € F, then the function u(y) := )" .+ 1y’ will be in
Uy, p provided that (p™",),eF is summable.

We first prove (ii) for a fixed n and p. We only discuss the case p > 1. The
case p = 1 is proved in a similar way. The two inequalities in (ii) are obvi-
ous from the definitions (1.1), (3.2), and (3.3), and so we only need to show that
E*W Up,p) = . Letu € Uy, p, with u(y) = > crt,y". It follows from (3.1)

with T (y) =) ,c e t,y" and Holder’s inequality that

EX w=lu-T,I"= it llx= Itullxp’ o™ < llull , ,8n.q < dnq-

v n,p v n,p

To prove that E* n,p(MP’P) > 8p,4, We construct a function u € U, , for which
E* p (it) = 8p,q. First assume that 8, 4 is finite, so that there is a nonnegative sequence
(¢v)ver in the unit ball of £,(F) for which ZU¢ o cvp”" = 8,,4. Then, as in our
lead remarks, we let g € X with ||g||x = 1 and define ¢, := ¢, p~"g. Then,we have

u(y) = Ly", yevy,
veF

is in U, p. Note here we use the fact that (||t,||x)ver is in €1(F). Since
E*n,p (1) = 84,4, we have finished the proof of (ii) in the case that 4, , is finite.
If 6,4 = , the same argument as above shows that there is a i for which E* vp ()
is as large as we wish. Therefore (ii) holds in this case as well. .
Now, consider the proof of (i). The inequalities stated in (i) are all obvious and
so we need only show that , , minimizes E* (U, ,) over all lower set € L,. To
prove this, we first consider the case p < 1.If € L,, then by our lead remarks

E* (Up,p) = sup lt@)lx = sup ayp . (3.7
MEZ/{pVP v¢ oe U(K,,(.’F)) v¢

Here, we use the fact that (0 ~"«,), e+ is summable because («y),cF isin £1(F). The
minimum of (3.7) over all  is achieved by taking =, ,.
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Finally, we have to prove (i) in the case 1 < p < . Let us first recall that there
is an enumeration v(n), n > 1, of all of the v € F, such that §, = p’””), n>1,
and such that , , = {v(1),..., v(n)}. We suppose is any lower set with =n.
From the definition of , ,, we have

—V q
p " =8,4.

vg

Using the same construction as in the proof of (ii), we can find i € U, , with

E*@i= p =>4,
vé
which thereby proves (i). O

Corollary 3R For1 < p < , let q be the conjugate index to p. Then whenever §,, ,
is finite for some 0 < r < q, we have

EUyp) < E , ,Upp) < E* Upp) <8,780 n=1. (38

In particular, we have

E* Upp) <+ D0 el ), n= (3.9)
Proof The case where p = 1 (resp. ¢ = ) follows from (ii) of Theorem 3.1, since
8p, = O8pt+1.Sowecanassume p > 1 and g < . Since the sequence (8,),>1 is

non-increasing, we have

Sig= 8] <8i & =816, (3.10)

j>n j>n

Because of (ii) in Theorem 3.1, taking a g-th root proves (3.8). To show (3.9), we use
the fact that 6, , < [[(p™")veFll¢, (F), along with the standard estimate

n+1
n+ D& < 8 <10 el 7

j=1
Inserting these into (3.10), we obtain
- _a=r _4q _
Sg <80, <A DTN ezl =+ DTG D uer I

and the proof is complete. O

Remark 318 We can define the above space , , also in the case p = (p1, ..., pq)
with d finite. The results of this section hold equally well in this case.
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4 The Sequence g )

First, let us observe that in order for the 8, , from (3.6) to be finite, and therefore
Theorem 3.1 to be meaningful, we need that the sequence (p™"), ¢ € £4(F), which
is the same as asking that (5, (p)),>1 € £4(N). The following lemma shows that this
is the case if and only if (,oj_l)jzl € £y(N).

Lemmadll Let O < g < . Then the sequence (p~"),cxr € £4(F) if and only if
the sequence (p/._l)jzl €l,(N). Moreover, the two norms are related in the following
way:

(i) whenq =, we have (0™ )verll 7 =1,
(i) when0 < g < , we have

q q

en<p;1>,-zln (1=p; D707 D 21l

MO <l veFllg, ) <€ i,
Proof The case ¢ =  istrivial. Wheng < , we have
_ - —k —gn—
o™ erllf, = o ‘1”=1"[( p; ") =[Ja-oD" @D
veF j>1 \k=0 j=1
Taking logarithms, we have from the mean value theorem that
—q\-1\ _ _ AN PR
m([Ta=p") == m(1-p*)= a-gn7's",
j=1 j=1 j=1
where the & € (0, pj_q) c Op", j = 1,2,.... Since
1<(1-&)7"' < —p; D7, it follows that
65zl A=y 07 Dzl

4O <™ verlly, iz <€
This proves item (ii) in the lemma, and likewise shows that the product in (4.1) con-
verges if and only if (,oj_l)jzl €y (N). a
Remark 4R The upper bound established in the above lemma can be found in [15].

The error estimates derived in Sect. 3 for approximation by polynomials on lower
sets depend crucially on the sequence (8,(0)),>1, and are achieved by choosing the
lowerset , =, ,. This leads to two central issues:

(i) establishing sharp a priori estimates for &, (o) given the sequence p;
(ii) efficient algorithms for generating the sets .

We discuss item (ii) in Sect. 6, and here we discuss first item (i). We begin this section
with methods for bounding (8, (0)),>1 which hold for any admissible sequence p.
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Remark 438 In order to compute 8, (p) or its asymptotic decay asn — , we study
(e, p), 0 < & < 1. This function of ¢ takes integer values and increases as & goes
to zero. Hence, it is a piecewise constant function and (§,(p)),>1 is the decreasing

sequence of the breakpoints €1, €2, ..., of (g, p), where each value ¢; is repeated
(&i+1,0) — (&1, p) times and 81 (p) = ... = &, (p) = 1 withk; = (1, p).
Since lim p; =+ ,thereisa D = D(¢) such that /oj_1 < &, j > D. It follows
]—)
that any v € (g, p) has support in {1, 2, ..., D}. Moreover, if we write ¢ = e ™M

then taking logarithms we see that v € (e, p) if and only if v satisfies

Hence, v € (g, p) if and only if v is supported on {1, 2, ..., D}, and (vy, ..., vp)
is a lattice point in the simplex

>}

S:=8@y,...,ap) ;=3 (x1,...,xp): x;,>0,i=1,...,D, and x—gl ,

where

M
_ln,oj

aj: >1, j:l,...,D.

Estimating the number of lattice points in such a simplex is a classical problem in
number theory and combinatorics. Let us first note that the volume (measure) of S is

D
Hj:l aj

vol(S) = |§| = DI

We recall the following general upper bound (see [4,21]) for the number  (S) of
S Né’ such that v € S:

D
L a;
l_[j_l J <

DI S =0+a

HD—I aj
pllj=17J ,_ —1
) T, a = a. . (42)

Note that the right side of (4.2) is inflated by a factor of (1 + )P when compared with
the volume of S. We use this result to prove the following lemma.

Lemma 4% Let p be any admissible sequence. Given ¢ = e, where M > 0, let D
be the last integer j for which p; < eM. Then, for the set (e, p) of all v € F such
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that p~" > g, we have

-1

M L D D D
(e,p) < % Hln Pj , Where L := L(p):= Inp;. (4.3)
' Jj=1 Jj=1
Proof From (4.2) witha;j = . j =1,.... D, we have
-1
MP L\?| &
(S,P)SF<1+M) 1—[llnpj ,
j=
which is equivalent to (4.3). |

Let us make some remarks that will clarify when the bound in the lemma is effective
and when it is deficient. First of all, if d is finite and the sequence (p j)‘jl.zl is fixed,

then the set (e, p), & = e™M s the set of lattice points Ng /M in the fixed simplex
S* .= 8S(/Inpy,...,1/1Inpy). If we let M tend to infinity (which corresponds to
e — 0), we see that D = d provided M is large enough,and (e, p) behaves like
M? times the measures of $*. This is in agreement with the bound (4.3) because the
inflation factor (1 + L/M)? = (1 + L/M)? tends to one as M — . So this bound
is good for finite d, provided the error we seek is small. However, there is a transition
before this asymptotic kicks in where the upper bound provided by the lemma is not
effective.

To see this, we consider one example which is central to this paper. We consider the
sequence p := (j + 1)?:1, with d finite. We take as our target error ¢ := 1/(d + 1),
ie. M = In(d + 1). Then D = d and the upper bound for (e, p) provided by
Lemma 4.4 is

(In(d 4 1) 4+ In(d + 1)H)?
AT In(j + 1)

=: B(d), (4.4)

where we used the fact that

d d d
L= In@G+Dh=hd+1!, [[np;=]]0nG+D.
j=1 j=1 j=1

Since In(x) is a concave function, we have
d+1

d+1
In(d + 1)! = lnjz/ Intdt >
j=2 !

dIn(d +1)
> .
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Therefore, we have

[In@d+ DY d’[n(d + D) dd ﬁln(d—i—l)

B(d) > v : > . : S :
AT G+ 1)~ 24d ]9 In(j + 1) 2% | InGi+1)

j=1
44
> 5= g (5

where we used Stirling’s formula. Thus, if we want an error ¢ = 1/(d + 1) in this
particular example, the best bound that Lemma 4.4 can provide for the size of (e, p)
is exponential in d. In contrast, in Lemma 5.3 from the following section, we give a
much more favorable bound.

5 Analysis of 6y ) When has Polynomial Growth

As we have just observed, the bounds of the previous section for §,(p) are generally
far from sharp. We can establish sharper bounds, and even compute §, (p) exactly, if
we have more information on the sequence p. In this section, we give such an analysis
when the sequence p has polynomial growth.

Recall that for s > 0, we defined the sequence p(s) := ((j +1)*) j>1. In some parts
of our analysis, it is useful to slightly modify this sequence. Accordingly, we introduce
the following modified sequence p*(s), s > 0, defined as follows. If 7} := {1, 2} and
Iy :={j: 2F1 < j <2k}, k > 2, then

pis)=2%, jel k=12 ... (5.1)

Note that the sequence o (s) increases like j*. Moreover, /i =2and [y = k=1
fork > 2.

Given any ¢, we want to determine the cardinality of the set (e, p(s)) or its coun-
terpart (&, p*(s)), i.e., how many v satisfy the inequality [p*(s)]™" > e. According
to Remark 4.3, the decay rate of 8,(p*(s)) can then be derived from this knowledge.
Let us note that for these two sequences, we have

€, p@) = (e,0(1), (¢°,0") = (e,p0"(), s>0,

and so it is enough to analyze the case s = 1. We therefore take s = 1 in the estimates
on cardinality that follow.

As ¢ decreases, the cardinality of (g, p(1)) increases. While it is interesting to
understand how this cardinality grows asymptotically when ¢ tends to zero, in numer-
ical scenarios it is important to keep this cardinality small.
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5.1 Exact Formulas forXA g, 1)

Exact formulas for the cardinality of (e, p(1)) canbe given in terms of the multiplica-
tive partitions of natural numbers (see [10] and Remark 3.18 in [13]). In theory, these
formulas allow the precise computation of (&, p(1)) provided that this cardinality
is not too large. However, this computation is very intense and, to our knowledge, has
not been done. It turns out that these computations are simpler if one uses the sequence
p*(1) instead of p(1). This stems from the fact that p*(1)" is always an integer power
of two. For this reason, we focus on this sequence for the remainder of this section. We
begin by showing how one can do an exact count of the multiindices in the simplex
associated with p*(1).
For any m € Ny, we define

S i={veF: p (1)’ =2").
The set Sp contains only the zero sequence and hence Sy = 1. We want to determine

the cardinality of the sets S,,, m > 1. This is the same as finding how many v € F
satisfy (3.4), since if we denote by

o =|om (1)

we have that

m(e) m(e)
erry= [JveF:pm=29)= S 62
k=0 k=0

Let us first note that if v has a nonzero component v; > 0 for some j > 2™, then

p*(1)Y > 2™ and so v is not in §,,. Hence, any v € S,, is supported on {1, ..., 2"}
We decompose the set {1, ..., 2"} = (J;—_, Ik, and given any v, we define
Ni(v) = vj,
J€lk

which we think of as the energy of v on I. Therefore, for any v € §,,, we have

kNg(v) = m. (5.3)
k=1

Note that there are only certain sequences (N1, . . . , Ny,;) which satisfy (5.3). We denote
the collection of all such sequences by Q,,,

m
m={N1,...,Np):  kNe=m, NjeNo,i=1,...,m).
k=1
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The sequences in Q,, are related to the additive partitions of m, which are decompo-
sitions of m € Ninto m = my + - -- +m, where the m ; € N and where the order of
the appearance of an m ; does not matter.

There is a one to one correspondence between the elements in Q,, and additive
partitions of m. Indeed, any additive partition (m1, ma, ..., m;) of m corresponds to a
sequence (Ny, ..., Nk, ..., Ny) € Qp, where Ny is the number of appearances of k in
(m1, ..., mj). Conversely, any (Ny, ..., Ny) for which Zznzl k Ny = m corresponds
to the unique additive partition of m, where 1 appears N; times, 2 appears N times
and so on. Thus g(m) := @Q,, is the additive partition number of m.

The following theorem gives an exact count for the cardinality of S,,, and hence
the cardinality of the set (g, p*(1)).

Theorem 5X For m > 1, the cardinality of Sy, is given by

m

Ne—1+4 1
Sy = ]_[( k N: "). (5.4)

(N1, N ) €Qp k=1

Moreover, for every ¢ > 0,

m(e) m(e)
N; —1 I;
(.o )= Si=1+ l_[( T f),
k=0 k=1 (N|,...,Nk)EQk Jj=1 /

where m(¢) := |log, (%)J

Proof For any fixed (Ny, ..., Ny) € Qy, we define
I'(Ni,...,Np) ={vesS,: Ne(v)=Ni, k=1,...,m}.
Now, for each k = 1, ..., m, we count all possible v satisfying

N = Ny(v) = vj.
Jelk

Since v; € Ny, the latter cardinality can be viewed as the number of ways one can
place Nj indistinguishable balls into [ distinguishable boxes so that some boxes can
remain empty. The answer to this combinatorial problem is known to be (Nk _ji,:' Ik)
(see[19]). Therefore, the cardinality of I' (N, . .., Ny,) is the product of these binomial
coefficients:

m

Ny—1+ I
F(N],...,Nm)=l_[<k + k). (5.5)

N,
k=1 k

Equation (5.4) now follows from the definitions of S,, and Q,, and (5.5). The last
statement in the theorem follows from (5.2) and (5.4).
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Theorem 5.1 gives an exact formula for (e, p*(1)) for any &, since
(e, p" (1) = 7", p*(1)) for e "D 27",

Note that the sequence (8,(0*(1))),>1 is then given by §1(p*(1)) = 1 and, for
m=1,2,...,

Su(p*(1))=2"" for n= Q" p*AN+1,...., Q" p*(M)+ Su.
oreover, since (&7, s)) = g, ,8 > 0, we similar erive that
M i (&, p*(s)) = (e, p*(1)), s > 0, we similarly derive th
(e, p*(s) = (27", p*(1)) for e (27mHDs a7ms, (5.6)

and (8, (p*(s)))n>1 is then given by §1(p*(s)) = 1 and, form = 1,2, ...,

Sui(p*(s)=2"" for n= Q7" p*AN+1,..., Q7" p*()+ Sp.
(5.7)

In Table 1, we present the computed cardinality (27, p*(s)) for values of m
intherange0 <m < 10ands =1, 2, 3, 4. O

Remark 512 If we combine this theorem with Theorem 3.1 and (5.7), we determine
the optimal error and best lower set for approximating any of the spaces s+ (s), p,
provided the error is measured in the surrogate norm rather than the true L (Y, X)
norm. Of course, it gives an upper bound on the performance in the L (Y, X) norm,
that is for n > 1 we have

1/q

1 1
En(up*(s),p) = 8;1 , —+—=1, 1=¢g< s

and

E,(Upx5),1) < Snt1,

where the sequence (8,)n>1 = (8,(p*(5)))n>1 is given by (5.7). The efficiency of
the algorithm is determined by the cardinality of (27, p*(s)) = (27, p*(1)),
given in Table 1. In particular, let us suppose the user desires to approximate a function
in Upy#(5),1 With accuracy 1073, Because 8,41 = 27" forn = Q="+ p*(1))
according to (5.7), when s = 1, we need m = 10 and thus a set  of cardinality 4101
achieves this accuracy. Similarly, a sufficient cardinality for is 50 when s = 2; 20
fors = 3; 8 for s = 4.

In view of Remark 5.2, the behavior of the sequence (8, (p)),>1 dictates the error of
approximationfor , ,.The values of §,(po(s)) are providedinFig. 1 fors =1, 2, 3, 4
for the cases p(s) = p*(s) and p(s) = ((j + D*)j>1.
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Fig®l The graphs of 8, (0™ (s)) and 8, (p(s)) fors = 1,2, 3,4

5.2 The Asymptotic Behavior of 8y s))

Theorem 5.1 gives an exact expression for (e, p*(s)) which then can be used to
determine 8, (p*(s)) for any s and n. We can also use this theorem to give bounds on
the asymptotic decay of &, (0*(s)). We begin with a lemma.

Lemma 58 Form = 0, Q27" p*(s)) = 1, whenm = 1, Q7™ p*(s)) =3,
and for every m > 1, we have the following two estimates:

(i) @7, p¥(s)) < 2mHm,
G) 27, p*(s)) < Cm=34mteym phere ¢ = (1 — 27471 and

c:= 7'[\/§(ln2)_1 < 4.

If we superimpose these inequalities we obtain

pmAdy/m . 2<m<S5,

27, p*(s)) < { e ot
Proof Note that for the sequence p*(s) given by (5.1), we have
Q™™ p*s)) = 27", p*1)), s>0.

Therefore (27, p*(s)) does not depend on s, and in what follows we may take

s =1.
For the particular cases m = 0, 1 we readily check that

@ p*ay =1, @' p*1) =3.
To show (i) and (ii), we first prove

m m
Qo pr) = Si< 14 kTAkredk (5.8)
k=0 k=1
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For k > 1, we note that the binomial coefficient from (5.5) can be estimated

(Nk -1+ Ik> - (Nk +2"—1) < kN

Ny - Ny
since
. Zk—l
R
J
Therefore, for any sequence (Ny, ..., Ny) in Q,,, we have

m
N —1 I m
F(Nl,...,Nm>=1_[< ‘ N: ")szzklka=2m,
k=1

yielding the estimate
Sm=2"q(m), q(m):= Qn. (5.9)

As noted before, g (m) is the same as the number of additive partitions of the integer
m. The number g (m) has been exactly computed for small values of m and there are
bounds for g (m) for any m. The following upper bound for g (m) can be found in [16]:

2
gm) <m™3* 2" > 1, where ¢= n\/;(an)_l.

Hence,
Sm S m—3/42m+cﬁ’ m z 1’

and using Theorem 5.1, we obtain (5.8).
We can now use (5.8) to prove each of the inequalities (i) and (ii). To prove (ii), it
is enough to show that

m

14+ k—34gktevk < opy=3/4gmted/m
k=1

The above relation is valid for m = 1 and we now proceed by induction assuming that
it has been proven for m and verify the case m + 1. Using the induction hypothesis,
we have

m+1
1+ k—3/42k+cﬁ < (m+1)—3/42m+l+c«/m+l 1+ O3 /Agmtem

k=1
=C(m+ 1)73/42m+1+c«/m+1 <C71 +a+ l/m)3/4271+cﬁfc«/m+l>
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Figk2 The graphs of (27, p*(1)) and the estimates from Lemma 5.3
<C(m+ 1)73/42m+1+c«/m+1’

where to derive the last inequality we used /m < «/m + 1, 1/m < 1, and the specific
value of C. This completes the proof of (ii).

We prove estimate (i) for m > 2 in a similar way (the case m = 1 clearly holds)
showing by induction that

m

1+ k—3/42k+4ﬁ < om+d/m
k=1

The details are omitted.
To prove the superimposed estimate we note that

QA < o3 Agmredm g and only if C'm3/4 < 2(mHVm,

On the interval [2, ), the function on the left is increasing and the function on the
right is decreasing since ¢ < 4, and the range of m for which the inequality holds is
2 < m < 5. The proof is completed. O

In Fig. 2, we present the graphs of the exactly computed values of (27", p*(1))
compared to the estimate from Lemma 5.3.

5K Bounds for the ErrorE, U ) p)

In this section, we use Lemma 5.3 to give bounds on the decay of §,(p*(s)) and
E, (Upx(s), p)- We start with the case p = 1.

Corollary 504 [fs > 0, then we have the following bounds

4s/4+logy n 4s/4+logy n
Sn(p* () =27%n™Sn ®M T and thus EnUpesy 1) <27%n S0 R T p >0

(5.10)
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Proof We first consider the case whenn = 2%, k > 1. Letm be the largest non-negative
natural number satisfying

m + 4/m < k. (5.11)
It follows from Lemma 5.3 that (27, p*(1)) < om+4ym < ok — p Relation 5.7

and the monotonicity of the sequence (8, (p*(s)))n>1 give 8,(p*(s)) < 27 which,
according to Remark 5.2, leads to E, (U, (5),1) < 27™°.

Let us define « by the equation m = k —a+/k and give an upper bound for «. Since
the integer m 4+ 1 = k + 1 — a+/k does not satisfy (5.11), we have

k+1—avk+a4/k+1—avk >k,

and so
16(k + 1 — avk) > o’k — 2avk + 1.
Rearranging terms, we have
o’k + 14avk — 16k — 15 < 0.

Noticing that the left-hand side vanishes for

7k N J16k(d ¥ k)
a:l: = — 9
k k

we obtain the upper bound o < o from which we get
m=k—avk>k+7—4V4+k.

Therefore, we have the estimate

4s /4+logy n
—ms _ 2—(k+7—4«/4+k)s — 2—7sn—an

which leads to

4s/4+logy n
E,,(Z/{p*(s),l) < 2773}’17371 ogyn = p = 2k.

Now, given any n > 2, we choose the largest k such that 2 < n < 281, This
implies that 2% < 251 and A+ k< \/4 + log, n, and so we derive

4s/4+logy n
En (up*(x) 1) < Ezk (Up*m 1) < 2—7s2—k5245\/4+k < 2—63n—524s~/4+10g2n — 2—6sn—sn Togyn ,

as desired. o
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The next corollary treats the case of general p.

Corollary 558 Let1 < p <  andlet q be givenby 1/p+1/q = 1. Forany s > 1/q,
we have

4s/FFlogyn
EnUpr(s). p) < Sng(p*(s)) < Clg, s)n™TVap " Twn — p>2 (512

where C(q, s) is a constant depending only on s and q.

Proof The first inequality is (ii) of Theorem 3.1. Next, let us denote by

4s/4+logy n
d(n) :=n" TV " omn | >0
4s./4+logy x
and observe that since ¢(x) := x 2% is an increasing function of x > 0, we

have
oY)y <25 Vigk), 2N <k <2Vt

Note that to complete the proof we need only show (5.12) in the case n = 2V because
then for 2V < k < 2N+1,

8r.q (0% (5)) < 8w ,(p*(9)) < C1¢(2Y) < C12°7Vp(k), C1=Ci(q.9),

where we have used the fact that the sequence (8,,4(0*(s))),>1 is decreasing. Thus,
we concentrate on the case n = 2V and define

4s/4+logy n

Y(n):=n"n Pmr | pn>2
In a way similar to the function ¢, we have that
Y(j) < 2y, 28 < j <2ML

It follows from Corollary 5.4 that §,, < 206s Y (n),n > 2, and using the above estimate
we have

q
20agh, =2 < WO =27 2k [ph)]
j>2N k=N 2k<j52k+l k=N
— psq—1 ok+1 [mz“b]q — 9sq-1 9= (k+1)(sq—1) pdsq/A+k+1
k=N k=N

— 2Sg—l 2—k(sq—1)24sq«/4+k < 2sq—1CgZ—N(sq—l)24sq«/4+N‘ (5.13)
k=N
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Here, in the last inequality we have used the bound

2—j(sq—l)24sq[«/4+m+j— 44+m < 2—j(sq—l)24sqﬁ < Cg» CO — CO(CI, S),

j=0 j=0

valid for every m > 0, which follows from the fact that

j <
VEtm+j+VA+m

Vadt+m+j—é+m=

The bound (5.13) gives

Syv o < C19(2Y), with Cy = Ci(q.5) :==27>"11Cy,

which is (5.12) for n = 2V, and therefore completes the proof of the Corollary. O

According to (5.8), we can improve estimate (5.10) when # is large. For this, we
state the following two corollaries whose proofs will be given in the appendix.

Corollary 506 Let m = m(n) be the largest natural number such that

3
logZC—Zlogzm—i—m—f—c\/ﬁflogzn,

where C is the constant of Lemma 5.3. Then

(5.14)

8u(0* () <27, and therefore  EyUpr,1) < 27", n =219,

Note that the dependence of m as a function of # in the above corollary is implicit.
One may want to get an explicit version of that statement which is the next corollary.

Corollary 5 If's > 0,

cs
8% n W(S) <2’nSplmrp > 216

llogy n}3/4

and therefore

E{ , W(upm),l) <2n~nvPRr | p > 216,

logy n13/4

where C := C(1 — c/4)73/* with C, ¢ as in Lemma 5.3.

(5.15)
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6 Finding the SetA ¢, )

In this section, we describe a possible strategy to build the set (e, p) for any given
sequence p and a given target accuracy ¢. A second procedure (not given here) can
then be used to find , , when we prescribe the cardinality n of the set rather than
the accuracy. Before we describe our algorithm, let us note that other procedures have
been given for constructing (e, p) (see, e.g., [5] and [22]).

As above, we consider p = (p;);>1 to be a non-decreasing sequence such that
p1 > landlim; ., p; = .Letusdenote by supp(v) the support of a multiindex
v = (vq, v2,...), thatis

supp(v) :={j : v; # 0}.

Recalling the definition of (¢, p) given in (3.4), we first notice that:

e v=0¢€ (& p)whenevere < 1.

e for every fixed ¢, there is an index D(e) such that if v € (e, p), then
supp(v) C {1,2,..., D(¢e)}.

o if 1 < g7, then D(gp) < D(ey).

The lower set (e, p) can be built using the iterative strategy described in the
following Algorithm.

Algorithm 1 Construction of the lower set (g, p), ¢ < 1.
1: Initialization:

2: Set Ty :={0}and :=Tj.

3: Recursive Construction:

4: fori =0,1,2,...do

5 Set T; 41 == 0.

6: forveT;and j=1,...,D(¢) do

7

8

Construct u such that ug = vk, k # j,and uj =v; + 1.
if p* < ¢! then

9: Tit1 < Tigp1 U{ul

10:  if 7;41 = ¢ then

11: Break.

12:  else

13: <~ UTqg.
return

When implementing this algorithm in practice, we form a tree where each v € T;
has D(e) possible children u to be checked for admissibility. When a constructed u
is found to be inadmissible, then it is not included in 7; . This stops the search down
the entire subtree rooted at w. If @ is found to be admissible then it is added to T;41.
In this way, each T; forms a level in the tree rooted with the zero sequence. When
all elements of 7; are exhausted, then the computation moves to processing elements
in T; 1. If the current set being processed is empty, then the procedure is ended and

(e, p) = U;c=0 Ty. Finally, we mention that the set T; 41 corresponds to the so-called

reduced margin (see, e.g., [11]) of the set Ui:() Ty.
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Remark 6 The number of computations needed to construct the set (g, p) is of
order m - D(g), where m = (e, p). For sequences that grow algebraically, such
as p(s) and p*(s), [35, Corollary 4.9] shows that D(¢) = O(logm), resulting in an
overall complexity of O(m logm). A more complete analysis was performed for a
similar algorithm in [5], and so we do not repeat it here.

7 Concluding Remarks

In this work, we discussed the approximation of Banach space valued functions with
an infinite number of variables by polynomials on lower sets. We defined a family of
model classes , , based on anisotropic analyticity, and derived bounds for the decay
rate for the approximation of these model classes using multivariate polynomials. We
considered only the case when the approximation error is measured in the L (Y, X)
norm, though it would be interesting to develop corresponding results when measuring
the approximation errorin L, (Y, X) norms. Already, several results in the case g = 2
have been given in [15].

Another setting that arises in parametric PDEs is analytic functions which have
Legendre expansions (instead of Taylor expansions) with bounds on the size of the
Legendre coefficients (see [12]). It would be interesting to formally introduce and study
the spaces (analogous to the , ;) associated with these expansions. The functions in
these spaces would now be analytic on polyellipses.

Our main vehicle for deriving error estimates for these classes was to use a surrogate
norminplaceofthe L (Y, X) norm. We showed in Theorem 3.1 that for this surrogate
norm, our estimates are optimal. It would be very interesting to understand what
optimal results would look like in the original L (Y, X) norm, i.e., to prove lower
bounds for the approximation rate in the L (Y, X) norm rather than the surrogate
norm.

We concentrated on the sequences p(s) and p*(s), s > 0, since they comply
with typical assumptions in applied settings. It is possible to extend these results to
more general sequences p which eventually behave asymptotically like p(s) or p*(s).
However, the behavior of the sequence in the preasymptotic regime strongly effects
the final decay rate bounds for 8,(p). For instance, the value p;, representing the
smoothness of u in the direction j, might remain close to 1 for arbitrarily many j
before eventually growing to . It would be interesting to give bounds for other
sequences p with polynomial or even exponential growth.

Our formulation of the model classes and our approximation results have been
strongly influenced by the works [1,15,20] and [22]. The paper [17] has a significant
intersection with our paper where results analogous to Corollary 5.5 in the case p =
are proved.

We next ellaborate on the distinctions between our paper and the results given in
[20]. In [20], the authors derive bounds for the approximation of parametric PDEs
using Taylor and Legendre series. They work under the assumption that d <
and use analyticity of the parameter-to-PDE-solution map to derive certain upper
bounds on the norms of the coefficients in the Legendre and Taylor series expansions
of the solution u. In the case of Taylor series, their analysis includes the case when
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ltvllx < Mp~", which corresponds to our model classes , . Werestrict our further
comments to this case. Although their results are only stated for solutions to parametric
PDEs, their proofs give the following estimates for functions in

Theorem 7R Let p = (p1, ..., p4) be a nondecreasing sequence with p; > 1. Then
for any o > 0, there exists an n(d, o) such that for alln > n(d, o),

1/d

E,U, )< Conexp|— ﬁlo()n—d!
nUp, = (o p Ll 2 0i I+ o s
=

holds with Cy := (4e +4doe — 2) 5.

If we specialize to the sequence p*(s), s > 0, then their result takes the form
EaUy, ) < Cne @ 5> n(d, o),

where C has an absolute bound and c(d, s) actually grows with d and s. Note that
the bound is subexponential in 7, and hence is better than the algebraic rate given in
our estimates. The reason for this is the assumption that d is finite. However, we must
emphasize that the number n(d, o) grows exponentially in d, and so this result can
only be applied when 7 is very large. We have concentrated on obtaining results that
hold for all n and all d with no dependence on d.

The reason for this restriction on n in [20] is that their proof of this theorem
utilizes bounds on the number of lattice points rN? in the simplex
S = S(/Inpyq,...,1/Inpg). Their bound requires that this number behaves like
t~“meas(S). As discussed in the remarks following the proof of Lemma 4.4, this
asymptotic count on the lattice points is effective only for ¢ small and in turn n pro-
hibitively large.

By contrast, our results given above apply ford =  and any n. When d is finite
we can always extend the sequence to an infinite sequence in an arbitrary way. In this
way our results apply without any restrictions on the size of n relative to d.

8 Appendix: Proofs of Corollaries 5.6 and 5.7
Proof of Corollary 506: Let m = m(n) be the largest natural number satisfying (5.14).

One can check that for n > 21°, we have m(n) > 6, and thus it follows from (ii) of
Lemma 5.3 that

(27}7‘!(}’1)7'0*(1)) E Cm(n)f3/42m(n)+c\/m(n) S n,

which gives 8, (0*(s)) < 275 and thus E, Upx(s),1) < 275, O

Proof of Corollary 5%7: To show (5.15), we proceed as follows. We consider first the
case n = 2K, k > 16. Let m be the largest non-negative natural number satisfying

m+ c/m <k,
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and let B be defined by the equation m = k — ﬁﬁ. Since k > 16, the largest m that
satisfies the above estimate is greater or equal to 6. Moreover, we can easily show
that B < c. Therefore, we use the fact that m = k — ﬂ\/z >k — cv/k and that
k —cvk = (1 — c/4)k for k > 16, which gives

log, m > log, (1 — ¢/4) + log, k.

Thus if C; := log, C, we have

3 3 3
Ci —Zlog2m+m+cﬂ§ Cz—Zlog2k+k, Cy:=C —Zlogz(l —c/4).

It follows (since m > 6) that

(@7, p*(1))) < Cm—4pmredm o Gp=3/4pk _ GW, Ci=CU—c/H3* > 1.
2

Therefore, (5.7) and the monotonicity of the sequence (8, (0™ (s)))n>1 give

T" 2 Vp*(s)) <27 <nnviRn n=28 k=16,

llogy nJ3/

which, according to Remark 5.2, leads to

Ele ol =i
[

1374

logy n

Now, if k > 16 is such that 2¥ < n < 2k*! it follows that

cs

_‘( p*(x).l) < Z—ksz(:x\/z <25 (210gz n) Vo —25 =5y W ,

Er. ( *(s), ) <Er.
IVCUOEzn"J' W p*(s).1 [Crz%
which is (5.15). m|
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