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Abstract. Sparse principal component analysis and sparse canonical correlation analysis
are two essential techniques from high-dimensional statistics and machine learning for
analyzing large-scale data. Both problems can be formulated as an optimization problem
with nonsmooth objective and nonconvex constraints. Because nonsmoothness and
nonconvexity bring numerical difficulties, most algorithms suggested in the literature
either solve some relaxations of them or are heuristic and lack convergence guarantees. In
this paper, we propose a new alternating manifold proximal gradient method to solve
these two high-dimensional problems and provide a unified convergence analysis. Nu-
merical experimental results are reported to demonstrate the advantages of our algorithm.
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1. Introduction
In this paper, we consider two important problems arising from high-dimensional statistics and machine
learning: sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA). Both
problems are special cases of the following more general manifold optimization problem:

min F A,B( ) :� H A,B( ) + f A( ) + g B( ) subject to (s.t.) A ∈ }1,B ∈ }2, (1)
where H(A,B) is a smooth function of A,B with a Lipschitz continuous gradient, f (·) and g(·) are lower
semicontinuous (possibly nonsmooth) convex functions, and }1,}2 are two embedded submanifolds in the
Euclidean space. Problem (1) is numerically challenging because of the combination of nonsmoothness and
nonconvexity.

1.1. Our Contributions
The contributions of this paper lie in several folds. First, we propose a new alternating manifold proximal
gradient method for solving (1) and establish its convergence guarantee. Second, we show how to apply the
proposed algorithm to solve sparse PCA and sparse CCA. Third, we conduct extensive numerical experiments to
compare the performance of the proposed algorithm and existing methods for solving these two problems. Fourth,
we analyze the convergence guarantee of an inexact (and more practical) version of the proposed method.

PCA was invented by Pearson (1901) and is widely used in dimension reduction. Let X � [X1, . . . ,Xp] ∈ Rn×p
be a given data matrix whose column means are all zero. Assume that the singular-value decomposition (SVD)
of X is X � UDV�. Then it is known that Z � UD are the principal components (PCs), and the columns of V are
the corresponding loadings of the PCs. In other words, the first PC can be defined as Z1 � ∑p

j�1 α1jXj with
α1 � (α11, . . . , α1p)� maximizing the variance of Z1; that is,

α1 � argmax
α

α�Σ̂α s.t. ‖α1‖2 � 1,

1
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where Σ̂ � (X�X)/(n − 1) is the sample covariance matrix. The remaining PCs are defined as

αk+1 � argmax
α

α�Σ̂α s.t. ‖α‖2 � 1, α�αl � 0,∀1 ≤ l ≤ k.

CCA, introduced by Hotelling (1936), is another widely used tool that explores the relation between two sets
of variables. For random variables x ∈ Rp and y ∈ Rq, CCA seeks linear combinations of x and y such that the
resulting values are mostly correlated. That is, it targets to solve the following optimization problem:

max
u∈Rp,v∈Rq

u�Σxyv̅̅̅̅̅̅̅̅̅
u�Σxu

√ ̅̅̅̅̅̅̅̅̅
v�Σyv

√ , (2)

where Σx and Σy are variances of x and y, Σxy is their covariance matrix, and u ∈ Rp and v ∈ Rq are the first
canonical vectors. It can be shown that solving (2) corresponds to computing the SVD of Σ−1/2

x ΣxyΣ
−1/2
y .

In practice, given two centered data sets X ∈ Rn×p,Y ∈ Rn×q with a joint covariance matrix [Σx,Σxy; Σyx,Σy],
CCA seeks the coefficients u, v such that the correlation of Xu and Yv is maximized. The classical CCA
(Hotelling 1936) can be formulated as

max
u∈Rp,v∈Rq

u�X�Yv s.t. u�X�Xu � 1, v�Y�Yv � 1, (3)

where X�Y,X�X,Y�Y are used to estimate the true parameters Σxy,Σx,Σy after scaling.
However, PCA and CCA perform poorly and often lead to wrong findings when modeling with high-

dimensional data. For example, when the dimension is proportional to the sample size such that limn→∞ p/n �
γ ∈ (0, 1) and the largest eigenvalue λ1 ≤ ̅̅

γ
√

, the leading sample principal eigenvector could be asymptotically
orthogonal to the leading population principal eigenvector under a multivariate Gaussian model (Paul 2007)
or a spiked covariance model with a single component and finite fourth moment (Nadler 2008). The or-
thogonality result is built on the almost sure limits of sample eigenvalues (Baik and Silverstein 2006). Sparse
PCA and sparse CCA are proposed as the more interpretable and reliable dimension-reduction and feature-
extraction techniques for high-dimensional data. In what follows, we provide a brief overview of their
methodological developments.

Sparse PCA seeks a sparse basis (loadings) of the subspace spanned by the data so that the leading PCs
obtained are easier to interpret. Jolliffe et al. (2003) proposed the SCoTLASS procedure (Simplified Component
Technique-LASSO) by imposing an �1 norm on the loading vectors, which can be formulated as the following
optimization problem for given data X ∈ Rn×p:

min
A∈Rp×r −Tr A�X�XA

( ) + μ‖A‖1 s.t. A ∈ St p, r
( )

, (4)

where Tr(Z) denotes the trace of matrix Z, μ > 0 is a weighting parameter, ‖A‖1 � ∑
ij |Aij|, and St(p, r) :� {A ∈

Rp×r : A�A � Ir} is the Stiefel manifold, where Ir is the r × r identity matrix. Note that the original SCoTLASS
model in Jolliffe et al. (2003) uses an �1 constraint ‖A‖1 ≤ t instead of penalizing ‖A‖1 in the objective. The
SCoTLASS model (4) is numerically challenging. Algorithms for solving it have been limited. As a result, a
new formulation of sparse PCA has been proposed by Zou et al. (2006), and it has been the main focus in the
literature on this topic. Zou et al. (2006) formulate the sparse PCA problem as the following ridge regression
problem plus a LASSO penalty:

min
A∈Rp×r,B∈Rp×r

∑n
i�1

xi − AB�xi
⃦⃦ ⃦⃦2

2 + μ
∑r
j�1

Bj
⃦⃦ ⃦⃦2

2 +
∑r
j�1

μ1,j Bj
⃦⃦ ⃦⃦

1 s.t. A ∈ St p, r
( )

, (5)

where xi denotes the transpose of the ith row vector of X, Bj is the jth column vector of B, and μ > 0 and μ1,j > 0
are weighting parameters. Given A ∈ St(p, r), we have the following:∑n

i�1
‖xi − AB�xi‖22 � ‖X − XBA�‖2F � Tr X�X

( ) + Tr B�X�XB
( ) − 2Tr A�X�XB

( )
.
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Therefore, (5) can be equivalently written as follows:

min
A∈Rp×r,B∈Rp×r H A,B( ) + μ

∑r
j�1

‖Bj‖22 +
∑r
j�1

μ1,j‖Bj‖1 s.t. A ∈ St p, r
( )

, (6)

where

H A,B( ) � Tr B�X�XB
( ) − 2Tr A�X�XB

( )
.

The sparse PCA (6) is in the form of (1) with f (A) ≡ 0, g(B) � μ
∑r

j�1 ‖Bj‖22 +∑r
j�1 μ1,j‖Bj‖1, }1 � St(p, r), and

}2 � Rp×r. However, it should be noted that (6) is indeed still numerically challenging. Zou et al. (2006)
proposed to solve it using an alternating minimization algorithm (AMA) that updates A and B alternatingly
with the other variable fixed as the current iterate. A typical iteration of AMA is as follows:

Ak+1 :� argmin
A∈Rp×r

H A,Bk( )
s.t. A ∈ St p, r

( )
Bk+1 :� argmin

B∈Rp×r
H Ak+1,B
( ) + μ

∑r
j�1

‖Bj‖22 +
∑r
j�1

μ1,j‖Bj‖1. (7)

The A-subproblem in (7) is known as a Procrustes rotation problem and has a closed-form solution given by a
SVD. The B-subproblem in (7) is a linear regression problem with an elastic net regularizer, and it can be
solved by many existing solvers such as elastic net (Zou and Hastie 2005), coordinate descent (Friedman et al.
2010), and the fast iterative shrinkage-thresholding algorithm (FISTA; Beck and Teboulle 2009). However,
there is no convergence guarantee of AMA (7). Recently, some new algorithms are proposed in the literature
that can solve (6) with guarantees of convergence to a stationary point. We provide a summary of some
representative algorithms in the next section.

We need to point out that there are other ways to formulate sparse PCA such as the ones in d’Aspremont
et al. (2007, 2008), Ma (2013), Lu and Zhang (2012), Vu et al. (2013), d’Aspremont (2011), Shen and
Huang (2008), Witten et al. (2009), Journee et al. (2010), Yuan and Zhang (2013), and Moghaddam et al.
(2005). We refer interested readers to the recent survey paper by Zou and Xue (2018) for more details on these
works on sparse PCA. In this paper, we focus on the formulation of (6) to estimate multiple PCs, which is a
manifold optimization problem with nonsmooth objective function.

Sparse CCA (Wiesel et al. 2008, Parkhomenko et al. 2009, Witten et al. 2009, Hardoon and Shawe-Taylor
2011) is proposed to improve the interpretability of CCA, which can be formulated as follows:

min
u∈Rp,v∈Rq

−u�X�Yv + f u( ) + g v( ) s.t. u�X�Xu � 1, v�Y�Yv � 1, (8)

where X ∈ Rn×p, Y ∈ Rn×q, f , and g are regularization terms promoting the sparsity of u and v, and common
choices for them include the �1 norm for sparsity and the �2,1 norm for group sparsity. When multiple ca-
nonical vectors are needed, one can consider the matrix counterpart of (8) that can be formulated as follows:

min
A∈Rp×r,B∈Rq×r −Tr A�X�YB

( ) + f A( ) + g B( ) s.t. A�X�XA � Ir, B�Y�YB � Ir, (9)

where r is the number of canonical vectors needed. From now on, we call (8) the single sparse CCA model and
(9) the multiple sparse CCA model. Moreover, motivated by Gao et al. (2017), in this paper we choose f and g to
be the �2,1 norm to promote the group sparsity of A and B in (9). Specifically, we choose f (A) � τ1‖A‖2,1 and
g(B) � τ2‖B‖2,1, where the �2,1 norm is defined as ‖A‖2,1 � ∑p

j�1 ‖Aj·‖2, and Aj· denotes the jth row vector of
matrix A, and τ1 > 0 and τ2 > 0 are weighting parameters. In this case, the multiple sparse CCA (9) reduces to

min
A∈Rp×r,B∈Rq×r −Tr A�X�YB

( ) + τ1‖A‖2,1 + τ2‖B‖2,1 s.t. A�X�XA � Ir, B�Y�YB � Ir, (10)

which is in the form of (1) with H(A,B) � −Tr(A�X�YB), }1 � {A | A�X�XA � Ir}, and }2 � {B | B�Y�YB � Ir}.
Note that in (8) and (9) we assumed that both X�X and Y�Y are positive definite to guarantee that }1 and }2
are submanifolds. If they are not positive definite, we can always add a small perturbation to make them so.
These manifolds used in (8) and (9) are generalized Stiefel manifolds. Note that when r � 1, the �2,1 norm
becomes the �1 norm of the vector because ‖u‖2,1 � ‖u‖1 for any u ∈ Rp. In this case, (8) reduces to

min
u∈Rp,v∈Rq

−u�X�Yv + τ1‖u‖1 + τ2‖v‖1 s.t. u�X�Xu � 1, v�Y�Yv � 1. (11)
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Manifold optimization has recently drawn a lot of research attention because of its success in a variety of
important applications, including low-rank matrix completion (Boumal and Absil 2011, Vandereycken 2013),
phase retrieval (Bendory et al. 2018, Sun et al. 2018), phase synchronization (Boumal 2016, Liu et al. 2017),
blind deconvolution (Huang and Hand 2018), and dictionary learning (Cherian and Sra 2017, Sun et al. 2017).
Most existing algorithms for solving manifold optimization problems rely on the smoothness of the objective
(see the recent monograph by Absil et al. (2009)). Studies on manifold optimization problems with nonsmooth
objectives such as (6), (10), and (11) have been limited. This urges us to study efficient algorithms that solve
manifold optimization problems with nonsmooth objectives, and this is the main focus of this paper.

The rest of this paper is organized as follows. We review existing methods for sparse PCA and sparse CCA
in Section 2. We propose a unified alternating manifold proximal gradient method with provable convergence
guarantees for solving both sparse PCA and sparse CCA in Section 3. The numerical performance is dem-
onstrated in Section 4. We provide preliminaries on manifold optimization and details of the global con-
vergence analysis of our proposed method in the online appendix. We also discuss the convergence result of
an inexact version of our algorithm in the online appendix.

2. Existing Methods
Before proceeding, we review existing methods for solving sparse PCA (6) and sparse CCA (8) and (9).

2.1. Existing Methods for Sparse PCA
For sparse PCA (6), other than the AMA algorithm suggested in Zou et al. (2006), there exist some other
efficient algorithms for solving this problem. We now give a brief review of these works. We first introduce
two powerful optimization algorithms for solving nonconvex problems: the proximal alternating minimi-
zation (PAM) algorithm (Attouch et al. 2010) and the proximal alternating linearization method (PALM) (Bolte
et al. 2014). Surprisingly, it seems that these two methods have not been used to solve (6) yet. We now briefly
describe how these two methods can be used to solve (6). PAM for (6) solves the following two subproblems in
each iteration:

Ak+1 :� argmin
A

H A,Bk( ) + 1
2t1

‖A − Ak‖2F s.t. A ∈ St p, r
( )

, (12)

Bk+1 :� argmin
B

H Ak+1,B( ) + μ
∑r
j�1

‖Bj‖22 +
∑r
j�1

μ1,j‖Bj‖1 + 1
2t2

‖B − Bk‖2F, (13)

where t1 > 0, t2 > 0 are step sizes. Note that in each subproblem, PAM minimizes the objective function with
respect to one variable by fixing the other, and a proximal term is added for the purpose of convergence
guarantee. It is shown in Attouch et al. (2010) that the sequence of PAM converges to a critical point of (6)
under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz (KL) inequality.1 We need
to point out that the only difference between PAM ((12) and (13)) and the AMA (7) is the proximal terms,
which together with the KL inequality helps establish the convergence result. Note that the A-subproblem
in (12) corresponds to the reduced-rank Procrustes rotation and can be solved by a SVD. The B-subproblem
in (13) is a LASSO-type problem and can be solved efficiently by first-order methods such as FISTA or block
coordinate descent. A better algorithm that avoids an iterative solver for the subproblem is PALM, which
linearizes the quadratic functions in the subproblems of (12) and (13). A typical iteration of PALM is
the following:

Ak+1 :� argmin
A

〈∇AH Ak,Bk( ),A〉 + 1
2t1

‖A − Ak‖2F s.t. A ∈ St p, r
( )

, (14)

Bk+1 :� argmin
B

〈∇BH Ak+1,Bk( ),B〉 + 1
2t2

‖B − Bk‖2F + μ
∑r
j�1

‖Bj‖22 +
∑r
j�1

μ1,j‖Bj‖1, (15)

where ∇AH and ∇BH denote the gradient of H with respect to A and B, respectively. The two subproblems in
(14) and (15) are easier to solve than the ones in (12) and (13) because they both admit closed-form solutions. In
particular, the solution of the A-subproblem in (14) corresponds to the projection onto the orthogonality
constraint, which is given by a SVD; the solution of the B-subproblem in (15) is given by the �1 soft-
thresholding operation. It is shown in Bolte et al. (2014) that the sequence of PALM converges to a critical
point of (6) under the assumption that the objective function satisfies the KL inequality. Recently, Erichson
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et al. (2020) proposed a projected gradient method based on variable projection (VP) for solving (6). Though
the motivation of this algorithm is different, it can be viewed as a variant of PAM and PALM. Roughly
speaking, the VP algorithm combines the A-subproblem (without the proximal term) in (12) and the
B-subproblem in (15). That is, it updates the iterates as follows:

Ak+1 :� argmin
A

H A,Bk( ) s.t. A ∈ St p, r
( )

, (16)

Bk+1 :� argmin
B

〈∇BH Ak+1,Bk( ),B〉 + 1
2t2

‖B − Bk‖2F + μ
∑r
j�1

‖Bj‖22 +
∑r
j�1

μ1,j‖Bj‖1. (17)

Note that the difference of PALM ((14) and (15)) and VP ((16) and (17)) lies in the A-subproblem. The
A-subproblem linearizes the quadratic function H(A,Bk) in (14) but not in (16). This does not affect the
performance of the algorithms much because in this specific problem, the A-subproblems correspond to a SVD
in both algorithms. It is shown in Erichson et al. (2020) that the VP ((16) and (17)) converges to a stationary
point of (6). Another recent work that can solve (6) is the manifold proximal gradient (ManPG) algorithm
proposed by Chen et al. (2020). We will discuss it in more details later because it is closely related to the
algorithm we propose in this paper. For other algorithms for solving sparse PCA, we refer interested readers
to a recent survey paper (Zou and Xue 2018) for more details.

2.2. Existing Methods for Sparse CCA
Chen et al. (2013) studied a canonical correlation analysis via the precision-adjusted iterative thresholding
(CAPIT) algorithm for solving the single sparse CCA (11). CAPIT alternates between an iterative thresholding
step and a power method step to deal with the sparsity regularization and orthogonality constraints, re-
spectively. The convex program with group LASSO refinement (CoLaR) method proposed by Gao et al. (2017)
targets the multiple sparse CCA (9). CoLaR is a two-stage algorithm. In the first stage, a convex relaxation of
(9) based on the matrix lifting technique is solved. In the second stage, the solution obtained from the first
stage is refined by solving a group LASSO-type problem. Wiesel et al. (2008) suggested a greedy approach for
solving (2) with cardinality constraints on u and v. Recently, Suo et al. (2017) developed an AMA for solving
the single sparse CCA (11) that solves two subproblems in each iteration by solving (11) with respect to u
(respectively, v) with v (respectively, u) fixed as vk (respectively, uk). The subproblems were then solved by a
linearized alternating direction method of multipliers (ADMM) algorithm. We need to point out that none of
these algorithms for sparse CCA has a convergence guarantee. There exist some other methods for sparse CCA
(see, e.g., Witten et al. 2009, Hardoon and Shawe-Taylor 2011), but we omit their details here because they are
not directly related to (8) and (9). We also point out that the PAM, PALM, and VP algorithms discussed in
Section 2.1 are not good choices for sparse CCA ((8) and (9)) because the resulting subproblems are not easy to
solve and require expensive subroutines. For instance, to apply PALM to (8), one needs to compute the
proximal mapping of f (u) + ι(u�X�Xu � 1), which does not admit a closed-form solution and is thus com-
putationally expensive, where ι(·) denotes the indicator function.

3. Unified Alternating Manifold Proximal Gradient Algorithm
In this section, we introduce our alternating manifold proximal gradient (A-ManPG) algorithm for solving (1).
The following assumptions are made for problem (1).

Assumption 1. We assume that the following are true:
a. The functions f and g are convex and Lipschitz continuous with Lipschitz constants Lf and Lg, respectively, and

their proximal mappings are semismooth.2

b. The function ∇AH(A,B) is Lipschitz continuous with respect to A when fixing B, and the Lipschitz constant is
LA(B). Similarly, ∇BH(A,B) is Lipschitz continuous with respect to B when fixing A, and the Lipschitz constant is
LB(A). Moreover, there exist constants LA > 0 and LB > 0 such that supB∈}2

{LA(B)} ≤ LA and supA∈}1
{LB(A)} ≤ LB.

c. The function F is lower bounded by a constant F∗.
d. The function F is coercive with respect to (A,B). An immediate consequence of this assumption is that the sublevel

set {(A,B) | F(A,B) ≤ F(A0,B0)} is bounded for any (A0,B0).
Remark 1. In Assumption 1(a), the Lipschitz continuity and convexity are all defined in the Euclidean space. In
Assumption 1(b), it is easy to obtain that LA(B) ≡ 0 and LB(A) � 2λmax(X�X) for problem (6) and LA(B) � LB(A) ≡ 0
for problems (8) and (10). Assumptions 1(c) and 1(d) can be removed if }1 and }2 are compact submanifolds.
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The ManPG algorithm proposed by Chen et al. (2020) can be applied to solve (1). In each iteration, ManPG
linearizes H(A,B) and solves the following convex subproblem:

min
DA,DB

∇AH Ak,Bk( )
∇BH Ak,Bk( )

( )
,

DA

DB

( )〈 〉
+ 1
2t
‖DA‖2F +

1
2t
‖DB‖2F + f Ak +DA

( )
+ g Bk +DB

( )
s.t. DA ∈ TAk}1,DB ∈ TBk}2, (18)

where t < 1/L, and L is the Lipschitz constant of ∇H(A,B) on the tangent space TAk}1 × TBk}2. Here 〈A,B〉 �
Tr(A�B) denotes the inner product. Note that (18) is actually separable for DA and DB and thus reduces to two
subproblems for DA and DB, respectively. As a result, ManPG (18) can be viewed as a Jacobi-type algorithm in
this case because it computes DA and DB in parallel. We found from our numerical experiments that the
algorithm converges faster if DA and DB are computed in a Gauss–Seidel manner. This leads to the following
updating scheme, which is the basis of our A-ManPG algorithm:

DA
k :� argmin

DA

〈∇AH Ak,Bk( ),DA〉 + f Ak +DA( ) + 1
2t1

‖DA‖2F s.t. DA ∈ TAk}1, (19)

DB
k :� argmin

DB

〈∇BH Ak+1,Bk( ),DB〉 + g Bk +DB( ) + 1
2t2

‖DB‖2F s.t. DB ∈ TBk}2, (20)

where Ak+1 is obtained via a retraction operation (see Algorithm 1), t1 ≤ 1/LA, and t2 ≤ 1/LB. The Gauss–Seidel-
type algorithm A-ManPG usually performs much better than the Jacobi-type algorithm ManPG, because the
Lipschitz constants are smaller, and thus, larger step sizes are allowed. The details of the A-ManPG algorithm
are described in Algorithm 1.

Algorithm 1 (A-ManPG Method)
1: Input: Initial point (A0,B0), parameter γ ∈ (0, 1), step sizes t1 ≤ 1/LA and t2 ≤ 1/LB.
2: for k � 0, 1, . . . , do
3: Solve the A-subproblem in (19) to obtain DA

k .
4: Set αk

1 � 1.
5: while F(RetrAk (αk

1D
A
k ) ,Bk) > F(Ak,Bk) − αk

1

2t1
‖DA

k ‖2F, do
6: αk

1 � γαk
1

7: end while
8: Set Ak+1 � RetrAk (αk

1D
A
k ).

9: Solve the B-subproblem in (20) to obtain DB
k .

10: Set αk
2 � 1.

11: while F(Ak+1,RetrBk (αk
2D

B
k )) > F(Ak+1,Bk) − αk

2

2t2
‖DB

k ‖2F, do
12: αk

2 � γαk
2

13: end while
14: Set Bk+1 � RetrBk (αk

2D
B
k ).

15: end for

Remark 2. Note that the iterates Ak and Bk are kept on the manifolds through the retraction operations RetrA and
RetrB. There exist many choices for the retraction operations, and in Algorithm 1, we did not specify which ones to
use. We discuss common retractions for the Stiefel manifold and the generalized Stiefel manifold in the online
appendix. In our numerical experiments in Section 4, we chose polar decomposition as the retraction. Lines 4–7 and
10–13 in Algorithm 1 are backtracking line search procedures. These are necessary to guarantee that the objective
function has a sufficient decrease in each iteration, which is needed for the convergence analysis (see the
online appendix).

From Lemma 3 (see the online appendix), we know that DA
k � 0 and DB

k � 0 imply that (Ak,Bk) is a stationary
point (see the online appendix, Definition 5) for problem (1). As a result, we can define an ε-stationary point
of (1) as follows.

Definition 1. We call (A,B) an ε-stationary point of (1) if DA and DB returned by (19) and (20) with step sizes
t1 � 1/LA, t2 � 1/LB satisfy (‖DA/t1‖2F + ‖DB/t2‖2F) ≤ ε2.

We have the following convergence results for the A-ManPG algorithm (Algorithm 1), whose proof is given
in the online appendix.
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Theorem 1. Under Assumption 1, any limit point of the sequence {(Ak,Bk)} generated by Algorithm 1 is a stationary point of
problem (1). Moreover, Algorithm 1 with step sizes t1 � 1/LA, t2 � 1/LB returns an ε-stationary point (Ak,Bk) in at most
2(F(A0,B0) − F∗)/((γᾱ1t1 + γᾱ2t2)ε2) iterations, where ᾱ1 > 0 and ᾱ2 > 0 are constants.

3.1. Semismooth Newton Method for the Subproblems
The main computational effort in each iteration of Algorithm 1 is to solve (19) and (20). For the Stiefel manifold
and the generalized Stiefel manifold, (19) and (20) are both equality-constrained convex problems, given that
both f and g are convex functions. Note that if f (respectively, g) vanishes, the A-subproblem (respectively,
B-subproblem) becomes the projection onto the tangent space of }1 (respectively, }2), which reduces to a
Riemannian gradient step and can be easily done. Here we discuss the general case where f and g do not
vanish. The subproblem solver should be efficient and yields highly accurate solutions. We have tested several
possible candidates of subproblem solvers including ADMM and the augmented Lagrangian method but
found that they are either less efficient or do not yield a highly accurate solution. In the end, we found that an
adaptive semismooth Newton (SSN) method (Xiao et al. 2018) is suitable for solving this kind of problem. The
notion of semismoothness was originally introduced by Mifflin (1977) for real-valued functions and extended
to vector-valued mappings by Qi and Sun (1993). In a pioneering work on the SSN method, Solodov and
Svaiter (1998) proposed a globally convergent Newton’s method by exploiting the structure of monotonicity
and established a local superlinear rate under the conditions that the operator is semismooth and the
generalized Jacobian is nonsingular at the global optimal point. The convergence rate is extended in Zhou and
Toh (2005) to the setting where the generalized Jacobian is not necessarily nonsingular. Recently, the SSN
method has received significant attention because of its success in solving structured convex problems to high
accuracy (see Wang et al. 2010; Zhao et al. 2010; Qi and Sun 2011; Yang et al. 2013, 2015; Li et al. 2018; Xiao
et al. 2018).

We now describe how to apply the adaptive SSN (ASSN) method in Xiao et al. (2018) to solve (19) and (20).
The derivation here closely follows the one in Chen et al. (2020). For brevity, we only focus on the A-sub-
problem with }1 � {A | A�X�XA � Ir} and f (A) � τ1‖A‖2,1 as used in (10). Note that for the Stiefel manifold
} � St(p, r), its tangent space is given by TA} � {D | D�A + A�D � 0}, and for the generalized Stiefel manifold
} � {A | A�MA � Ir}, its tangent space is given by TA} � {D | D�MA + A�MD � 0}. For ease of notation, we
denote t � t1, D � DA, M :� X�X, and h(A) :� H(A,Bk). In this case, the A-subproblem in (19) reduces to

Dk :� argmin
D

〈∇h Ak( ),D〉 + f Ak +D( ) + 1
2t
‖D‖2F s.t. D�MAk + A�

k MD � 0. (21)

By associating a Lagrange multiplier Λ with the linear equality constraint, the Lagrangian function of (21) can
be written as follows:

+ D;Λ( ) � 〈∇h Ak( ),D〉 + 1
2t
‖D‖2F + f Ak +D( ) − 〈D�MAk + A�

k MD,Λ〉, (22)

and the Karush–Kuhn–Tucker system of (21) is given by

0 ∈ ∂D+ D;Λ( ) and D�MAk + A�
k MD � 0. (23)

The first condition in (23) implies that D can be computed by

D Λ( ) � proxtf B Λ( )( ) − Ak, with B Λ( ) � Ak − t ∇h Ak( ) − 2MAkΛ( ), (24)
where proxf (A) denotes the proximal mapping of function f at point A. By substituting (24) into the second
condition in (22), we obtain that Λ satisfies

E Λ( ) :� D Λ( )�MAk + A�
k MD Λ( ) � 0, (25)

and thus the problem reduces to finding a root of function E. Because E is a monotone operator (see Chen et al.
2020) and the proximal mapping of the �2 norm is semismooth,3 we can apply SSN to find the zero of E.

Chen et al.: Alternating Manifold Proximal Gradient Method
INFORMS Journal on Optimization, Articles in Advance, pp. 1–17, © 2020 INFORMS 7



The SSN method requires computation of the generalized Jacobian of E, and in the following, we show how to
compute it. We first derive the vectorization of E(Λ):

vec E Λ( )( ) � MAk( )� ⊗ Ir
( )

vec D Λ( )�( ) + Ir ⊗ MAk( )�( )
Krpvec D Λ( )�( )

� Ir2 + Krr( ) MAk( )� ⊗ Ir
( )

proxtf vec MAk( )�−t∇h Ak( )�( )([
+ 2t MAk( ) ⊗ Ir( )vec Λ( )) − vec Ak

�( )]
,

where Krp and Krr denote the commutation matrices. We define the following matrix:

& vec Λ( )( ) � 2 Ir2 + Krr( ) MAk( )� ⊗ Ir
( )

) y
( )|y�vec B Λ( )�( ) MAk( ) ⊗ Ir( ),

where ⊗ denotes the Kronecker product, and )(y) is the generalized Jacobian of proxtf (y). The matrix )(y) is
defined as )(y)|y�vec(B(Λ)�) � Diag(Δ1, . . . ,Δp), where the matrices Δj, j � 1, . . . , p are defined as follows:

Δj �
Ir − τ1t‖bj‖2 Ir − bjb�j

‖bj‖22

( )
, if ‖bj‖2 > tτ1,

γ
bjb�j
(tτ1)2 : γ ∈ 0, 1[ ], if ‖bj‖2 � tτ1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Here bj is the jth column of matrix B(Λ)�. From the monotonicity of vec(E(vec(Λ))), it follows that &(vec(Λ)) is
positive semidefinite4 (Xiao et al. 2018, lemma 2.4). From Hiriart-Urruty et al. (1984, example 2.5), we know
that &(vec(Λ))ξ � ∂vec(E(vec(Λ))ξ, ∀ξ ∈ Rr2 . So &(vec(Λ)) serves as an alternative of ∂vec(E(vec(Λ))). It is
known that the global convergence of ASSN is guaranteed if any element of &(vec(Λ)) is positive semidefinite
(Xiao et al. 2018). For the local convergence rate, one needs more conditions on ∂vec(E(vec(Λ))). We refer to
Xiao et al. (2018) for more details. Note that because Λ is a symmetric matrix, we can work with the lower
triangular part of Λ only and remove the duplicated entries in the upper triangular part. To do so, we use
vec(Λ) to denote the 1

2 r(r + 1)-dimensional vector obtained from vec(Λ) by eliminating all superdiagonal
elements of Λ. It is known that there exists a unique r2 × 1

2 r(r + 1) matrix Ur, which is called the duplication
matrix (Magnus and Neudecker 2018, chapter 3.8), such that Urvec(Λ) � vec(Λ). The Moore–Penrose inverse of
Ur is U+

r � (U�
r Ur)−1U�

r , and it satisfies U+
r vec(Λ) � vec(Λ). The alternative of the generalized Jacobian of

vec(E(Urvec(Λ))) is given by

G vec Λ( )( ) � tU+
r & vec Λ( )( )Ur � 4tU+

r MAk( )� ⊗ Ir
( )

) y
( )|y�vec B Λ( )�( ) MAk( ) ⊗ Ir( )Ur, (26)

where we use the identity Krr + Ir2 � 2UrU+
r . Therefore, (26) can be simplified to

G vec Λ( )( )

� 4tU+
r MAk( )�⊗ Ir
( ) Δ1

. .
.

Δp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ MAk( ) ⊗ Ir( )Ur

� 4tU+
r

∑p
j�1

MAk( )2j1Δj
∑p
j�1

MAk( )j1 MAk( )j2Δj · · · ∑p
j�1

MAk( )j1 MAk( )jrΔj

∑p
j�1

MAk( )j2 MAk( )j1Δj
∑p
j�1

MAk( )2j2Δj · · · ∑p
j�1

MAk( )j2 MAk( )jrΔj

..

. ..
. ..

. ..
.∑p

j�1
MAk( )jr MAk( )j1Δj

∑p
j�1

MAk( )jr MAk( )j2Δj · · · ∑p
j�1

MAk( )2jrΔj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ur. (27)

Because both Ur and U+
r have only r2 nonzero elements, the computation flop of matrix G(vec(Λ)) is

2pr4 + 2r(r + 1)r2. The ASSN method in Xiao et al. (2018) first computes Newton’s direction dk by solving

G vec Λk( )( ) + ηI
( )

d � −vec E vec Λk( )( )( ), (28)
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where η > 0 is a regularization parameter. Note that η is necessary here because G(vec(Λ)) could be singular if
Δj � 0 for some j. We then update Λk by

vec Λk+1( ) � vec Λk( ) + dk.

Thus, the main computational cost of the SSN algorithm lies in solving (28), which is 2(r6) in each iteration.
Therefore, performing a SSN step is faster than computing the gradient of the objective function in (1), which
is 2(p2r), if r is much smaller than p. We describe the detailed ASSN algorithm proposed in Xiao et al. (2018) in
the online appendix.

4. Numerical Experiments
4.1. Sparse PCA
In this section, we apply our A-ManPG algorithm5 to solve sparse PCA (6) and compare its performance with
that of three existing methods: AMA (Zou et al. 2006), PALM (Bolte et al. 2014), and VP (Erichson et al. 2020).
The details of the parameter settings of these algorithms are as follows:

• AMA (7): Maximum iteration number of AMA is set to 1,000. We use FISTA (Beck and Teboulle 2009) to
solve the B-subproblem, and we set the maximum iterations of FISTA to 1,000 and stop it if ‖Aj − Aj−1‖/
‖Aj−1‖ ≤ 10−6, where {Aj} is the sequence in FISTA.

• PALM ((14) and (15)): Here t1 :� 1, t2 :� 1/(2λmax(X�X)). Maximum iteration number is set to 10,000.
• VP ((16) and (17)): Here t2 :� 1/(2λmax(X�X)). Maximum iteration number is set to 10,000.
• A-ManPG: Here t1 � 100/p, t2 :� 1/(2λmax(X�X)). Maximum iteration number is set to 10,000.
The algorithms are terminated using the following criteria. First, we use the PALM algorithm as a baseline, and

we denote the objective function value in (6) as F(A,B), that is.,F(A,B) � H(A,B) + μ
∑r

j�1 ‖Bj‖2 +∑r
j�1 μ1,j‖Bj‖1.

We terminate PALM when we find that

|FPALM Ak+1,Bk+1( ) − FPALM Ak,Bk( )| < 10−5. (29)
We then terminate the AMA, A-ManPG, and VP algorithms when their objective function values are smaller
than FPALM and the change of their objective values in two consecutive iterations is less than 10−5.

We generate the data matrix X in the following manner. First, the entries of X are generated following the
standard normal distribution 1(0, 1). The columns of X are then centered so that the columns have zero mean,
and they are then scaled by dividing the largest �2 norm of the columns. We report the comparison results of
the four algorithms in Tables 1 and 2, where r � 6 for all cases. In particular, Table 1 reports the results for
n < p, and we tested μ � 1 and μ � 10 because it is suggested in Zou et al. (2006) that μ should be relatively
large in this case. Table 2 reports the results for n > p, and we set μ � 10−6 because it is suggested in Zou
et al. (2006) that μ should be sufficiently small in this case. In these tables, central processing unit (CPU) times
are in seconds, and “sp” denotes the percentage of zero entries of matrix B. From Tables 1 and 2, we see that
the four algorithms generated solutions with similar objective function value F(A,B) and similar sparsity sp. In
terms of CPU time, AMA is the slowest, and the other three are comparable and are all much faster than AMA.
This is because AMA needs an iterative solver to solve the B-subproblem, which is time-consuming in practice.

4.1.1. Comparison with ManPG-Ada. We also compared the A-ManPG algorithm with the ManPG-Ada al-
gorithm (a more practical version of ManPG) proposed in Chen et al. (2020) on the sparse PCA problem (6).
The comparison results are reported in Figures 1 and 2. These results indicate that A-ManPG is at least two
times faster than ManPG-Ada on the tested synthetic problems. More comparison results are presented in
Figures 3 and 4 in the online appendix.

4.2. Sparse CCA: Vector Case
In this section, we report the numerical results of the A-ManPG algorithm for solving the single sparse CCA (11)
and compare its performance with a recent approach proposed by Suo et al. (2017): AMA + linearized al-
ternating direction method of multipliers (LADMM). More specifically, the AMA + LADMM method aims to
solve the relaxation of (11) as follows:

min
u∈Rp,v∈Rq

− u�X�Yv + τ1‖u‖1 + τ2‖v‖1
s.t. u�X�Xu ≤ 1, v�Y�Yv ≤ 1.

(30)

We generate the data in the same manner as Suo et al. (2017). Specifically, two data sets X ∈ Rn×p and Y ∈ Rn×q are
generated from a Gaussian model with zero mean and covariance matrix [Σx,Σxy; Σyx,Σy] with Σxy � ρ̂Σxûv̂�Σy, û
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and v̂ are the true canonical vectors, and ρ̂ is the true canonical correlation. In our numerical tests, û and v̂ are
generated randomly such that they both have five nonzero entries and the nonzero coordinates are set at the
{1, 6, 11, 16, 21}th coordinates. The nonzero entries are obtained from normalizing (with respect to Σx and Σy)
random numbers drawn from the uniform distribution on the finite set {−2,−1, 0, 1, 2}. We set ρ̂ � 0.9 in all
tests. We tested three different ways to generate the covariance matrices Σx and Σy that are exactly the same as

Table 2. Comparison of Algorithms for Solving the Sparse PCA Problem with n > p and μ � 10−6

Algorithm F(A,B) sp CPU Iteration Algorithm F(A,B) sp CPU Iteration

(n, p) � (5,000, 2,000), μ1,j � 0.01, j � 1, . . . , r (n, p) � (5,000, 2,000), μ1,j � 0.05, j � 1, . . . , r
AMA −1.29155e+1 37.8 133.04 539 AMA −8.83497e+0 89.4 88.04 425
A-ManPG −1.29151e+1 37.6 2.44 493 A-ManPG −8.83440e+0 89.4 3.87 842
PALM −1.29142e+1 37.6 3.54 768 PALM −8.83437e+0 89.3 4.36 977
VP −1.29150e+1 37.5 2.93 640 VP −8.83452e+0 89.3 3.48 773

(n, p) � (8,000, 1,000), μ1,j � 0.01, j � 1, . . . , r (n, p) � (8,000, 1,000), μ1,j � 0.05, j � 1, . . . , r
AMA −9.04522e+0 37.9 23.53 325 AMA −6.59097e+0 95.6 44.30 636
A-ManPG −9.04477e+0 37.6 0.22 276 A-ManPG −6.58996e+0 95.7 0.78 897
PALM −9.04471e+0 37.7 0.31 507 PALM −6.58995e+0 95.7 0.82 1,486
VP −9.04511e+0 37.8 0.24 360 VP −6.60764e+0 95.9 1.22 1,907

(n, p) � (8,000, 2,000), μ1,j � 0.01, j � 1, . . . , r (n, p) � (8,000, 2,000), μ1,j � 0.05, j � 1, . . . , r
AMA −1.07975e+1 40.3 116.65 388 AMA −7.32162e+0 95.3 167.36 597
A-ManPG −1.07975e+1 40.2 2.19 363 A-ManPG −7.31837e+0 95.0 3.34 578
PALM −1.07966e+1 40.2 3.00 550 PALM −7.30781e+0 95.0 3.97 780
VP −1.07972e+1 40.4 2.70 437 VP −7.30822e+0 95.0 3.29 606

Notes. CPU times are given in seconds; sp denotes the percentage of zero entries of matrix. The best ones among the four algorithms are
highlighted using bold text.

Table 1. Comparison of Algorithms for Solving the Sparse PCA Problem with n < p

Algorithm

μ � 1 μ � 10

F(A,B) sp CPU Iteration F(A,B) sp CPU Iteration

(n, p) � (100, 1,000), μ1,j � 0.1, j � 1, . . . , r
AMA −4.90778e+1 59.7 11.48 648 −2.69714e+1 25.2 4.06 409
A-ManPG −4.90771e+1 59.4 0.36 1,172 −2.69716e+1 25.4 0.12 375
PALM −4.90769e+1 59.4 0.39 1,394 −2.69711e+1 25.3 0.15 518
VP −4.90770e+1 59.4 0.37 1,335 −2.69712e+1 25.2 0.13 453

(n, p) � (100, 1,000), μ1,j � 0.2, j � 1, . . . , r
AMA −4.16070e+1 76.5 7.28 433 −2.16374e+1 42.6 2.78 259
A-ManPG −4.16057e+1 76.4 0.22 712 −2.16371e+1 42.7 0.09 265
PALM −4.16055e+1 76.4 0.23 855 −2.16371e+1 42.6 0.12 343
VP −4.16056e+1 76.4 0.23 825 −2.16372e+1 42.6 0.10 301

(n, p) � (500, 5,000), μ1,j � 0.1, j � 1, . . . , r
AMA −5.56171e+1 75.8 728.29 1,000 −3.18762e+1 40.5 452.19 1,407
A-ManPG −5.56134e+1 75.7 8.90 1,982 −3.18753e+1 40.5 4.73 1,021
PALM −5.56131e+1 75.8 10.77 2,210 −3.18550e+1 40.3 4.94 1,023
VP −5.56132e+1 75.7 10.87 2,147 −3.18759e+1 40.5 7.17 1,643

(n, p) � (500, 5,000), μ1,j � 0.2, j � 1, . . . , r
AMA −4.25661e+1 89.3 733.36 1,000 −2.18082e+1 63.7 171.90 545
A-ManPG −4.25408e+1 89.0 9.05 2,017 −2.18085e+1 63.6 3.28 700
PALM −4.25111e+1 89.1 7.59 1,713 −2.18079e+1 63.6 4.01 870
VP −4.25115e+1 89.1 7.28 1,682 −2.18080e+1 63.6 3.57 773

(n, p) � (1,000, 5,000), μ1,j � 0.1, j � 1, . . . , r
AMA −2.89684e+1 79.6 306.42 437 −1.34357e+1 50.9 204.01 534
A-ManPG −2.89676e+1 79.7 9.61 959 −1.34355e+1 50.9 5.90 535
PALM −2.89675e+1 79.6 10.24 1,031 −1.34352e+1 50.8 8.15 794
VP −2.89676e+1 79.6 9.64 975 −1.34355e+1 50.8 6.74 644

(n, p) � (1,000, 5,000), μ1,j � 0.2, j � 1, . . . , r
AMA −1.94321e+1 93.9 398.16 666 −7.41353e+0 77.1 317.83 841
A-ManPG −1.94308e+1 93.9 23.33 2,346 −7.41377e+0 77.4 10.38 1,033
PALM −1.94306e+1 93.9 21.54 2,104 −7.41316e+0 77.1 16.54 1,565
VP −1.94306e+1 93.9 19.27 1,989 −7.41354e+0 77.1 11.33 1,138

Notes. CPU times are given in seconds; sp denotes the percentage of zero entries of matrix. The best ones among the four algorithms are
highlighted using bold text.
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presented in section 4.1 of Suo et al. (2017): identity matrices, Toeplitz matrices, and sparse inverse matrices.
For succinctness, we omit them here but include them in the online appendix. The matrices X and Y are both
divided by

̅̅̅̅̅̅̅
n − 1

√
such that X�Y is the estimated covariance matrix. Note that if n < p or n < q, the covariance

matrix X�X or Y�Y is not positive definite. In this case, we replace X�X by (1 − α)X�X + αIp and Y�Y by
(1 − α)Y�Y + αIq in the constraints of (11), so we can still keep them as manifold constraints. In our exper-
iments, we chose α � 10−4. We adopted the same initialization procedure as suggested in Suo et al. (2017). We
set τ1 � τ2 � 1

2 b
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p + q)/n√

in (11), where b was set to b � {1, 1.2, 1.4, 1.6}. We report the best result among all
the candidates. For each b, we solved (11) by A-ManPG with δ � 10−4, γ � 0.5, and t1 � t2 � 1. The A-ManPG
algorithm was stopped if max{‖DA

k ‖2F , ‖DB
k ‖2F} ≤ 10−8, and the ASSN algorithm was stopped if ‖E(Λk)‖F ≤ 10−5 in

(26). For AMA + LADMM, we set the stopping criteria of LADMM as ‖uj − uj−1‖ ≤ 10−3 and ‖vj − vj−1‖ ≤ 10−3,
where uj and vj are iterates in LADMM. We set the stopping criteria of AMA as ‖uk − uk−1‖ ≤ 10−3 and
‖vk − vk−1‖ ≤ 10−3, where uk and vk are iterates in AMA.

Figure 1. (Color online) Comparison of A-ManPG and ManPG-Ada on the Sparse PCA Problem with
p � {200, 400, 600, 800, 1,000}

Figure 2. (Color online) Comparison of A-ManPG and ManPG-Ada on the Sparse PCA Problem with r � {1, 2, 4, 6, 8}
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We report the numerical results in Table 3, where lossu and lossv are defined the same way as in Suo
et al. (2017), nu and nv denote the number of nonzeros in u and v after setting their entries whose magnitudes
are smaller than 10−4 to zero, and ρ denotes the canonical correlation computed from the solution returned by
the algorithms. All reported values in Table 3 are the medians from 20 repetitions. From Table 3, we see that
A-ManPG and AMA + LADMM achieve similar loss function values lossu and lossv, but A-ManPG is usually
faster than AMA+LADMM, and for some cases, it is even two to three times faster. More important, AMA +
LADMM lacks convergence analysis, but A-ManPG is guaranteed to converge to a stationary point (see the

Table 3. Comparison of A-ManPG and AMA+LADMM for Solving Single Sparse CCA

A-ManPG AMA+LADMM

(n, p, q) CPU lossu lossv ρ nu nv CPU lossu lossv ρ nu nv

Identity matrix

500, 800, 800 0.265 3.955e-3 4.635e-3 0.900 4 4.5 0.737 3.955e-3 4.639e-3 0.900 4 4.5
1,000, 800, 800 0.395 2.477e-3 2.350e-3 0.899 4 4.5 1.240 2.470e-3 2.347e-3 0.899 4 4.5
500, 1,600, 1,600 0.990 6.071e-3 4.247e-3 0.898 5 4.5 2.475 6.050e-3 4.240e-3 0.898 5 4.5
1,000, 1,600, 1,600 1.244 1.351e-3 2.081e-3 0.900 5 5 3.880 1.350e-3 2.078e-3 0.900 5 5

Toeplitz matrix

500, 800, 800 0.279 3.569e-3 5.570e-3 0.902 7 5.5 0.821 3.567e-3 5.570e-3 0.902 7 5.5
1,000, 800, 800 0.395 2.152e-3 2.165e-3 0.902 5 5 1.337 2.151e-3 2.159e-3 0.902 5 5
500, 1,600, 1,600 0.955 5.802e-3 4.758e-3 0.896 4 4.5 2.600 5.800e-3 4.751e-3 0.896 4 4.5
1,000, 1,600, 1,600 1.172 1.913e-3 1.602e-3 0.901 5 5.5 3.644 1.913e-3 1.604e-3 0.901 5 5.5

Sparse inverse matrix

500, 800, 800 0.527 7.749e-3 1.248e-2 0.896 7 6.5 0.815 7.509e-3 1.209e-2 0.896 6.5 7
1,000, 800, 800 0.618 5.920e-3 4.631e-3 0.898 5 5 1.630 5.843e-3 4.624e-3 0.898 5 5
500, 1,600, 1,600 1.589 9.624e-3 1.052e-2 0.889 5 5 2.822 1.010e-2 1.031e-2 0.889 5 5
1,000, 1,600, 1,600 1.951 2.799e-3 3.812e-3 0.900 6.5 6 4.583 2.941e-3 3.807e-3 0.900 6.5 6

Note. CPU times are given in seconds; lossu and lossvare defined the sameway as in Suo et al. (2017); nu and nv denote the number of nonzeros
in u and vafter setting their entries whose magnitudes are smaller than 10–4 to zero; and ρ denotes the canonical correlation computed from the
solution returned by the algorithms. The best ones among the four algorithms are highlighted using bold text.

Table 4. Losses Returned from the First-Stage Problem

Init-1 Init-100

(n, p, q) lossu lossv lossu lossv

Identity matrix

200, 300, 300 0.304 0.374 0.107 0.124
500, 300, 300 0.114 0.103 0.050 0.037
200, 600, 600 0.394 0.393 0.146 0.116
500, 600, 600 0.137 0.139 0.048 0.035

Toeplitz matrix

200, 300, 300 0.318 0.375 0.120 0.107
500, 300, 300 0.126 0.090 0.038 0.028
200, 600, 600 0.427 0.401 0.103 0.110
500, 600, 600 0.101 0.133 0.028 0.039

Sparse inverse matrix

200, 300, 300 0.609 0.658 0.253 0.281
500, 300, 300 0.231 0.191 0.098 0.085
200, 600, 600 0.837 0.749 0.328 0.233
500, 600, 600 0.311 0.318 0.102 0.118

Note. The first-stage problem is given in (E.3) in the online appendix; lossu and lossv are defined the same way as in Suo et al. (2017).
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online appendix). Furthermore, AMA + LADMM is time-consuming for the multiple sparse CCA (10), but
A-ManPG is suitable for (10), as we show in the next section.

4.3. Sparse CCA: Matrix Case
In this section, we apply the A-ManPG algorithm to solve the multiple sparse CCA (10) and compare its
performance with the Convex program with group-LASSO Refinement (CoLaR) method proposed by Gao
et al. (2017). CoLaR is a two-stage method based on convex relaxations. In all tests, we chose r � 2 and
generated Σxy � ΣxUΛV�Σy, where Λ ∈ Rr×r is a diagonal matrix with diagonal entries Λ11 � 0.9 and Λ22 � 0.8.
The nonzero rows of both U and V are set at the {1, 6, 11, 16, 21}th rows. The values at the nonzero coordinates
are obtained from normalizing (with respect to Σx and Σy) random numbers drawn from the uniform dis-
tribution on the finite set {−2,−1, 0, 1, 2}. The two data sets X ∈ Rn×p and Y ∈ Rn×q are generated in the same
way as in Section 4.2. The matrices X and Y are both divided by

̅̅̅̅̅̅̅
n − 1

√
such that X�Y is the estimated

covariance matrix. The loss between the estimation A and the ground truth U is measured by the subspace
distance lossu � ‖PU − PA‖2F, where PU denotes the projection matrix onto the column space of U. Similarly, the
loss for B and V is measured as lossv � ‖PV − PB‖2F.

The codes of CoLaR were downloaded from the authors’ web page.6 We used all default settings of their
codes. In particular, ADMM is used to solve the first-stage problem ((E.3) in the online appendix), and it is
terminated when it does not make much progress or it reaches the maximum iteration number 100. For our
A-ManPG algorithm, we run only one iteration of ADMM for (E.3) and use the returned solution as the initial
point of A-ManPG, because we found that this already generates a very good solution for A-ManPG. To be
fair, we also compare the same case for CoLaR, where only one iteration of ADMM is used for (E.3).

Table 6. Comparison of A-ManPG and CoLaR for Sparse CCA

A-ManPG-1 CoLaR-1 CoLaR-100

b 0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6

(n, p, q) � (200, 300, 300)
CPU 0.380 0.327 0.292 0.283 0.282 0.791 0.761 0.729 0.666 0.622 8.229 8.079 7.931 7.801 7.725
lossu 0.069 0.045 0.043 0.049 0.064 0.103 0.079 0.069 0.070 0.085 0.088 0.054 0.043 0.049 0.061
lossv 0.075 0.057 0.046 0.050 0.060 0.116 0.079 0.065 0.067 0.075 0.096 0.066 0.056 0.055 0.062
nA 43 26 15.5 12 10 61.5 31 18.5 12 10 62.5 31.5 17 12 10
nB 44.5 27 16 12 10 64.5 36 20 14 12 57 30 19 12 10
ρ1 0.921 0.911 0.906 0.902 0.898 0.925 0.912 0.905 0.902 0.900 0.926 0.912 0.906 0.902 0.899
ρ2 0.864 0.835 0.818 0.803 0.794 0.869 0.839 0.818 0.803 0.797 0.875 0.838 0.814 0.800 0.792

(n, p, q) � (500, 300, 300)
CPU 0.310 0.287 0.266 0.261 0.260 0.707 0.667 0.646 0.492 0.431 3.220 3.160 3.067 2.858 2.839
lossu 0.025 0.015 0.010 0.010 0.010 0.029 0.017 0.012 0.013 0.014 0.030 0.017 0.012 0.010 0.012
lossv 0.027 0.016 0.012 0.010 0.012 0.031 0.015 0.012 0.011 0.013 0.035 0.019 0.013 0.012 0.014
nA 54 27 14.5 10 10 60.5 25.5 15 12 10 63.5 28 16 10 10
nB 56.5 28 16 10 10 63 31 18 10 10 65.5 33.5 17.5 11 10
ρ1 0.905 0.899 0.896 0.896 0.895 0.906 0.900 0.897 0.896 0.896 0.906 0.900 0.897 0.896 0.895
ρ2 0.835 0.819 0.810 0.807 0.806 0.838 0.820 0.810 0.807 0.805 0.840 0.822 0.810 0.807 0.806

(n, p, q) � (200, 600, 600)
CPU 1.427 1.214 1.120 1.048 1.034 1.504 1.445 1.343 1.273 1.272 64.845 64.700 64.465 64.460 64.255
lossu 0.077 0.055 0.050 0.051 0.059 0.158 0.108 0.077 0.079 0.090 0.106 0.068 0.056 0.059 0.069
lossv 0.079 0.063 0.044 0.044 0.047 0.158 0.112 0.112 0.105 0.116 0.105 0.075 0.055 0.052 0.064
nA 60 35 20 12 10 114 56 31.5 16 12 92.5 45 20 12 10
nB 59.5 33 20 12 10 104 53.5 25 16 12 86 39 20 12.5 10
ρ1 0.925 0.911 0.903 0.900 0.897 0.936 0.915 0.901 0.897 0.894 0.933 0.913 0.902 0.899 0.896
ρ2 0.879 0.842 0.815 0.797 0.789 0.896 0.853 0.823 0.796 0.788 0.900 0.851 0.816 0.796 0.786

(n, p, q) � (500, 600, 600)
CPU 1.142 1.070 1.029 1.019 1.011 1.419 1.349 1.290 1.178 1.071 16.082 15.965 15.844 15.795 15.676
lossu 0.033 0.022 0.018 0.018 0.020 0.041 0.022 0.015 0.014 0.015 0.042 0.022 0.019 0.019 0.022
lossv 0.031 0.018 0.014 0.014 0.017 0.034 0.018 0.012 0.011 0.012 0.040 0.019 0.013 0.013 0.016
nA 79.5 37.5 16 11 10 92.5 38.5 18.5 12 10 93.5 38 16 12 10
nB 77.5 34.5 16 12 10 91 36 17.5 11 10 93.5 38 17 12 10
ρ1 0.913 0.904 0.902 0.900 0.898 0.913 0.904 0.902 0.900 0.899 0.915 0.904 0.902 0.900 0.899
ρ2 0.840 0.816 0.806 0.801 0.799 0.846 0.818 0.806 0.802 0.800 0.847 0.819 0.807 0.800 0.798

Notes. Covariance matrix: Topelitz matrix. The best ones among the four algorithms are highlighted using bold text.
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The parameter τ in (E.3) is set to τ � 0.55
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p + q)/n√

. We set τ1 � τ2 � 1
2 b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p + q)/n√

in (10) and τ′ � b in
(E.4) (in the online appendix), where b was set to b � {0.8, 1, 1.2, 1.4, 1.6}. For each b, we solved (10) by
A-ManPG with δ � 10−4, γ � 0.5, t1 � t2 � 1. The A-ManPG algorithm was stopped if max{‖DA

k ‖2F , ‖DB
k ‖2F} ≤ 10−8

and the ASSN algorithm was stopped if ‖E(Λk)‖F ≤ 10−5 in (25).
We report the numerical results in Tables 4–7, where CPU times are in seconds, and nA and nB denote the

number of nonzeros of A and B, respectively, after truncating the entries whose magnitudes are smaller than
10−4 to zeros. The scalars ρ1 and ρ2 are the two canonical correlations, and they should be close to 0.9 and 0.8,
respectively. All reported values in Tables 4–7 are the medians from 20 repetitions. More specifically, Table 4
reports the results obtained from the first stage where ADMM was used to solve (E.3). We use Init-1 to indicate
that we only run one iteration of ADMM, and Init-100 to indicate the case where we run ADMM until it does
not make much progress or the maximum iteration number 100 is reached. From Table 4, we see that solving
the first-stage problem by running ADMM for 100 iterations indeed improves the two losses significantly.
Tables 5–7 report the results for the three different types of covariance matrices. A-ManPG-1 and CoLaR-1 are
the versions where we run only one iteration of ADMM for the first stage, and CoLaR-100 is the version where
the first-stage problem ((E.3) in the online appendix) is solved more accurately by ADMM, as discussed earlier.
We observed that running more iterations of ADMM in the first stage does not help much for A-ManPG; we
thus only report the results of A-ManPG-1. From Tables 5–7, we see that CoLaR-100 gives much better results
than CoLaR-1 in terms of the two losses lossu and lossv, especially when the sample size is relatively small
compared with the matrix sizes. Moreover, we see that A-ManPG-1 outperforms both CoLaR-1 and CoLaR-100
significantly. In particular, A-ManPG-1 generates comparable and often better solutions than CoLaR-1 and

Table 7. Comparison of A-ManPG and CoLaR for Sparse CCA

A-ManPG-1 CoLaR-1 CoLaR-100

b 0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6

(n, p, q) � (200, 300, 300)
CPU 0.810 0.654 0.576 0.538 0.547 0.960 0.947 0.909 0.791 0.790 10.378 10.265 10.106 10.110 10.074
lossu 0.088 0.080 0.091 0.113 0.138 0.178 0.151 0.135 0.130 0.147 0.130 0.107 0.099 0.114 0.148
lossv 0.115 0.111 0.127 0.157 0.196 0.200 0.180 0.179 0.171 0.192 0.140 0.125 0.128 0.137 0.166
nA 43 24.5 16 12 11 79.5 50.5 34 23.5 18 59 36 23 17 13
nB 39 24.5 16 12 10 71.5 47 30 22 15 53 32 17 14 12
ρ1 0.919 0.909 0.899 0.893 0.887 0.928 0.915 0.902 0.893 0.884 0.924 0.911 0.902 0.895 0.889
ρ2 0.854 0.829 0.813 0.803 0.795 0.883 0.857 0.838 0.824 0.810 0.867 0.841 0.819 0.804 0.793

(n, p, q) � (500, 300, 300)
CPU 0.574 0.513 0.494 0.472 0.453 0.940 0.906 0.833 0.746 0.721 4.681 4.619 4.564 4.424 4.404
lossu 0.038 0.036 0.040 0.051 0.065 0.046 0.044 0.046 0.054 0.068 0.042 0.043 0.048 0.061 0.076
lossv 0.035 0.029 0.032 0.042 0.052 0.050 0.039 0.036 0.045 0.049 0.040 0.029 0.033 0.039 0.045
nA 46 25.5 14.5 10 10 64.5 38 23.5 14.5 11 57 30 15 11 10
nB 47.5 26 16 12 10 76.5 42 25.5 18 13 66 38 19 13 11
ρ1 0.907 0.902 0.899 0.897 0.896 0.909 0.903 0.900 0.897 0.894 0.907 0.902 0.898 0.895 0.893
ρ2 0.824 0.812 0.803 0.800 0.797 0.833 0.818 0.810 0.805 0.799 0.829 0.815 0.807 0.801 0.795

(n, p, q) � (200, 600, 600)
CPU 2.129 1.906 1.789 1.683 1.613 1.793 1.671 1.614 1.529 1.485 65.508 65.392 65.229 65.143 65.040
lossu 0.168 0.160 0.164 0.164 0.178 0.323 0.271 0.257 0.252 0.268 0.211 0.184 0.183 0.219 0.273
lossv 0.142 0.127 0.119 0.128 0.156 0.349 0.297 0.283 0.288 0.317 0.175 0.148 0.135 0.150 0.168
nA 50 29.5 20 13 12 131 81.5 55 31 23 90 44.5 22.5 16 13
nB 50 30 19 14 10 136.5 89 61 41 26 88.5 50 26.5 19.5 12.5
ρ1 0.922 0.909 0.902 0.899 0.896 0.941 0.926 0.916 0.905 0.897 0.931 0.913 0.903 0.898 0.894
ρ2 0.870 0.840 0.818 0.801 0.788 0.914 0.881 0.847 0.820 0.800 0.888 0.854 0.828 0.811 0.796

(n, p, q) � (500, 600, 600)
CPU 1.777 1.605 1.536 1.467 1.454 1.690 1.635 1.598 1.546 1.486 39.566 39.440 39.320 39.247 39.180
lossu 0.044 0.035 0.039 0.049 0.061 0.075 0.057 0.054 0.057 0.063 0.052 0.043 0.046 0.052 0.064
lossv 0.045 0.033 0.034 0.042 0.053 0.058 0.047 0.049 0.051 0.059 0.051 0.037 0.037 0.043 0.053
nA 69 33 17 12 10 120.5 63.5 34.5 20 13 83.5 40 18 13 10
nB 64 33.5 19 12 10 112.5 57.5 29 18 14 92 39.5 20.5 12.5 10
ρ1 0.909 0.901 0.897 0.896 0.895 0.919 0.908 0.901 0.898 0.895 0.914 0.903 0.898 0.896 0.895
ρ2 0.833 0.813 0.802 0.796 0.792 0.849 0.822 0.807 0.800 0.793 0.838 0.816 0.803 0.794 0.789

Notes. Covariance matrix: sparse inverse matrix. The best ones among the four algorithms are highlighted using bold text.
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CoLaR-100 in terms of solution sparsity and losses lossu and lossv. Furthermore, A-ManPG-1 is usually faster
than CoLaR-1 and much faster than CoLaR-100.

5. Conclusion
In this paper, we proposed an efficient algorithm for solving two important and numerically challenging
optimization problems arising from statistics: sparse PCA and sparse CCA. These two problems are chal-
lenging to solve because they are manifold optimization problems with nonsmooth objectives, a topic that is
still underdeveloped in optimization. We proposed an A-ManPG method to solve these two problems.
Convergence and convergence rate to a stationary point of the proposed algorithm are established. Numerical
results on statistical data demonstrate that A-ManPG is comparable to existing algorithms for solving sparse
PCA and is significantly better than existing algorithms for solving sparse CCA.
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Endnotes
1Without KL inequality, only subsequence convergence is obtained.
2The definition is given in the online appendix.
3The proximal mapping of �p(p ≥ 1) norm is strongly semismooth (Facchinei and Pang 2007, Ulbrich 2011). From (Ulbrich 2011, proposi-
tion 2.26), if F : V → Rm is a piecewise #1 (piecewise smooth) function, then F is semismooth. If F is a piecewise #2 function, then F is strongly
semismooth. It is known that proximal mappings of many interesting functions are piecewise linear or piecewise smooth.
4We say a matrix A is positive semidefinite if A + A� is positive semidefinite.
5Our MATLAB code is available at https://github.com/chenshixiang/AManPG.
6 See http://www-stat.wharton.upenn.edu/~zongming/research.html.
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