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Sparse Composite Quantile Regression in Ultrahigh
Dimensions with Tuning Parameter Calibration

Yuwen Gu, Hui Zou

Abstract—When estimating coefficients in a linear model, the
(sparse) composite quantile regression was first proposed in
Zou and Yuan (2008) as an efficient alternative to the (sparse)
least squares to handle arbitrary error distribution. The highly
nonsmooth nature of the composite loss in the sparse composite
quantile regression makes its theoretical analysis as well as
numerical computation much more challenging than the least
squares method. The theory in Zou and Yuan (2008) was
proven under fixed-dimension asymptotics and the estimator was
computed via linear programming that does not scale well with
high dimensions. In this paper, we study the sparse composite
quantile regression under ultrahigh dimensionality and make
three contributions. First, we provide a non-asymptotic analysis
of both the lasso and the folded concave penalized composite
quantile regression, which reveals a practical way of achieving
the oracle estimator. Second, we construct a novel information
criterion for selecting the regularization parameter in the folded
concave penalized composite quantile regression and prove its
selection consistency. Third, we exploit the structure of the
composite loss and design a specialized optimization algorithm
for computing the penalized composite quantile regression via the
alternating direction method of multipliers. We conduct extensive
simulations to illustrate the theoretical results. Our analysis
provides a unified treatment of the concentration inequalities
involving the composite loss. Those inequalities could be of
independent interest.

Index Terms—Composite quantile regression, ultrahigh-
dimensional data, sparsity, information criterion

I. INTRODUCTION

Coefficient estimation in linear models is routinely done
via the least squares (LS) regression. Under Gaussian errors,
the LS estimator has the likelihood interpretation and is most
efficient. It is reasonably efficient under other light-tailed error
distributions besides Gaussian. When the error distribution is
heavy-tailed, the LS estimator may fail to be consistent. See
numerical studies in Section VI for a clear demonstration. The
quantile regression (QR, [1]) can consistently estimate the co-
efficients of a linear model under very heavy-tailed errors, like
Student’s t with three degrees of freedom or even Cauchy. The
robustness of the QR estimator, a property often mentioned in
the literature, comes from the fact that its asymptotic variance
does not depend on the moments of the error distribution,
upon which that of the LS estimator relies, however. In terms
of efficiency, it is well known that the asymptotic variance
of a QR estimator is inversely proportional to (the square
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of) the error density evaluated at the true quantile of the
error distribution ([2], [3]). Thus, under certain errors, it is
expected that the QR estimator is more efficient than the LS
estimator. Nevertheless, the quantile regression considers only
one quantile at a time and may not fully grasp the distri-
butional information to always produce efficient estimation.
To its extreme, when the error density at a specified quantile
approaches zero, the asymptotic variance of the corresponding
QR estimator explodes to infinity, which results in an estimator
having arbitrarily small efficiency. As an example, under the
mixture normal error 0.5N(−3, 1) + 0.5N(3, 1), the least
absolute deviation estimator is 1272.8 times less efficient than
the LS estimator.

To safeguard quantile regression against potential efficiency
loss, methods based on the idea of combining quantile in-
formation across multiple levels have been proposed in the
literature. The idea is natural: as more quantiles are used,
we have more distributional information to dispense and can
hence obtain more efficient estimation if we do it properly.
One such approach named the composite quantile regression
(CQR, [4], [5]) combines information over different quantiles
via a mix of quantile loss functions. It was shown by [4] that
the CQR estimator is much more (or arbitrarily more) efficient
than the LS estimator under many heavy-tailed errors. Another
notable approach by [6] seeks an optimal weighting scheme
to combine QR estimators at given levels to achieve as much
efficiency gain as possible. It was shown that as the number of
quantiles increases, the asymptotic variance of their proposed
estimator achieves the Cramér–Rao lower bound under certain
regularity conditions.

When considering fitting a sparse CQR model, it is natural
to adopt the sparse penalties used in the sparse LS. In [4],
Zou and Yuan studied the sparse CQR using the adaptive
lasso penalty [7] and proved its oracle properties under fixed-
dimension asymptotics. We note that the approach by [6]
cannot be easily regularized to obtain desired sparse solutions
since their estimator is based on a weighted average of
multiple estimators, each of whose sparsity patterns may be
different.

Given the favorable theoretical properties of CQR under
fixed dimensions, we expect the sparse CQR to also enjoy
very competitive performance under the ultrahigh dimensional
setting. However, there are few results in the literature to firmly
establish such a claim, despite the massive literature on the
sparse LS under ultrahigh dimensions. This is mainly caused
by the severe nonsmoothness of the composite quantile loss.
For example, even with a single quantile, the analysis of the
lasso penalized QR was only recently done in [8], and the
analysis therein is technically very different from the standard
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analysis for the least squares lasso. CQR uses the sum of
many different quantile losses and hence makes it even more
challenging to handle than the single QR estimator. The highly
nonsmooth nature of the composite quantile loss is also a
major obstacle for using standard algorithms for the penalized
LS as its numeric solvers. In fact, coordinate descent, the most
popular algorithm thus far for solving the least squares lasso, is
not suitable for optimization problems involving a nonsmooth
loss.

The contributions of this article are as follows. Firstly, we
provide nonasymptotic analysis of both lasso and folded con-
cave penalized CQR. Our analysis holds for very general fixed
pair (n, p). As (n, p) go to infinity, we prove that the lasso
estimator is estimation consistent under ultrahigh dimensions.
Moreover, we show that the lasso estimator is tuning free,
meaning that the rate of convergence is achieved by using
an explicit penalization parameter. Secondly, we establish the
oracle property for the folded concave penalized CQR and
construct a new information criterion for calibrating the tuning
parameter therein to give consistent model selection. Our
paper demonstrates a unified treatment of the concentration
inequalities involving the CQR loss. Those inequalities could
be of independent interest to studies on other models involving
the check loss. Lastly, we exploit the structure of the composite
quantile loss and design a specialized ADMM algorithm for
efficiently computing the sparse penalized CQR estimator. The
results in this work make sparse CQR an attractive alternative
to the sparse LS for real applications.

The rest of the article is organized as follows. In Section II,
we introduce the framework for the penalized CQR, followed
by a discussion of the theoretical properties of the lasso and
folded concave penalized CQR in Section III. We propose a
new information criterion for selecting the tuning parameter
and investigate its selection consistency in Section IV. In Sec-
tion V, we present the efficient algorithm to solve the penalized
CQR. Numerical studies are conducted in Section VI to show
the superior finite-sample performance of penalized CQR over
penalized LS. All proofs are relegated to Section VIII.

II. PENALIZED COMPOSITE QUANTILE REGRESSION

Consider variable selection and coefficient estimation in the
linear model

y = β0 +

p∑
j=1

xjβj + ε, (1)

where ε is independent of x = (x1, . . . , xp)
T. Suppose β∗0

and β∗ = (β∗1 , . . . , β
∗
p)T are the true coefficients in model (1)

that generate our independent and identically distributed (i.i.d.)
data (xi, yi)

n
i=1, where xi = (xi1, . . . , xip)

T. Denote the
response vector by y = (y1, . . . , yn)T and the design matrix
by X = (x1, . . . ,xn)T. We also write X = (X1, . . . , Xp),
where Xj = (x1j , . . . , xnj)

T, 1 ≤ j ≤ p. Let X = (X0,X)
be the augmented design with X0 = 1n (corresponding to an
intercept term), where 1n stands for the n-dimensional vector
of all ones.

As mentioned in Section I, we consider the CQR rather than
the LS or QR to estimate β in model (1). Assume that the
random error ε has cumulative distribution function F (·) and

probability density function f(·). To ensure identifiability of
β0, assume F (0) = 0.5. Given an ordered sequence of quantile
levels τ1 < τ2 < · · · < τK ∈ (0, 1), let α∗k = β∗0 + F−1(τk),
where F−1(τk) = inf{x : F (x) ≥ τk} denotes the τk-th
quantile of ε, 1 ≤ k ≤ K. The canonical composite quantile
regression estimates β by minimizing

K∑
k=1

n∑
i=1

ρτk(yi − αk − xT
iβ)

jointly over α = (α1, . . . , αK)T ∈ RK and β ∈ Rp, where
ρτk(u) = {τk− I(u < 0)}u denotes the check loss at level τk
for 1 ≤ k ≤ K. A typical choice is to take equally spaced τk’s:
τk = k/(K+1), 1 ≤ k ≤ K. As K →∞, [4] showed that the
asymptotic efficiency of the CQR estimator relative to the LS
estimator has a universal lower bound, 12var(ε){Eεf(ε)}2,
which is at least 70.26% for an arbitrary error distribution
and can be made arbitrarily large for non-normal distributions.
The relative efficiency lower bound 0.7026 is further improved
to 0.864 in [9]. Substantial efficiency gain can be achieved
already with a relatively small K such as K = 9 or 19.

In the high-dimensional regime, the number of parameters
p is typically large and may even exceed the number of obser-
vations n. Under the sparsity assumption on the model, many
components of β∗ are zero. Let A = {1 ≤ j ≤ p : β∗j 6= 0}
be the active set of β∗ and denote the effective dimensionality
of the model by s = |A|. To harness the sparsity structure of
β∗, let us consider the sparse penalized CQR

min
α,β

1

nK

K∑
k=1

n∑
i=1

ρτk(yi − αk − xT
iβ) + Pλ(β),

where Pλ(·) is a penalty function with regularization param-
eter λ. For instance, Pλ(·) can be the lasso [10], SCAD [11],
MCP [12], and so on. In [4], the adaptive lasso was used
to show the oracle property of the corresponding penalized
estimator under fixed dimensions. The techniques used therein
cannot be used to handle the ultrahigh dimensionality setting.
As for the computation, the adaptive lasso penalized CQR was
formulated as a linear program and was solved by a standard
linear programming solver. However, such an approach does
not scale well with dimensions. Other efficient alternatives are
needed when p is large.

III. ANALYSIS OF PENALIZED COMPOSITE QUANTILE
REGRESSION

In this section, we show the theoretical properties of the
penalized CQR under ultrahigh dimensionality with both lasso
and folded concave penalties. All our results are nonasymp-
totic and holds for general (n, p). From these results, we
establish the rate of convergence of the lasso penalized CQR
and show its tuning free property. We also establish the strong
oracle property for a feasible and computable solution of the
folded concave penalized CQR by incorporating the lasso
estimator as the initial estimation. For ease of exposition, we
introduce the following notation.

For u ∈ R, let u+ = uI(u > 0) and u− = −uI(u < 0) be
the positive and negative parts of u, respectively. Moreover,
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let sgn(u) = I(u > 0) − I(u < 0) be the sign function.
The largest and smallest eigenvalues of a symmetric matrix
A are denoted by Λmax(A) and Λmin(A), respectively. We
also let ∂g be the subdifferential of a convex function g. For
two matrices A1,A2 ∈ Rm×n, let 〈A1, A2〉 = tr(AT

1A2) be
their trace inner product and ‖A1‖F = 〈A1, A1〉1/2 be the
Frobenius norm of A1. For any vector v = (v1, . . . , vp)

T ∈ Rp
and an arbitrary index set I ⊂ {1, . . . , p}, we write vI =
(vj , j ∈ I)T and denote by XI = (Xj , j ∈ I) the submatrix
consisting of the columns of X whose indices are in I. The
complement of I is denoted by I c = {1, . . . , p}\I. For q ∈
[1,∞], the Lq-norm of v is denoted by ‖v‖q.

A. Lasso penalized composite quantile regression

For λ > 0, we define the lasso penalized CQR estimator as

(α̂λ, β̂λ) := arg min
α,β

Qn(α,β) + λ

p∑
j=1

|βj |, (2)

where Qn(α,β) = (nK)−1
∑K
k=1

∑n
i=1 ρτk(yi−αk −xT

iβ).

In the sequel, we refer to (α̂λ, β̂λ) as the CQR lasso estimator.
For ∆ ∈ Rp and integer m ≥ 0, let A(∆,m) ⊂ Ac be

the support of the m largest in absolute value components of
∆Ac . When m = 0, we take A(∆,m) to be the empty set.
The following assumption is imposed on the data and error
distribution, which is typical in the QR literature.

(C0). The observations (xi, yi)
n
i=1 are i.i.d. with min(n, p) ≥

3. The density function is continuously differentiable
and satisfies f(u) ≤ f̄ < ∞ and f ′(u) ≤ f̄ ′ ∈ (0,∞)
for all u in the support of ε. Moreover, there exists a
constant U0 > 0 such that f(α∗k + u) ≥

¯
f > 0 for all

1 ≤ k ≤ K and |u| ≤ U0. Also, (xiA, yi)
n
i=1 are in

general positions (Section 2.2, [3]) and there is at least
one continuous covariate in the true model.

Note that we do not impose any moment or light tail
assumptions on the error distribution and the assumptions
on the error density are mild and can be satisfied by many
commonly seen distributions, including heavy-tailed distri-
butions like Cauchy. We also assume that f̄, f̄ ′ and

¯
f are

all positive constants. The assumptions on (xiA, yi)’s ensure
that the CQR oracle estimator (3) is unique. This is a fairly
common assumption in the QR literature (see [3], [13]). More
discussions of the CQR oracle estimator can be found in
Section III-B and Appendix B.

We assume two additional conditions to establish the esti-
mation consistency of the CQR lasso estimator. For the sake of
brevity, only fixed design is considered. Define the restricted
set C =

{
(δ,∆) ∈ RK × Rp : ‖∆Ac‖1 ≤ 3‖∆A‖1 +

(3/K)‖δ‖1
}
. The two assumptions are both imposed on the

design matrix.

(C1). The design matrix X satisfies

κm = inf
(δ,∆)∈C
(δ,∆)6=0

1
n

∑K
k=1

∑n
i=1(δk + xT

i∆)2

K‖∆A∪A(∆,m)‖22 + ‖δ‖22
> 0.

(C2). The design matrix X satisfies q > 0, where

q =
3
¯
f3/2

8f̄ ′
inf

(δ,∆)∈C
(δ,∆) 6=0

[
1
n

∑n
i=1

∑K
k=1(δk + xT

i∆)2
]3/2

1
n

∑n
i=1

∑K
k=1 |δk + xT

i∆|3
.

Condition (C1) is an extension of the restricted identifiabil-
ity property (RIP), also known as the restricted eigenvalue
(RE) condition, to the case of the penalized CQR. RIP is
a common assumption in the literature for sparse penalized
regressions. For example, it is assumed in the penalized LS,
Dantzig selector [14], [15] and penalized QR [8]. Condition
(C2) is similar to the restricted nonlinearity assumption in [8].
The quantity q, referred to as the restricted nonlinear impact
(RNI) coefficient by those authors, describes how well the
CQR empirical loss function can be minorized by a quadratic
function over the restricted set C . We present in the following
theorem the L2-risk bound for the CQR lasso estimator, from
which the estimation consistency of the estimator follows.

Theorem 1. Under conditions (C0), (C1) and (C2), with
probability at least 1− p1(λ), where

p1(λ) = 2K exp
(
−9nλ2

2

)
+ 2p exp

(
− nλ

2

2M0

)
+ exp

{
−2M0

s(1 + log p)

κ0

}
,

the CQR lasso estimator (α̂λ, β̂λ) satisfies

‖α̂λ −α∗‖2

≤ 8

¯
f

√
K

κm

{
32

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + λ

√
s

κ0

}
and for integer m > 0,

‖β̂λ − β
∗‖2 ≤

8

¯
f
√
κm

√
1 +

18s

m
+

18

m

·

{
32

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + λ

√
s

κ0

}
,

provided that the growth condition

64

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + 2λ

√
s

κ0
≤ q
√

¯
f

K

holds, where M0 = max0≤j≤p ‖Xj‖22/n.

Remark 1. By Theorem 1, one can typically choose the tuning
parameter λ = C

√
log p/n for the CQR lasso estimator, where

C >
√

2M0 is some constant. For example, one can choose
C = 2

√
M0. Note that given the design X, M0 can be readily

obtained. Therefore, in principle, the parameter λ in the lasso
penalized CQR is tuning free. This is in similar spirit to the
square-root lasso [16] and the lasso penalized (single level)
QR [8]. With such a choice of λ, we can see that p1(λ) = O(1)
as n, p→∞, which leads to

‖β̂λ − β
∗‖2 = OP

(
1

√
κ0κs

√
s log p

n

)
provided q−1

√
s log p/(nκ0) = O(1) and κ0(s log p)−1 =

O(1), by taking m = s. When κ0 and κs are both positive
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constants, the CQR lasso estimator achieves the near-optimal
rate

√
s log p/n, which implies that it is a consistent estimator

even when p is of exponential order of n, i.e., log p = O(nγ)
for some 0 < γ < 1, provided s log p = O(n).

B. Folded concave penalized composite quantile regression

Folded concave penalized regression has been widely
adopted in the statistical analysis of high-dimensional data
due to its strong oracle optimality [17], [18]. In order to
establish the oracle property of the folded concave penalized
CQR estimator, let us first define the CQR oracle estimator,

(α̂o, β̂
o
) := arg min

α,β : βAc =0

n∑
i=1

K∑
k=1

ρτk(yi − αk − xT
iβ). (3)

The oracle estimator (α̂o, β̂
o
) is the ideal estimator one could

possibly get using the CQR. It is not feasible in practice since
A is unknown, but it serves as a benchmark estimator to which
one can compare a penalized CQR estimator. In the following
lemma, we show the rate of convergence of the CQR oracle
estimator under the growing-dimension regime, i.e., the true
dimensionality s is allowed to grow with n.

Let A0 = {0} ∪ A and XA0
= (1n,XA). Denote

¯
µ =

Λmin(n−1XT
A0

XA0
) and µ̄ = Λmax(n−1XT

A0
XA0

). Moreover,
let MA = max1≤i≤n(s + 1)−1

(
1 + ‖xiA‖22

)
and MAc =

max1≤i≤n, j∈Ac |xij |. In this article, we assume that MA and
MAc are both positive constants.

Lemma 1. If condition (C0) is satisfied and 32K(s +
1)MA/(

√
n
¯
f

¯
µ) ≤ U0, then with probability at least 1 −

exp
[
−(s+ 1)MA/(2µ̄)

]
, the CQR oracle estimator satisfies

‖α̂o −α∗‖22 + ‖β̂
o
− β∗‖22 ≤

1024K2(s+ 1)MA
n
¯
f2

¯
µ2

.

Remark 2. Assuming s/(
¯
µ
√
n) = O(1) and

¯
µ/s = O(1), the

CQR oracle estimator has the following rate of convergence

‖α̂o −α∗‖2 = OP
(

1

¯
µ

√
s

n

)
, ‖β̂

o
− β∗‖2 = OP

(
1

¯
µ

√
s

n

)
as n → ∞. This implies that β̂

o
is
√
n/s-consistent when s

diverges with n, if we assume that
¯
µ > 0 is a fixed constant.

Then it is required that s = O(nγ) for some 0 < γ < 1/2.
Next, we introduce the details of the folded concave penal-

ized CQR and show that the CQR oracle estimator is attainable
via the folded concave penalized CQR. The folded concave
penalized CQR at penalty level λ > 0 solves the following
minimization problem

min
α,β

Qn(α,β) +

p∑
j=1

pλ(|βj |), (4)

where pλ(t), t ≥ 0 belongs to a class of folded concave
penalties that satisfy the following properties:
(P1) pλ(t) is nondecreasing and concave in t ≥ 0 and

pλ(0) = 0;
(P2) pλ(t) is differentiable in t > 0;
(P3) p′λ(t) ≥ a1λ, 0 < t ≤ a2λ and p′λ(0) := p′λ(0+) ≥

a1λ, where a1, a2 > 0 are fixed constants;

(P4) p′λ(t) = 0, t ≥ aλ for a fixed constant a > a2.

It can been shown that both the SCAD penalty and MCP
belong to this class (see, e.g., [19]). For the analysis of the
minimizer, we consider the local linear approximation (LLA,
[20]) algorithm, where the initial estimator is chosen to be the
CQR lasso estimator.

1) Initialize α and β with α̂(0) and β̂
(0)

, respectively, and
compute weights

ŵ(0)

j = p′λ(|β̂(0)

j |), j = 1, . . . , p.

2) For m = 1, 2, . . . , repeat the LLA iterations in the
following two steps.
2.a) Solve the following convex optimization problem

for α̂(m) and β̂
(m)

min
α,β

Qn(α,β) +

p∑
j=1

ŵ(m−1)

j |βj |.

2.b) Calculate the weights

ŵ(m)

j = p′λ(|β̂(m)

j |), j = 1, . . . , p.

In order to establish the oracle property, we assume the “beta-
min” condition:
(C3) minj∈A |β∗j | > (a+ 1)λ.

The “beta-min” condition is assumed for non-convexly pe-
nalized regressions and is almost a necessary condition for
establishing consistency results. See, e.g., [11], [13], [18].

Theorem 2. Suppose the folded concave penalized CQR (4)
is solved with the LLA algorithm that is initialized with the
CQR lasso estimator (2) at penalty level λ0 = c

√
log p/n

for some constant c >
√

2M0. Let r0 = minj∈A |β∗j | − aλ
and r∗ =

√
(s+ 1)MA log n/n. Assume the folded concave

penalty pλ(·) satisfies properties (P1) – (P4), where for integer
m > 0, λ is taken such that

λ ≥ 8

a0
¯
f
√
κm

√
1 +

18s

m
+

18

m

·

{
32

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + λ0

√
s

κ0

}
.

Under conditions (C0) – (C3) and the assumptions that
r0

√
(s+ 1)MA ≤ U0, r∗

√
(s+ 1)MA ≤ U0 and λ >

8K(
¯
f

¯
µ)−1

√
(s+ 1)MA/n, with probability at least p0 =

1−p1(λ0)−p2(r0)−p2(r∗)−p3, the LLA algorithm converges
to the oracle estimator (α̂o, β̂

o
) in two iterations, where p1(·)

is given in Theorem 1, p2(·) is defined as

p2(r) = exp

{
−n(t(r))2

32µ̄r2

}
,

where t(r) =
¯
f

¯
µr2/(4K)− 2r

√
(s+ 1)MA/n, and

p3 = 2(p− s) exp

(
−2nB2

M0

)
+ 2(p− s)n2(K+s) exp

(
− 3nB2

24f̄M2
Ac µ̄1/2r∗ + 8MAcB

)
+ 2(p− s)n2(K+s)

× exp

(
− 3nB2

0

24f̄M2
Ac(s+ 1)1/2M

1/2
A n−2r∗ + 4MAcB0

)
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with B = 0.5
[
a1λ − (K + s)MAc/n − f̄MAc µ̄1/2r∗

]
+

and
B0 =

[
0.5B − 8n−2f̄MAc

√
(s+ 1)MAr∗

]
+
.

It is easy to translate Theorem 2 into an asymptotic state-
ment that the folded concave penalized CQR estimator finds
the oracle CQR estimator with overwhelming probability. For
brevity, we omit such discussions. We emphasize that unlike
the lasso penalized CQR, the regularization parameter in the
folded concave penalized CQR involves unknown quantities.
In order to apply Theorem 2 in applications, we need a data-
driven choice of the regularization parameter. To this end, we
construct a new information criterion for selecting the tuning
parameter in the next section.

IV. TUNING PARAMETER CALIBRATION

For the folded concave penalized CQR, there exists a tuning
sequence λn (we write λn here to signify its dependence
on n) such that the LLA algorithm yields the CQR oracle
estimator in two iterations with probability approaching one
(Theorem 2). However, as we pointed out already, there is no
direct way to use such λn as given in Theorem 2, since it relies
on unknown quantities. We thus pursue a data-driven approach
to the selection of λ. Consider the following high-dimensional
Bayesian information criterion (BIC):

BICH(λ) =
1

nK

n∑
i=1

K∑
k=1

ρτk(yi − α̂λk − xT
iβ̂
λ)

+ |Âλ|
Cn log(p)

n
,

(5)

where (α̂λ, β̂
λ
) is the two-step estimator from the LLA

algorithm initialized by the CQR lasso estimator with regular-
ization parameter λ0 (Theorem 2), Âλ = {1 ≤ j ≤ p : β̂λj 6=
0} and Cn is a positive number depending on n (allowed
to grow with n). We compare the values of BICH(λ) for
λ ∈ Ξn = {λ : |Âλ| ≤ Jn}, where Jn > s represents a
rough estimate of the upper bound of the model sparsity and
is allowed to (slowly) diverge as n → ∞. Typically, Jn is
much smaller than p, so that one can avoid searching over a
notoriously large model space. The tuning parameter selected
via BIC is given by

λ̂n = arg min
λ∈Ξn

BICH(λ).

We call the information criterion BIC because it can be shown
in the following Theorem that Pr(Âλ̂n = A)→ 1 as n→∞.
Note that model selection consistency is the signature property
of BIC in the fixed-dimension setting.

Let M = max1≤i≤n,0≤j≤p |xij | and assume M is a positive
constant. Also, define

¯
ζ = inf

A⊃A,|A|≤2Jn
Λmin(n−1(1n,XA)T(1n,XA))

and

ζ̄ = sup
A⊃A,|A|≤2Jn

Λmax(n−1(1n,XA)T(1n,XA)),

and assume that both
¯
ζ and ζ̄ are positive constants, and so

are κ0, κs,
¯
µ and µ̄.

Theorem 3. Under the conditions of Theorem 2, and assuming
that as n→∞, s = O(1), n = O(p), J2

n log p = O(n), Cn →
∞ and max(Jn, Cn) log p/n = O

(
(minj∈A |βj |)2

)
, then the

criterion BICH(λ) is selection consistent, i.e., Pr(Âλ̂n =
A)→ 1 as n→∞.

Remark 3. The sequence Cn is often taken to slowly diverge
to infinity, e.g., Cn = log log n. Under fixed model sparsity,
s = O(1), it is implied from Theorem 3 that BICH(λ) is
consistent when log p = O(nγ1) and Jn = O(nγ2) for some
positive constants γ1 and γ2 such that γ1 + 2γ2 < 1. It is
worth mentioning that the fixed model sparsity is assumed
in order to achieve ultrahigh dimensionality due to technical
difficulties with the check loss (see, e.g., [21]). If instead we
allow the model sparsity to grow, using current technique, we
must assume p can be of at most polynomial order of n (see,
e.g., [22]).

One problem with the criterion in (5) is that it is not scale
invariant. In practice, one needs to standardize the variables
beforehand. Therefore, we also consider a scale invariant ver-
sion of the high-dimensional Bayesian information criterion:

BICHL(λ) = log

(
1

K

n∑
i=1

K∑
k=1

ρτk(yi − α̂λk − xT
iβ̂
λ)

)
+ |Âλ|

Cn log(p)

n
.

Theorem 4. In model (1), assume that E(|ε|) < ∞. Under
the conditions of Theorem 2, as n → ∞, assume moreover
that s = O(1), n = O(p), J2

n log p = O(n), Cn → ∞ and
max(Jn, Cn) log p/n = O

(
(minj∈A |βj |)2

)
. The criterion

BICHL(λ) is selection consistent, i.e., Pr(Âλ̂n = A) → 1
as n→∞.

Remark 4. The selection consistency of BICHL(λ) requires
additionally that E(|ε|) < ∞. Our empirical study in Sec-
tion VI suggests that this might be a necessary condition.
Indeed, in the numerical comparison there, we see that
BICHL(λ) does not perform well under the Cauchy error.

V. OPTIMIZATION

Note that both lasso and folded concave penalized CQR can
be solved with one or several runs of the following weighted
lasso penalized CQR:

min
α,β

1

nK

K∑
k=1

n∑
i=1

ρτk(yi − αk − xT
iβ) + λ1

p∑
j=1

dj |βj |, (6)

where λ1 > 0 and dj ≥ 0 for j = 1, . . . , p. Specifically, the
CQR lasso estimator can be achieved by letting dj = 1 for
all j = 1, . . . , p, while the folded concave penalized CQR
estimator can be obtained by iteratively solving (6) with dj =
ŵ(m−1)

j in the mth LLA iteration. Hence, in the sequel, we only
need to focus on developing the algorithm for solving (6).

Traditionally, (6) can be solved by linear programming if
n and p are moderate. However, linear programming does not
scale well when p is large [23]. We hence propose an efficient
alternating direction method of multipliers (ADMM) algorithm
for solving (6). The algorithm is based on a reformulation
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that turns the original problem into one that can harness the
power of ADMM. We point out that there are multiple ways
to formulate (6) into problems that are solvable by ADMM.
For instance, in a relevant context, two ADMM versions are
proposed in [23] to efficiently solve the penalized QR and they
can be readily modified to solve (6). However, the formulation
we present here is different from the ideas in [23] and it results
in a more stable ADMM algorithm for the penalized CQR. To
elaborate on our algorithm, let zik = yi − αk − xT

iβ for i =
1, . . . , n and k = 1, . . . ,K, and define matrix Z = (zik)n×K
in terms of the zik’s. By convexity, it can be immediately seen
that (6) is equivalent to

minimize
1

nK

K∑
k=1

n∑
i=1

ρτk(zik) + λ1

p∑
j=1

dj |γj |

subject to Z = 1T
K ⊗ y − 1n ⊗αT − 1T

K ⊗ (Xβ)

γ = β,

(7)

where γ = (γ1, . . . , γp)
T and ⊗ denotes the Kronecker

product. By introducing the γj’s, only the dual updates in-
volve the non-smooth functions. For ease of notation, let
Y = 1K ⊗ y,ϕ = (αT,βT)T,

X1 =

1n · · · 0 X
...

. . .
...

...
0 · · · 1n X


(nK)×(p+K)

,

and X2 = (Op×K Ip)p×(p+K). Then, (7) can be equivalently
written as

minimize
1

nK

K∑
k=1

n∑
i=1

ρτk(zik) + λ1

p∑
j=1

dj |γj |

subject to
(

X1

−X2

)
ϕ+

(
vec(Z)
γ

)
=

(
Y
0

)
,

(8)

where vec stands for the vectorization operator that stacks the
columns of a matrix one underneath the other to form a single
vector. The augmented Lagrangian of problem (8) is

Lσ(ϕ,Z,γ,U,v)

:=
1

nK

K∑
k=1

n∑
i=1

ρτk(zik) + λ1

p∑
j=1

dj |γj |

+ 〈vec(U), vec(Z) + X1ϕ−Y〉+ 〈v,γ − X2ϕ〉

+
σ

2
‖vec(Z) + X1ϕ−Y‖2F +

σ

2
‖γ − X2ϕ‖22,

(9)

where U = (uik)n×K and v = (v1, . . . , vp)
T are the La-

grangian multipliers and σ > 0. Let ϕr,Zr,γr,Ur and vr

be the iterate after the rth iteration of the algorithm, where
r ≥ 0. The ADMM has the following updates in the (r+ 1)st
iteration
ϕr+1 := arg minϕ Lσ(ϕ,Zr,γr,Ur,vr),

(Zr+1,γr+1) := arg minZ,γ Lσ(ϕr+1,Z,γ,Ur,vr),

vec(Ur+1) := vec(Ur) + σ{vec(Zr+1) + X1ϕ
r+1 −Y},

vr+1 := vr + σ{γr+1 − X2ϕ
r+1}.

It follows from (9) that

ϕr+1 =
1

σ
(XT

1X1 + XT
2X2)−1{XT

1(σY − σvec(Zr)

− vec(Ur)) + XT
2(σγr + vr)}.

Note that

XT
1X1 + XT

2X2 =

(
nIK 1K1T

nX
XT1n1T

K Ip +KXTX

)
.

Let the Schur complement of nIK in the above matrix be

S = Ip +KXTX− 1

n
(XT1n1T

K)(1K1T
nX) = Ip +KXT

0X0,

where X0 = (In−n−11n1T
n)X is the centered design matrix.

Then, we have

(XT
1X1 + XT

2X2)−1

=

(
1
nIK + 1

n2 1K1T
nXS−1XT1n1T

K − 1
n1K1T

nXS−1

− 1
nS−1XT1n1T

K S−1

)
.

When p is large, the computation of S−1 can be expensive.
We can apply the Sherman–Morrison–Woodbury formula to
get

S−1 = Ip −KXT
0(In +KX0X

T
0)−1X0,

where we only need to evaluate the inverse of an n×n matrix.
When n is relatively small compared to p, this formula can
be very helpful.
Remark 5. In the actual implementation, we often center the
design matrix before fitting the model. Then, XT

1X1 +XT
2X2 is

block diagonal since XT1n = 0 and its inverse can be readily
obtained.

The update of Zr+1 and γr+1 can be carried out
component-wisely. This pertains to the application of the
proximity operator of the check loss ρτ (·) and the absolute
value function | · |, respectively. For v ∈ R, the proximity
operator of ρτ (·) with respect to a parameter a > 0 is defined
as

Proxρτ (v, a) := arg min
u∈R

ρτ (u) +
a

2
(u− v)2.

The following lemma gives the closed form expression of
Proxρτ .

Lemma 2. For v ∈ R and a > 0, the proximity operator of
the check loss ρτ (·) with respect to parameter a is given by

Proxρτ (v, a) = v −max
(τ − 1

a
, min

(
v,
τ

a

))
.

Now by Lemma 2, we obtain for each 1 ≤ i ≤ n and
1 ≤ k ≤ K,

zr+1
ik = Proxρτk

(
yi − αr+1

k − xT
iβ
r+1 − urik

σ
, nKσ

)
.

The proximity operator of | · | is the soft-thresholding operator
and thus

γr+1
j = Shrink

(
βr+1
j −

vrj
σ
,
λ1dj
σ

)
,

where Shrink(v, a) = sgn(v)(|v| − a)+.
We summarize the above ADMM algorithm in Algorithm 1.

A discussion of the convergence criterion for this algorithm
can be found in Appendix C.
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Algorithm 1: The ADMM algorithm for solving the weighted lasso penalized composite quantile regression
1) Initialize the algorithm with (ϕ0,Z0,γ0,U0,v0), where ϕ0 = ((α0)T, (β0)T)T.
2) For r = 0, 1, 2, . . . , repeat steps (2.1) – (2.3) until convergence.

(2.1) Update

ϕr+1 = ((αr+1)T, (βr+1)T)T ← 1

σ
(XT

1X1 + XT
2X2)

−1

· {XT
1(σY − σvec(Zr)− vec(Ur)) + XT

2(σγ
r + vr)}.

(2.2) Update

zr+1
ik ← Proxρτk

(
yi − αr+1

k − xT
iβ

r+1 − urik
σ
, nKσ

)
, 1 ≤ i ≤ n, 1 ≤ k ≤ K,

and
γr+1
j ← Shrink

(
βr+1
j −

vrj
σ
,
λ1dj
σ

)
, 1 ≤ j ≤ p.

(2.3) Update
vec(Ur+1)← vec(Ur) + σ{vec(Zr+1) + X1ϕ

r+1 −Y}

and
vr+1 ← vr + σ{γr+1 − X2ϕ

r+1}.

VI. NUMERICAL EXPERIMENTS

We conduct Monte Carlo studies to assess the finite sample
performance of the proposed method as well as the tuning
criterion. First, we compare the estimators from the penalized
LS, the penalized CQR, the ideal oracle LS, and the oracle
CQR. Recall that the oracle estimators are obtained through
applying the canonical LS and CQR to the true underlying
model. Second, we compare the tuned penalized CQR estima-
tion by using cross-validation (CV) and by using the proposed
information criteria.

Our simulated data are from the linear model

y = β∗0 + xTβ∗ + ε, (10)

where β∗0 = 0 and β∗ = (3, 1.5, 0, 0, 2,0p−5)T. The co-
variates are drawn from the multivariate normal distribution,
x ∼ Np(0,Σ), where two different covariance matrices
Σ = (0.5|i−j|) and Σ = (0.8|i−j|) are considered. For the
error distribution, we refer to [4] and consider five different
shapes:

(a) the normal distribution, ε ∼ N(0, 3);
(b) the mixture normal (MN) distribution, ε ∼

√
6 × ε∗,

where ε∗ ∼ 0.5N(0, 1) + 0.5N(0, 0.56);
(c) the mixture double gamma (MDG) distribution, ε ∼

ε∗/9, where ε∗ ∼ f(ε) = e−14 · 0.5e−|ε| + (1− e−14) ·
|ε|14e−|ε|/Γ(15);

(d) the t-distribution with 3 degrees of freedom ε ∼ t3; and,
(e) the Cauchy distribution, ε ∼ f(ε) = 1/[π(1 + ε2)].

In the simulation study, our training data are composed
of n observations (xi, yi)

n
i=1, independently generated from

model (10). An independent set of n observations is also
simulated from the same model for parameter tuning of the
training model. We evaluate the variable selection performance
of the estimated coefficients β̂ by the number of false positives
FP = |Â\A∗| and the number of false negatives FN = |A∗\Â|,
where A∗ = {1 ≤ j ≤ p : β∗j 6= 0} and Â = {1 ≤ j ≤
p : β̂j 6= 0}. The estimation accuracy of β̂ is measured by the
model error (β̂−β∗)TΣ(β̂−β∗). Two sets of data dimensions

(n, p) = (100, 600) and (n, p) = (200, 1200) are used in
our simulations. In all settings, we use K = 19 quantile
levels τk = 0.05k, k = 1, . . . , 19. The simulation results are
summarized in Tables I and II.

It can be seen from the tables that the CQR oracle estimator
performs similarly to the LS estimator under the normal
error, while the former is more efficient under the other error
distributions. In particular, the model error of the LS estimator
explodes under the Cauchy error. In theory, the LS estimator
is inconsistent under the Cauchy error. SCAD penalized CQR
estimators have very close model errors to the CQR oracle
estimator under most error distributions and outperform the
penalized LS estimators. In terms of model selection accuracy,
the SCAD penalized CQR estimator also outperform all the
other penalized estimators.

The comparison between CV, BICH and BICHL for tuning
parameter selection is shown in Tables III and IV. Note that
BICHL does not perform well under the Cauchy error. This
confirms its requirement for the first moment of the error
distribution. The information criterion is computationally more
efficient than CV and also delivers better results.

VII. DISCUSSION

In this article, we have studied the sparse penalized CQR
under various forms of regularization. In particular, we have
established the estimation consistency of the CQR lasso es-
timator. Through the LLA algorithm, we have shown that
the CQR oracle estimator could be achieved via folded con-
cave penalized CQR. Our theoretical analysis remains valid
even when the dimensionality is ultrahigh in the sense that
log p = O(nν) with 0 < ν < 1.

We have also developed a fast ADMM algorithm for solv-
ing the weighted L1-penalized CQR. Its efficiency has been
demonstrated by numerical studies. The methodologies and
numerical solvers proposed in this article make the sparse
CQR an attractive alternative to the sparse LS. It can be
applied whenever the estimation efficiency of the coefficients
is concerned.
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TABLE I
SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD, UNDER
MODEL (10) WITH n = 100 AND p = 600. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE STRUCTURES

Σ = (0.5|i−j|) AND Σ = (0.8|i−j|) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0, 3), MIXTURE NORMAL,
MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS

REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0, 3) MN MDG t3 Cauchy

Σ = (0.5|i−j|)

Model error LS-oracle 0.093 0.093 0.084 0.098 9350.072
(0.008) (0.007) (0.007) (0.009) (6837.507)

CQR-oracle 0.105 0.004 0.025 0.047 0.094
(0.008) (0.002) (0.003) (0.004) (0.011)

LS-lasso 0.664 0.620 0.588 0.663 18.963
(0.035) (0.025) (0.031) (0.054) (1.513)

LS-SCAD 0.671 0.646 0.523 0.578 31.738
(0.038) (0.036) (0.033) (0.036) (7.959)

CQR-lasso 0.792 0.272 0.465 0.374 1.672
(0.041) (0.029) (0.034) (0.022) (0.144)

CQR-SCAD 0.122 0.006 0.032 0.064 0.438
(0.019) (0.002) (0.004) (0.006) (0.098)

FP, FN LS-lasso 16.55, 0 16.91, 0 16.53, 0 15.83, 0 13.37, 1.79
(1.28), (0) (0.92), (0) (1.07), (0) (1.08), (0) (2.41), (0.12)

LS-SCAD 18.04, 0 18.00, 0 17.04, 0 16.81, 0 17.11, 1.78
(1.54), (0) (1.44), (0) (1.58), (0) (1.10), (0) (2.93), (0.13)

CQR-lasso 15.33, 0 15.29, 0 14.49, 0 12.89, 0 38.75, 0.01
(0.67), (0) (0.67), (0) (0.53), (0) (0.55), (0) (2.93), (0.01)

CQR-SCAD 1.68, 0.01 1.62, 0 2.27, 0 2.33, 0 2.18, 0.01
(0.25), (0.01) (0.29), (0) (0.32), (0) (0.34), (0) (0.38), (0.01)

Σ = (0.8|i−j|)

Model error LS-oracle 0.097 0.092 0.079 0.088 184.788
(0.008) (0.008) (0.006) (0.008) (91.476)

CQR-oracle 0.097 0.005 0.023 0.046 0.134
(0.008) (0.002) (0.002) (0.004) (0.011)

LS-lasso 0.488 0.493 0.441 0.422 19.649
(0.025) (0.028) (0.021) (0.031) (1.623)

LS-SCAD 0.524 0.443 0.422 0.442 27.706
(0.026) (0.020) (0.019) (0.029) (5.775)

CQR-lasso 0.498 0.152 0.259 0.269 0.993
(0.029) (0.023) (0.029) (0.014) (0.087)

CQR-SCAD 0.123 0.005 0.032 0.060 0.355
(0.013) (0.001) (0.003) (0.005) (0.055)

FP, FN LS-lasso 13.06, 0 12.34, 0 11.97, 0 13.59, 0 9.21, 1.60
(0.85), (0) (0.87), (0) (0.91), (0) (0.99), (0) (1.77), (0.11)

LS-SCAD 13.89, 0 11.97, 0 11.28, 0 14.04, 0 13.53, 1.62
(0.90), (0) (0.78), (0) (0.64), (0) (0.99), (0) (2.27), (0.11)

CQR-lasso 12.15, 0 13.28, 0 12.09, 0 13.06, 0 28.26, 0.03
(0.68), (0) (0.62), (0) (0.57), (0) (0.66), (0) (2.46), (0.02)

CQR-SCAD 2.09, 0.02 1.29, 0 1.83, 0 1.97, 0 2.38, 0.06
(0.40), (0.01) (0.24), (0) (0.32), (0) (0.30), (0) (0.32), (0.03)

VIII. PROOFS

We provide proofs of all previously stated results in this
section. For the sake of brevity, some auxiliary results are
relegated to the appendix.

Assume without loss of generality β∗0 = 0 such that α∗k =
F−1(τk) for 1 ≤ k ≤ K. Also recall from Theorem 1 that
M0 = max0≤j≤p ‖Xj‖22/n.

Lemma 3. Under condition (C0), with probability at least

1− 2K exp
(
−9

2
nλ2

)
− 2p exp

(
− nλ

2

2M0

)
,

the CQR lasso estimator (α̂λ, β̂λ) satisfies

(δ̂
λ
, ∆̂

λ
) ∈ C = {(δ,∆) ∈ RK × Rp :

‖∆Ac‖1 ≤ 3‖∆A‖1 + 3
K ‖δ‖1},

where δ̂
λ

= α̂λ −α∗ and ∆̂
λ

= β̂λ − β
∗.

Proof of Lemma 3. See Appendix A.

For ease of notation, now let νn(α,β) = Qn(α,β) −
Qn(α∗,β∗) − E

[
Qn(α,β) − Qn(α∗,β∗)

]
. For r > 0, set

Cr = {(δ,∆) ∈ C : (nK)−1
∑K
k=1

∑n
i=1(δk + xT

i∆)2 ≤ r2}
and define e(r) = sup(δ,∆)∈Cr |νn(α∗ + δ,β∗ + ∆)|.

Lemma 4. For r, t > 0, under conditions (C0) and (C1), with
probability at least 1− exp

[
−nt2/(32r2)

]
, we have

e(r) ≤ 16

√
2M0

κ0

√
1 + log p

n

(√
s+ 1

)
r + t.

It follows immediately that, if one takes

t = 16

√
2M0

κ0

√
1 + log p

n

(√
s+ 1

)
r,

then with probability at least 1−exp
[
−2M0κ

−1
0 s(1+log p)

]
,

we have

e(r) ≤ 32

√
2M0

κ0

√
1 + log p

n

(√
s+ 1

)
r.

Proof of Lemma 4. See Appendix A.
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TABLE II
SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD, UNDER
MODEL (10) WITH n = 200 AND p = 1200. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE STRUCTURES

Σ = (0.5|i−j|) AND Σ = (0.8|i−j|) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0, 3), MIXTURE NORMAL,
MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS

REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0, 3) MN MDG t3 Cauchy

Σ = (0.5|i−j|)

Model error LS-oracle 0.051 0.045 0.041 0.048 1136.066
(0.004) (0.004) (0.003) (0.004) (965.520)

CQR-oracle 0.047 0.001 0.011 0.023 0.060
(0.005) (0) (0.001) (0.002) (0.005)

LS-lasso 0.340 0.337 0.281 0.284 28.450
(0.015) (0.014) (0.011) (0.013) (7.987)

LS-SCAD 0.061 0.061 0.055 0.062 41.685
(0.006) (0.005) (0.005) (0.005) (24.654)

CQR-lasso 0.394 0.072 0.180 0.239 0.830
(0.018) (0.011) (0.014) (0.013) (0.073)

CQR-SCAD 0.046 0.001 0.011 0.023 0.137
(0.004) (0) (0.001) (0.002) (0.030)

FP, FN LS-lasso 19.62, 0 20.09, 0 20.15, 0 19.59, 0 21.41, 1.66
(1.41), (0) (1.25), (0) (1.22), (0) (1.27), (0) (3.94), (0.13)

LS-SCAD 5.24, 0 5.76, 0 4.56, 0 6.53, 0 25.49, 1.54
(1.08), (0) (0.94), (0) (0.92), (0) (1.10), (0) (4.01), (0.12)

CQR-lasso 18.76, 0 19.05, 0 19.11, 0 18.59, 0 60.56, 0
(0.95), (0) (0.77), (0) (0.78), (0) (0.95), (0) (6.35), (0)

CQR-SCAD 2.21, 0 2.29, 0 2.99, 0 2.31, 0 1.50, 0
(0.30), (0) (0.48), (0) (0.44), (0) (0.36), (0) (0.30), (0)

Σ = (0.8|i−j|)

Model error LS-oracle 0.042 0.047 0.034 0.046 71435.826
(0.004) (0.005) (0.003) (0.004) (68875.639)

CQR-oracle 0.049 0.001 0.011 0.022 0.055
(0.004) (0) (0.001) (0.002) (0.005)

LS-lasso 0.252 0.235 0.219 0.208 22.598
(0.012) (0.011) (0.009) (0.013) (2.334)

LS-SCAD 0.071 0.073 0.050 0.065 23.726
(0.006) (0.007) (0.004) (0.009) (2.856)

CQR-lasso 0.255 0.030 0.099 0.153 0.730
(0.014) (0.004) (0.008) (0.009) (0.070)

CQR-SCAD 0.086 0.001 0.023 0.048 0.539
(0.008) (0) (0.003) (0.004) (0.099)

FP, FN LS-lasso 14.83, 0 16.17, 0 15.24, 0 14.80, 0 20.44, 1.63
(1.03), (0) (1.1), (0) (1.09), (0) (1.23), (0) (3.83), (0.12)

LS-SCAD 6.36, 0 5.68, 0 5.64, 0 4.74, 0.01 15.22, 1.84
(0.99), (0) (0.72), (0) (0.83), (0) (0.76), (0.01) (2.92), (0.10)

CQR-lasso 16.86, 0 14.89, 0 15.83, 0 16.47, 0 42.75, 0
(1.02), (0) (0.7), (0) (0.78), (0) (0.98), (0) (4.13), (0)

CQR-SCAD 2.19, 0 1.93, 0 2.70, 0 2.59, 0 1.85, 0
(0.32), (0) (0.36), (0) (0.50), (0) (0.44), (0) (0.24), (0)

Lemma 5. Under conditions (C0) and (C2), for any (δ,∆) ∈
C , we have

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ min

{
¯
fr2/4, q

(
¯
f/K

)1/2
r
}
,

where r2 = (nK)−1
∑n
i=1

∑K
k=1(δk + xT

i∆)2.

Proof of Lemma 5. See Appendix A.

Proof of Theorem 1. Let

r∗ = 8
¯
f−1

[
32

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + λ

√
s

κ0

]
.

Set C ∗ = {(δ,∆) ∈ C : (nK)−1
∑n
i=1

∑K
k=1(δk + xT

i∆)2 =

r2
∗}. Moreover, define δ̂

λ
= α̂λ − α∗ and ∆̂

λ
= β̂λ − β

∗.

Under event E1 = {(δ̂
λ
, ∆̂

λ
) ∈ C }, if

inf
(δ,∆)∈C∗

Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

+ λ(‖β∗ + ∆‖1 − ‖β∗‖1) > 0,
(11)

then by convexity of Qn, this implies that (δ̂
λ
, ∆̂

λ
) ∈ Cr∗ .

To show (11), first note that for all (δ,∆) ∈ C ∗,

Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

+ λ(‖β∗ + ∆‖1 − ‖β∗‖1)

≥ E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
− e(r∗)

+ λ
(
‖∆Ac‖1 − ‖∆A‖1

)
.

(12)

Let E2 =
{
e(r∗) ≤ 32

√
2M0(1 + log p)/(nκ0)(

√
s+1)r∗

}
. It

follows from Lemma 4 that Pr(E2) ≥ 1−exp
[
−2M0κ

−1
0 s(1+

log p)
]
. By Lemma 5, for any (δ,∆) ∈ C ∗, we have

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ min

{
¯
fr2
∗/4, q(

¯
f/K)1/2r∗

}
.

Also, by condition (C1), (A.5) and (20), for (δ,∆) ∈ C ∗, we
have ‖∆A‖1 ≤ r∗

√
s/κ0. Thus, under event E1 ∩E2, for any
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TABLE III
SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BICH AND BICHL IN TERMS OF TUNING PARAMETER SELECTION, UNDER

MODEL (10) WITH n = 100 AND p = 600. TWO COVARIANCE STRUCTURES Σ = (0.5|i−j|) AND Σ = (0.8|i−j|) ARE SHOWN, UNDER EACH OF WHICH
FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0, 3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION

ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100
INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0, 3) MN MDG t3 Cauchy

Σ = (0.5|i−j|)

Model error CV 0.087 0.005 0.021 0.043 0.312
(0.008) (0.002) (0.002) (0.004) (0.083)

BICH 0.115 0.017 0.053 0.058 0.988
(0.019) (0.011) (0.017) (0.012) (0.374)

BICHL 0.094 0.003 0.022 0.048 6.287
(0.011) (0.001) (0.003) (0.004) (0.824)

FP, FN CV 0, 0 0, 0 0, 0 0, 0 0.01, 0.13
(0), (0) (0), (0) (0), (0) (0), (0) (0.01), (0.04)

BICH 0, 0.03 0, 0.01 0, 0.03 0, 0.01 0.01, 0.27
(0), (0.02) (0), (0.01) (0), (0.02) (0), (0.01) (0.01), (0.05)

BICHL 0, 0.01 0, 0 0, 0 0, 0 0, 1.17
(0), (0.01) (0), (0) (0), (0) (0), (0) (0), (0.09)

Σ = (0.8|i−j|)

Model error CV 0.273 0.008 0.088 0.118 0.718
(0.047) (0.003) (0.025) (0.025) (0.116)

BICH 0.393 0.077 0.200 0.295 2.169
(0.066) (0.035) (0.051) (0.059) (0.338)

BICHL 0.607 0.024 0.153 0.114 5.411
(0.091) (0.020) (0.043) (0.020) (0.517)

FP, FN CV 0, 0.07 0, 0 0.02, 0.02 0 , 0.01 0.1, 0.2
(0), (0.03) (0), (0) (0.02), (0.01) (0), (0.01) (0.03), (0.04)

BICH 0.01, 0.15 0, 0.04 0, 0.09 0, 0.12 0.14, 0.53
(0.01), (0.04) (0), (0.02) (0), (0.03) (0), (0.03) (0.06), (0.07)

BICHL 0.05, 0.23 0 , 0.01 0, 0.06 0, 0.01 0.12, 1.07
(0.02), (0.04) (0), (0.01) (0), (0.02) (0), (0.01) (0.04), (0.08)

TABLE IV
SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BICH AND BICHL IN TERMS OF TUNING PARAMETER SELECTION, UNDER

MODEL (10) WITH n = 200 AND p = 1200. TWO COVARIANCE STRUCTURES Σ = (0.5|i−j|) AND Σ = (0.8|i−j|) ARE SHOWN, UNDER EACH OF WHICH
FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0, 3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION

ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100
INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES.

N(0, 3) MN MDG t3 Cauchy

Σ = (0.5|i−j|)

Model error CV 0.121 0.006 0.026 0.043 0.477
(0.019) (0.002) (0.003) (0.006) (0.224)

BICH 0.041 0.001 0.012 0.020 0.915
(0.004) (0.000) (0.001) (0.002) (0.423)

BICHL 0.042 0.001 0.009 0.023 3.632
(0.004) (0.000) (0.001) (0.002) (0.757)

FP, FN CV 0, 0.02 0, 0 0, 0 0, 0 0.01, 0.11
(0), (0.01) (0), (0) (0), (0) (0), (0) (0.01), (0.04)

BICH 0, 0 0, 0 0, 0 0, 0 0.26, 0.05
(0), (0) (0), (0) (0), (0) (0), (0) (0.13), (0.03)

BICHL 0, 0 0, 0 0, 0 0, 0 0.01, 0.61
(0), (0) (0), (0) (0), (0) (0), (0) (0.01), (0.08)

Σ = (0.8|i−j|)

Model error CV 0.372 0.042 0.081 0.206 0.736
(0.059) (0.025) (0.023) (0.044) (0.141)

BICH 0.235 0.001 0.070 0.055 0.538
(0.05) (0.000) (0.03) (0.017) (0.086)

BICHL 0.132 0.002 0.019 0.041 3.28
(0.032) (0.001) (0.002) (0.004) (0.518)

FP, FN CV 0.01, 0.12 0, 0.02 0.01, 0.02 0, 0.06 0.05, 0.16
(0.01), (0.03) (0), (0.01) (0.01), (0.01) (0), (0.02) (0.02), (0.04)

BICH 0, 0.09 0, 0 0, 0.03 0, 0.01 0.21, 0.12
(0), (0.03) (0), (0) (0), (0.02) (0), (0.01) (0.06), (0.03)

BICHL 0, 0.03 0, 0 0, 0 0, 0 0.10, 0.55
(0), (0.02) (0), (0) (0), (0) (0), (0) (0.04), (0.07)
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(δ,∆) ∈ C ∗, it follows from (12) and the growth condition
that

Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

+ λ(‖β∗ + ∆‖1 − ‖β∗‖1)

≥ ¯
f

4
r2
∗ −

[
32

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1) + λ

√
s

κ0

]
r∗

> 0

by our choice of r∗. Therefore, by Lemma 3 and 4, with
probability at least

Pr(E1 ∩ E2) ≥ 1− Pr(E c
1)− Pr(E c

2) ≥ 1− p1(λ),

we have (δ̂
λ
, ∆̂

λ
) ∈ Cr∗ . This, by condition (C1), further

implies that

r2
∗ ≥

κm
K

[
‖δ̂λ‖22 +K‖∆̂

λ

A∪A(∆̂
λ
,m)‖22

]
≥ κm

K
‖δ̂

λ
‖22 + κm‖∆̂

λ

A∪A(∆̂
λ
,m)‖22.

As a result, we obtain ‖δ̂
λ
‖2 ≤ r∗

√
K/κm and

‖∆̂
λ

A∪A(∆̂
λ
,m)‖2 ≤ r∗/

√
κm. (13)

Note that the jth largest in absolute value component of ∆̂Ac

is bounded by ‖∆̂Ac‖1/j. Therefore, it follows that∥∥∥∆̂
(A∪A(∆̂

λ
,m))c

∥∥∥2

2
≤

p∑
j=m+1

‖∆̂
λ

Ac‖21
j2

≤ 1

m
‖∆̂

λ

Ac‖21

≤ 1

m

[
3‖∆̂

λ

A‖1 + 3K−1‖δ̂
λ
‖1
]2

≤ 18s

m
‖∆̂

λ

A‖22 +
18

mK
‖δ̂

λ
‖22

≤ 18s

m
‖∆̂

λ

A∪A(∆̂
λ
,m)‖22 +

18

mK
‖δ̂

λ
‖22,

which, together with (13), implies that

‖∆̂
λ
‖22 ≤

(
1 +

18s

m

)
‖∆̂

λ

A∪A(∆̂
λ
,m)‖22 +

18

mK
‖δ̂

λ
‖22

≤ r2
∗

κm

(
1 +

18s

m
+

18

m

)
.

This completes the proof of Theorem 1.

For r > 0, define BA(r) = {(δ,∆) ∈ RK × Rp : ‖δ‖22 +
‖∆A‖22 ≤ r2, ∆Ac = 0} and SA(r) = {(δ,∆) ∈ RK ×
Rp : ‖δ‖22 + ‖∆A‖22 = r2, ∆Ac = 0}. Moreover, let z(r) =
sup(δ,∆)∈BA(r) |νn(α∗ + δ,β∗ + ∆)|.

Lemma 6. Under condition (C0), for any r, t > 0 such
that r

√
(s+ 1)MA ≤ U0, with probability at least 1 −

exp
[
−nt2/(32µ̄r2)

]
, we have

z(r) ≤ 4r

√
(s+ 1)MA

n
+ t

and

inf
(δ,∆)∈SA(r)

[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ ¯

f

2K ¯
µr2 − 4r

√
(s+ 1)MA

n
− t.

Proof of Lemma 6. See Appendix A.

Proof of Lemma 1. Let δ̂
o

= α̂o − α∗ and ∆̂
o

= β̂
o
− β∗.

In Lemma 6, let r = r∗ = 32K(
¯
f

¯
µ)−1

√
MA(s+ 1)/n and

t = 4r∗
√
MA(s+ 1)/n. By assumption, with the choice of

r∗, we have r∗
√

(s+ 1)MA ≤ U0. It follows immediately
that with probability at least 1− exp

[
−(s+ 1)MA/(2µ̄)

]
, we

have

inf
(δ,∆)∈SA(r∗)

[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ ¯
f

¯
µ(r∗)2

2K
− 8r∗

√
(s+ 1)MA

n
> 0.

By convexity of Qn and optimality of (α̂o, β̂
o
), this implies

that
‖δ̂

o
‖22 + ‖∆̂

o
‖22 ≤ (r∗)2,

which completes the lemma.

Lemma 7. Suppose the folded concave penalized CQR (4)
is solved with the LLA algorithm. Let a0 = min(a2, 1) and
define

E1 = {‖β̂
(0)

− β∗‖∞ ≤ a0λ},
E2 = {‖∇AcQn(α̂o, β̂

o
)‖∞ < a1λ},

E3 =
{

min
j∈A
|β̂o
j | > aλ

}
,

where ∇AcQn(α̂o, β̂
o
) =

(
∇jQn(α̂o, β̂

o
), j ∈ Ac

)
with

∇jQn(α̂o, β̂
o
) =

1

2n

n∑
i=1

xij

(
1− 2

K

K∑
k=1

τk

)
− 1

2nK

n∑
i=1

K∑
k=1

Sgn(r̂ik)xij ,

r̂ik = yi − α̂o
k − xT

iβ̂
o
, 1 ≤ i ≤ n, 1 ≤ k ≤ K, and

Sgn(u) =

 1, if u > 0
[−1, 1], if u = 0
−1, if u < 0.

Then under E1∩E2∩E3 and condition (C0), the LLA algorithm
converges to the CQR oracle estimator.

Proof of Lemma 7. See Appendix A.

For each j ∈ Ac, let us define Snj (α,β) =
1
nK

∑n
i=1

∑K
k=1

[
I(yi − αk − xT

iβ ≤ 0) − τk
]
xij , and for

r > 0, let

γj(r) = sup
(δ,∆)∈BA(r)

∣∣Snj (α∗ + δ,β∗ + ∆)− Snj (α∗,β∗)

− E
[
Snj (α∗ + δ,β∗ + ∆)− Snj (α∗,β∗)

]∣∣.
Lemma 8. For r, t > 0, 0 < ψ < r and j ∈ Ac, under
condition (C0) we have

Pr(γj(r) > t) ≤ 2Nψ exp

(
− nt2

8f̄M2
Ac µ̄1/2r + 8

3MAct

)
+ 2Nψ exp

(
− nt20

2f̄M2
Ac

(
(s+ 1)MA

)1/2
ψ + 4

3MAct0

)
,
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where Nψ is the ψ-covering number (see, e.g., [24]) of BA(r)

and t0 =
[
t/2− 2f̄MAc

(
(s+ 1)MA

)1/2
ψ
]
+
.

Proof of Lemma 8. See Appendix A.

Proof of Theorem 2. Let δ̂
o

= α̂o − α∗ and ∆̂
o

= β̂
o
− β∗.

For 1 ≤ i ≤ n, 1 ≤ k ≤ K, write r̂ik = yi − α̂o
k − xT

iβ̂
o

and
r∗ik = yi − α∗k − xT

iβ
∗. For ease of notation, let F (δ,∆) =

Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗) for (δ,∆) ∈ RK × Rp.
According to Lemma 7, with probability at least

Pr(E1 ∩ E2 ∩ E3) ≥ 1− Pr(E c
1)− Pr(E c

2)− Pr(E c
3),

the LLA algorithm will converge to the oracle estimator in
two iterations. In the sequel, we will split the proof into three
parts and provide the upper bound on each of Pr(E c

1), Pr(E c
2)

and Pr(E c
3), separately.

(i) First, we deal with Pr(E c
1) = Pr(‖β̂

(0)

−β∗‖∞ > a0λ).

Since in the LLA algorithm, we take (α̂(0), β̂
(0)

) to be the
lasso estimator (α̂λ0 , β̂λ0

), by Theorem 1, we have

Pr(E1) = Pr
(
‖β̂λ0

− β∗‖∞ ≤ a0λ
)

≥ Pr
(
‖β̂λ0

− β∗‖2 ≤ a0λ
)
≥ 1− p1(λ0),

which implies that Pr(E c
1) ≤ p1(λ0).

(ii) We next derive the upper bound on Pr(E c
3) =

Pr
(
minj∈A |β̂o

j | ≤ aλ
)
. Let r0 = minj∈A |β∗j | − aλ. It can

be seen that Pr(E c
3) ≤ Pr(‖∆̂

o
‖∞ > r0). Note that by

convexity of Qn, ‖∆̂
o
‖2 ≤ r0 is implied by the event that

inf(δ,∆)∈SA(r0) F (δ,∆) > 0. Since r0

√
(s+ 1)MA ≤ U0, it

follows from Lemma 6 that for any t > 0,

inf
(δ,∆)∈SA(r0)

F (δ,∆) ≥ ¯
f

2K ¯
µr2

0 − 4r0

√
(s+ 1)MA

n
− t

holds with probability at least 1 − exp
[
−nt2/(32µ̄r2

0)
]
.

By condition (C3), it can be seen that r0 > λ >
8K(

¯
f

¯
µ)−1

√
(s+ 1)MA/n. Now take t =

¯
f

¯
µr2

0/(4K) −
2r0

√
(s+ 1)MA/n. Then, we can see that t > 0. It follows

immediately that inf(δ,∆)∈SA(r0) F (δ,∆) ≥ t > 0. With this
specific choice of t, we get

Pr
(
‖∆̂

o
‖2 ≤ r0

)
≥ 1− exp

[
−nt2/(32µ̄r2

0)
]
,

which implies that

Pr(E c
3) ≤ Pr(‖∆̂

o
‖∞ > r0) ≤ Pr(‖∆̂

o
‖2 > r0)

≤ exp
[
−nt2/(32µ̄r2

0)
]
.

(iii) Finally, we look at the probability Pr(E c
2) =

Pr(‖∇AcQn(α̂o, β̂
o
)‖∞ ≥ a1λ). To this end, we set r∗ =

[(s + 1)MA log n/n]1/2 and let R = {(i, k) : r̂ik = 0, 1 ≤
i ≤ n, 1 ≤ k ≤ K} be the index set of zero residuals. From
Appendix B, we have |R| ≤ K(K + s). It follows that

∇jQn(α̂o, β̂
o
) =

1

2nK

n∑
i=1

K∑
k=1

[
(1− 2τk)− Sgn(r̂ik)

]
xij

=
1

nK

n∑
i=1

K∑
k=1

[
I(r̂ik ≤ 0)− τk

]
xij

− 1

2nK

∑
(i, k)∈R

[
Sgn(r̂ik) + 1

]
xij ,

where we have

max
j∈Ac

∣∣∣∣ 1

2nK

∑
(i, k)∈R

[
Sgn(r̂ik) + 1

]
xij

∣∣∣∣ ≤ (K + s)MAc

n
:= B1.

Now define event E0 = {(δ̂
o
, ∆̂

o
) ∈ BA(r∗)}. Under E0, by

the triangular inequality, we have

max
j∈Ac

∣∣∣∣ 1

nK

n∑
i=1

K∑
k=1

[
I(r̂ik ≤ 0)− τk

]
xij

∣∣∣∣
≤ max

j∈Ac
γj(r∗) + max

j∈Ac
|Snj (α∗,β∗)|

+ max
j∈Ac

sup
(δ,∆)∈BA(r∗)

∣∣∣E[Snj (α∗ + δ,β∗ + ∆)

− Snj (α∗,β∗)
]∣∣∣.

By the mean value theorem, it can be seen that

max
j∈Ac

sup
(δ,∆)∈BA(r∗)

∣∣∣E[Snj (α∗ + δ,β∗ + ∆)− Snj (α∗,β∗)
∣∣∣

≤ 1

nK
f̄MAc sup

(δ,∆)∈BA(r∗)

n∑
i=1

K∑
k=1

|δk + xT
iA∆A|

≤ f̄MAc µ̄1/2r∗ := B2.

Note that if B ≥ 0, then 2B = a1λ−B1−B2. It follows that

Pr(E c
2) ≤ Pr

(
(δ̂

o
, ∆̂

o
) /∈ BA(r∗)

)
+ Pr

(
max
i∈Ac

γj(r∗) ≥ B
)

+ Pr
(

max
j∈Ac

|Snj (α∗,β∗)| ≥ B
)
.

Note that r∗
√

(s+ 1)MA ≤ U0. By similar arguments in (ii),
it can be shown that

Pr
(
(δ̂

o
, ∆̂

o
) /∈ BA(r∗)

)
≤ exp

(
− nt2∗

32µ̄r2
∗

)
,

where t∗ =
¯
f

¯
µr2
∗/(4K) − 2r∗

√
(s+ 1)MA/n. Applying

Hoeffding’s inequality, we obtain

Pr
(

max
j∈Ac

|Snj (α∗,β∗)| ≥ B
)
≤ 2(p− s) exp

(
−2nB2

M0

)
.

Lastly, we apply Lemma 8 to obtain the bound on
Pr
(

maxj∈Ac γj(r∗) ≥ B
)
. Let ψ = 4r∗/n

2. It can be shown
that the ψ-covering number of BA(r∗) satisfies(r∗

ψ

)K+s

≤ Nψ ≤
(2r∗ + ψ

ψ

)K+s

≤ n2(K+s), n ≥ 2.

By Lemma 8, we have

Pr
(

max
j∈Ac

γj(r∗) ≥ B
)

≤ 2(p− s)Nψ exp

(
− nB2

8f̄M2
Ac µ̄1/2r∗ + 8

3MAcB

)
+ 2(p− s)Nψ

× exp

(
− nB2

0

2f̄M2
Ac

(
(s+ 1)MA

)1/2
ψ + 4

3MAcB0

)
,

where B0 =
[
B/2 − 2f̄MAc

(
(s + 1)MA

)1/2
ψ
]
+
. This

completes the proof.
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Lemma 9. For any A ∈ {S : S ⊃ A, |S| ≤ 2Jn} and r, t >
0, let z(A, r) = sup(δ,∆)∈BA(r) |νn(α∗ + δ,β∗ + ∆)|. With
probability at least 1− exp{−nt2/(32ζ̄r2)}, we have

z(A, r) ≤ 4Mr

√
|A|+ 1

n
+ t.

Proof of Lemma 9. See Appendix A.

Proof of Theorem 3. Split all models (denoted by their index
sets) under consideration, {Âλ : λ ∈ Ξn}, into three groups:
{Âλ : λ ∈ Ξ−n }, {Âλ : λ ∈ Ξ0

n}, and {Âλ : λ ∈ Ξ+
n },

where Ξ−n = {λ ∈ Ξn : A 6⊂ Âλ} (underfitted models),
Ξ0
n = {λ ∈ Ξn : Âλ = A} and Ξ+

n = {λ ∈ Ξn : A ⊂
Âλ, Âλ 6= A} (overfitted models). The proof then boils down
to show that P

(
infλ∈Ξ−n

[BICH(λ) − BICH(λn)] > 0
)
→ 1

and P
(

infλ∈Ξ+
n

[BICH(λ)−BICH(λn)] > 0
)
→ 1 as n→∞.

Let Q̂λn = (nK)−1
∑n
i=1

∑K
k=1 ρτk(yi − α̂λk − xT

iβ̂
λ),

where (α̂λ, β̂
λ
) is the two-step LLA estimator to the folded

concave penalized CQR (4) with lasso initialization. Also, let
Q∗n = (nK)−1

∑n
i=1

∑K
k=1 ρτk(yi − α∗k − xT

iβ
∗). For any

A ⊂ {1, 2, . . . , p}, let (α̂A, β̂
A

) be the estimator obtained by
fitting the canonical CQR to model A, i.e.,

(α̂A, β̂
A

) = arg min
α,β:βAc =0

1

nK

n∑
i=1

K∑
k=1

ρτk(yi−αk−xT
iβ). (14)

Define Q̂An = (nK)−1
∑n
i=1

∑K
k=1 ρτk(yi − α̂Ak − xT

iβ̂
A).

For any λ ∈ Ξn, recall that Âλ = {1 ≤ j ≤ p : β̂λj 6= 0}
corresponds to the active set of the two-step LLA estimator

(α̂λ, β̂
λ
). By optimality of (α̂Âλ , β̂

Âλ
) in (14), we have

Q̂Âλn ≤ Q̂λn.
Let G +

n = {A : A ⊃ A, A 6= A, |A| ≤ Jn}. It can be seen
that {Âλ : λ ∈ Ξ+

n } ⊂ G +
n . For r > 0 and A ∈ G +

n , let
BA(r) = {(δ,∆) ∈ RK × Rp : ‖δ‖2 + ‖∆A‖2 ≤ r2,∆Ac =
0} and SA(r) = {(δ,∆) ∈ RK × Rp : ‖δ‖2 + ‖∆A‖2 =
r2,∆Ac = 0}.

Case I: overfitted models. By Theorem 2, under the assump-
tions of this theorem, we have

P (Âλn 6= A)→ O(1) as n→∞.

Therefore, for any λ ∈ Ξ+
n , we have

Pr

(
inf
λ∈Ξ+

n

[BICH(λ)− BICH(λn)] > 0

)
= Pr

(
inf
λ∈Ξ+

n

[BICH(λ)− BICH(λn)] > 0, Âλn = A
)

+ Pr

(
inf
λ∈Ξ+

n

[BICH(λ)− BICH(λn)] > 0, Âλn 6= A
)

= Pr

(
inf
λ∈Ξ+

n

[
(Q̂λn − Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1)

≥ Pr

(
inf
λ∈Ξ+

n

[
(Q̂Âλn − Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1),

where the last inequality follows from the fact that Q̂λn ≥ Q̂Âλn .
Moreover, note that Q̂Âλn ≤ Q̂An ≤ Q∗n due to inclusion A ⊂
Âλ.

Let F (δ,∆) = Qn(α∗ + δ,β∗ + ∆) − Qn(α∗,β∗) for
(δ,∆) ∈ RK × Rp. For each model A ∈ G +

n , let r∗A =
16K(M + ζ̄1/2)(

¯
f
¯
ζ)−1

√
(|A|+ 1) log(p)/n. If we can show

that inf(δ,∆)∈SA(r∗A) F (δ,∆) > 0, then by convexity of ρτ (·),
we must have ‖α̂A − α∗‖22 + ‖β̂A − β∗‖22 ≤ (r∗A)2. Indeed,
by Knight’s identity (see (22) of Appendix A) and the mean
value theorem, we have

inf
(δ,∆)∈SA(r∗A)

E[F (δ,∆)] = inf
(δ,∆)∈SA(r∗A)

1

nK

×
n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0

[F (α∗k + t)− F (α∗k)]dt

= inf
(δ,∆)∈SA(r∗A)

1

nK

×
n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0

[tf(α∗k + ūik,t)]dt.

(15)

Note that Jn satisfies J2
n log(p)/n = O(1). Therefore, for any

1 ≤ i ≤ n, 1 ≤ k ≤ K and (δ,∆) ∈ SA(r∗A), we have

|δk + xT
i∆| ≤

√
1 + ‖xiA‖2 ·

√
δ2
k + ‖∆A‖22

≤Mr∗A
√
|A|+ 1

= 16KM(M + ζ̄1/2)(
¯
f
¯
ζ)−1(|A|+ 1)

√
log(p)/n

≤ 16KM(M + ζ̄1/2)(
¯
f
¯
ζ)−1(Jn + 1)

√
log(p)/n = O(U0).

It follows from condition (C0) and (15) that

inf
(δ,∆)∈SA(r∗A)

E[F (δ,∆)]

≥ inf
(δ,∆)∈SA(r∗A)

¯
f

2nK

K∑
k=1

n∑
i=1

(δk + xT
i∆)2 ≥ ¯

f

2K¯
ζ(r∗A)2.

Therefore, by Lemma 9, with probability at least 1 −
exp{−nt2/[32ζ̄(r∗A)2]}, we have

inf
(δ,∆)∈SA(r∗A)

F (δ,∆) ≥ inf
(δ,∆)∈SA(r∗A)

E[F (δ,∆)]− z(A, r∗A)

≥ ¯
f

2K¯
ζ(r∗A)2 − 4Mr∗A

√
|A|+ 1

n
− t.

Now take t = 8r∗A
√
ζ̄(|A|+ 1) log(p)/n. It follows that for

each A ∈ G +
n , with probability at least bAn = 1−exp{−2(|A|+

1) log(p)}, we have

inf
(δ,∆)∈SA(r∗A)

F (δ,∆)

≥ ¯
f
¯
ζ(r∗A)2

2K
− r∗A

√
|A|+ 1

n

(
8
√
ζ̄ log(p) + 4M

)
> 0,

which immediately implies that

‖α̂A −α‖22 + ‖β̂A − β∗‖22 ≤ (r∗A)2.
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Now by the Bonferroni inequality, we have ‖α̂A − α‖22 +
‖β̂A − β∗‖22 ≤ (r∗A)2 for all A ∈ G +

n simultaneously with
probability at least

bn = 1−
Jn∑

|A|=s+1

(
p− s
|A| − s

)
(1− bAn )

= 1−
Jn−s∑
k=1

(
p− s
k

)
exp{−2(k + s+ 1) log(p)}

≥ 1− p−2(s+1)

p−s∑
k=1

(
p− s
k

)( 1

p2

)k
= 1− p−2(s+1)

[(
1 +

1

p2

)p−s
− 1
]
→ 1 as p→∞.

Now we derive the upper bound for supA∈G +
n
|Q̂An −Q∗n|. Let

δ̂A = α̂A −α∗ and ∆̂A = β̂A − β∗. Observe that

|Q̂An −Q∗n| =
∣∣∣ 1

nK

n∑
i=1

K∑
k=1

{ρτk(yi − α̂Ak − xT
iβ̂
A)

− ρτk(yi − α∗k − xT
iβ
∗)}
∣∣∣

≤
∣∣E{F (δ̂A, β̂A)}

∣∣+ z(A, r∗A).

Similarly, we have∣∣E{F (δ̂A, β̂A)}
∣∣

=

∣∣∣∣ 1

nK

n∑
i=1

K∑
k=1

∫ δ̂Ak +xT
i∆̂

A

0

[F (α∗k + t)− F (α∗k)]dt

∣∣∣∣
≤ 1

nK

n∑
i=1

K∑
k=1

∫ |δ̂Ak +xT
i∆̂

A|

0

[tf(α∗k + ūik,t)]dt

≤ f̄

2nK

n∑
i=1

K∑
k=1

(δ̂A + xT
i∆̂

A)2

≤ 1

2
f̄ ζ̄(‖δ̂A‖22 + ‖∆̂A‖22) ≤ 1

2
f̄ ζ̄(r∗A)2.

It follows that with probability at least bn,

|Q̂An −Q∗n| ≤
1

2
f̄ ζ̄(r∗A)2 + 4Mr∗A

√
|A|+ 1

n

+ 8r∗A

√
ζ̄(|A|+ 1) log(p)

n

≤ 128K2(M + ζ̄1/2)2

¯
f
¯
ζ

(|A|+ 1) log(p)

n

holds for all A ∈ G +
n . Now going back to BIC, we have

Pr

(
inf
λ∈Ξ+

n

[
(Q̂Âλn − Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
≥ Pr

(
Cn log(p)

n
− sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)

> 0

)
.

Therefore, with probability at least bn, we have

sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)

≤ sup
A∈G +

n

Q̂∗n − Q̂An
(|A| − s)

= OP
(s log(p)

n

)
.

Since s = O(1) and Cn diverges with n, we have
s log(p)/n = O(Cn log(p)/n). It follows that

Pr

(
Cn log(p)

n
− sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)

> 0

)
→ 1 as n→∞,

which implies that Pr
(
infλ∈Ξ+

n
[BICH(λ)− BICH(λn)] >

0
)
→ 1 as n→∞.
Case II: underfitted models. For any λ ∈ Ξ−n , similar to

Case I, we have

Pr
(

inf
λ∈Ξ−n

[BICH(λ)− BICH(λn)] > 0
)

≥ Pr

(
inf
λ∈Ξ−n

[
(Q̂Âλn − Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1).

Define BICH(A) = Q̂An + |A|Cn log(p)/n and let G−n = {A :
|A| ≤ Jn,A 6⊂ A}. We can see that {Âλ : λ ∈ Ξ−n } ⊂
G−n . It suffices to show infA∈G−n

BICH(A) > BICH(A) with
probability tending to one as n → ∞. For any A ∈ G−n , let
Ā = A ∪ A. Let θ = minj∈A |β∗j |. Since A 6⊃ A, we must
have ‖α̂A−α∗‖22 +‖β̂A−β∗‖2 ≥ θ2. However, since Ā ⊃ A
and |Ā| ≤ 2Jn, using Lemma 9, we can similarly show as in
Case I that ‖α̂Ā−α∗‖22 + ‖β̂Ā−β∗‖22 ≤ θ2 with probability
at least bĀn = 1− exp{−2(|Ā|+ 1) log(p)} as long as

θ > 8K(
¯
f
¯
ζ)−1(2

√
ζ̄ log(p) +M)

√
2Jn + 1

n
,

which is implied by the assumption
√
Jn log(p)/n = O(θ).

It then follows that ‖α̂Ā − α∗‖22 + ‖β̂Ā − β∗‖22 ≤ θ2 holds
for all A ∈ G−n with probability at least b̃n → 1 as n → ∞,
where

b̃n = 1−
2Jn∑
|Ā=s+1

(
p− s
|Ā| − s

)
(1− bĀn )

≥ 1− p−2(s+1)
[(

1 +
1

p2

)p−s
− 1
]
.

Therefore, there exists a ∈ [0, 1], ᾱĀ = aα̂A+(1−a)α̂Ā and
β̄Ā = aβ̂A+(1−a)β̂Ā such that ‖ᾱĀ−α∗‖22+‖β̄Ā−β∗‖22 =
θ2. By convexity of ρτ and the fact that Q̂An ≥ Q̂Ān , we have
Q̄Ān = (nK)−1

∑n
i=1

∑K
k=1 ρτk(yi−ᾱĀk −xT

iβ̄
Ā) ≤ Q̂An . Note

that Q̂Ān ≤ Q̂An ≤ Q∗n. It follows that Q̂An − Q̂Ān ≥ Q̄Ān −Q∗n.
For ease of notation, let δ̄Ā = ᾱĀ−α∗ and ∆̄Ā = β̄Ā−β∗.
It can be seen that

Q̄Ān −Q∗n ≥ E[F (δ̄Ā, ∆̄Ā)]− z(Ā, θ).

Following similar arguments from Case I and noting that the
support of β̄Ā is a subset of Ā, we can show that with
probability at least b̃n, for all A ∈ G−n , we have

Q̄Ān −Q∗n ≥ ¯
f

2K¯
ζθ2 − 4θ

√
|Ā|+ 1

n
(2
√
ζ̄ log(p) +M).

Now we have
BICH(A)− BICH(Ā)

= (Q̂An − Q̂Ān ) + (|A| − |Ā|)Cn log(p)

n

≥ (Q̄Ān −Q∗n)− Cns log(p)

n
.
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Since
√
Cns log(p)/n = O(θ), it can be seen that with

probability tending to one, we have infA∈G−n
BICH(A) −

BICH(Ā) > 0. Following similar arguments as in Case I, we
can show BICH(Ā) ≥ infS⊃A,|S|≤2Jn BICH(S) ≥ BICH(A)
with probability tending to one. Case II then follows by noting
that

inf
A∈G−n

[BICH(A)− BICH(A)]

= inf
A∈G−n

[BICH(A)− BICH(Ā) + BICH(Ā)− BICH(A)]

≥ inf
A∈G−n

[BICH(A)− BICH(Ā)].

Proof of Theorem 4. Similar to the proof of Theorem 3. We
relegate it to Appendix A.

Proof of Lemma 2. See Lemma 1 of [23].

APPENDIX A
PROOFS OF AUXILIARY RESULTS

Proof of Lemma 3. Let us denote ζ = (ζ1, . . . , ζK)T and ξ =
(ξ1, . . . , ξp)

T, where

ζk = − 1

nK

n∑
i=1

[
τk − I(εi ≤ α∗k)

]
, 1 ≤ k ≤ K,

and

ξj = − 1

nK

K∑
k=1

n∑
i=1

[
τk − I(εi ≤ α∗k)

]
xij , 1 ≤ j ≤ p.

Note that (ζT, ξT)T ∈ ∂Qn(α∗,β∗), where the subdifferential
is taken with respect to α and β. By convexity of Qn(α,β)
and optimality of (α̂λ, β̂λ), we have

0 ≥ Qn(α̂λ, β̂λ)−Qn(α∗,β∗) + λ(‖β̂λ‖1 − ‖β
∗‖1)

≥ ζT(α̂λ −α∗) + ξT(β̂λ − β
∗) + λ(‖β̂λ‖1 − ‖β

∗‖1)

≥ − ‖ζ‖∞ · ‖α̂λ −α∗‖1 − ‖ξ‖∞ · ‖β̂λ − β
∗‖1

+ λ
(
‖β̂λ,Ac − β∗Ac‖1 − ‖β̂λ,A − β

∗
A‖1

)
,

which implies that

(λ− ‖ξ‖∞)‖β̂λ,Ac − β∗Ac‖1
≤ (λ+ ‖ξ‖∞)‖β̂λ,A − β

∗
A‖1 + ‖ζ‖∞ · ‖α̂λ −α∗‖1.

(16)

Under event E = {‖ζ‖∞ ≤ 3λ/(2K), ‖ξ‖∞ ≤ λ/2}, it
follows from (16) that

‖∆̂
λ

Ac‖1 ≤ 3‖∆̂
λ

A‖1 + 3
K ‖δ̂

λ
‖1.

The lemma then follows from Hoeffding’s inequality

Pr(E) ≥ 1− Pr
(
‖ζ‖∞ >

3λ

2K

)
− Pr

(
‖ξ‖∞ >

λ

2

)
≥ 1−

K∑
k=1

Pr
(∣∣∣− 1

nK

n∑
i=1

[τk − I(εi ≤ α∗k)]
∣∣∣ > 3λ

2K

)
−

p∑
j=1

Pr
(∣∣∣− 1

nK

n∑
i=1

xij

K∑
k=1

[τk − I(εi ≤ α∗k)]
∣∣∣ > λ

2

)
≥ 1− 2K exp

(
−9nλ2

2

)
− 2p exp

(
− nλ

2

2M0

)
.

This proves the lemma.

Proof of Lemma 4. First, let us show that the check loss ρτ (·)
is Lipschitz continuous with Lipschitz constant max(τ, 1−τ).
To see it, note that for any u1, u2 ∈ R, we have

|ρτ (u1)− ρτ (u2)| = |(τ − 0.5)(u1 − u2) + 0.5(|u1| − |u2|)|
≤ (|τ − 0.5|+ 0.5)|u1 − u2| = max(τ, 1− τ)|u1 − u2|.

Now let δ = α−α∗, ∆ = β − β∗, and define

Ui(δ,∆) =
1

K

K∑
k=1

ρτk(yi − αk − xT
iβ)

− 1

K

K∑
k=1

ρτk(yi − α∗k − xT
iβ
∗)

=
1

K

K∑
k=1

ρτk(r∗ik − δk − xT
i∆)− 1

K

K∑
k=1

ρτk(r∗ik),

where r∗ik = yi−α∗k−xT
iβ
∗ = εi−α∗k, 1 ≤ i ≤ n, 1 ≤ k ≤ K.

It follows immediately that

e(r) = sup
(δ,∆)∈Cr

∣∣∣∣ 1n
n∑
i=1

[
Ui(δ,∆)− EUi(δ,∆)

]∣∣∣∣.
By Lipschitz continuity of the check loss, it follows that

|Ui(δ,∆)| ≤ 1

K

K∑
k=1

|ρτk(r∗ik − δk − xT
i∆)− ρτk(r∗ik)|

≤ 1

K

K∑
k=1

max(τk, 1− τk)|δk + xT
i∆|

≤ 1

K

K∑
k=1

|δk + xT
i∆|, 1 ≤ i ≤ n.

(17)

Now applying Massart’s concentration inequality (Theorem
14.2, [25]), we obtain

Pr(e(r) ≥ E[e(r)] + t) ≤ exp

(
− n2t2

8b2n(r)

)
, (18)

where b2n(r) = sup(δ,∆)∈Cr

∑n
i=1 var(Ui(δ,∆)). First, we

derive the upper bound on b2n(r). Note that by (17) and
Cauchy–Schwarz inequality

b2n(r) = sup
(δ,∆)∈Cr

n∑
i=1

E
[
Ui(δ,∆)− EUi(δ,∆)

]2
≤ 4 sup

(δ,∆)∈Cr

n∑
i=1

[ K∑
k=1

1

K
|δk + xT

i∆|
]2

≤ 4 sup
(δ,∆)∈Cr

n∑
i=1

( K∑
k=1

1

K

)[ K∑
k=1

1

K
(δk + xT

i∆)2

]
≤ 4nr2.
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Next, we derive the upper bound on E
[
e(r)

]
. By applying

the symmetrization procedure [26] and the contraction princi-
ple [27], we have

E[e(r)] ≤ 2E
[

sup
(δ,∆)∈Cr

1

n

∣∣∣∣ n∑
i=1

ξiUi(δ,∆)

∣∣∣∣]

≤ 2

nK

K∑
k=1

E
[

sup
(δ,∆)∈Cr

∣∣∣∣ n∑
i=1

ξi{ρτk(r∗ik − δk − xT
i∆)

− ρτk(r∗ik)}
∣∣∣∣]

≤ 4

nK

K∑
k=1

E
[

sup
(δ,∆)∈Cr

∣∣∣∣ n∑
i=1

ξi(δk + xT
i∆)

∣∣∣∣],

(19)

where ξ1, . . . , ξn are i.i.d. Rademacher random variables that
satisfy Pr(ξi = −1) = Pr(ξi = 1) = 1/2 and that are
independent of ε1, . . . , εn.

For (δ, ∆) ∈ Cr, by condition (C1) and the Cauchy–
Schwarz inequality, we have

r2 ≥ κ0

K
(‖δ‖22 +K‖∆A‖22) ≥ κ0

K2
‖δ‖21 +

κ0

s
‖∆A‖21, (20)

which implies that ‖δ‖1 ≤ rK/
√
κ0 and ‖∆A‖1 ≤ r

√
s/κ0.

Now let ξ = (ξ1, . . . , ξn)T. Note that for any t ∈ R, we have
by Taylor expansion

E
[
exp(tXT

jξ)
]

=
n∏
i=1

[
1

2
(etxij + e−txij )

]
≤

n∏
i=1

exp
(1

2
t2x2

ij

)
= exp

(
t2

2

n∑
i=1

x2
ij

)
, 0 ≤ j ≤ p.

Letting t > 0, by Jensen’s inequality, we have

exp
(
tE
[
‖XTξ‖∞

])
= exp

(
tE max

0≤j≤p
|XT

jξ|
)
≤ E exp

(
t max

0≤j≤p
|XT

jξ|
)

= E
[

max
0≤j≤p

exp(t|XT
jξ|)

]
≤ E max

0≤j≤p

(
etX

T
jξ + e−tX

T
jξ
)

≤
p∑
j=0

E
(
etX

T
jξ + e−tX

T
jξ
)
≤ 2

p∑
j=0

exp
( t2

2
‖Xj‖22

)
≤ 2(1 + p) exp

( t2
2

max
0≤j≤p

‖Xj‖22
)

= 2(1 + p) exp
(1

2
nM0t

2
)
,

which implies that

E
(
‖XTξ‖∞

)
≤ 1

t

[
log 2 + log(1 + p)

]
+
nM0

2
t, t > 0.

Taking t =
√

2[log 2 + log(1 + p)]/(nM0) and noting that
p ≥ 3 by condition (C0), we obtain

E
(
‖XTξ‖∞

)
≤
√

2nM0[log 2 + log(1 + p)]

≤
√

2M0 ·
√
n(1 + log p).

(21)

It then follows from (19), (21) and Hölder’s inequality that

E[e(r)] ≤ 4

nK
E
(
‖XTξ‖∞

)
· sup

(δ,∆)∈Cr

K∑
k=1

(
|δk|+ ‖∆‖1

)
≤ 4
√

2M0

n

√
n(1 + log p) sup

(δ,∆)∈Cr

(
K−1‖δ‖1 + ‖∆‖1

)
≤ 4
√

2M0

n

√
n(1 + log p)

× sup
(δ,∆)∈Cr

[
4K−1‖δ‖1 + 4‖∆A‖1

]
≤ 16

√
2M0

κ0

√
1 + log p

n
(
√
s+ 1)r.

The lemma then follows from (18).

Proof of Lemma 5. By Knight’s identity [2], we have for any
two scalars r 6= 0 and s,

|r − s| − |r| = −s
[
I(r > 0)− I(r < 0)

]
+ 2

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.

It follows that for any τ ∈ (0, 1), when r 6= 0,

ρτ (r − s)− ρτ (r)

= (τ − 0.5)
[
(r − s)− r

]
+ 0.5

[
|r − s| − |r|

]
= (0.5− τ)s− 0.5s

[
I(r > 0)− I(r < 0)

]
+

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t

= s
[
I(r < 0)− τ

]
+

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.

(22)

Let r∗ik = yi − α∗k − xT
iβ
∗ = εi − α∗k, 1 ≤ i ≤ n, 1 ≤ k ≤

K. Recall that ε has a density with respect to the Lebesgue
measure. By condition (C0), identity (22) and the mean value
theorem, we have for some ūik,t between 0 and t,

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
=

1

nK

n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0

[
F (α∗k + t)− F (α∗k)

]
d t

=
1

nK

n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0 [
tf(α∗k) +

t2

2
f ′(α∗k + ūik,t)

]
d t

≥ ¯
f

2nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2

− f̄ ′

6nK

n∑
i=1

K∑
k=1

|δk + xT
i∆|3.

(23)

For (δ,∆) ∈ C , note that if[
1

nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2

]1/2

≤ 4q

K1/2

¯
f1/2

,

then by condition (C2), this implies that

f̄ ′

6nK

n∑
i=1

K∑
k=1

|δk + xT
i∆|3 ≤ ¯

f

4nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2,
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which, together with (23), implies that for all (δ,∆) ∈
C4q(K

¯
f)−1/2 ,

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ ¯

f

4nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2.

To show that the lemma holds for all (δ,∆) ∈ C , define

rC = sup
r>0

{
r : E

[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ ¯

f

4nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2, ∀(δ,∆) ∈ Cr

}
.

By previous arguments, we must have rC ≥ 4q(K
¯
f)−1/2.

Now for any (δ,∆) ∈ C , let r2 = (nK)−1
∑n
i=1

∑K
k=1(δk+

xT
i∆)2. If r < rC , then by the definition of rC , we have

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ ¯

f

4nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2.

(24)

If instead r ≥ rC , let δ′ = rC δ/r and ∆′ = rC ∆/r. It can
be seen immediately that (nK)−1

∑n
i=1

∑K
k=1(δ′k+xT

i∆
′)2 =

r2
C . By convexity of Qn, we have

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ r

rC
E
[
Qn(α∗ + δ′,β∗ + ∆′)−Qn(α∗,β∗)

]
≥ r

rC
¯
f

4
r2
C

≥ q
(

¯
f

K

)1/2[ 1

nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2

]1/2
.

(25)

The lemma then follows from (24) and (25).

Proof of Lemma 6. As with the proof of Lemma 4, define

Ui(δ,∆) =
1

K

K∑
k=1

ρτk(r∗ik − δk − xT
i∆)− 1

K

K∑
k=1

ρτk(r∗ik),

where r∗ik = yi−α∗k−xT
iβ
∗ = εi−α∗k, 1 ≤ i ≤ n, 1 ≤ k ≤ K.

Now applying Massart’s concentration inequality, we get

Pr(z(r) ≥ E[z(r)] + t) ≤ exp

(
− n2t2

8b2n(r)

)
, (26)

where b2n(r) = sup(δ,∆)∈BA(r)

∑n
i=1 var(Ui(δ,∆)). For

ease of notation, let ∆k
A = (δk,∆

T
A)T, 1 ≤ k ≤ K. It follows

from Lipschitz continuity of the check loss that

b2n(r) ≤ 4

K
sup

(δ,∆)∈BA(r)

K∑
k=1

n∑
i=1

(δk + xT
i∆)2

=
4

K
sup

(δ,∆)∈BA(r)

K∑
k=1

(∆k
A)TXT

A0
XA0

∆k
A

≤ 4n

K
sup

(δ,∆)∈BA(r)

K∑
k=1

µ
[
δ2
k + ‖∆A‖22

]
≤ 4nµr2.

Moreover, by the symmetrization procedure and the contrac-
tion principle, we obtain

E[z(r)]

≤ 4

nK

K∑
k=1

E
[

sup
(δ,∆)∈BA(r)

∣∣∣∣ n∑
i=1

ξi(δk + xT
A∆A)

∣∣∣∣]
≤ 4

nK
E
(
‖XT
A0
ξ‖2
)

× sup
(δ,∆)∈BA(r)

K∑
k=1

‖∆k
A‖2 ≤

4r

n
E
(
‖XT
A0
ξ‖2
)
,

(27)

where ξ = (ξ1, . . . , ξn)T is a random vector of i.i.d.
Rademacher variables that is independent of {ε1, . . . , εn}. By
Jensen’s and Khintchine inequalities [28], we have

E
(
‖XT
A0
ξ‖2
)
≤
[
E
(
ξTXA0

XT
A0
ξ
)]1/2

=

[∑
j∈A0

E
( n∑
i=1

ξixij

)2]1/2

≤
(∑
j∈A0

n∑
i=1

x2
ij

)1/2

=

( n∑
i=1

∑
j∈A0

x2
ij

)1/2

≤
√
n(s+ 1)MA.

It follows from (27) that E[z(r)] ≤ 4r
√

(s+ 1)MA/n. The
first part of the lemma then follows from (26).

Let F (δ,∆) = Qn(α∗ + δ,β∗ + ∆) − Qn(α∗,β∗). To
prove the second inequality of the lemma, it suffices to note
that

inf
(δ,∆)∈SA(r)

F (δ,∆)

≥ inf
(δ,∆)∈SA(r)

E
[
Qn(α∗ + δ,β∗ + ∆)

−Qn(α∗,β∗)
]
− z(r),

and that by (22) and the mean value theorem, we have for
some ūik,t between 0 and t such that

inf
(δ,∆)∈SA(r)

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
= inf

(δ,∆)∈SA(r)

1

nK

n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0

[
F (α∗k + t)

− F (α∗k)
]
dt

= inf
(δ,∆)∈SA(r)

1

nK

×
n∑
i=1

K∑
k=1

∫ δk+xT
i∆

0

[
tf(α∗k + ūik,t)

]
dt.

(28)

Now for any 1 ≤ i ≤ n, 1 ≤ k ≤ K and (δ,∆) ∈ SA(r), we
have

|δk + xT
i∆| ≤

√
1 + ‖xiA‖22 ·

√
δ2
k + ‖∆A‖22

≤ r
√

(s+ 1)MA ≤ U0.

It then follows from condition (C0) and (28) that

inf
(δ,∆)∈SA(r)

E
[
Qn(α∗ + δ,β∗ + ∆)−Qn(α∗,β∗)

]
≥ inf

(δ,∆)∈SA(r)
¯
f

2nK

n∑
i=1

K∑
k=1

(δk + xT
i∆)2 ≥ ¯

f

2K ¯
µr2.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, JUNE 2020 18

This completes the proof.

Proof of Lemma 7. Note that Qn is convex, but not differen-
tiable. Denote the subdifferential of Qn(α,β) at (α̂o, β̂

o
) by

∂Qn(α̂o, β̂
o
) =

{
(ζ, ξ) : ζk =

1− 2τk
2K

−
∑n
i=1 Sgn(r̂ik)

2nK
,

ξj =
1

2n

n∑
i=1

xij

(
1− 2

K

K∑
l=1

τl

)
− 1

2nK

n∑
i=1

K∑
l=1

Sgn(r̂il)xij ,

1 ≤ k ≤ K, 1 ≤ j ≤ p
}
.

By convexity of Qn, for any (ζ, ξ) ∈ ∂Qn(α̂o, β̂
o
) and

(α,β), we have

Qn(α,β)−Qn(α̂o, β̂
o
) ≥ ζT(α− α̂o) + ξT(β − β̂

o
).

Now by optimality of (α̂o, β̂
o
), we can take ζ = 0 and ξA =

0. It follows that

Qn(α,β) ≥ Qn(α̂o, β̂
o
) +

∑
j∈Ac

ξj(βj − β̂o
j ). (29)

Under event E1, we have maxj∈Ac |β̂(0)

j | ≤ a0λ ≤ a2λ.
Moreover, by condition (C3), we have

min
j∈A
|β̂(0)| ≥ min

j∈A
|β∗j |−max

j∈A
|β̂(0)

j −β
∗
j | ≥ (a+1−a0)λ ≥ aλ.

Thus, under event E1, it follows from properties (P3) and (P4)
of pλ(·) that

p′λ(|β̂(0)

j |) ≥ a1λ, ∀j ∈ Ac and p′λ(|β̂(0)

j |) = 0, ∀j ∈ A.

Similarly, under event E3 and by the fact that β̂
o
Ac = 0, it can

be shown that

p′λ(|β̂o
j |) = 0, ∀j ∈ A and p′λ(|β̂o

j |) ≥ a1λ, ∀j ∈ Ac.

To this end, it can be seen from step (2.a) of the LLA algorithm
that

(α̂(1), β̂
(1)

) = arg min
α,β

Qn(α,β) +
∑
j∈Ac

p′λ(|β̂(0)

j |)|βj |.

Now under E2 = {‖ξAc‖∞ < a1λ}, it follows from (29) that
for any (α,β),[

Qn(α,β) +
∑
j∈Ac

p′λ(|β̂(0)

j |)|βj |
]

−
[
Qn(α̂o, β̂

o
) +

∑
j∈Ac

p′λ(|β̂(0)

j |)|β̂
o
j |
]

≥
∑
j∈Ac

ξj(βj − β̂o
j ) +

∑
j∈Ac

p′λ(|β̂j |(0))|βj |

≥
∑
j∈Ac

[
p′λ(|β̂(0)

j |)− |ξj |
]
|βj | ≥ 0.

(30)

The leftmost hand side of the above inequality is strictly
positive unless βAc = 0. Note that condition (C0) implies
the uniqueness of the oracle estimator (See Appendix B). It
can be then seen that (α̂(1), β̂

(1)

) coincides with the oracle
estimator. Now given that (α̂(1), β̂

(1)

) is the oracle estimator,
we show that (α̂(2), β̂

(2)

) yielded by the LLA algorithm will

still be the oracle estimator. To see it, note that under event
E2,

p′λ(|β̂(1)

j |) = 0, ∀j ∈ A and p′λ(|β̂(1)

j |) ≥ a1λ, ∀j ∈ Ac.

By the LLA iteration, we have

(α̂(2), β̂
(2)

) = arg min
α,β

Qn(α,β) +
∑
j∈Ac

p′λ(|β̂(1)

j |)|βj |.

Thus, we can follow similar arguments from (30) to show that
under event E3, (α̂(2), β̂

(2)

) is still the oracle estimator. This
proves the lemma.

Note that the above proof is slightly different from the
general result (Theorems 1 and 2) in [18] since we need to
deal with the intercept terms additionally.

Proof of Lemma 8. Consider a minimal ψ-cover of BA(r)
and denote this covering net by {(δ`,∆`), ` = 1, . . . , Nψ} ⊂
BA(r). For j ∈ Ac, define

Uij(δ,∆) =
1

K

K∑
k=1

[
I(r∗ik ≤ δk + xT

i∆)− τk
]
xij

− 1

K

K∑
k=1

[
I(r∗ik ≤ 0)− τk

]
xij ,

where r∗ik = yi−α∗k−xT
iβ
∗ = εi−α∗k, 1 ≤ i ≤ n, 1 ≤ k ≤ K.

Then it can be seen that

γj(r) = sup
(δ,∆)∈BA(r)

∣∣∣∣ 1n
n∑
i=1

[
Uij(δ,∆)− EUij(δ,∆)

]∣∣∣∣.
For any (δ,∆) ∈ BA(r) and j ∈ Ac, note that

|Uij(δ,∆)| ≤ 1

K

K∑
k=1

|I(r∗ik ≤ δk + xT
i∆)

− I(r∗ik ≤ 0)| · |xij | ≤MAc .

Let pik = Pr
(
−(δk + xT

i∆)− < r∗ik ≤ (δk + xT
i∆)+

)
, 1 ≤

i ≤ n, 1 ≤ k ≤ K. It follows from the mean value theorem
and condition (C0) that

pik = F (α∗k + (δk + xT
i∆)+)− F (α∗k − (δk + xT

i∆)−)

≤ f̄ |δk + xT
i∆|.

By Cauchy–Schwarz inequality and the mean value theorem,
we have

var
[
Uij(δ,∆)

]
≤
x2
ij

K

K∑
k=1

var
[
I
(
−(δk + xT

i∆)− < r∗ik ≤ (δk + xT
i∆)+

)]
=
x2
ij

K

K∑
k=1

pik(1− pik) ≤
f̄x2

ij

K

K∑
k=1

|δk + xT
i∆|

≤ f̄M2
Ac

K

K∑
k=1

|δk + xT
iA∆A|.
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Let ∆k
A = (δk,∆

T
A)T, 1 ≤ k ≤ K. By Cauchy–Schwarz

inequality again, we get

1

n

n∑
i=1

var
[
Uij(δ,∆)

]
≤ 1

nK
f̄M2
Ac

n∑
i=1

K∑
k=1

|δk + xT
iA∆A|

≤ f̄M2
Ac

K

K∑
k=1

[ 1

n

(
∆k
A
)TXT
A0

XA0∆
k
A

]1/2
≤ f̄M2

Acµ1/2r.

Now applying Bernstein inequality, we have for any (δ,∆) ∈
BA(r) and t > 0,

Pr

(∣∣∣∣ 1n
n∑
i=1

[
Uij(δ,∆)− EUij(δ,∆)

]∣∣∣∣ > t

)
≤ 2 exp

(
− nt2

2f̄M2
Acµ1/2r + 4

3MAct

)
.

Now for 1 ≤ ` ≤ Nψ, let B`(ψ) = {(δ,∆) : ‖δ−δ`‖22+‖∆−
∆`‖22 ≤ ψ2, ∆Ac = 0} be the ball centered at (δ`,∆`) ∈
BA(r) with radius ψ. For any 1 ≤ i ≤ n, 1 ≤ k ≤ K and
(δ,∆) ∈ B`(ψ), note that

|(δk + xT
i∆)− (δ`k + xT

i∆
`)| ≤

(
1 + ‖xiA‖22

)1/2
ψ

≤
[
(s+ 1)MA

]1/2
ψ.

For 1 ≤ i ≤ n and j ∈ Ac, let

Vij(δ
`,∆`) =

K∑
k=1

[
I
(
r∗ik ≤ δ`k + xT

i∆
` + (s+ 1)MA

1/2
ψ
)

− I(r∗ik ≤ δ`k + xT
i∆

`)
]
· |xij |
K

.

Since the indicator function I(u ≤ t) is nondecreasing in t,
we have

sup
(δ,∆)∈B`(ψ)

∣∣∣∣ 1n
n∑
i=1

(
Uij(δ,∆)− Uij(δ`,∆`)

− E
[
Uij(δ,∆)− Uij(δ`,∆`)

])∣∣∣∣
:= I1 +

1

n

n∑
i=1

[
Vij(δ

`,∆`)− EVij(δ`,∆`)
]
,

(31)

where

I1 =
∑
i,k

[
Pr
(
r∗ik ≤ δ`k + xT

i∆
` + ((s+ 1)MA)1/2ψ

)
− Pr

(
r∗ik ≤ δ`k + xT

i∆
` − ((s+ 1)MA)1/2ψ

)]
· |xij |
nK

.

By the mean value theorem, we have

I1 ≤
1

nK

n∑
i=1

|xij |
K∑
k=1

·2
(
(s+ 1)MA

)1/2
f̄ψ

≤ 2f̄MAc

(
(s+ 1)MA

)1/2
ψ.

Similarly, it can be shown that |Vij(δ`,∆`)| ≤MAc and

1

n

n∑
i=1

var(Vij(δ
`,∆`)) ≤ f̄M2

Ac

(
(s+ 1)MA

)1/2
ψ.

It then follows from (31) and Bernstein inequality that for
1 ≤ ` ≤ Nψ,

Pr

(
sup

(δ,∆)∈B`(ψ)

∣∣∣∣ 1n
n∑
i=1

(
Uij(δ,∆)− Uij(δ`,∆`)

− E
[
Uij(δ,∆)− Uij(δ`,∆`)

])∣∣∣∣ > t

)
≤ 2 exp

(
− nt21

2f̄M2
Ac

(
(s+ 1)MA

)1/2
ψ + 4

3MAct1

)
,

where t1 =
[
t−2f̄MAc

(
(s+1)MA

)1/2
ψ
]
+
. The lemma then

follows by noting that

Pr(γj(r) > t)

= Pr

(
sup

(δ,∆)∈BA(r)

∣∣∣∣ 1n
n∑
i=1

[
Uij(δ,∆)− EUij(δ,∆)

]∣∣∣∣ > t

)

≤
Nψ∑
`=1

Pr

(
sup

(δ,∆)∈B`(ψ)

∣∣∣∣ 1n
n∑
i=1

(
Uij(δ,∆)− Uij(δ`,∆`)

− E
[
Uij(δ,∆)− Uij(δ`,∆`)

])∣∣∣∣ > t

2

)
+

Nψ∑
`=1

Pr

(∣∣∣∣ 1n
n∑
i=1

[
Uij(δ

`,∆`)− EUij(δ`,∆`)
]∣∣∣∣ > t

2

)
.

This completes the proof.

Proof of Lemma 9. Let Ui(δ,∆) = 1
K

∑K
k=1{ρτk(r∗ik − δk −

xT
i∆)−ρτk(r∗ik)}, where r∗ik = yi−α∗k−xT

iβ
∗ = εi−α∗k, 1 ≤

i ≤ n, 1 ≤ k ≤ K. By Massart’s concentration inequality, we
have

Pr(z(A, r) ≥ E[z(A, r)] + t) ≤ exp
(
− n2t2

8b2n(A, r)

)
,

where b2n(A, r) = sup(δ,∆)∈BA(r)

∑n
i=1 var(Ui(δ,∆)). It

follows from Lipschitz continuity of the check loss that

b2n(A, r) ≤ 4

K
sup

(δ,∆)∈BA(r)

K∑
k=1

n∑
i=1

(δk + xT
i∆)2

=
4

K
sup

(δ,∆)∈BA(r)

K∑
k=1

(δk,∆
T
A)(1n,XA)T(1n,XA)(δk,∆

T
A)T

≤ 4n

K
sup

(δ,∆)∈BA(r)

K∑
k=1

ζ̄[δ2
k + ‖∆A‖2] ≤ 4nζ̄r2.

Moreover, by the symmetrization procedure and the contrac-
tion principle, we obtain

E[z(A, r)] ≤ 4

nK

K∑
k=1

E
[

sup
(δ,∆)∈BA(r)

∣∣∣∣ n∑
i=1

ξi(δk + xT
iA∆A)

∣∣∣∣]
≤ 4

nK
E(‖(1n,XA)Tξ‖2)

× sup
(δ,∆)∈BA(r)

K∑
k=1

‖(δk,∆T
A)T‖2

≤ 4r

n
E(‖(1n,XA)Tξ‖2),
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where ξ = (ξ1, . . . , ξn)T is a random vector of i.i.d.
Rademacher variables, independent of ε1, . . . , εn. By Jensen’s
and Khintchine inequalities, we have

E(‖(1n,XA)Tξ‖2) ≤ {E[ξT(1n,XA)(1n,XA)Tξ]}1/2

=

[ ∑
j∈{0}∪A

E
( n∑
i=1

ξixij

)2]1/2

≤
( ∑
j∈{0}∪A

n∑
i=1

x2
ij

)1/2

=

( n∑
i=1

∑
j∈{0}∪A

x2
ij

)1/2

≤M
√
n(|A|+ 1).

It follows that E[z(A, r)] ≤ 4Mr
√

(|A|+ 1)/n. The lemma
then follows.

Proof of Theorem 4. Similar to the proof of Theorem 3, split
all models under consideration, {Âλ : λ ∈ Ξn}, into three
groups: {Âλ : λ ∈ Ξ−n }, {Âλ : λ ∈ Ξ0

n}, and {Âλ : λ ∈ Ξ+
n },

where Ξ−n = {λ ∈ Ξn : A 6⊂ Âλ}, Ξ0
n = {λ ∈ Ξn : Âλ = A}

and Ξ+
n = {λ ∈ Ξn : A ⊂ Âλ, Âλ 6= A}.

Let Q̂λn = (nK)−1
∑n
i=1

∑K
k=1 ρτk(yi − α̂λk − xT

iβ̂
λ),

where (α̂λ, β̂
λ
) is the two-step LLA solution to the folded

concave penalized CQR (4) with lasso initialization. Also, let
Q∗n = (nK)−1

∑n
i=1

∑K
k=1 ρτk(yi − α∗k − xT

iβ
∗). For any

A ⊂ {1, 2, . . . , p}, let (α̂A, β̂
A

) be the estimator obtained by
fitting the canonical CQR to model A as in (14) and define
Q̂An = (nK)−1

∑n
i=1

∑K
k=1 ρτk(yi − α̂Ak − xT

iβ̂
A). For any

λ ∈ Ξn, recall that Âλ = {1 ≤ j ≤ p : β̂λj 6= 0} corresponds

to the active set of the two-step LLA estimator (α̂λ, β̂
λ
). By

optimality of (α̂Âλ , β̂
Âλ

) in (14), we have Q̂Âλn ≤ Q̂λn.
Let G +

n = {A : A ⊃ A, A 6= A, |A| ≤ Jn}. It can be seen
that {Âλ : λ ∈ Ξ+

n } ⊂ G +
n . For r > 0 and A ∈ G +

n , let
BA(r) = {(δ,∆) ∈ RK × Rp : ‖δ‖2 + ‖∆A‖2 ≤ r2,∆Ac =
0} and SA(r) = {(δ,∆) ∈ RK × Rp : ‖δ‖2 + ‖∆A‖2 =
r2,∆Ac = 0}.

We first handle overfitted models. By Theorem 2, under the
assumptions of this theorem, we have P (Âλn 6= A) → O(1)
as n→∞. Therefore, for any λ ∈ Ξ+

n , we have

Pr

(
inf
λ∈Ξ+

n

[BICHL(λ)− BICHL(λn)] > 0

)
= Pr

(
inf
λ∈Ξ+

n

[
log(Q̂λn/Q̂

A
n ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1)

≥ Pr

(
inf
λ∈Ξ+

n

[
log(Q̂Âλn /Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1),

where the last inequality follows from the fact that Q̂λn ≥ Q̂Âλn .
Moreover, note that Q̂Âλn ≤ Q̂An ≤ Q∗n due to inclusion, A ⊂
Âλ. We then apply the inequality log(1 + x) ≤ x, ∀x ≥ 0 to
get

log

(
Q̂Âλn

Q̂An

)
= − log

(
Q̂An

Q̂Âλn

)
= − log

(
1 +

Q̂An − Q̂Âλn
Q̂Âλn

)
≥ − Q̂

A
n − Q̂Âλn
Q̂Âλn

.

Let F (δ,∆) = Qn(α∗ + δ,β∗ + ∆) − Qn(α∗,β∗) for
(δ,∆) ∈ RK × Rp. For each model A ∈ G +

n , let r∗A =
16K(M+ ζ̄1/2)(

¯
f
¯
ζ)−1[(|A|+1) log(p)/n]1/2. If we can show

that inf(δ,∆)∈SA(r∗A) F (δ,∆) > 0, then by convexity of ρτ (·),
we must have ‖α̂A − α∗‖22 + ‖β̂A − β∗‖22 ≤ (r∗A)2. Indeed,
by Knight’s identity (see (22) of Appendix A) and the mean
value theorem, we have

inf
(δ,∆)∈SA(r∗A)

(nK)E[F (δ,∆)]

= inf
(δ,∆)∈SA(r∗A)

∑
i,k

∫ δk+xT
i∆

0

[F (α∗k + t)− F (α∗k)]dt

= inf
(δ,∆)∈SA(r∗A)

∑
i,k

∫ δk+xT
i∆

0

[tf(α∗k + ūik,t)]dt.

(32)

Note that Jn satisfies J2
n log(p)/n = O(1). Therefore, for any

1 ≤ i ≤ n, 1 ≤ k ≤ K and (δ,∆) ∈ SA(r∗A), we have

|δk + xT
i∆| ≤

√
1 + ‖xiA‖2 ·

√
δ2
k + ‖∆A‖22

≤Mr∗A
√
|A|+ 1

=
16KM

¯
f
¯
ζ

(M + ζ̄1/2)(|A|+ 1)

√
log(p)

n

≤ 16KM

¯
f
¯
ζ

(M + ζ̄1/2)(Jn + 1)

√
log(p)

n
= O(U0).

It follows from condition (C0) and (32) that

inf
(δ,∆)∈SA(r∗A)

E[F (δ,∆)]

≥ inf
(δ,∆)∈SA(r∗A)

¯
f

2nK

K∑
k=1

n∑
i=1

(δk + xT
i∆)2 ≥ ¯

f

2K¯
ζ(r∗A)2.

Therefore, by Lemma 9, with probability at least 1 −
exp{−nt2/[32ζ̄(r∗A)2]}, we have

inf
(δ,∆)∈SA(r∗A)

F (δ,∆) ≥ inf
(δ,∆)∈SA(r∗A)

E[F (δ,∆)]− z(A, r∗A)

≥ ¯
f

2K¯
ζ(r∗A)2 − 4Mr∗A

√
|A|+ 1

n
− t.

Now take t = 8r∗A
√
ζ̄(|A|+ 1) log(p)/n. It follows that for

each A ∈ G +
n , with probability at least bAn = 1−exp{−2(|A|+

1) log(p)}, we have

inf
(δ,∆)∈SA(r∗A)

F (δ,∆)

≥ ¯
f
¯
ζ(r∗A)2

2K
− r∗A

√
|A|+ 1

n

(
8
√
ζ̄ log(p) + 4M

)
> 0,

which immediately implies that

‖α̂A −α‖22 + ‖β̂A − β∗‖22 ≤ (r∗A)2.
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Now by the Bonferroni inequality, we have ‖α̂A − α‖22 +
‖β̂A − β∗‖22 ≤ (r∗A)2 for all A ∈ G +

n simultaneously with
probability at least

bn = 1−
Jn∑

|A|=s+1

(
p− s
|A| − s

)
(1− bAn )

= 1−
Jn−s∑
k=1

(
p− s
k

)
exp{−2(k + s+ 1) log(p)}

≥ 1− p−2(s+1)

p−s∑
k=1

(
p− s
k

)( 1

p2

)k
= 1− p−2(s+1)

[(
1 +

1

p2

)p−s
− 1
]
→ 1 as p→∞.

Now we derive the upper bound for supA∈G +
n
|Q̂An −Q∗n|. Let

δ̂A = α̂A −α∗ and ∆̂A = β̂A − β∗. Observe that

|Q̂An −Q∗n| =
∣∣∣ 1

nK

n∑
i=1

K∑
k=1

{ρτk(yi − α̂Ak − xT
iβ̂
A)

− ρτk(yi − α∗k − xT
iβ
∗)}
∣∣∣

≤
∣∣E{F (δ̂A, β̂A)}

∣∣+ z(A, r∗A).

Similarly, we have∣∣E{F (δ̂A, β̂A)}
∣∣

=

∣∣∣∣ 1

nK

n∑
i=1

K∑
k=1

∫ δ̂Ak +xT
i∆̂

A

0

[F (α∗k + t)− F (α∗k)]dt

∣∣∣∣
≤ 1

nK

n∑
i=1

K∑
k=1

∫ |δ̂Ak +xT
i∆̂

A|

0

[tf(α∗k + ūik,t)]dt

≤ f̄

2nK

n∑
i=1

K∑
k=1

(δ̂A + xT
i∆̂

A)2

≤ 1

2
f̄ ζ̄(‖δ̂A‖22 + ‖∆̂A‖22) ≤ 1

2
f̄ ζ̄(r∗A)2.

It follows that with probability at least bn,

|Q̂An −Q∗n| ≤
1

2
f̄ ζ̄(r∗A)2 + 4Mr∗A

√
|A|+ 1

n

+ 8r∗A

√
ζ̄(|A|+ 1) log(p)

n

≤ 128K2(M + ζ̄1/2)2

¯
f
¯
ζ

(|A|+ 1) log(p)

n

holds for all A ∈ G +
n . Now going back to BIC, we have

Pr

(
inf
λ∈Ξ+

n

[
log(Q̂Âλn /Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
≥ Pr

(
Cn log(p)

n
− sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)Q̂An

> 0

)
.

Since E(|ε|) < ∞, it follows that E(Q∗n) ≤ E(|ε|) +∑K
k=1 |α∗k|/K <∞. Thus, we have

Q̂An = Q∗n − (Q∗n − Q̂An ) = OP (1)

by noting that Jn log(p) = O(n). Therefore, with probability
at least bn, we have

sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)Q̂An

≤ sup
A∈G +

n

Q̂∗n − Q̂An
(|A| − s)Q̂An

= OP
(s log(p)

n

)
.

Since s = O(1) and Cn diverges with n, we have
s log(p)/n = O(Cn log(p)/n). It follows that

Pr

(
Cn log(p)

n
− sup
A∈G +

n

Q̂An − Q̂An
(|A| − s)Q̂An

> 0

)
→ 1 as n→∞,

which implies that Pr
(
infλ∈Ξ+

n
[BICHL(λ)− BICHL(λn)] >

0
)
→ 1 as n→∞.
We next deal with underfitted models. For any λ ∈ Ξ−n ,

similar to the overfitting case, we have

Pr
(

inf
λ∈Ξ−n

[BICHL(λ)− BICHL(λn)] > 0
)

≥ Pr

(
inf
λ∈Ξ−n

[
log(Q̂Âλn /Q̂An ) + (|Âλ| − s)

Cn log(p)

n

]
> 0

)
+ O(1).

Define BICHL(A) = log(nQ̂An ) + |A|Cn log(p)/n and let
G−n = {A : |A| ≤ Jn,A 6⊂ A}. We can see that {Âλ :
λ ∈ Ξ−n } ⊂ G−n . It suffices to show infA∈G−n

BICHL(A) >

BICHL(A) with probability tending to one as n→∞. For any
A ∈ G−n , let Ā = A∪A. Let θ = minj∈A |β∗j |. Since A 6⊃ A,
we must have ‖α̂A − α∗‖22 + ‖β̂A − β∗‖2 ≥ θ2. However,
since Ā ⊃ A and |Ā| ≤ 2Jn, using Lemma 9, we can similarly
show as in Case I that ‖α̂Ā−α∗‖22 + ‖β̂Ā−β∗‖22 ≤ θ2 with
probability at least bĀn = 1− exp{−2(|Ā|+1) log(p)} as long
as

θ > 8K(
¯
f
¯
ζ)−1(2

√
ζ̄ log(p) +M)

√
2Jn + 1

n
,

which is implied by the assumption
√
Jn log(p)/n = O(θ).

It then follows that ‖α̂Ā − α∗‖22 + ‖β̂Ā − β∗‖22 ≤ θ2 holds
for all A ∈ G−n with probability at least b̃n → 1 as n → ∞,
where

b̃n = 1−
2Jn∑
|Ā=s+1

(
p− s
Ā| − s

)
(1− bĀn )

≥ 1− p−2(s+1)
[(

1 +
1

p2

)p−s
− 1
]
.

Therefore, there exists a ∈ [0, 1], ᾱĀ = aα̂A+(1−a)α̂Ā and
β̄Ā = aβ̂A+(1−a)β̂Ā such that ‖ᾱĀ−α∗‖22+‖β̄Ā−β∗‖22 =
θ2. By convexity of ρτ and the fact that Q̂An ≥ Q̂Ān , we have
Q̄Ān = (nK)−1

∑n
i=1

∑K
k=1 ρτk(yi−ᾱĀk −xT

iβ̄
Ā) ≤ Q̂An . Note

that Q̂Ān ≤ Q̂An ≤ Q∗n. It follows that Q̂An − Q̂Ān ≥ Q̄Ān −Q∗n.
For ease of notation, let δ̄Ā = ᾱĀ−α∗ and ∆̄Ā = β̄Ā−β∗.
It can be seen that

Q̄Ān −Q∗n ≥ E[F (δ̄Ā, ∆̄Ā)]− z(Ā, θ).

Following similar arguments from the overfitting case and
noting that the support of β̄Ā is a subset of Ā, we can show
that with probability at least b̃n, for all A ∈ G−n , we have

Q̄Ān −Q∗n ≥ ¯
f

2K¯
ζθ2 − 4θ

√
|Ā|+ 1

n
(2
√
ζ̄ log(p) +M).
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Now for all A ∈ G−n , applying the inequality log(1 + x) ≥
min{log(2), x/2}, ∀x ≥ 0, we have

BICHL(A)− BICHL(Ā)

= log

(
1 +

Q̂An − Q̂Ān
Q̂Ān

)
+ (|A| − |Ā|)Cn log(p)

n

≥ min

{
log(2),

Q̄Ān −Q∗n
Q̂Ān

}
− Cns log(p)

n
.

Since
√
Cns log(p)/n = O(θ) and Q̂Ān = OP (1), it

can be seen that with probability tending to one, we have
infA∈G−n

BICHL(A) − BICHL(Ā) > 0. Following simi-
lar arguments as in Case I, we can show BICHL(Ā) ≥
infS⊃A,|S|≤2Jn BICHL(S) ≥ BICHL(A) with probability
tending to one. Case II then follows by noting that

inf
A∈G−n

[BICHL(A)− BICHL(A)]

= inf
A∈G−n

[BICHL(A)− BICHL(Ā)

+ BICHL(Ā)− BICHL(A)]

≥ inf
A∈G−n

[BICHL(A)− BICHL(Ā)].

APPENDIX B
NUMERICAL PROPERTIES OF THE CQR ORACLE SOLUTION

Recall that the CQR oracle estimator is obtained through
regression on the true set of variables

(α̂o, β̂
o
) := arg min

(α,β) : βAc =0

K∑
k=1

wk

n∑
i=1

ρτk(yi − αk − xT
iβ).

For ease of exposition, we will restrict the scope of variables
under consideration to those in A. Specifically, let a = α,
b = βA ∈ Rs and zi = xiA, i = 1, . . . , n. The oracle
solution can be equivalently obtained through the following
minimization problem

(â, b̂) := arg min
a,b

K∑
k=1

wk

n∑
i=1

ρτk(yi − ak − zT
ib).

Now let uk =
(
y − ak1n − Zb

)
+

and vk =
(
y − ak1n −

Zb
)
−, k = 1, . . . ,K, where Z = (z1, . . . , zn)T and the

positive and negative parts are taken componentwisely. Also,
let u = (uT

1, . . . ,u
T
K)T and v = (vT

1, . . . ,v
T
K)T. Then the

above regression problem can be cast into the following linear
program of standard form

minimize cTx
subject to Ax = b

x � 0,

where b = 1K ⊗ y, (⊗: Kronecker product) and

x =
(
aT

+,a
T
−,b

T
+,b

T
−,u

T,vT
)T
,

c =
(
0T
K ,0

T
K ,0

T
p,0

T
p, w1τ11

T
n, . . . , wKτK1T

n,

w1(1− τ1)1T
n, . . . , wK(1− τK)1T

)T
,

A =
(
IK ⊗ 1n,−IK ⊗ 1n,1K ⊗ Z,−1K ⊗ Z,

1K ⊗ In,−1K ⊗ In
)
.

Without loss of generality, assume that 1n /∈ Span(Z), where
Span(Z) denotes the column span of Z. Write

D = (IK ⊗ 1n,1K ⊗ Z).

The rows of D will be denoted by dT
i, i = 1, . . . , nK. LetH be

the collection of (K+s)-element subsets of {1, . . . , nK}. For
h ∈ H, let D(h) denote the submatrix of D with rows {dT

i, i ∈
h} and b(h) be the (K + s)-vector with coordinates {bi, i ∈
h}. We also let h̄ = {1, . . . , n}\h for h ∈ H. Let H =
{h ∈ H : |D(h)| 6= 0}. By similar arguments as in Section
6.2 of [3], one can verify that the vertices of the polyhedron
{x : Ax = b, x � 0} are given by

(aT,bT)T =
[
D(h)

]−1
b(h)

u(h) = v(h) = 0

u(h̄) =
[
b(h̄)−D(h̄)

(
a
b

)]
+

v(h̄) =
[
b(h̄)−D(h̄)

(
a
b

)]
−

for all h ∈ H. According to the simplex algorithm (see, e.g.,
[29], Chapter 3), the optimal solution to this linear program
is among the above set of vertices. Recall that y has a density
with respect to the Lebesgue measure. It can be seen that with
probability one, there are at most K(K+s) zero residuals for
which yi − âk − zT

ib̂ = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K, given each
optimal solution (â, b̂). Otherwise, suppose that there exist
h ∈ H and i ∈ h̄ such that u(i) = v(i) = 0. Then since
D(h) is non-singular, it follows that

bi = dT
i

(
a
b

)
= dT

i

[
D(h)

]−1
b(h),

which implies that bi is a linear combination of b(h). By the
assumption that y has a density and the structure of b, this
occurs with probability zero unless bi = bj for some j ∈ h.
However, there are at most (K − 1) such i’s for each j ∈ h.
This means with probability one, at each vertex, there are at
most K(K + s) indices i for which u(i) = v(i) = 0.

APPENDIX C
CONVERGENCE CRITERION FOR THE ADMM ALGORITHM

We adopt the following convergence criterion recommended
by [30] for the ADMM algorithm (Algorithm 1) we proposed
in this article to solve the weighted lasso penalized CQR:∥∥∥∥( X1

−X2

)
ϕr +

(
vec(Zr)
γr

)
−
(

Y
0

)∥∥∥∥
2

≤ ε1
√
nK + p

+ ε2 ·max

{∥∥∥∥( X1

−X2

)
ϕr
∥∥∥∥

2

,

∥∥∥∥(vec(Zr)
γr

)∥∥∥∥
2

, ‖Y‖2
}
,

σ‖XT
1{vec(Zr)− vec(Zr−1)} − XT

2(γr − γr−1)‖2
≤ ε1

√
p+K + ε2 · ‖XT

1vec(Ur)− XT
2v

r‖2,
where ε1 and ε2 are the tolerance parameters taking small
positive values.
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