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Sparse Composite Quantile Regression in Ultrahigh
Dimensions with Tuning Parameter Calibration
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Abstract—When estimating coefficients in a linear model, the
(sparse) composite quantile regression was first proposed in
Zou and Yuan (2008) as an efficient alternative to the (sparse)
least squares to handle arbitrary error distribution. The highly
nonsmooth nature of the composite loss in the sparse composite
quantile regression makes its theoretical analysis as well as
numerical computation much more challenging than the least
squares method. The theory in Zou and Yuan (2008) was
proven under fixed-dimension asymptotics and the estimator was
computed via linear programming that does not scale well with
high dimensions. In this paper, we study the sparse composite
quantile regression under ultrahigh dimensionality and make
three contributions. First, we provide a non-asymptotic analysis
of both the lasso and the folded concave penalized composite
quantile regression, which reveals a practical way of achieving
the oracle estimator. Second, we construct a novel information
criterion for selecting the regularization parameter in the folded
concave penalized composite quantile regression and prove its
selection consistency. Third, we exploit the structure of the
composite loss and design a specialized optimization algorithm
for computing the penalized composite quantile regression via the
alternating direction method of multipliers. We conduct extensive
simulations to illustrate the theoretical results. Our analysis
provides a unified treatment of the concentration inequalities
involving the composite loss. Those inequalities could be of
independent interest.

Index Terms—Composite quantile regression,
dimensional data, sparsity, information criterion

ultrahigh-

I. INTRODUCTION

Coefficient estimation in linear models is routinely done
via the least squares (LS) regression. Under Gaussian errors,
the LS estimator has the likelihood interpretation and is most
efficient. It is reasonably efficient under other light-tailed error
distributions besides Gaussian. When the error distribution is
heavy-tailed, the LS estimator may fail to be consistent. See
numerical studies in Section VI for a clear demonstration. The
quantile regression (QR, [1]) can consistently estimate the co-
efficients of a linear model under very heavy-tailed errors, like
Student’s ¢ with three degrees of freedom or even Cauchy. The
robustness of the QR estimator, a property often mentioned in
the literature, comes from the fact that its asymptotic variance
does not depend on the moments of the error distribution,
upon which that of the LS estimator relies, however. In terms
of efficiency, it is well known that the asymptotic variance
of a QR estimator is inversely proportional to (the square
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of) the error density evaluated at the true quantile of the
error distribution ([2], [3]). Thus, under certain errors, it is
expected that the QR estimator is more efficient than the LS
estimator. Nevertheless, the quantile regression considers only
one quantile at a time and may not fully grasp the distri-
butional information to always produce efficient estimation.
To its extreme, when the error density at a specified quantile
approaches zero, the asymptotic variance of the corresponding
QR estimator explodes to infinity, which results in an estimator
having arbitrarily small efficiency. As an example, under the
mixture normal error 0.5N(—3,1) 4+ 0.5N(3,1), the least
absolute deviation estimator is 1272.8 times less efficient than
the LS estimator.

To safeguard quantile regression against potential efficiency
loss, methods based on the idea of combining quantile in-
formation across multiple levels have been proposed in the
literature. The idea is natural: as more quantiles are used,
we have more distributional information to dispense and can
hence obtain more efficient estimation if we do it properly.
One such approach named the composite quantile regression
(CQR, [4], [5]) combines information over different quantiles
via a mix of quantile loss functions. It was shown by [4] that
the CQR estimator is much more (or arbitrarily more) efficient
than the LS estimator under many heavy-tailed errors. Another
notable approach by [6] seeks an optimal weighting scheme
to combine QR estimators at given levels to achieve as much
efficiency gain as possible. It was shown that as the number of
quantiles increases, the asymptotic variance of their proposed
estimator achieves the Cramér—Rao lower bound under certain
regularity conditions.

When considering fitting a sparse CQR model, it is natural
to adopt the sparse penalties used in the sparse LS. In [4],
Zou and Yuan studied the sparse CQR using the adaptive
lasso penalty [7] and proved its oracle properties under fixed-
dimension asymptotics. We note that the approach by [6]
cannot be easily regularized to obtain desired sparse solutions
since their estimator is based on a weighted average of
multiple estimators, each of whose sparsity patterns may be
different.

Given the favorable theoretical properties of CQR under
fixed dimensions, we expect the sparse CQR to also enjoy
very competitive performance under the ultrahigh dimensional
setting. However, there are few results in the literature to firmly
establish such a claim, despite the massive literature on the
sparse LS under ultrahigh dimensions. This is mainly caused
by the severe nonsmoothness of the composite quantile loss.
For example, even with a single quantile, the analysis of the
lasso penalized QR was only recently done in [8], and the
analysis therein is technically very different from the standard
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analysis for the least squares lasso. CQR uses the sum of
many different quantile losses and hence makes it even more
challenging to handle than the single QR estimator. The highly
nonsmooth nature of the composite quantile loss is also a
major obstacle for using standard algorithms for the penalized
LS as its numeric solvers. In fact, coordinate descent, the most
popular algorithm thus far for solving the least squares lasso, is
not suitable for optimization problems involving a nonsmooth
loss.

The contributions of this article are as follows. Firstly, we
provide nonasymptotic analysis of both lasso and folded con-
cave penalized CQR. Our analysis holds for very general fixed
pair (n,p). As (n,p) go to infinity, we prove that the lasso
estimator is estimation consistent under ultrahigh dimensions.
Moreover, we show that the lasso estimator is tuning free,
meaning that the rate of convergence is achieved by using
an explicit penalization parameter. Secondly, we establish the
oracle property for the folded concave penalized CQR and
construct a new information criterion for calibrating the tuning
parameter therein to give consistent model selection. Our
paper demonstrates a unified treatment of the concentration
inequalities involving the CQR loss. Those inequalities could
be of independent interest to studies on other models involving
the check loss. Lastly, we exploit the structure of the composite
quantile loss and design a specialized ADMM algorithm for
efficiently computing the sparse penalized CQR estimator. The
results in this work make sparse CQR an attractive alternative
to the sparse LS for real applications.

The rest of the article is organized as follows. In Section II,
we introduce the framework for the penalized CQR, followed
by a discussion of the theoretical properties of the lasso and
folded concave penalized CQR in Section III. We propose a
new information criterion for selecting the tuning parameter
and investigate its selection consistency in Section IV. In Sec-
tion V, we present the efficient algorithm to solve the penalized
CQR. Numerical studies are conducted in Section VI to show
the superior finite-sample performance of penalized CQR over
penalized LS. All proofs are relegated to Section VIII.

II. PENALIZED COMPOSITE QUANTILE REGRESSION

Consider variable selection and coefficient estimation in the
linear model

P
y=Po+y ;B +e,

j=1

(D

where ¢ is independent of x = (z1,...,%,)". Suppose [
and 8" = (61, ..., ;)" are the true coefficients in model (1)
that generate our independent and identically distributed (i.i.d.)
data (x;, y;)l—;, where x; = (z1,...,2;)". Denote the
response vector by y = (y1,...,¥n)" and the design matrix
by X = (x1,...,%,)". We also write X = (X1,...,X,),
where Xj = ($1j7...,$nj)T,1 <j<p Let X = (Xo,X)
be the augmented design with Xy = 1,, (corresponding to an
intercept term), where 1,, stands for the n-dimensional vector
of all ones.

As mentioned in Section I, we consider the CQR rather than
the LS or QR to estimate 3 in model (1). Assume that the
random error ¢ has cumulative distribution function F(-) and

probability density function f(-). To ensure identifiability of
Bo, assume F'(0) = 0.5. Given an ordered sequence of quantile
levels 1y < 79 < - < 7 € (0,1), let af = B + F~ (1),
where F~1(7;) = inf{z : F(x) > 71} denotes the 74-th
quantile of €, 1 < k < K. The canonical composite quantile
regression estimates 3 by minimizing

K n
Py, (yz - Qi — XZIB)
k=1 i=1
jointly over o = (ay,...,ax)" € RX and B € RP, where
pr, () = {7 — I(u < 0)}u denotes the check loss at level 7y
for 1 < k < K. A typical choice is to take equally spaced 73 ’s:
e =k/(K+1),1 <k < K.As K — 00, [4] showed that the
asymptotic efficiency of the CQR estimator relative to the LS
estimator has a universal lower bound, 12var(¢){E.f(¢)}?,
which is at least 70.26% for an arbitrary error distribution
and can be made arbitrarily large for non-normal distributions.
The relative efficiency lower bound 0.7026 is further improved
to 0.864 in [9]. Substantial efficiency gain can be achieved
already with a relatively small K such as K =9 or 19.

In the high-dimensional regime, the number of parameters
p is typically large and may even exceed the number of obser-
vations n. Under the sparsity assumption on the model, many
components of 3" are zero. Let A = {1 < j < p: B; # 0}
be the active set of 3* and denote the effective dimensionality
of the model by s = |.A|. To harness the sparsity structure of
(3", let us consider the sparse penalized CQR

where Py(-) is a penalty function with regularization param-
eter A. For instance, P)(-) can be the lasso [10], SCAD [11],
MCP [12], and so on. In [4], the adaptive lasso was used
to show the oracle property of the corresponding penalized
estimator under fixed dimensions. The techniques used therein
cannot be used to handle the ultrahigh dimensionality setting.
As for the computation, the adaptive lasso penalized CQR was
formulated as a linear program and was solved by a standard
linear programming solver. However, such an approach does
not scale well with dimensions. Other efficient alternatives are
needed when p is large.

ITII. ANALYSIS OF PENALIZED COMPOSITE QUANTILE
REGRESSION

In this section, we show the theoretical properties of the
penalized CQR under ultrahigh dimensionality with both lasso
and folded concave penalties. All our results are nonasymp-
totic and holds for general (n,p). From these results, we
establish the rate of convergence of the lasso penalized CQR
and show its tuning free property. We also establish the strong
oracle property for a feasible and computable solution of the
folded concave penalized CQR by incorporating the lasso
estimator as the initial estimation. For ease of exposition, we
introduce the following notation.

For u € R, let uy = ul(u > 0) and u_ = —ul(u < 0) be
the positive and negative parts of u, respectively. Moreover,
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let sgn(u) = I(u > 0) — I(u < 0) be the sign function.
The largest and smallest eigenvalues of a symmetric matrix
A are denoted by Apax(A) and Apin(A), respectively. We
also let Og be the subdifferential of a convex function g. For
two matrices Ay, Ay € R™*™ let (A1, Ay) = tr(A]Az2) be
their trace inner product and ||A;||r = (A, A;)Y/? be the
Frobenius norm of A;. For any vector v = (v1,...,v,)" € RP
and an arbitrary index set I C {1,...,p}, we write v; =
(vj,j € I)" and denote by X; = (X;,j € I) the submatrix
consisting of the columns of X whose indices are in I. The
complement of I is denoted by I° = {1,...,p}\I. For ¢ €
[1, 0], the L,-norm of v is denoted by ||v||,-

A. Lasso penalized composite quantile regression

For A > 0, we define the lasso penalized CQR estimator as

+AZI5J|,

where Qn(cr, ) = (nK) ™ Y3, S pr (i — o — x1B).
In the sequel, we refer to (@, 3,) as the CQR lasso estimator.
For A € R? and integer m > 0, let A(A,m) C A° be
the support of the m largest in absolute value components of
A 4. When m = 0, we take A(A,m) to be the empty set.
The following assumption is imposed on the data and error
distribution, which is typical in the QR literature.

(6, By) = arg Dgln Qn(a 2)

(CO). The observations (x;,y;)" ; are i.i.d. with min(n,p) >
3. The density function is continuously differentiable
and satisfies f(u) < f < oo and f'(u) < f’ € (0,00)
for all w in the support of €. Moreover, there exists a
constant Uy > 0 such that f(aj +u) > f > 0 for all
1 <k <K and |u| < Up. Also, (x;4,Y:)]—, are in
general positions (Section 2.2, [3]) and there is at least
one continuous covariate in the true model.

Note that we do not impose any moment or light tail
assumptions on the error distribution and the assumptions
on the error density are mild and can be satisfied by many
commonly seen distributions, including heavy-tailed distri-
butions like Cauchy. We also assume that f, f’ and f are
all positive constants. The assumptions on (x;4,¥;)’s ensure
that the CQR oracle estimator (3) is unique. This is a fairly
common assumption in the QR literature (see [3], [13]). More
discussions of the CQR oracle estimator can be found in
Section III-B and Appendix B.

We assume two additional conditions to establish the esti-
mation consistency of the CQR lasso estimator. For the sake of
brevity, only fixed design is considered. Define the restricted
set € = {(6,A) € RE xRP : ||Axl|i < 3||lA4l: +
(3/K)||8/|1}. The two assumptions are both imposed on the
design matrix.

(C1). The design matrix X satisfies

L ZkK 1 Z? 1 (0 + XTA)2

6,a)ee K| A mllz 10
(5 )¢ KA i, mlE + 1913

RKm —

(C2). The design matrix X satisfies ¢ > 0, where

342 A S (6 + xIA)?
8f (6. A)ew Ly SR 10k + xTAP

(8, 2)7#0

Condition (C1) is an extension of the restricted identifiabil-
ity property (RIP), also known as the restricted eigenvalue
(RE) condition, to the case of the penalized CQR. RIP is
a common assumption in the literature for sparse penalized
regressions. For example, it is assumed in the penalized LS,
Dantzig selector [14], [15] and penalized QR [8]. Condition
(C2) is similar to the restricted nonlinearity assumption in [8].
The quantity g, referred to as the restricted nonlinear impact
(RNI) coefficient by those authors, describes how well the
CQR empirical loss function can be minorized by a quadratic
function over the restricted set ¥’. We present in the following
theorem the Ls-risk bound for the CQR lasso estimator, from
which the estimation consistency of the estimator follows.

Theorem 1. Under conditions (C0), (Cl) and (C2), with
probability at least 1 — p1(\), where

3/2

qi

A2 A2
A) = 2K exp| — + 2pexp| —
p1(N) p( ) D p( 2M0)
+exp{—2MOS(1+10gp>}’
Ko

the COR lasso estimator (@, B \) satisfies

[y — ol

§§ £ 32 ’%1/M(\/§+1)+)\ s
f Km Ko n Ko

and for integer m > (,

8 1+185+§
fo\/f

M, [1+1
{32 il +°gp\/+1+x,/ }

Ko
provided that the growth condition

[2My [1+1 / /
64,/ 220 w(\/g+1)+2)\ igq i
Ko n Ko K

holds, where My = maxo<;j<p || X;3/n.

18— 871l

Remark 1. By Theorem 1, one can typically choose the tuning
parameter A = C'y/log p/n for the CQR lasso estimator, where
C > +/2Mj is some constant. For example, one can choose
C = 2+/M,. Note that given the design X, My can be readily
obtained. Therefore, in principle, the parameter A in the lasso
penalized CQR is tuning free. This is in similar spirit to the
square-root lasso [16] and the lasso penalized (single level)
QR [8]. With such a choice of A, we can see that p; (\) = o(1)
as n,p — oo, which leads to

~ _— 1 slogp
18, ﬁuzop(m =

1

provided ¢~ \/slogp/ nkKo) ) and ko(slogp)~

o(1), by taking m = s. When Ko and ks are both positive
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constants, the CQR lasso estimator achieves the near-optimal
rate /s logp/n, which implies that it is a consistent estimator
even when p is of exponential order of n, i.e., logp = O(n?)
for some 0 < v < 1, provided slogp = o(n).

B. Folded concave penalized composite quantile regression

Folded concave penalized regression has been widely
adopted in the statistical analysis of high-dimensional data
due to its strong oracle optimality [17], [18]. In order to
establish the oracle property of the folded concave penalized
CQR estimator, let us first define the CQR oracle estimator,

arg min Z Z ka

o, B Ba=05"7 15

@, 8" : —ap—xI8). ()

The oracle estimator (a’, 5 ) is the ideal estimator one could
possibly get using the CQR. It is not feasible in practice since
A is unknown, but it serves as a benchmark estimator to which
one can compare a penalized CQR estimator. In the following
lemma, we show the rate of convergence of the CQR oracle
estimator under the growing-dimension regime, i.e., the true
dimensionality s is allowed to grow with n.

Let A4g = {0} U A and X4, = (1,,,X4). Denote
Amin(n™'X7 X 4,) and i = Apax(n™ XY X4, ). Moreover,
let M4 = maxlgign(s + 1)_1(1 + ||X1A||§) and My =
maxi<i<n, jeAe || In this article, we assume that M4 and
M 4. are both positive constants.

Lemma 1. If condition (CO) is satisfied and 32K (s +
DMa/(\/nf ) < Uy, then with probability at least 1 —
exp[—(s + 1)Ma/(20)], the COR oracle estimator satisfies

1024K2%(s + 1)MA
nf2u?

Remark 2. Assuming s/(p+/n) = o(1) and p/s = o(1), the
CQR oracle estimator has the following rate of convergence

18° - o, = 01»(1\/?), 1B = 87l — op(1f>
H n H n

-~0
as n — oo. This implies that 3 is y/n/s-consistent when s
diverges with n, if we assume that ;4 > 0 is a fixed constant.
Then it is required that s = O(n?) for some 0 < v < 1/2.

Next, we introduce the details of the folded concave penal-
ized CQR and show that the CQR oracle estimator is attainable
via the folded concave penalized CQR. The folded concave
penalized CQR at penalty level A > 0 solves the following
minimization problem

H’\O

~0
&+ 8 =873 <

+ Zp/\ |5J

where py(t),t > 0 belongs to a class of folded concave

“4)

min Qn (o

penalties that satisfy the following properties:

(P1) pa(t) is nondecreasing and concave in ¢ > 0 and
pA(0) =

(P2) p,\(t) is dlfferentlable int>0;

(P3) pi(t) > a1A, 0 < t < agA and p)(0) =
a1 A, where a1, as > 0 are fixed constants;

P\ (0+) >

(P4) p\(t) =0, t > aX for a fixed constant a > as.
It can been shown that both the SCAD penalty and MCP
belong to this class (see, e.g., [19]). For the analysis of the
minimizer, we consider the local linear approximation (LLA,
[20]) algorithm, where the initial estimator is chosen to be the
CQR lasso estimator.

1) Initialize o and B with &'” and B(m,
compute weights

) =p\(185”]), 5 =1,...,p
2) For m = 1,2,..., repeat the LLA iterations in the
following two steps.
2.a) Solve the f0110w1ng convex optimization problem

for a™ 2
or ™ and B

respectively, and

hS]

)+ 20

m— 1)|/6j

min Qn(a

2.b) Calculate the weights

wi™ = ph(B"]), G =1,
In order to establish the oracle property, we assume the “beta-
min” condition:
(C3) minje g |ﬁj*\ > (a+ 1)
The “beta-min” condition is assumed for non-convexly pe-
nalized regressions and is almost a necessary condition for
establishing consistency results. See, e.g., [11], [13], [18].

Theorem 2. Suppose the folded concave penalized COR (4)
is solved with the LLA algorithm that is initialized with the
COR lasso estimator (2) at penalty level Ao = cy/logp/n
for some constant ¢ > \/2My. Let 1o = minjec 4 |5}| — a)
and 1. = \/(s + 1)Malogn/n. Assume the folded concave
penalty py(+) satisfies properties (P1) — (P4), where for integer
m > 0, X\ is taken such that

NOE I
_U/Of\/ﬁm

{32\/>\/m\f+1 +/\0\/7}

Under conditions (C0) — (C3) and the assumptions that
TO\/(S—f—l)MA < Uy, 74 (8+1)MA < Uy and N >
8K (fu)~'\/(s+1)Ma/n, with probability at least py =

1—p1(Xo)—pa(ro) —p2 (r*) ~Ds, the LLA algorithm converges
to the oracle estimator (& ,ﬂ ) in two iterations, where p1 ()
is given in Theorem 1, ps(-) is defined as

n(t(r))®
pa(r) = eXP{—W )
where t(r) = fur?/(4K) — 2r\/(s + 1)M 4/n, and
2nB?
p3=2(p—s) eXp<— X/fo )
3nB?
2p — 2(K+s) . _
+ (p 5)71 exp 24fM2(l_1:1/27"* + 8MA('B

+2(p — s)n* K+

InBg
X exp| ——— /2
24f M2 (s +1)\/2M “n=2r, +4M By
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with B = 0.5[a1\ — (K + s)Mac/n — fMAcﬂl/Qr*]Jr
By = [0.5B —8n"?fMac\/(s + 1)Mar.]

and

It is easy to translate Theorem 2 into an asymptotic state-
ment that the folded concave penalized CQR estimator finds
the oracle CQR estimator with overwhelming probability. For
brevity, we omit such discussions. We emphasize that unlike
the lasso penalized CQR, the regularization parameter in the
folded concave penalized CQR involves unknown quantities.
In order to apply Theorem 2 in applications, we need a data-
driven choice of the regularization parameter. To this end, we
construct a new information criterion for selecting the tuning
parameter in the next section.

IV. TUNING PARAMETER CALIBRATION

For the folded concave penalized CQR, there exists a tuning
sequence A, (we write A, here to signify its dependence
on n) such that the LLA algorithm yields the CQR oracle
estimator in two iterations with probability approaching one
(Theorem 2). However, as we pointed out already, there is no
direct way to use such A, as given in Theorem 2, since it relies
on unknown quantities. We thus pursue a data-driven approach
to the selection of A. Consider the following high-dimensional
Bayesian information criterion (BIC):

KZZM

i=1 k=1

~  Cpl
+|A)\|ﬂa

n

BICH () ap —x138Y)

®)

where (&, BA) is the two-step estimator from the LLA
algorithm initialized by the CQR lasso estimator with regular-
ization parameter Ay (Theorem 2), Ay = {1<j<p: BA]’\ #*
0} and C,, is a positive number depending on n (allowed
to grow with n). We compare the values of BICH()) for
AeE, ={X\: |/A1>\| < J,}, where J,, > s represents a
rough estimate of the upper bound of the model sparsity and
is allowed to (slowly) diverge as n — oo. Typically, J,, is
much smaller than p, so that one can avoid searching over a
notoriously large model space. The tuning parameter selected
via BIC is given by
An = arg min BICT()).
AEE,

We call the information criterion BIC because it can be shown
in the following Theorem that Pr(A =A)—1lasn— oco.
Note that model selection cons1stency is the signature property
of BIC in the fixed-dimension setting.

Let M = maxi<i<n,0<j<p |i;| and assume M is a positive
constant. Also, define

= inf Amin -t 1,,X ! 1,,X
’C ADA,1|%|S2J71 (n ( A) ( A))
and
C_: sup Amax(nil(lnvXA)T(]-anA))v
ADA,A[<2Jy

and assume that both ¢ and ¢ are positive constants, and so
are Ko, Ks, ¢ and fi.

Theorem 3. Under the conditions of Theorem 2, and assuming
that as n — oo, s = O(1),n = o(p), J2logp = o(n),C,, —
oo and max(J,,Cy)logp/n = o((minje |3;])?), then the
PI‘(A;\ =

n

criterion BICH()\) is selection consistent, i.e.,
A) = 1asn— oo

Remark 3. The sequence C), is often taken to slowly diverge
to infinity, e.g., C}, = loglogn. Under fixed model sparsity,
s = O(1), it is implied from Theorem 3 that BICH()\) is
consistent when logp = O(n"*) and J,, = O(n"?) for some
positive constants y; and 72 such that y; + 27y < 1. It is
worth mentioning that the fixed model sparsity is assumed
in order to achieve ultrahigh dimensionality due to technical
difficulties with the check loss (see, e.g., [21]). If instead we
allow the model sparsity to grow, using current technique, we
must assume p can be of at most polynomial order of n (see,
e.g., [22]).

One problem with the criterion in (5) is that it is not scale
invariant. In practice, one needs to standardize the variables
beforehand. Therefore, we also consider a scale invariant ver-
sion of the high-dimensional Bayesian information criterion:

BICT(3) = log S5 b - xip") )
=1 k=1
.o,
YN Zg(p).

Theorem 4. In model (1), assume that E(|e|) < oco. Under
the conditions of Theorem 2, as n — 00, assume moreover
that s = O(1),n = o(p),J2logp = O( ),Cr — oo and
max(J,, Cp)logp/n = o((mm]eA\ﬂ] 2). The criterion
BIC™()\) is selection consistent, i.e., (/Al =A =1
as n — oo.

Remark 4. The selection consistency of BICHY()\) requires
additionally that E(|e|) < oo. Our empirical study in Sec-
tion VI suggests that this might be a necessary condition.
Indeed, in the numerical comparison there, we see that
BICHL () does not perform well under the Cauchy error.

V. OPTIMIZATION

Note that both lasso and folded concave penalized CQR can
be solved with one or several runs of the following weighted
lasso penalized CQR:

LS 9) Sl

k=11i=1

where A\; > 0 and d; > 0 for j = 1,...,p. Specifically, the
CQR Iasso estimator can be achieved by letting d; = 1 for
all j = 1,...,p, while the folded concave penalized CQR
estimator can be obtained by iteratively solving (6) with d; =
w;.m*“ in the mth LLA iteration. Hence, in the sequel, we only
need to focus on developing the algorithm for solving (6).
Traditionally, (6) can be solved by linear programming if
n and p are moderate. However, linear programming does not
scale well when p is large [23]. We hence propose an efficient
alternating direction method of multipliers (ADMM) algorithm
for solving (6). The algorithm is based on a reformulation

—ap —x;0) +)\12d 185,

j=1

(6)
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that turns the original problem into one that can harness the
power of ADMM. We point out that there are multiple ways
to formulate (6) into problems that are solvable by ADMM.
For instance, in a relevant context, two ADMM versions are
proposed in [23] to efficiently solve the penalized QR and they
can be readily modified to solve (6). However, the formulation
we present here is different from the ideas in [23] and it results
in a more stable ADMM algorithm for the penalized CQR. To
elaborate on our algorithm, let z;;, = y; — ax — x3 for i =
1,...,nand k =1,..., K, and define matrix Z = (2;x)nx K
in terms of the z;;’s. By convexity, it can be immediately seen
that (6) is equivalent to

K n 14
nLK DD pnlam) + M) dyll
j=1

minimize
k=11i=1 (7)
subjectto Z=1,Qy—-1,®a" —1% ® (X3)
v=08
where v = (v1,...,7)" and ® denotes the Kronecker

product. By introducing the +v;’s, only the dual updates in-
volve the non-smooth functions. For ease of notation, let

Y=1x® y,.p = (aTwBT)T7

0 - I X/ iy prr)
and Xy = (Opxx  Ip)px(p+K)- Then, (7) can be equivalently

written as

K n p
. 1
minimize e E E pr. (Zik) + M1 ‘Eldj"m
=

k=1i=1

(Fe)e=(57) - ().

where vec stands for the vectorization operator that stacks the
columns of a matrix one underneath the other to form a single
vector. The augmented Lagrangian of problem (8) is

®)

subject to

LO’(LP7 Z7 77 U’ V)

K n p
=SS o) + 0 Y dihyl
j=1

k=1i=1
+ <VCC(U), VCC(Z) + XI‘P - Y> + <V7'Y - X2"p>

g g
+ Zlvec(Z) + X1 = Y& + Zlly — Kol

9

where U = (uix)nxrx and v = (vi,...,vp)" are the La-
grangian multipliers and o > 0. Let ¢¢o",Z",+",U" and v"
be the iterate after the rth iteration of the algorithm, where
r > 0. The ADMM has the following updates in the (r + 1)st
iteration

(PT+1 = arg mingp LO‘(‘P7 ZT7 ’7Ta UT7 VT)a

(Z7H, ™) = argming ., Lo ("1, Z,~,U", v"),
vec(U™) := vec(U") + o{vec(Z" ) + X19" 1 — Y},
Vr+1 e + 0{7T+1 _ X2¢r+1}.

It follows from (9) that
1
o = ;(xgxl + X0Xo) "HX(0Y — ovec(Z")
—vec(U")) 4+ Xy(o7" +v")}.
Note that

’ILIK ]-K]-ILX
X",1% I, +KX'X/"

Let the Schur complement of nIx in the above matrix be

m&+&&:(

1
S=1I,+KX'X — —(X'1,1%)(151.X) = L, + KX} X,
n

where Xo = (I, — n_llnlll)X is the centered design matrix.
Then, we have

(XIX + X5Xp) !
_ (I + H1E1XSTIXT, 1Y — 21417 XS
- —1871X"1,,1% S—! :

When p is large, the computation of S™! can be expensive.
We can apply the Sherman—-Morrison—Woodbury formula to
get

St =1, - KX{(I, + KX,X{) *Xo,

where we only need to evaluate the inverse of an n X n matrix.
When n is relatively small compared to p, this formula can
be very helpful.

Remark 5. In the actual implementation, we often center the
design matrix before fitting the model. Then, X]X; +X5X, is
block diagonal since X"1,, = 0 and its inverse can be readily
obtained.

The update of Z"*t! and ~"*! can be carried out
component-wisely. This pertains to the application of the
proximity operator of the check loss p,(-) and the absolute
value function | - |, respectively. For v € R, the proximity
operator of p,(-) with respect to a parameter a > 0 is defined
as

arg min p, (u) + g(u — )2

Prox, (v,a) :=
u€R 2

The following lemma gives the closed form expression of
Prox,, .

Lemma 2. For v € R and a > 0, the proximity operator of
the check loss p,(-) with respect to parameter a is given by

(s 7))
, min{v, — ) ).
a a

Now by Lemma 2, we obtain for each 1 < ¢ < n and
1<k<K,

Prox, (v,a) =v — max(

r+1

r+1
Zik -

[
= Prox,, (yl — o) x;@ T — ik nKa) .
’ o
The proximity operator of | -| is the soft-thresholding operator
and thus

r+1

UT. )\ d
i+ = Shrink <5;+1 2 ”) 7

oo
where Shrink(v, a) = sgn(v)(Jv| — a)4.

We summarize the above ADMM algorithm in Algorithm 1.
A discussion of the convergence criterion for this algorithm
can be found in Appendix C.
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Algorithm 1: The ADMM algorithm for solving the weighted lasso penalized composite quantile regression

1) Initialize the algorithm with (%, Z%,~°, U°, v°), where ¢° = ((a®)", (8°)")".
2) Forr=0,1,2,..., repeat steps (2.1) — (2.3) until convergence.

(2.1) Update

o = (@ (B e (KK + X)
AXI(0Y — ovee(Z") — vee(U")) + Xh(on" + V7))

(2.2) Update

r+1 r+1 T pr+1
Zj < Prox, <y1 -, —x; 8 —

and

r+1
5

(2.3) Update

< Shrink (ﬂ?“ -

s
Uik

,nKa),1gign,1gkgK,

g

vj Ad, ,
J ;77 71§‘7§p

vec(U™h) < vec(U") 4 a{vec(Z™™") + X1 — Y}

and

v v+ o{y

r+1 'r-+1}.

— Xap

VI. NUMERICAL EXPERIMENTS

We conduct Monte Carlo studies to assess the finite sample
performance of the proposed method as well as the tuning
criterion. First, we compare the estimators from the penalized
LS, the penalized CQR, the ideal oracle LS, and the oracle
CQR. Recall that the oracle estimators are obtained through
applying the canonical LS and CQR to the true underlying
model. Second, we compare the tuned penalized CQR estima-
tion by using cross-validation (CV) and by using the proposed
information criteria.

Our simulated data are from the linear model

y=P0y+x'B" +e, (10)

where 35 = 0 and B8* = (3,1.5,0,0,2,0,_5)". The co-
variates are drawn from the multivariate normal distribution,
x ~ Np(0,X), where two different covariance matrices
¥ = (0.5/"771) and ¥ = (0.8/"77!) are considered. For the
error distribution, we refer to [4] and consider five different
shapes:

(a) the normal distribution, £ ~ N(0, 3);

(b) the mixture normal (MN) distribution, ¢ ~ /6 X e,
where ¢* ~ 0.5N(0,1) + 0.5N(0,0.5%);

(c) the mixture double gamma (MDG) distribution, € ~
£*/9, where * ~ f(g) = e - 0.5e7 el 4 (1 — e~ 14) .
e <1/ (15);

(d) the t-distribution with 3 degrees of freedom ¢ ~ t3; and,

(e) the Cauchy distribution, € ~ f(g) = 1/[r(1 + &2)].

In the simulation study, our training data are composed
of n observations (x;,y;)I,, independently generated from
model (10). An independent set of n observations is also
simulated from the same model for parameter tuning of the
training model. We evaluate the variable selection performance
of the estimated coefficients 3 by the number of false positives
FP = |A\ A*| and the number of false negatives FN = |A*\ A,
whereA*:{1§j§pzﬁ;‘7§0}and/1:{1§j§
p: Bj # 0}. The estimation accuracy of ﬁ is measured by the
model error (3—B*)TS(B8— B"). Two sets of data dimensions

(n,p) = (100,600) and (n,p) = (200,1200) are used in
our simulations. In all settings, we use K = 19 quantile
levels 7, = 0.05k, £ = 1,...,19. The simulation results are
summarized in Tables I and II.

It can be seen from the tables that the CQR oracle estimator
performs similarly to the LS estimator under the normal
error, while the former is more efficient under the other error
distributions. In particular, the model error of the LS estimator
explodes under the Cauchy error. In theory, the LS estimator
is inconsistent under the Cauchy error. SCAD penalized CQR
estimators have very close model errors to the CQR oracle
estimator under most error distributions and outperform the
penalized LS estimators. In terms of model selection accuracy,
the SCAD penalized CQR estimator also outperform all the
other penalized estimators.

The comparison between CV, BICH and BICHY for tuning
parameter selection is shown in Tables III and IV. Note that
BICHY does not perform well under the Cauchy error. This
confirms its requirement for the first moment of the error
distribution. The information criterion is computationally more
efficient than CV and also delivers better results.

VII. DISCUSSION

In this article, we have studied the sparse penalized CQR
under various forms of regularization. In particular, we have
established the estimation consistency of the CQR lasso es-
timator. Through the LLA algorithm, we have shown that
the CQR oracle estimator could be achieved via folded con-
cave penalized CQR. Our theoretical analysis remains valid
even when the dimensionality is ultrahigh in the sense that
logp = O(n¥) with 0 < v < 1.

We have also developed a fast ADMM algorithm for solv-
ing the weighted L;-penalized CQR. Its efficiency has been
demonstrated by numerical studies. The methodologies and
numerical solvers proposed in this article make the sparse
CQR an attractive alternative to the sparse LS. It can be
applied whenever the estimation efficiency of the coefficients
is concerned.
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TABLE I
SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD, UNDER
MODEL (10) WITH n = 100 AND p = 600. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE STRUCTURES
3 = (0.5/i79]) AND 3 = (0.87~7]) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N (0, 3), MIXTURE NORMAL,
MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS
REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0,3) MN MDG ts Cauchy
= = (0.511770)
Model error  LS-oracle 0.093 0.093 0.084 0.098 9350.072
(0.008) (0.007) (0.007) (0.009) (6837.507)
CQR-oracle 0.105 0.004 0.025 0.047 0.094
(0.008) (0.002) (0.003) (0.004) (0.011)
LS-lasso 0.664 0.620 0.588 0.663 18.963
(0.035) (0.025) (0.031) (0.054) (1.513)
LS-SCAD 0.671 0.646 0.523 0.578 31.738
(0.038) (0.036) (0.033) (0.036) (7.959)
CQR-lasso 0.792 0.272 0.465 0.374 1.672
(0.041) (0.029) (0.034) (0.022) (0.144)
CQR-SCAD 0.122 0.006 0.032 0.064 0.438
(0.019) (0.002) (0.004) (0.006) (0.098)
FP, FN LS-lasso 16.55, 0 1691, 0 16.53, 0 15.83, 0 13.37, 1.79
(1.28), (0) (0.92), (0) (1.07), (0) (1.08), (0) (2.41), (0.12)
LS-SCAD 18.04, 0 18.00, 0 17.04, 0 16.81, 0 17.11, 1.78
(154), (0)  (144), 0)  (1.58), (0)  (1.10), (0)  (2.93), (0.13)
CQR-lasso 15.33, 0 15.29, 0 14.49, 0 12.89, 0 38.75, 0.01
(0.67), (0) (0.67), (0) (0.53), (0) (0.55), (0) (2.93), (0.01)
CQR-SCAD 1.68, 0.01 1.62,0 2.27,0 233,0 2.18, 0.01
0.25), (0.01)  (0.29), (0)  (0.32), (0)  (0.34), (0)  (0.38), (0.01)
= = (0.8l
Model error  LS-oracle 0.097 0.092 0.079 0.088 184.788
(0.008) (0.008) (0.006) (0.008) (91.476)
CQR-oracle 0.097 0.005 0.023 0.046 0.134
(0.008) (0.002) (0.002) (0.004) 0.011)
LS-lasso 0.488 0.493 0.441 0.422 19.649
(0.025) (0.028) (0.021) (0.031) (1.623)
LS-SCAD 0.524 0.443 0.422 0.442 27.706
(0.026) (0.020) (0.019) (0.029) (5.775)
CQR-lasso 0.498 0.152 0.259 0.269 0.993
(0.029) (0.023) (0.029) (0.014) (0.087)
CQR-SCAD 0.123 0.005 0.032 0.060 0.355
(0.013) (0.001) (0.003) (0.005) (0.055)
FP, FN LS-lasso 13.06, 0 12.34, 0 1197, 0 13.59, 0 9.21, 1.60
0.85), (0)  (0.87), (0)  (0.91), (0)  (0.99), (0)  (1.77), (0.11)
LS-SCAD 13.89, 0 11.97,0 11.28, 0 14.04, 0 13.53, 1.62
(0.90), (0) (0.78), (0) (0.64), (0) (0.99), (0) (2.27), (0.11)
CQR-lasso 12.15, 0 13.28, 0 12.09, 0 13.06, 0 28.26, 0.03
0.68), (0)  (0.62), (0)  (0.57), (0)  (0.66), (0)  (2.46), (0.02)
CQR-SCAD 2.09, 0.02 1.29,0 1.83,0 1.97,0 2.38, 0.06
(0.40), (0.01) (0.24), (0) (0.32), (0) (0.30), (0) (0.32), (0.03)
VIII. PROOFS For ease of notation, now let v,(a,3) = Qn(a,8) —

We provide proofs of all previously stated results in this
section. For the sake of brevity, some auxiliary results are
relegated to the appendix.

Assume without loss of generality 35 = 0 such that af =
F~1(r) for 1 < k < K. Also recall from Theorem 1 that
Mo = maxo<<p | X;]13/n.

Lemma 3. Under condition (CO), with probability at least
9 A2
1-— 2Kexp<—§n)\2) — 2pexp(—;M),
the COR lasso estimator (Gix, By) satisfies

AN~
6" A% e ¢ = {(6,A) e RE x R”:
A4l < 3[[Aall + &6},

PO A~
where 8§ = ay) —a* and A =3, — 3.

Proof of Lemma 3. See Appendix A.

Qn(a*aﬂ*) - E[Qn(aw@) - Qn(a*vﬁ*)] For r > 07 set
G ={(6,A) € C: (nK) ' I (8 + XTA)? < 72}
and define e(r) = sup(s a)ew, [Vn(a* 48,87 + A)|.

Lemma 4. For r, t > 0, under conditions (C0) and (C1), with
probability at least 1 — exp[—nt?/(32r?)], we have

2M, 1+1
e(r) < 161170\/¥(\/§+ 1)r +t.
0

It follows immediately that, if one takes

2Mp |1+logp
. \/ — (Vs +1)r,

then with probability at least 1 — exp [—QMOmals(l +10gp)] ,

we have
2M 141
() < 32,/ Mo. [LH108R oy
Ko n

Proof of Lemma 4. See Appendix A.

t=16



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, JUNE 2020 9

TABLE II
SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD, UNDER
MODEL (10) WITH n = 200 AND p = 1200. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE STRUCTURES
3 = (0.5/i9]) AND X = (0.8“~7]) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N (0, 3), MIXTURE NORMAL,
MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS

REPORTED AS “FP, FN”.

NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0,3) MN MDG t3 Cauchy
= = (0.511770)
Model error  LS-oracle 0.051 0.045 0.041 0.048 1136.066
(0.004) (0.004) (0.003) (0.004) (965.520)
CQR-oracle 0.047 0.001 0.011 0.023 0.060
(0.005) ) (0.001) (0.002) (0.005)
LS-lasso 0.340 0.337 0.281 0.284 28.450
(0.015) (0.014) (0.011) (0.013) (7.987)
LS-SCAD 0.061 0.061 0.055 0.062 41.685
(0.006) (0.005) (0.005) (0.005) (24.654)
CQR-lasso 0.394 0.072 0.180 0.239 0.830
(0.018) (0.011) (0.014) (0.013) (0.073)
CQR-SCAD 0.046 0.001 0.011 0.023 0.137
(0.004) () (0.001) (0.002) (0.030)
FP, FN LS-lasso 19.62, 0 20.09, 0 20.15, 0 19.59, 0 21.41, 1.66
(141), (0)  (1.25), 0)  (122), 0)  (1.27), (0) (3.94), (0.13)
LS-SCAD 524,0 5.76, 0 4.56, 0 6.53,0 2549, 1.54
(1.08), (0)  (0.94), (0)  (0.92), 0  (1.10), (0)  (4.01), (0.12)
CQR-lasso 18.76, 0 19.05, 0 19.11, 0 18.59, 0 60.56, 0
(0.95), (0) (0.77), (0) (0.78), (0) (0.95), (0) (6.35), (0)
CQR-SCAD 221, 0 229,0 299, 0 231,0 1.50, 0
(0.30), (0) (0.48), (0) (0.44), (0) (0.36), (0) (0.30), (0)
= = (0.8l
Model error  LS-oracle 0.042 0.047 0.034 0.046 71435.826
(0.004) (0.005) (0.003) (0.004) (68875.639)
CQR-oracle 0.049 0.001 0.011 0.022 0.055
(0.004) (0) (0.001) (0.002) (0.005)
LS-lasso 0.252 0.235 0.219 0.208 22.598
(0.012) (0.011) (0.009) (0.013) (2.334)
LS-SCAD 0.071 0.073 0.050 0.065 23.726
(0.006) (0.007) (0.004) (0.009) (2.856)
CQR-lasso 0.255 0.030 0.099 0.153 0.730
(0.014) (0.004) (0.008) (0.009) (0.070)
CQR-SCAD 0.086 0.001 0.023 0.048 0.539
(0.008) ) (0.003) (0.004) (0.099)
FP, FN LS-lasso 14.83, 0 16.17, 0 15.24, 0 14.80, 0 20.44, 1.63
(1.03), (0) (L1, ©)  (1.09), 0  (1.23), (0)  (3.83), (0.12)
LS-SCAD 6.36, 0 5.68, 0 5.64,0 4.74, 0.01 15.22, 1.84
(0.99), (0) (0.72), (0) (0.83), (0) (0.76), (0.01) (2.92), (0.10)
CQR-lasso 16.86, 0 14.89, 0 15.83, 0 16.47, 0 4275, 0
(1.02), (0)  (0.7),(0)  (078), 0)  (0.98), (0) (4.13), (0)
CQR-SCAD 2.19,0 1.93,0 2.70, 0 2.59,0 1.85,0
(0.32), (0) (0.36), (0) (0.50), (0) (0.44), (0) (0.24), (0)

Lemma 5. Under conditions (C0) and (C2), for any (8, A) €

PONPOY
then by convexity of @, this implies that (§ ,A ) € ...

€. we have To show (11), first note that for all (5, A) € €,
> 4 K2 nla 40,07+ ~eniat,
2 mm{f?‘ / W T FAI8° + Al [18°1) .
where rT = (TLK)i Zi:l Zkzl(ék + XZ,-A) . 2 E[Qn(a* + 67/8* + A) - Qn(a*,ﬁ*)] - 6(7"*)
Proof of Lemma 5. See Appendix A. O +A([[A &l = 1AAllL)-

Proof of Theorem 1. Let

ro= 8L 32,/ \/Hlogp Vs+1) +A,/— .

Let & = {e(r.) < 32y/2Mo(1 + logp)/(nko)(v/s+1)r.}. It
follows from Lemma 4 that Pr(&>) > 1—exp[—2Mory "s(1+
logp)] By Lemma 5, for any (4, A) € €*, we have

Set ¢* = {(6,A) € ¢: A DD P 1(§5k+xTA) . . o
r2}. Moreover, define ('5 =a)y—a*and A =3, - 3" E[Q".(a _’;6’5 +A)172Q”(a .87
Under event & = {(6 A )€€}, if > min{fri/4, q(f/K)"*r.}.
(, A Qn( +0,87+ A) = Qnle, B7) Also, by condition (C1), (A.5) and (20), for (§, A) € €*, we

+ A8 + AllL = |B%]l1) > 0 have ||All1 < r«v/s/ko. Thus, under event & N &y, for any
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TABLE III

SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BICH AnD BICHL IN TERMS OF TUNING PARAMETER SELECTION, UNDER
MODEL (10) WITH n = 100 AND p = 600. TWO COVARIANCE STRUCTURES X = (0.5“*1‘) AND X = (0.8“*3") ARE SHOWN, UNDER EACH OF WHICH
FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N (0, 3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION
ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100
INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0,3) MN MDG ts Cauchy
= = (0.5/"771)
Model error  CV 0.087 0.005 0.021 0.043 0.312
(0.008) (0.002) (0.002) (0.004) (0.083)
BICH 0.115 0.017 0.053 0.058 0.988
0.019) 0.011) 0.017) 0.012) 0.374)
BICHE 0.094 0.003 0.022 0.048 6.287
0.011) (0.001) (0.003) (0.004) (0.824)
FP, FN cv 0,0 0,0 0,0 0,0 0.01, 0.13
), (0 ), (0 ), (0 ), (0 (0.01), (0.04)
BICH 0, 0.03 0, 0.01 0, 0.03 0, 0.01 0.01, 0.27
(0), (0.02) (0), (0.01) (0), (0.02) (0), (0.01)  (0.01), (0.05)
BICHE 0, 0.01 0,0 0,0 0,0 0, 1.17
(0), (0.01) 0), O 0, (0) 0), 0 (0), (0.09)
= = (0.8I"77l)
Model error  CV 0.273 0.008 0.088 0.118 0.718
(0.047) (0.003) (0.025) (0.025) (0.116)
BICH 0.393 0.077 0.200 0.295 2.169
(0.066) (0.035) 0.051) (0.059) (0.338)
BICHE 0.607 0.024 0.153 0.114 5411
0.091) (0.020) (0.043) (0.020) 0.517)
FP, FN cv 0, 0.07 0,0 0.02, 0.02 0,001 0.1, 0.2
(0), (0.03) (0), (0) 0.02), (0.01) (0, (0.01)  (0.03), (0.04)
BICH 0.01, 0.15 0, 0.04 0, 0.09 0, 0.12 0.14, 0.53
0.01), (0.04)  (0), (0.02) (0), (0.03) (0), (0.03)  (0.06), (0.07)
BICHE 0.05, 0.23 0,0.01 0, 0.06 0, 0.01 0.12, 1.07
0.02), (0.04)  (0), (0.01) (0), (0.02) (0), (0.01)  (0.04), (0.08)
TABLE IV

SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BIC* AND BICH L IN TERMS OF TUNING PARAMETER SELECTION, UNDER
MODEL (10) WITH n = 200 AND p = 1200. TWO COVARIANCE STRUCTURES X = (0.5‘1'—1") AND X = (O.S‘i—j‘) ARE SHOWN, UNDER EACH OF WHICH
FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N (0, 3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION
ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100
INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0,3) MN MDG ts Cauchy
> — (0.5|i—.7’\)
Model error  CV 0.121 0.006 0.026 0.043 0.477
0.019) (0.002) (0.003) (0.006) 0.224)
BICH 0.041 0.001 0.012 0.020 0.915
(0.004) (0.000) (0.001) (0.002) (0.423)
BICHE 0.042 0.001 0.009 0.023 3.632
(0.004) (0.000) (0.001) (0.002) 0.757)
FP, FN cv 0, 0.02 0,0 0,0 0,0 0.01, 0.11
(0), (0.01) 0, O 0), (0 0), O (0.01), (0.04)
BICH 0,0 0,0 0,0 0,0 0.26, 0.05
), (0 ), (0 0), (0 ), (0 (0.13), (0.03)
BICHL 0,0 0,0 0,0 0,0 0.01, 0.61
), (O ), (0 ), (0 ), (0 (0.01), (0.08)
= = (0.8/"791)
Model error  CV 0.372 0.042 0.081 0.206 0.736
(0.059) (0.025) (0.023) (0.044) (0.141)
BICH 0.235 0.001 0.070 0.055 0.538
(0.05) (0.000) (0.03) 0.017) (0.086)
BICHL 0.132 0.002 0.019 0.041 3.28
0.032) (0.001) (0.002) (0.004) (0.518)
FP, FN cv 0.01, 0.12 0, 0.02 0.01, 0.02 0, 0.06 0.05, 0.16
0.01), (0.03)  (0), (0.01)  (0.01), (0.01)  (0), (0.02)  (0.02), (0.04)
BICH 0, 0.09 0,0 0, 0.03 0, 0.01 0.21,0.12
(0), (0.03) (0), (0) (0), (0.02) (0), (0.01)  (0.06), (0.03)
BICHL 0, 0.03 0,0 0,0 0,0 0.10, 0.55
(0), (0.02) 0), 0 0), (0 0), O (0.04), (0.07)
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(6,A) € €*, it follows from (12) and the growth condition
that

Qn(a® +6,8"+ A) — Qu(a

+ A8+ Al = 1871

zif l321/ Hlogp (Vs+1)+ A ] ]
4 a¥y)

by our choice of r,.
probability at least

Pr(c‘)l N 52) Z 1— Pr(é‘i)

5B

Therefore, by Lemma 3 and 4, with

A~
we have (0 ,A ) € %,,. This, by condition (Cl), further
implies that

18313 + K| Asza o 3]

8718 + rm | B sz a

W‘s

>

?m A,m)”%

A
As a result, we obtain ||§ |2 < 7./ K/km and

~A
”AAUX(KA m) ”2 <7/ VEm.

Note that the jth largest in absolute value component of A Ac
is bounded by ||A 4c||1/4. Therefore, it follows that

13)

P ~A
2 < Z ||A4c||% <
2 j=m+1

2

(AUA(A™ m))e

1 ~A 1A 2
S*[3||A,4H1+3K e ||1]

185
< *II

18 =~
AL+ 1813

18 | =2
< B85 A a2+ =32
= m || AUA(A ,m)||2 + K” H2v

which, together with (13), implies that

~ A 18s
1AM < (14 22 1A dm@ mlB + o 18713
2

Ty 18s 18
< (1424 2
m m

Km

This completes the proof of Theorem 1.

O
For r > 0, define B4(r) = {(d,A) € RE x RP: ||§])3 +
X

lAAlIZ < 72, Age = 0} and Sa(r) = {(6,A) € RE
RP: [|6]|3 + |A 43 = r?, A4 = 0}. Moreover, let z(r)
SUP(5, A)eBA(r) [V +5 8"+ A)l.

Lemma 6. Under condition (CO), for any r,t > 0 such

that v+/(s+ 1)M4 < Uy, with probability at least 1 —
exp[—nt?/(32fir?)], we have

z(r) < 4r ErDMa
n
and
n J A n(a”, 87
6 ol [@n(@” +8,67+ A) ~Qu(a”, )]
+1)My
> = 2_4 (87_ .
_QKHT r - t

Proof of Lemma 6. See Appendix A. O

&’ —a* and A’ = 8’ — B
In Lemma 6, let r = r* = 32K (f p)~'\/Mu(s+ 1)/n and
t = 4r*\/M4(s 4+ 1)/n. By assumption, with the choice of
r*, we have 7*/(s + 1)M 4 < Up. It follows immediately
that with probability at least 1 — exp[—(s+1)M.4/(20)], we
have

Proof of Lemma 1. Let 8 =

[Qn (cx Qn(a*,ﬁ*)]
fuer)?

* (5 + 1)MA
> _
- 2K s n

inf
(8,A)ESA(r*)

> 0.
o 3O .. .
,(3 ), this implies

< ()%

which completes the lemma. [

By convexity of @,, and optimality of (&
that Y .
187115 + 1A 13

Lemma 7. Suppose the folded concave penalized COR (4)
is solved with the LLA algorithm. Let ay = min(as, 1) and
define

~(0) "
& ={IB" = B*|lw < a0},
&2 = {|V4Qn(@, 8w < a1 A},
& = {5%1£|ﬂj| > a)\}7

where V.4:Qu(@,8") = (V,Qu(@’,8), j € A) with
1 & 2 &
VQn( 7ﬂ) Qn;xzj(l_K;T}c)
1 n K
T oK ZZSgn(rik)xija
=1 k=1
P =y — a9 —xIB",1<i<n, 1<k<K, and
1, if u>0
-1, if u<O.

Then under £1NE;NE3 and condition (CO), the LLA algorithm
converges to the COR oracle estimator.

Proof of Lemma 7. See Appendix A. O

For each j € A let us define S} (a,8) =

L S [Ty — o — xIB < 0) — 7i];, and for
r >0, let

()= sup  |S}(a’ +48,8"+A) - S (a",B7)
(6, A)eB4(r)
—~E[ST(a* +6,8" +A) — ST (a", 8%)]].

Lemma 8. For r;t > 0, 0 < ¢ < r and j € A°, under
condition (CO) we have

nt?
Pr(v;(r) >t) <2Nye ——
(v (r) ) < 2Ny Xp< 8fMinM1/QT+§MAft)

nt?
+ 2Ny exp| —— 72 " ,
2fM3A. ((s + 1)Ma) "9 + 3 Macto
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where Ny, is the 1-covering number (see, e.g., [24]) of Ba(r)
7 1/2

and to = [t/2 — 2f M ((s + 1)M)*9] .

Proof of Lemma 8. See Appendix A.

Proof of Theorem 2. Let 3 =a’— o and A’ ﬁ — B
For1<i<n,1<k<K, wrltenk—yl—ak—xT,B and

ri. =y, —ap — x.3". For ease of notation, let F(§, A) =
Qnla* + 6,8+ A) — Q,(a*, 3" for (§,A) € RE x RP.
According to Lemma 7, with probability at least

Pr(51 N 52 n 53) Z 1-— PI‘(E;) — Pr(5§) —

O

Pr(&3),
the LLA algorithm will converge to the oracle estimator in
two iterations. In the sequel, we will split the proof into three
parts and provide the upper bound on each of Pr(&5), Pr(&5)
and Pr(&5), separately.

(i) First, we deal with Pr(&3) = Pr(||3"" — B[l > o).
Since in the LLA algorithm, we take (&, ﬁ ) to be the
lasso estimator (Qty,, 3y,), by Theorem 1, we have

Pr(£1) = Pr(||By, — 8"l < ao))
> Pr([|By, — B2 < ao)) = 1 — p1(Ao),
which implies that Pr(&5) < p1(Ao).

(i) We next derive the upper bound on Pr(&5)
Pr(minjeA 187 < a)\). Let 7o = minje4 |57| — aX. It can
be seen that Pr(&5) S Pr(||30||OO > rg). Note that by
convexity of Qy, |A°|]s < ro is implied by the event that
1nf(6,A)ESA(r0) F(8,A) > 0. Since ro+/(s + 1) M4 < Uy, it
follows from Lemma 6 that for any ¢ > 0,

it F(5,A) > s+ )M

-t
(6, A)eSA(ro0) 2

— 47‘0

holds with probability at least 1 — exp[—
By condition (C3),

nt?/(32ard)].
it can be seen that ro > A\ >

8K (fp)~"\/(s+1)Ma/n. Now take ¢t = fpur/(4K) —
2r9+/(s + 1)M 4/n. Then, we can see that ¢ > 0. It follows

immediately that inf (5, A)es4(ro) (0, A) >t > 0. With this
specific choice of ¢, we get

Pr(||A°(|2 < ro) > 1 — exp[—nt?/(32jur2)],
which implies that

~0 ~0
Pr(&3) < Pr(|A [loc > r0) < Pr([[A ]2 > 70)
< exp[—nt®/(32ar)].
(iii) Finally, we look at the probability Pr(&5)
~0

Pr(||V4@n(@®, 8 )|l > a1A). To this end, we set 7, =
[(s + 1)M4logn/n)*/? and let R = {(i,k): #fix = 0,1 <
i <n,1 <k < K} be the index set of zero residuals. From
Appendix B, we have |R| < K(K + s). It follows that

n K

ﬁ . [(1 — 27%) — Sgn(Fir) |2

K2

ViQn(a",8) =

K
[I(Fi <0) —
k=1

1 k=1
1

nk

M=

Tk]xij

Il
N

7

(i,k)eER

N
z‘,_

where we have
(K + )My
n

1

ma; = Bj.
JEAC
(i, k)ER

Now define event & = {(30,30) € B4(r«)}. Under &, by
the triangular inequality, we have

max

jeA i=1 k=1

< (7, S’r_L *’ *

< maxy;(r.) + max |57 (a”, 87|

+ max sup E[S} (o +6,8" + A)

JEAS (8, A)eBa(rs)
- 57(e",8%) |

By the mean value theorem, it can be seen that

max sup ‘]E (ST (o +6,8" + A) — S} (", 87)
JEA® (5, A)eBA(ry)
1 n K
_ ‘ n
< ﬁfMAC sup Z Z |0k + x4 A4

(6, A)eBa(rs) i=1 k=1
< fMgep?r, == Bs.
Note that if B > 0, then 2B = a1 A — B — Bs. It follows that
Pr(&;) < Pr((3", A%) ¢ Ba(r.)) + Pr(max7;(r.) = B)
1€ A°
+ Pr(?&ﬂs}‘(a*,ﬁ*” > B).

Note that 7.1/ (s + 1) M4 < Uy. By similar arguments in (ii),
it can be shown that
nt?
32pr2 )’

Pr((go, 30) ¢ B_A(T*)) < exp (—

where t, = fur?/(4K) — 2r.\/(s+ 1)Ma/n. Applying
Hoeffding’s inequality, we obtain
2nB? )
My )’

Lastly, we apply Lemma 8 to obtain the bound on

Pr(maX|Sn(

|57 (0" 7] > B) < 20— 5)exp -
j c

Pr(max;je e v;(rs) > B). Let ¢ = 4r,/n?. It can be shown
that the -covering number of B4(r,) satisfies

K+s K+s
(%) <Ny < (W) < n2(K+S), n>2.

By Lemma 8, we have

Pr (max v (1) > B)
JEA

< 2(p — s)Ny exp (—

+2(p — )Ny

nB2
8f M4 it/ ?r, + SMaB

( nB?
X exp| ——
2f M2 ((s +1)Ma)

1/2 )’
/ ¥+ § M4 Bo

where By = [B/2 — 2fMac((s + 1)Ma)"?¢] . This
completes the proof. O
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Lemma 9. For any A€ {S:5 D A, |S| < 2J,} and r,t >
0, let 2(A, 1) = SUp(5 AyeBa(r) V(e +8,8% + A)|. With
probability at least 1 — exp{—nt?/(32(r?)}, we have

A+ 1
A+,
n

z(A,r) <4Mr

Proof of Lemma 9. See Appendix A. O

Proof of Theorem 3. Split all models (denoted by their index
sets) under consideration, {AA A € E,}, into three groups:
{A)\ A E un} {A)\ A E :0} and {A)\ A E :Jr}
where =7 = {\ € E, : A ¢ A,} (underfitted models),
2 ={NeE, A =Atad Ef = {A€E,: AC
A ,\, Ay # A} (overfitted models). The proof then boils down
to show that P(infAeag [BICH()\) — BICH(\,)] > o) 51
and P(ian@+ [BICH()\)—BICH(\,)] > o) S lasn - 0.

Let @) = (nK)™' YL, Y pn (i — & — xi87),

where (&, B ) is the two-step LLA estimator to the folded
concave penahzed CQR (4) with lasso initialization. Also, let

Q= (nK)~' 3L 1Zk 1Prk(yz — aj — x;87). For any
Ac{1,2,...,p} let (&, ,6' ) be the estimator obtained by
fitting the canonical CQR to model A4, i.e.,

(@*,8") = argmin —Zzpm

a,B:84=0 N T

—ai—x;8). (14)

Define Q; = ( K)o 1Zk L e (ys — &t — xIBY).
For any A\ € Z,, recall that A, = {1 <j<np: [3)‘ # 0}
corresponds to the active set of the two step LLA estimator
(a’ ,,6 ). By optimality of (o a™> 5 ™) in (14), we have
@AA < Q/\

Let 9t ={A: AD A A+# A Al < J,}. It can be seen
that {Ay : A € Ef} € 4. Forr > 0 and A € 4, let
Ba(r) ={(6,A) e RE x RP : ||6]|2 + ||AAl* < 72, Axe
0} and Sa(r) = {(8,A) € RE x RP : [|§]]2 + [|A4|?
7“2, AAc = 0}.

Case I: overfitted models. By Theorem 2, under the assump-
tions of this theorem, we have

P(Ay, #A) = o(1)

as n — oQ.
Therefore, for any \ € E:{, we have
Pr< inf [BICH(\) — BICH(\,)] > 0>
AEEF
= Pr( inf [BICT(\) — BICH(\,)] > 0, Ay, = A)
AeE)
—|—Pr( inf [BICH())
PYSChy
=Pr ( inf
>\€—'n

+o(1)

> Pr( inf
AeE}

+o(l),

—BICH(\,)] > 0,4,, # A)

(@ -0+ 1] - 9 S22 )

(@ =@+ (A - 9 2] )

where the last inequality follows from the fact that Q) > Q2.
Moreover, note that @? < @ﬁ < @} due to inclusion A C
Ay

Let F(8,A) = Qp(a* + 38,8+ A) — Qu(a*,3") for
(6,A) € RE x RP. For each model A € 4, let 'y =
16K (M +CY2)(£O) 1 /(JA] + 1) log(p) /n. If we can show
that inf (5 Ayes, (%) F/(8, A) > 0, then by convexity of p-(-),
we must have [|a? — o |2 + |8 — 87|12 < (+%)2. Indeed,
by Knight’s identity (see (22) of Appendix A) and the mean
value theorem, we have

1
inf E[F(5,A)] = inf
(8,A)€SA(rY) (8,A)€SA(rY) nk
n K §k+xTA
£y Z/ Flaj +1) — F(a})]dt
=1 k=1 (15)
(8, A)ESA(T'*) nK
Si+xi A

[tf (g + Qik,e)|dt.

S»y|

i=1 k=1

Note that J,, satisfies J2 log(p)/n = o(1). Therefore, for any
1<i<n,1<k<K and (§,A) € Sa(r’), we have

0k + XA < /14 [|xi4]2 -
< MriJTA + 1

= 16K M (M +C/*)(£O) (| Al + 1)v/og(p) /n
< 16K M (M + CV2)(fO) (T + 1) /log(p) /n = o(%).

I + [l Aall3

It follows from condition (CO) and (15) that

inf E[F(s,A)]
(8,8)€84(r%)
iii O +xIA)? AC(TZ)?
= (s, A)eSA(TA) nK — o e

Therefore, by Lemma 9, with probability at least 1 —
exp{—nt?/[32¢(r%)?]}, we have

inf ~ F(4,A) > inf  E[F(8,A)] — 2(A4,r"

6a oy TOA) 2 A (o BFG M) = 2(47%)
! . Al +1

> 2KC< )2 — AMr, - —t.

Now take t = 8r%/C(JA| + 1) log(p)/n. It follows that for
each A € ¢}, with probability at least b7} = 1—exp{—2(|A|+
1)log(p)}, we have
inf F(4,A)
(6,A)eS5a(r)
fCor)?
ZTox 4

|Al 4+ 1
n

(8\/C_log(p) + 4M) >0,

which immediately implies that

~A A *
& —all3 + 18 = B3 < (r)*.
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Now by the Bonferroni inequality, we have &4 — a3 +
18 — B%|)2 < (r%)? for all A € 4 simultaneously with
probability at least

In
p—3s A
n=1-— 1-
o=1= 30 ([ )ae
[Al=s+1
Jn—s
—1— Z (p L S) exp{—2(k + s+ 1)log(p)}
k=1
p—s k
—2(s+1) Z (P - 3) 1
p 2
= k (p )
1\p—s
:1_p—2(s+1)[(1+]§) —1]—>1 as p — oo.

Now we derive the upper bound for sup , .+ QA — Q7). Let

64 = a4 — o* and A = 3 — 3*. Observe that
NA * 1 ¢ = ~A TRA
Q= @il = | Yo Y Aon (i — &t —xIB%)
i=1 k=1

~ pruys = o = xI8)}
< |E{F (6%, B} + (A, 7).

Similarly, we have

[E{F(6",8%)}]
1 n K 5,’3+x;.rAA
=—=> > [F(af +t) —F(ak)}dt‘
na = k:l 0
L& 164 1xTA4|
< WK Z . [tf(ak + Uik t)]dt
i=1 k=
f. n K
< A L L TAAY2
— 2nK ;;(6 AT
1.« " 1., .
< ifC(HtSAHg +[A%)3) < §fC(TA)2~

It follows that with probability at least b,,,

O — @il < S FCra)? + 4Mr
N 8TZ\/C(AI + 1) log(p)

n
_ 128K°(M + ¢Y/2)2 (JA] + 1) log(p)
- I< n

holds for all A € ¢,". Now going back to BIC, we have

Pr < inf (@ = Q) + (14| _ 5 Snloaln) log(p)} > 0)
XS n
Ci log(p) Q' — Q1
2B e T >0)

Therefore, with probability at least b,,, we have

QA - Qi Qr—Qf  rslog(p)
s < e iy =0 ()

sup
Aew,t

Since s = O(1) and C, diverges with n, we have
slog(p)/n = o(Cylog(p)/n). It follows that
NA _ HA
Pr(cﬂl()g(p)— sup Q”Q">0> —1 as n— oo,
n Acwt (|A] = s)

which implies that Pr(infxeai [BICH()\)
0) — 1 as n — oo.

Case II: underfitted models. For any A € =,
Case I, we have

Pr( inf [BICH(\) —
AEE,

> Pr( inf
AES;,

+ o(1).
Define BICH(A) = QA +|A|C,, log(p)/n and let 4 = {A:
|A| < Jn., A ¢ A}. We can see that {4y : A € 27} C
4, . It suffices to show inf , ., BICY(A) > BICY(A) with
probability tending to one as n — oo. For any A € ¥~

n >

A=AUA. Let 0 = minjc |87|. Since A 3 A, we must
have ||&? —a*||2+||3" — 872 > 62. However, since A > A
and |A| < 2J,, _using Lemma 9, we can similarly show as in
Case I that |6 — a* |2 4 ||3" — B8*|2 < 62 with probability
at least b = 1 — exp{—2(|A| + 1) log(p)} as long as

0>8K(f€)1(2\/@+M)W,

which is implied by the assumption +/.J, log(p)/n = o(6).
It then follows that [|[&? — a*|3 + [|8* — B%||3 < 6? holds
for all A € ¢4, with probability at least b,, — 1 as n — oo,

where
2 s -
T - A
te 3 (e

|[A=s+1
!
p

Therefore, there exists a € [0,1], a? = aa? + (1— a)a and
B = aB* +(1—a)B” such that @’ — |3+ B3% — 3|13 =
6%. By convex1ty of p, and the fact that QA > Q we have
QA ( ) Zz 1 Zk 1 p‘l'k (yl ak XT/6 ) < Q:A NOte
that QA < QA < Q. It follows that Q7 — QA > Q2 - Qr.
For ease of notation, let ' =ar —a* and A? = 5‘4 - 6.
It can be seen that

Qi — Qi 2 E[F(3*, A%)] — 2(4.0).
Following similar arguments from Case I and noting that the

support of 3 is a subset of A, we can show that with
probability at least b, for all A € ¢, we have

n >

_ - Al +1 -
e Y N R ]

Now we have

— BICHE(),)] >

similar to
BICH(),)] > o)

(@1 = @)+ (1] - ) 5] )

(0* -4

BICH(A4) — BICH(4)
= (@4~ Q)+ (4] A D)
> (QA - Q*) _ CnSIOg(p) )

n
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Since /Cpslog(p)/n = o(f), it can be seen that with
probability tending to one, we have inf, .- BICH(A) —
BICH(A) > 0. Following similar arguments as in Case I, we
can show BICH(A) > infSDA7|S|§2Jn BICH(S) > BICH(A)
with probability tending to one. Case II then follows by noting
that

inf [BICH(A) — BICH(A)]
A€,
= inf [BICH(A) - BICH(A) 4 BICH(A4) — BICH(A4))
AeY9,
> inf [BICH(A)— BICH(A)].
Ae¥,,
0

Proof of Theorem 4. Similar to the proof of Theorem 3. We
relegate it to Appendix A. O

Proof of Lemma 2. See Lemma 1 of [23]. O

APPENDIX A
PROOFS OF AUXILIARY RESULTS

Proof of Lemma 3. Let us denote ¢ = ((1,...,(x)" and € =
(&1,...,&p)", where

1 n

Note that (¢",£")" € 0Q,(
is taken with respect to v and 3. By convexity of Qy,(
and optimality of (&, (3, ), we have

0> Qu(@r, By) — Qula*, 8%) + A(|B:ll - 1871h)

*,3"), where the subdifferential

a,f3)

> ¢M(@n—a”) +€'(By— B + AIBxlh — 187I1n)
=~ li€lloe - lleex = e[l = [1&lloc - 185 = B[l
+ (184 = Biacll = 1Bx,.a — Ball),
which implies that
(A= [1€llo0)l1Bx, 4 = Bxcl

- . e
< A+ l1Elloc)18x.a = Bl + [I€lloo - laen — ]l

Under event £ = {||¢]lec < 3N (2K), [[€]lc < A/2}, it
follows from (16) that

Al < 3IAY 395
A el < 3[[A 4l + 7 M6 [

The lemma then follows from Hoeffding’s inequality

) el > 3)

3A

Pr(&) > 1 —Pr(||CHoo >

>1— I;Pr(’—an i[

(e zxnzw <ap)l| > 2)
j=1 i=1
21—2Kexp<— )\2)—2pexp(—2]\/\;0>.

This proves the lemma. O

Proof of Lemma 4. First, let us show that the check loss p, (+)
is Lipschitz continuous with Lipschitz constant max(7, 1—7).
To see it, note that for any u;, us € R, we have

|pr(u1) — pr(u2)| = (T — 0.5)(u1 — u2) 4 0.5(ur | — |ual)]
< (J7 = 0.5 + 0.5)|u; — ug| = max(r, 1 — 7)|u; — us|.

Now let § = a — a*, A = 3 — 3%, and define

(4 — ax — xIB)
of —xIp")

1 X
= ?me(rfk — 0 — XA
1

K

— = i)

k=1

where 7, = y;—of —xB" =¢,—0f, 1 <i<n, 1<k <K.
It follows immediately that

n

sup 1 [U:(8,A) EUi(J,A)]‘.

e(r)
(8, a)e%. 1"

By Lipschitz continuity of the check loss, it follows that

=0k — X, A) — pr (173.)]

K
Ui Z |, (15
k:

K
1
S E;maX(Tkal_Tk)|6k+X§A| (17)
1 K
< EZ\&Q—&—X;AL 1<i<n.

=
Il

1

Now applying Massart’s concentration inequality (Theorem
14.2, [25]), we obtain

2t2

n
Sb,%(r))’ (18)

where b7, (r) = sup(s a)ew, ZZ ,var(U;(8, A)). First, we
derive the upper bound on b2(r). Note that by (17) and
Cauchy—Schwarz inequality

Pr(e(r) > Ele(r)] +t) < exp(—

n

b2 (r) sup E[U,(8,A) — EU(8,A)]°

(8, A)eE, =1

2
<4 sup Z[leﬁxw}

((5A€<gr7 1 Lbe=1

o S

(0 + X}A)2] < 4nr?.
(8, A)ECr k=1
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Next, we derive the upper bound on Ele(r)|. By applying
the symmetrization procedure [26] and the contraction princi-
ple [27], we have

Ele(r)] <2E| sup 13 H
)] [(JAG%W;Z
9 XK
— E[ sup Ei{pr, (ri — 6 — X1 A)
nK ; (8, A)EE, ; 3 (19)
~ <r;;>}H
PR
sup & (0 + XTA)H
nk kz:: L A)EE, ; '
where &1, ..., &, are i.i.d. Rademacher random variables that
satisfy Pr(§;, = —1) = Pr(§ = 1) = 1/2 and that are
independent of €1,...,&,.

For (8, A) € %,, by condition (Cl) and the Cauchy-—
Schwarz inequality, we have

> 7(”6”2 +K[lAal3) >

Ko Ko
w210l + 1ALl 20)

which implies that |0y < rK/\/ko and ||A4ll1 < 7+v/$/kKo.
Now let & = (&1,...,&,)". Note that for any ¢ € R, we have
by Taylor expansion

n

Elexp(tX}€)] = H{ (et®ii 4 emi]‘)}

1
2
2 .

xi_j)a 0<j<p
i=1
Letting ¢t > 0, by Jensen’s inequality, we have
exp(tE [||X"€]l o] )
- el) < ( T )
exp(tE01£?§p|Xj£\) < Eexp torgfgp|XJ£|
= ]E{Omax exp(t|XT-£|)} <E [ax (etXJTg + e_tXJT'g)
txTe tX] £ 2
L e ) = Q;exp(2 1%;13)

t2
21 (7 X, 2)
< 2(1+p)exp 201;1%)” ill2

<

'M“@

<
I
o

1
=2(1+p) eXp(inMot2>,

which implies that

E([X"¢[loc) < ~[log 2 +log(1 +p)]| + %t, t > 0.

S

Taking ¢t = /2[log2 + log(1 + p)]/(nMp) and noting that
p > 3 by condition (C0), we obtain

E(|X"¢|lo) < v/2nMo[log2 + log(1 + p)]

21
< V/2Mo - \/n(1 + logp). ey

It then follows from (19), (21) and Holder’s inequality that
K

5+A
s > (1661 + A1)

€Cr =1

4+/2 M,
< —~——=\/n(l+logp) sup (K31 +[AlL)
n (8, A)EE:
4+/2 M,
<— = /n(1+logp)

[4K 0]l + 4]l A 1]

Ele(r)] < —E(IX%]) -
(s,

X  sup
(8, A)EE,

2My /141
<164/ 222, /ﬂ(\/g+ 1)r.
Ko n

The lemma then follows from (18). O]

Proof of Lemma 5. By Knight’s identity [2], we have for any
two scalars r = 0 and s,

[r sl = Irl = =s[I(r > 0) = I(r <0)

+2/ [I(r <t)—I(r <0)]dt.
0
It follows that for any 7 € (0,1), when r # 0,

pr(r —s) = pr(r)
= (1 —0.5)[(r —s) —r] +0.5[]r —s| —
=(0.5—17)s—0.5s [I(r > 0)

l
—I(r <0)]

+/O [I(r <t)—1I(r<0)]dt

=s[I(r<0)—r7] +/S[I(r§t)—l(r§0)]dt.
0

Letr, =yi—af —x8"=¢;—0a;,1<i<n, 1<k<
K. Recall that € has a density with respect to the Lebesgue
measure. By condition (CO0), identity (22) and the mean value
theorem, we have for some ;5 ; between 0 and ¢,

(22)

E[Qn(a®+6,8"+ A) — Qu(a”, B")]
1 & K Sp+xiA
-y Z/ [F(af +1) - Flap)]dt
i=1k=1"0

12 (23)
[tf(a;;) + gf’(a; + ﬂik,t)} dt

f K
> =) D G+ xA)?

i=1 k=1
f/ n i .
— I(Sk + XzA‘ .
Gn i 1=1 k=1
For (§,A) € €, note that if
n K 1/2
1 T 2 4(]
XAy <t

i=1 k=1
then by condition (C2), this implies that

TAPP < o KZZ (6 + xIA)?

i=1 k=1

GnKz 1 k=1



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, JUNE 2020

which, together with (23), implies that for all (§,A) €

Cg4q(Kf)71/2’

E[Qn(a*'i‘&ﬁ*+A)_Qn(a*75*)]
I & .
K ;;wk +x(A)

To show that the lemma holds for all (§, A) € €, define

re = Sg}g{r: E[Qn(a* +4,8"+A)— Qn(a*u@*)]
n K

= 4nK PIPBCRE R

=1 k=1

V(d,A) € %}.
By previous arguments, we must have ro > 4q(K f)’l/ 2,
Now for any (8, A) € €, let 12 = (nK) ™ 1 S8 (5p +
xIA)2. If r < r4, then by the definition of r¢, we have

E[Qn(a*+5a/6*+A)_Qn(a*’/@*)]
n K 24
> LS S Gerway .
=1 k=1

If instead © > 7, let §' = r46/r and A’ = r¢ A/r. It can

be seen immediately that (nK)~!>°" | Zle(éfe—i—ng’)z =

rZ. By convexity of Q,,, we have
E[Qu(a”+8,8"+ A) = Qule

*,,8*)]
> éE[Qn(a* +8.8° +A) — Qu(ar, 8]
rf,

L (25)
Tre 4 e

o(f) [k

The lemma then follows from (24) and (25). O]

n K 1/2
5k + XTA } .
=1 k=1

Proof of Lemma 6. As with the proof of Lemma 4, define

K
1 . 1 ;
A) =22 =0k =XiA) = 2> o ();
k=1

where 7, = yi—of —x8" =¢;—af, 1 <i<n,1<k<K.
Now applying Massart’s concentration inequality, we get

n?t?
PrCa(r) 2 B0 +0) < e~ ). Q0
where b2(r) = supsf AveBa(r) 2aiey Var(Ui(8,A)). For

ease of notation, let A"y = (5, Aly)", 1 < k < K. It follows
from Lipschitz continuity of the check loss that

K n
4
R <= suwp (6 + x(A)
K (5,8)eBa(r) § 1;
4 K
=% sup (AZ)TXI%XAO A
(8. 8)eBA(r) i}
4an K
<—  swp Zu 5 + |A4l3] < 4npr®.

K (5,8)eB4(m}

Moreover, by the symmetrization procedure and the contrac-
tion principle, we obtain

E[=(r)]

4 K
<nKZE{

k=1

n

36 +x;AA>H
=1

sup
(8, A)eBA(r)

4 27
—E (X, €l12)

I A

sup ZIIA ||2<* (X4, €ll12)

(5 A)EBA(T k=1

where & = (&,...,6)"

Rademacher variables that is independent of {e1, ...
Jensen’s and Khintchine inequalities [28], we have

E(Xy &ll2) < [E(€X 4,X7,£)]"

[ ] < (554"

7€AQ JEAQ i=1

- (i Z x§j>1/2 < /n(s+1)My.

i=1j€Ao

is a random vector of i.i.d.
,En}. By

It follows from (27) that E[z(r)] < 4r\/(s+ 1)M4/n. The
first part of the lemma then follows from (26).

Let F(8,A) = Qu(a* + 8,8 + A) — Q,(a*,8%). To
prove the second inequality of the lemma, it suffices to note
that

inf F(d,A)
(86, A)eSA(T)
> inf E|lQ,(a*+ 8,8+ A
=R [@Qn( B )
- Qn(a*’ﬁ*)] 72(7')7

and that by (22) and the mean value theorem, we have for
some ;¢ between 0 and ¢ such that

f n * 63 * A - n *a *
o a8k E[Qn(a® +8,8" + A) — Qu(a*, 87)]
5k+x A
t
(5AesAr)nK;k 1/ Flag +1)
— F(og)]dt (28)
f 1
= in —
(6,A)eS4(r) nK
6k+x A

[tf (g + Uin,e) ] dt.

SHY|

i=1 k=1

Now forany 1 <7 <n, 1<k < K and (§,A) € Sa(r), we
have

60+ xIAL < /14 [xeall3 - /02 + [ A4l
< T\/m <Up.
It then follows from condition (CO) and (28) that
JE[Qn(e” +8,6"+A) ~ Qe

inf
(8,A)eSA(

> (6 TA)?
(8, A 65’,4(7) 2nK ;; BEX

"6
f
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This completes the proof. O

Proof of Lemma 7. Note that (),, is convex, but not diffgzren-
tiable. Denote the subdifferential of @, (c, 3) at (&, 3 ) b

~0 - - 1-— 2Tk Z?:l Sgn(fzk)
1 & 2 &
= Som(i- 2 300) - e 33 s
i=1 =1 i=1 =1
1<k<K 1<j<p

By convexity of Q,, for any (,&) € 8Qn(a0,30) and

(e, B), we have

Qn(a» ﬁ) -

Now by optimality of (
0. It follows that

Qula.B) > Qu(@,B) + > &8 — ).

JEA®

Qu(@".8") > ¢'(a —a") +€'(8 - B).
ao,f‘io), we can take ¢ =0 and £ 4 =

(29)

Under event &, we have max;e 4c |Bj“”| < aph < ag.
Moreover, by condition (C3), we have

in [3©] > min |87] - 3 — 31| > (a+1—ag)\ > a.
min | 5] > min | 57| —max | 557 — 57| > (a+1-a0)A = a

Thus, under event &1, it follows from properties (P3) and (P4)
of py(-) that

PAUBSY]) = aiA, Vj € A and pi(IB)]) = 0, Vi € A.

Similarly, under event £ and by the fact that B:c =0, it can
be shown that

PA(IB) =0,%j € A and py(|B9]) > a1, Vi € A-.

To this end, it can be seen from step (2.a) of the LLA algorithm
that

~ ~(1)
@, ) = argmin Qu (e, B + 3 DAUBIB; -

JEA®

Now under & = {||€ 4¢|lcc < @1A}, it follows from (29) that

for any (e, 8),
|:Qn + Z p/\ ‘ﬁ(o) |B]|:|
jEA®
- [Qn<a°,fa°> + > P8 DIBI]
JEAC
(30)

Z &8 /BO )+ Z i |ﬁj|(0) 185
jEAC jEAC

> [PAUB71) — 11]1851 = 0.
JEA®

The leftmost hand side of the above inequality is strictly
positive unless 3 4. = 0. Note that condition (CO) implies
the uniqueness of the oracle estimator (See Appendix B). It

can be then seen that (a‘’, B(l)) comcides with the oracle
estimator. Now glven that (@, ﬂ ) is the oracle estimator,
we show that (a'®, ﬂ ) yielded by the LLA algorithm will

still be the oracle estimator. To see it, note that under event
527

PA(IBY) =0,¥j € A and p\(|B"]) > a1}, Vj € A"
By the LLA iteration, we have

@®,8"') = arg min Q, (v

a7

)+ ZPA 5(1)| |6]|

jEAC

Thus, we can follow similar arguments from (30) to show that

) 3\ . . .
under event &, (@™, ) is still the oracle estimator. This
proves the lemma. O

Note that the above proof is slightly different from the
general result (Theorems 1 and 2) in [18] since we need to
deal with the intercept terms additionally.

Proof of Lemma 8. Consider a minimal t-cover of B.(r)
and denote this covering net by {(8°, AY), ¢ =1,...,Ny} C
By(r). For j € A, define

K

Uij(6,A) = [I( e <0k +XIA) — Tk]iﬂz'j

N\H

T < O —Tk]l‘u,

||MN

where 7, = y;—of —xB" =¢,—af, 1 <i<n, 1<k <K.
Then it can be seen that

n

>[5, 8) ~ BV, (6,8)] |

sup
(8, A)eB4(7)

v;(r) =

For any (8, A) € B4(r) and j € A°, note that

Z

=

|Ui] 6 A zk < —|—XZA)

= 1(rj}, < 0)| - |zij] < Mye.

Let pi, = Pr(—(0p + x[A)- <1}, < (0 +xIA)4), 1 <
i <n,1<k<K. It follows from the mean value theorem
and condition (CO) that

pit = Flaj + (0 + X A) 1) —
< flok +x[Al.

Flay, — (0 +x;4) )

By Cauchy—Schwarz inequality and the mean value theorem,
we have

var [U;;(8, A)]
2 K
S?%Z: Ok +xA) - <15, < (O +x]A)4)]
K
xi- .
?]];pik( — Dik) ;5k+XiA|

IA

2. K
fTA Z |§k +X§_AAA|.
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Let A% = (6., AY)",
inequality again, we get

1 < k £ K. By Cauchy—Schwarz

n n K
1 1 -

=1 k=1
FM2 11, pvn
=TK kz_l{n(AA)

1/2
xa] " < prii

Now applying Bernstein inequality, we have for any (8, A) €
B(r) and t > 0,

o

< 2exp (—

e i (U35, A) = EU,; (8, A)] ’ g t)

n
i=1

nt? )
2f M4 ?r + $Muct )

Now for 1 < £ < Ny, let By(v)) = {(8,A): ||6— 5f||2+||A
A|2 < ¢2, Ay = 0} be the ball centered at (6°, AY) e
B(r) with radius ¢. For any 1 < ¢ <mn, 1 <k < K and
(8, A) € B(v), note that

1/2

|8 +x7A) = (0 +37A")] < (1+ [|xi4]13)

< [(s+1)M4]"?

1.

For 1 <i<mnandje A, let
K

Vij(8°, A% = 3" [1(r < 0f +xTA" + (s + 1) M4 )
k=1

|24

%

Since the indicator function I(u < t) is nondecreasing in ¢,

we have

= I(rjy, < 8, +x]A")] -

sup

ST (U5(8.8) - Uy (s*, AY)
(8, 8)eB(v)| T =

S|

E[U;;(8,A) — Uy (6°, A9])| 31
— l - (85 ALY sl AL
_Il+n;[‘/7,](67A) EV;J((S,A)],
where
L= [Pr(rh < 6f + xIA" + (s + 1) M) /20)
i,k
= Pr(r, < 6+ XA = (s + 1)Ma)?9)] - %

By the mean value theorem, we have

1/2 7
2((s +1)M) " Fo
= 1/2
< 2 Moac((s + 1)MA) 20
Similarly, it can be shown that |V;;(d*, AY)| < M 4 and

% 3 var(Viy(6°, A%)) < FM3((s + 1)Ma)

i=1

.

It then follows from (31) and Bernstein inequality that for
1< ¢ < Ny,

n

1
Pr( sup — Ui;(6,A) —
(8, A)EBe() ”;( ’

E[Uij(éa A) - Uij<6ev Aéﬂ)’ > t)

Uij(6°, AY)

nt?
S 2€Xp D 1/2 4 )
2f M3 ((s + 1)Ma) "9 + 3 Macty
where t; = [t—2f My ((s+1)My) 1z
follows by noting that

Pr(v;(r) > 1)

1/)] .- The lemma then

LS

= Pr( sup
(8, A)€BA(r)| T

Ui;(8, A) — EU;; (8, A)]‘ > t)

i=1
Nw 1 n
< Pr( s |3 (U(6,A) - Uy (8, AY)
; (8, A)e By (v) ”Z;( ! !
t
— E[UIJ((S,A) — Ul](ée,AZ)})’ > 2)
ol 1 ¢ t
Pr( |- (8, AN — EU; (8%, A" =
(P SCHLESELLRSIES
This completes the proof. O
Proof of Lemma 9. Let U;(6,A) = sz o7 (15, — 0 —
X A)—pr, (r5)}, where 7, = y; — X]B"=¢e;—ajf,1<

1 <n,1 <k < K. By Massart’s concentration inequality, we
have
n

Pr(z(A,r) > 78()%(14,0)’

where 07(A,7) = Sup(s a)epa(r) 2oier Var(Us(8, A)). It
follows from Lipschitz continuity of the check loss that

242
E[=(A, )] + 1) < exp(~ t

K n
4
b2 (A, r) < — sup (0r +x;A)?
K (5,a)eB4(r) ; ;
A K

= sup (O, A%) (L0, Xa) (1, X a) (0p, AYy)"
K, A)eBAm,; A 4

4n
Si

wa 1A% < 4nlr.

k=1

sup
(B,A)EBA(

Moreover, by the symmetrization procedure and the contrac-
tion principle, we obtain

K
4
El(4,r)] < E[ s |6 5k+xAAA>}
”K,; (6,A)EBA(r) z;
4
< —E(|(1,,,X4)"
< (1(1n, X4)"€]|2)
sup | (6, AY)" |2
(SA)GBA(r)kzl
4r
< 7E(||(1mXA) €ll2)
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is a random vector of i.i.d.
€n. By Jensen’s

where € = (&,...,&)"

Rademacher variables, independent of ¢4, . . .,
and Khintchine inequalities, we have

E(|(1, Xa)"€ll2) < {E[€" (10, Xa) (10, X 0) €]}/

= e{Se)] (5 2)"

je{0}UA j€{0}UA i=1
n 1/2

-(X > @) <
=1 je{0}UA

It follows that E[z(A,r)] < 4Mr+/(|A| + 1)/n. The lemma
then follows. O

n([A + D).

Proof of Theorem 4. Similar to the proof of Theorem 3, split
all models under consideration, {/Ab\ A€ Hn} into three
groups: {Ay: X e 2}, {AA A€ Hn} and {Ay: A € T},
where 2= = {\ € E gZA)\} O ={Aeg,: 4y=A}
and"*—{)\eﬁn ACA,\,A,\#A} X
Let Qn = (’ILK) 21:1 Zk:l ka (y7 - 6‘2 - X}-/ﬁ/\)7
where (&A,ﬁ}\) is the two-step LLA solution to the folded
concave penahzed CQR (4) with lasso initialization. Also, let
Q, = (nK)~' 3 Zk 1P (yi — @, — x}37). For any
AcC{1,2,...,p}, let (& ,ﬁ ) be the estimator obtained by
fitting the canonlcal CQR to model A as in (14) and define

QA = (nK Zz 1Zk 1P (yi — Oé;i —XTﬁ ). For any
A€ 5, recall that A = {1<j<p: 5>\ # 0} Corresponds

*6). B

optimality of (& AMB ) in (14), we have QA < Q).

Let 9t ={A: AD A/ A+# A Al < J,}. It can be seen
that {Ay : A € Et} € 4. For r > 0 and A € 4, let
Ba(r) ={(6,A) e RE x RP : |||+ ||Aa|> <72, Ay =
0} and Sa(r) = {(6,A) € RE x RP : ||§]]2 + ||A4|®> =
7’2, AAC = 0}

We first handle overfitted models. By Theorem 2, under the
assumptions of this theorem, we have P(Ay, # A) — o(1)
as n — oo. Therefore, for any A € =, we have

to the active set of the two-step LLA estimator (o

Pr< inf [BICHE()\) —

Aest
= Pr( inf [log(QA/QA) (‘AA| - S)CnLg(p)} = O)
AEES "
+o(1)
>P ( inf
AEH’V‘L

+o(1),

BICHL(),)] > 0)

[08@ /02 + (s - 9 S22 )

where the last 1nequahty follows from the fact that QX > Q“‘A
Moreover, note that QA% < Q < @3 due to inclusion, A C
Ay. We then apply the mequahty 1og(1 +2a) <z,Vxr>0to

get
lo Q =—lo @ﬁ
g Q;j‘ = g @AA
_ _1Og( L Q- QA*> S _On-Qn
A)\ ék

20

Let F(0,A) = Qun(a* + 0,8 + A) — Qu(c
(6,A) € RE x RP. For each model A € ¥, let 1, =
16K (M +CY2)(f¢O)[(|Al+1) log(p) /n]*/2. If we can show
that inf (5 Ayes, (%) F/(8, A) > 0, then by convexity of p-(-),
we must have [|a? — a*|3 + || — 87|13 < (+)?. Indeed,
by Knight’s identity (see (22) of Appendix A) and the mean
value theorem, we have

* B for

inf (n
(6,A)eSa(ry)

K)E[F(d,A)]

Op+x; A
= inf F(ai +t) — F(af)]dt
a2 / [F(a} +1) = F(a})

5k+x A
[t i
CHN esA(rA)Z/ (0 i)

(32)

inf

Note that J,, satisfies J2 log(p)/n = o(1). Therefore, for any
1<i<n,1<k<K and (§,A) € Sa(r’), we have

10k +X]A < VT + [[xiall2-\/67 + | Aall3
< MriV/IA[+1
16K M _ log(p)
— M+ ¢V (Al + 1)) ==
7 ( )AL+ Dy —
16K M . 1
< M4 ¢ 10y 5 = o)

It follows from condition (C0) and (32) that

inf  E[F(5,A)]

(6,A)eSa(ry)

> inf iii(& +xIA)? > LC(T’ )2
(6.8)€8a () 2nK £~ £ BT = og-=" A4

Therefore, by Lemma 9, with probability at least 1 —
exp{—nt?/[32{(r%)?]}, we have

inf P(S,A> inf ]EF(S,A— A,*
(S,A)IGHSA(TE) ( ) (S,A)IGHSA(TZ [ ( )] Z( TA)
Al+1
2 %ﬁ(?ﬁy —AMry 41

Now take t = 8r%/C(JA| + 1) log(p)/n. It follows that for
each A € ¢, with probability at least b} = 1—exp{—2(|A|+
1)log(p)}, we have

F(8,A)

—TZ\/WT—i_l(S\/Elog(p) +4M) >0

which immediately implies that

inf
(8,A)eSa(ry)
* \2
> f¢(ra)
- 2K

~A A *
& —all3 + 18 = B3 < (r)*.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, JUNE 2020

Now by the Bonferroni inequality, we have &4 — a3 +
18 — B%|)2 < (r%)? for all A € 4 simultaneously with
probability at least

J'IL p_ S

1—v2
3 <|A _S)< 4)
|A|=s+1
Jp—

-1— Z (p ; S) exp{—2(k + s +1)log(p)}

by =1-—

1\pP—s
:1—p*2<5+1)[<1+ﬁ) —1]—>1 as p — co.

Now we derive the upper bound for sup 44+ |@;§‘ — Q7). Let
64 = a? — a* and A = 3* — B*. Observe that

Q- @il = | 2 Y ol

~ pr (i = = xIB)}
< [B{F@E B} + (4,73,

ay —xiB%)

Similarly, we have

|62 4+xT A4
[tf (g + Wik, )|dt

IN
:‘H
M:

<

1 1.
< SFCUB I3 + IAY3) < S Fr)*.

It follows that with probability at least b,,,

rf4)2 +4Mry

Q- @il < LK A
s by /LA sl

n
_ 128K>(M + ¢Y/2)2 (JA] + 1) log(p)
- I< n

holds for all A € ¢,". Now going back to BIC, we have
. Cplo
P i [log(@ /@) + (s - 9 0] )
AeES n
NA _ HA
> Pr(cwm — sup M >0>
n Azt (|Al = s)Qn

Since E(le]) < oo, it follows that E(Q¥) < E(le|) +
Zle || /K < oo. Thus, we have

QA =Qr—(Qr— Qb =

Op(1)

21

by noting that .J,, log(p) =
at least b,,, we have

o(n). Therefore, with probability

Q- Q1 @ -Qn _ <Slog(p)>
sup ——=— < sup ———=— = Op(—).
aegt (Al = 5)Qn  acwt (1Al —9)Q7 n
Since s = O(1) and C, diverges with n, we have

slog(p)/n = o(Cylog(p)/n). It follows that

- (Cn log(p) Q- Qi

n acgy (|A]—5)Qn
which implies that Pr(inf,\eai [BICHE())
0) — 1 as n — oo.

We next deal with underfitted models. For any A € =,
similar to the overfitting case, we have

Pr( inf [BIC™(3) - BIC(2,)] > 0)

AEE,
> e it [log@ /) + (14s] - 9 5] )
AEE, n

+ o(1).

Define BICHL(A) = log(nQ%) + |A|C, log(p)/n and let
@ = {A:|A] < J,,A ¢ A}. We can see that {A) :
A€ Ep} C 9, . It suffices to show inf - BICHL(A) >
BICHL(A) with probability tending to one as 7 — co. For any
Ae¥ ,let A= AUA. Let § = minje 4 |B3]. Since A 2 A,

we must have ||&@? — o*||3 + |8 — B%||2 > 62. However,
since A O A and |A| < 2J,, using Lemma 9, we can similarly
show as in Case I that ||&* — a* |2 48" — 8*13 < 62 with
probability at least b = 1 —exp{—2(|A| +1)log(p)} as long

as
0> SK(I_C)_I(Q\/@+ M) 2Jnn+ 1’

which is implied by the assumption \/J, log(p)/n = o(6).
It then follows that ||&? — o*||2 + ||3* — B*|3 < 62 holds
for all A € ¢4 with probability at least b, — 1 as n — oo,
where

>O)—>1 as n — oo,

— BICHE(N,)] >

2Jn

bo=1- 3 (pl_— s)(1 — b
|A=s+1
>1 _p—2(s+1) |:(1 + %)pfs B 1]

Therefore, there exists a € [0,1], @ = aa? + (1 — a) A and

B4 = a3 +(1—a)B" such that ||a -« H2+||ﬁ -8 % =
6%. By convex1ty of p, and the fact that Q2 > Q4, we have

A ( ) Z Zk 1 Py (yz aﬁ\ _XTﬁ ) ( _;? Note
that G4 < G4 < Q. Tt follows that O4 — Q2 > QA — Q2.
For ease of notation, let ' =at—a* and AA B4 —p*

It can be seen that

A * SA XA 1

n _Qn 2 E[F(é 7A )} - Z(A79)
Following similar arguments from the overfitting case and
noting that the support of ﬁA~ is a subset of A, we can show
that with probability at least b,,, for all A € ¢, we have

! — 464/ |A‘n+1(2\/flog(p)+M).

- 2
2K§0

Qi
3 IJ>\

- Qn
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Now for all A € ¢, applying the inequality log(1 +

min{log(2),z/2},Vz > 0, we have

) >

BICH(4) — BICH(4)
o Gl
o1+ L) (4 - ) e
o
Z IIllH{log(Q)7 Qn@ﬁ n} - Onsi(;)g(p) '
Since /Cpslog(p)/n = o(f) and Q2 = Op(1), it

can be seen that with probability tending to one, we have
nf 4 g BICHL(A) — BICHL(A) > 0. Following simi-
lar arguments as in Case I, we can show BICHY(A) >
infg- 4, s)<2., BICHE(S) > BICHY(A) with probability

tending to one. Case II then follows by noting that

inf [BIC"(A) — BIC""(A)]
A€Y,
= inf [BICHN(A)
A€Y,

+ BICHE(A4)

> inf [BICH:(A) —
Ae9,

— BICHE(A)

— BICHE(A))
BICHL(A4)).

APPENDIX B
NUMERICAL PROPERTIES OF THE CQR ORACLE SOLUTION

Recall that the CQR oracle estimator is obtained through
regression on the true set of variables

(8°,8°) == argmin Z Wk Z o (y
(e;B): Bac=0 1y i=1
For ease of exposition, we will restrict the scope of variables
under consideration to those in A. Specifically, let a = «,
= B4 € R® and z; = x;4, © = 1,...,n. The oracle
solution can be equivalently obtained through the following
minimization problem

—ag —x;3).

(a, B = arg manwk me —ag — z;b).
k=1 =1

Now let up = (y — axl, — Zb)Jr and v, = (y — apl, —
Zb)_, k = 1,...,K, where Z = (z1,...,2,)" and the
positive and negative parts are taken componentwisely. Also,
let u = (uj,...,uf%)" and v = (vi,...,v})". Then the
above regression problem can be cast into the following linear
program of standard form

minimize c'z
subject to Az =b
z = 0,

where b = 1x ® y, (®: Kronecker product) and
T = (aLaT bl ,b’, uT,vT)T,
c= ( K0k, 0,0,
w1(1 —7m)l,,,. .., wk(l— TK)IT)T,
A=(Ixk @1, - 1g®1,, 1k ®Z, -1 O Z,
1k @1, —1x @ 1,).

T T
w17'11n, . ,wKTK]_n,

22

Without loss of generality, assume that 1,, ¢ Span(Z), where
Span(Z) denotes the column span of Z. Write

D=(1Ixg®1,,1x ®Z).
The rows of D will be denoted by d}, ¢ =1,...,nK. Let H be
the collection of (K + s)-element subsets of {1,...,nK}. For

h € H,let D(h) denote the submatrix of D with rows {d}, i €
h} and b(h) be the (K + s)-vector with coordinates {b;, i €
h}. We also let h = {1,...,n}\h for h € H. Let H =
{h € H: |D(h)| # 0}. By similar arguments as in Section
6.2 of [3], one can verify that the vertices of the polyhedron
{z: Az =b, x > 0} are given by

(&, b7)" = [D(R)] " b()
u(h) =v(h) =
u(h) = [b(h) = D) ( 3 )],

for all h € H. According to the simplex algorithm (see, e.g.,
[29], Chapter 3), the optimal solution to this linear program
is among the above set of vertices. Recall that y has a density
with respect to the Lebesgue measure. It can be seen that with
probability one, there are at most K (K + s) zero residuals for
which y; — ax fzibA: 0,1<¢<n,1< k<K, given each
optimal solution (@, b). Otherwise, suppose that there exist
h € H and i € h such that u(i) = v(i) = 0. Then since
D(h) is non-singular, it follows that

a

b ) =d D)

which implies that b; is a linear combination of b(h). By the
assumption that y has a density and the structure of b, this
occurs with probability zero unless b; = b; for some j € h.
However, there are at most (K — 1) such ¢’s for each j € h.
This means with probability one, at each vertex, there are at
most K (K + s) indices ¢ for which u(i) = v (i) = 0.

b = di b(h),

APPENDIX C
CONVERGENCE CRITERION FOR THE ADMM ALGORITHM

We adopt the following convergence criterion recommended
by [30] for the ADMM algorithm (Algorithm 1) we proposed
in this article to solve the weighted lasso penalized CQR:

(%) e+ (=) - ()] <avimes

(%)« 2 BIRGEGE

(vec(Z
2 v
)2

o||XT{vec(Z") — vec(Z" 1)} — Xb(y" — "1
<evVp+ K +e || Xivec(U") — X5vT |2,

where €; and €9 are the tolerance parameters taking small
positive values.

+ €9 - max{
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