

An RNA folding motif: GNRA tetraloop–receptor interactions

Julie L. Fiore and David J. Nesbitt*

JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry,
University of Colorado, Boulder, CO 80309, USA

Abstract. Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N =any nucleotide, R =purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.

1. Introduction 2

2. GNRA tetraloop–receptor tertiary interactions 3

- 2.1. GNRA tetraloops are primed for long-range interactions 3
- 2.2. GNRA tetraloop interaction with minor-groove tandem base pairs 5
- 2.3. GAAA tetraloop–11 nt tetraloop receptor motif 6
- 2.4. GAAA tetraloop–12 nt tetraloop receptor motifs (IC3 and Vc2) 9
- 2.5. *In vitro*-selected versus natural GNRA tetraloop–receptor interactions 10

3. Origins of sequence conservation in the 11 nt GAAA tetraloop receptor 15

4. Free versus bound structure of the GAAA tetraloop and 11 nt tetraloop receptor 16

5. The role of metal ions and solvent in the GAAA tetraloop–11 nt receptor structure 18

* Author for Correspondence: D. J. Nesbitt, JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.

Tel.: (303)492-8857; Fax: (303)492-5235; E-mail: djn@jila.colorado.edu

6. Cation-dependent kinetics and equilibrium of GAAA tetraloop–I I nt receptor docking/undocking 19

- 6.1. Single-molecule kinetics and equilibrium of tetraloop–receptor docking/undocking 19
- 6.2. Freely diffusing single-molecule FRET studies of Na^+ - and Mg^{2+} -dependent tetraloop–receptor docking 25

7. Thermodynamics of isolated GAAA tetraloop–I I nt tetraloop receptor binding: ITC and single-molecule studies 26

- 7.1. [Cation]-dependent single-molecule thermodynamics of intramolecular tetraloop–receptor docking equilibrium 26
- 7.2. Calorimetry studies of bimolecular dual tetraloop–receptor receptor association 29
- 7.3. Calorimetry versus single-molecule thermodynamics of tetraloop–receptor binding 30

8. Transition state thermodynamics of GAAA tetraloop–I I nt receptor docking: single molecule and ITC studies 31

- 8.1. An entropic barrier to tetraloop–receptor docking 31
- 8.2. ITC study of bimolecular tetraloop–receptor binding 34

9. Contribution of GAAA tetraloop–I I nt receptor interaction to global folding of large RNAs 34

10. Applications of the T(GAAA)–R(I I nt) interaction 35

- 10.1. Tecto RNA nano-objects 35
- 10.2. A module for RNA crystallization and structure determination 36
- 10.3. RNA selection and control 36

11. Conclusions 36

12. Acknowledgements 37

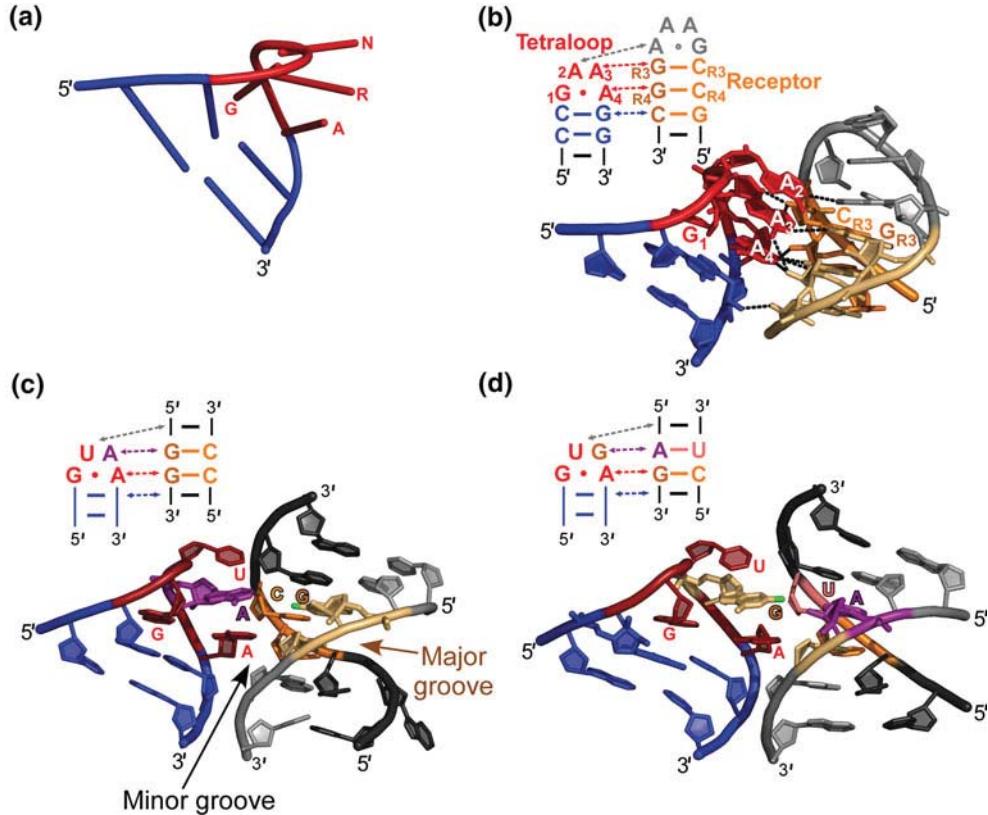
13. References 37

I. Introduction

RNA functional diversity is coupled with its ability to assemble into complex three-dimensional structures, creating unique sites for catalysis and molecular recognition. The generally hierarchical process of RNA folding, i.e., a tertiary structure occurring through long-range interactions of preformed secondary elements (e.g. hairpin loops), has allowed for independent characterization of secondary and tertiary structures (Brion & Westhof, 1997; Greenleaf *et al.* 2008; Hendrix *et al.* 2005; Tinoco & Bustamante, 1999). Tertiary interactions stabilize folded RNA structures (Batey *et al.* 1999; Butcher & Pyle, 2011) and can be categorized into relatively few structural motifs: coaxial helical stacks, kissing hairpins, tetraloop–receptor interactions, A-minor motifs, pseudo-knots, loop–loop interactions and ribose zippers (Hendrix *et al.* 2005; Tamura & Holbrook, 2002).

The modularity of RNA tertiary structure, i.e., the reconstitution of large RNAs from discrete components (Qin *et al.* 2001a) has provided hope that we can predict RNA structures from knowledge of individual tertiary interactions. For example, much like predicting the stability of an RNA helix from the known thermodynamics of Watson–Crick base pairs (Serra *et al.* 1995), we strive to predict the native folded structure from the thermodynamics of tertiary interactions. Therefore, just as knowledge of thermodynamic parameters is crucial for accurate

secondary-structure prediction, the same information is required for tertiary structure predictions. Furthermore, characterization of the kinetics of tertiary folding is crucial for determining RNA functionality (Leontis *et al.* 2006; Tinoco & Bustamante, 1999). Toward this end, individual folding motifs must be characterized, both in isolation and in combination, for a unifying thermodynamic and kinetic description of RNA folding to emerge.


One target of such detailed biophysical characterization has been interactions between GNRA tetraloops (N =any nucleotide, R =A or G) with distal receptor sequences, which are common features in folded RNAs (Costa & Michel, 1995; Michel & Westhof, 1990). The ubiquitous interaction of the GAAA tetraloop with a highly conserved 11 nt receptor (Costa & Michel, 1995; Michel & Westhof, 1990) employs even more broadly categorized tertiary motifs, namely the A-minor and ribose-zipper motifs (Abramovitz & Pyle, 1997; Cate *et al.* 1996a; Doherty *et al.* 2001; Hendrix *et al.* 2005; Lee *et al.* 2006; Nissen *et al.* 2001; Tamura & Holbrook, 2002; Xin *et al.* 2008).

A recent review by Ikawa and co-workers (Ishikawa *et al.* 2011) surveyed methodologies for studying GNRA loop–receptor interactions, highlighting the versatility of both natural and *in vitro* selected motifs as modular elements of rationally designed RNAs. Here our first goal is to make a comprehensive biophysical comparison of GNRA tetraloop–receptor interactions to provide useful insights into the predominance of the ubiquitous GAAA tetraloop–11 nt receptor motif. Then, we undergo a detailed exploration of the contemporary biophysics of the GAAA tetraloop–11 receptor nt motif, with explicit comparisons between studies, providing insights into the role of tertiary interactions in RNA folding. The GAAA tetraloop–receptor interaction has been the subject of intensive structural, kinetic and thermodynamic studies, both in the context of ribozymes and in isolated model RNA constructs. An arsenal of biophysical methods have been applied to characterize this interaction: mutagenesis, bioinformatics, catalytic activity assays, ensemble and single-molecule FRET methods, gel-shift and melting studies, calorimetry, NMR spectroscopy, crystallography and computation. This level of detail is unprecedented for other tertiary motifs and therefore sets a benchmark for categorizing tertiary structures and elucidating mechanistic paradigms for RNA folding, including cation- and protein-mediated folding and thermodynamic cooperativity of tertiary interactions. Finally, we discuss some remarkable applications of the GAAA tetraloop–11 nt receptor motif, namely RNA tectonics, crystallization enhancement, and RNA selection and control.

2. GNRA tetraloop–receptor tertiary interactions

2.1 GNRA tetraloops are primed for long-range interactions

RNA secondary structures frequently include hairpin loops, the most common of which are tetraloops (Hendrix *et al.* 2005). GNRA tetraloops are extremely widespread – comprising one-third of the tetraloops in ribosomal RNA and half of the tetraloops in some catalytic RNAs (Klosterman *et al.* 2004; Michel *et al.* 1989; Michel & Westhof, 1990; Woese *et al.* 1990). GNRA tetraloops are also exceptionally stable, a property attributable to a characteristic U-turn structure, i.e., a sharp bend in the backbone between the G and N nucleotides (Fig. 1a), which allows for hydrogen bonding and base-stacking within the loop (Antao *et al.* 1991; Antao & Tinoco, 1992; Heus & Pardi, 1991; Jucker & Pardi, 1995). However, other common tetraloops (UNCG and CUYG, Y=pyrimidine) are nearly if not more stable than GNRA loops, e.g., 5'-C(UUCG)G-3' has a higher melting temperature than GNRA loops – $T_m = 71.7$ °C *versus* the

Fig. 1. GNRA tetraloops engage in interactions with helical minor grooves. (a) NMR structure of a GAAA tetraloop is representative of the GNRA U-turn structure that exposes the Watson–Crick edges of the NRA nucleotides for binding (PDB ID 1ZIG). (b) GAAA tetraloop (red) interaction with tandem C:G base pairs (orange) in a helix minor groove, as observed in the intermolecular crystal contacts of the hammerhead ribozyme (PDB ID 1HMH). The nine proposed intermolecular hydrogen bonds are shown as dashed black lines (Pley *et al.* 1994b). (c, d) Other examples of GNRA tetraloop–helix interactions as observed in the crystal structure of RNase P (PDB ID 3Q1Q). The GUAA loop binds at CC:GG base pairs in a manner very similar to the interaction in (b). (d) The GAGA loop binds at CU:AG base pairs. In this case, the helical base pair preference changes to accommodate a bulky guanine C2 amino group (bright green position). Short lines and circles indicate Watson–Crick and non-canonical base pairs, respectively.

5'-C(GAAA)G-3' with $T_m = 65.9$ °C (Antao & Tinoco, 1992). For this reason, it was suggested that functionality rather than thermodynamic stability led to the natural abundance of GNRA tetraloops (Santalucia *et al.* 1992). This functionality is the ability for GNRA loops to form long-range tertiary contacts, i.e., interactions with distal receptor regions of an RNA (Michel & Westhof, 1990; Santalucia *et al.* 1992; Woese *et al.* 1990).

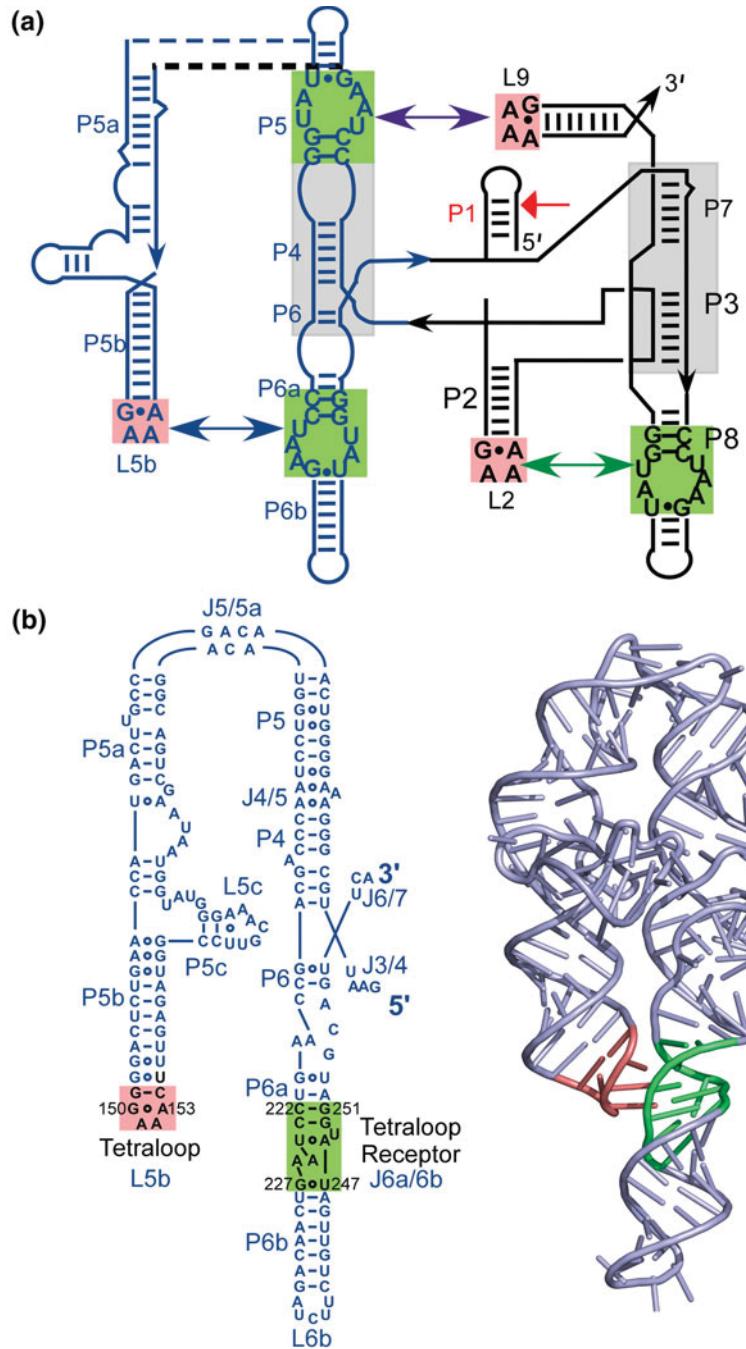
GNRA loops share potential features for long-range recognition – the exposure of the Watson–Crick base pairing edges of the last three bases of the loop and a unique backbone contour, as shown in Fig. 1a (Correll *et al.* 1998; Correll & Swinger, 2003; Heus & Pardi, 1991; Jucker *et al.* 1996). Furthermore, GNRA loops are often found capping helices of conserved length; this evolutionarily maintained positioning suggests that the loops are engaged in native tertiary interactions (Hedenstierna *et al.* 2000). Indeed, a number of types of tetraloop–receptor tertiary interactions have been observed, a trait that has been largely limited to GNRA-type loops.

One exception to this rule is a highly conserved GANC loop in group II introns that has been identified to engage in a tertiary interaction through a single-base stack (Keating *et al.* 2008). In addition, in spite of a structural similarity to GNRA loops, UMAC (M=A or C) tetraloop–receptor interactions are exceptionally rare (Zhao *et al.* 2012). In the remainder of this section, we summarize the major types of GNRA tetraloop–receptor interactions that have been identified: GNRA interactions with tandem base pairs in the minor groove, the GAAA–11 nt tetraloop receptor motif, the GAAA–12 nt tetraloop receptor motifs and other GNRA tetraloop–receptor candidates identified through *in vitro* selection. See also a recent review by Ikawa and co-workers for an alternative description of these motifs (Ishikawa *et al.* 2011).

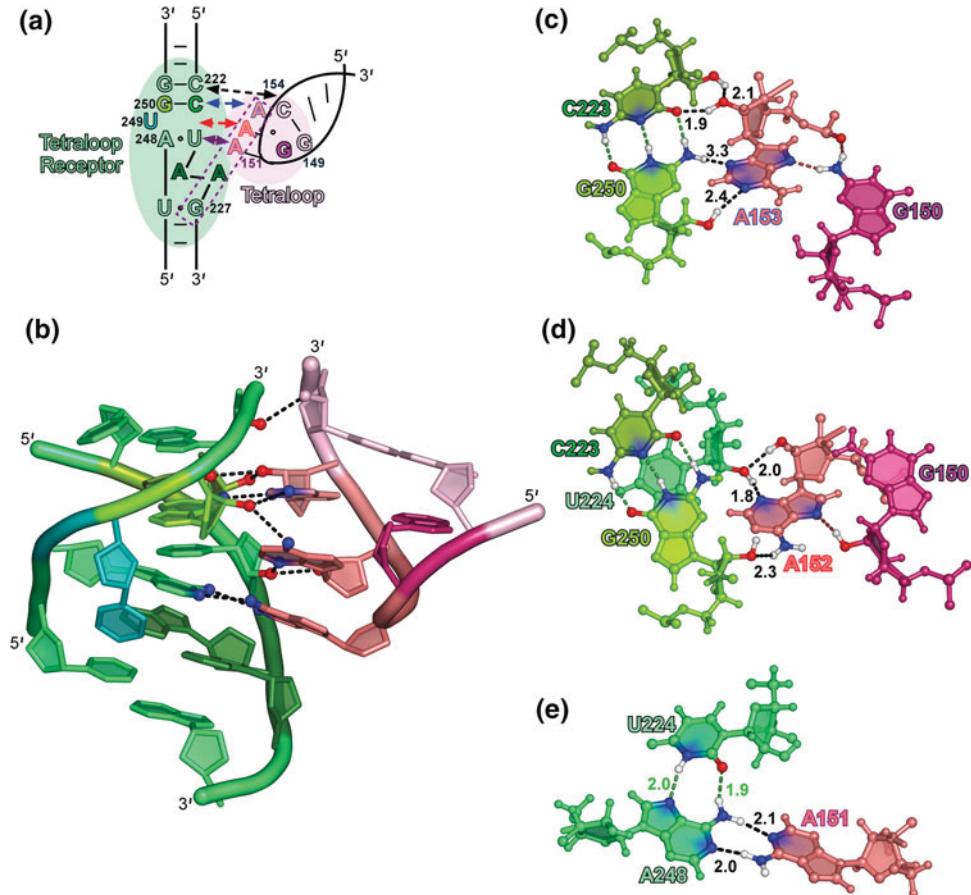
2.2 GNRA tetraloop interaction with minor-groove tandem base pairs

The simplest type of GNRA tetraloop–receptor tertiary interaction involves the minor groove of a continuous helical ‘receptor’, which was first proposed by Michel and Westhof from a comparative sequence analysis (Michel & Westhof, 1990). The shallow, yet wide minor groove of the RNA A-form helix is more accessible to such interaction than the deeper, narrower major groove. Specifically, it was proposed that the end nucleotides (RA) of the tetraloop could interact with two consecutive purines of base pairs in a helix minor groove. This proposal was supported with base substitutions of the putative loop–helix interaction in the *sunY* intron of bacteriophage T4 (Jaeger *et al.* 1994). The structural basis for such an interaction was revealed in the 2.6 Å hammerhead crystal structure, in which intermolecular contacts were observed between a GAAA loop and the shallow minor groove of a helix, as shown in Fig. 1b (Pley *et al.* 1994a, b).

The GAAA tetraloop in this ‘tetraloop–receptor’ crystal structure is identical to the NMR structure determined by Pardi and co-workers (Heus & Pardi, 1991; Jucker & Pardi, 1995), with the distinctive U-turn allowing the end (‘AA’) nucleotides (A3 and A4) to engage the helix minor groove at the site of two consecutive purines, as shown in Fig. 1b. This packing strategy is stabilized by a hydrogen bonding network (nine potential hydrogen bonds, though at least three are expected to be relatively weak, i.e., > 3 Å): seven hydrogen bonds are formed between A3 and A4 and the tandem C:G base pairs of the minor groove, one between A2 and the last A of the opposing tetraloop, and one between the backbones of the closing C:G base pair of the tetraloop and the opposing helix (Fig. 1b) (Pley *et al.* 1994b). Such adenosine insertion into distal minor grooves was later recognized as the highly utilized A-minor motif (Doherty *et al.* 2001; Nissen *et al.* 2001). A-minor motifs are the most abundant tertiary motifs known in RNA structures, e.g., 186 such interactions are identified in the large ribosomal RNA subunit (Nissen *et al.* 2001; Xin *et al.* 2008). Four varieties of A-minor motifs have been identified, the most common type I (Xin *et al.* 2008) is observed in the GAAA–helix interaction, involving the A4 nucleotide (Fig. 1b) (Ishikawa *et al.* 2011). Type I is defined by the nestling of the adenine’s N3 and O2' into the minor groove, which optimizes hydrogen bonding to the C:G base pair with four possible H-bonds – three utilizing the ribose 2' hydroxyls and one between bases (Pley *et al.* 1994b). Most of the interactions in the tetraloop–helix interaction involve ribose 2' hydroxyls, including the hydrogen bond between the closing C:G base pair of the GAAA loop and the adjacent helix (Fig. 1b). A3 makes three hydrogen bonds, two of which involve 2' OH's and the other between bases (Fig. 1b). Although not essential to the GAAA–tandem base-pair interaction, in this structure (Fig. 1b), A2 makes an opportunistic base–base interaction with the juxtaposed GAAA tetraloop (Costa & Michel, 1997; Pley *et al.* 1994b), demonstrating the versatility of the GNRA tetraloop in forming tertiary interactions. As an additional example of this


versatility, a highly conserved GAAA tetraloop undergoes a packing interaction with UACG loop in the 30S ribosomal subunit, whereby the GAAA loop hydrogen bonds with the closing C:G base pair of the UACG loop (Proctor *et al.* 2002; Ramakrishnan, 2002). Given that this particular ribosomal UACG loop is more generally conserved as YNMG (Y=pyrimidine, N=any nucleotide, M=A or C), it has been suggested that YNMG loops facilitate minor groove tertiary interactions with GNRA tetraloops (Proctor *et al.* 2002).

Interestingly, the hammerhead structure also reveals why the tandem C:G tandem base pairs would be the optimal binding sequence for GAAA, as conversion of the second C:G to G:C or U:A would disrupt some of the hydrogen bonds (Pley *et al.* 1994b). Furthermore, modeling of a G into the A3 position also explains the observed sequence preference of GNGA loops for a 5'-CU: AG-3' helix because the bulky C2 amino group in the A3 position would hinder this type of interaction on a CC:GG helix (Jaeger *et al.* 1994; Pley *et al.* 1994b), presenting a steric and hydrogen bond clash that would be relieved if R3 was replaced by an A:U base pair (Doherty *et al.* 2001) (Figs 1c and 1d). Indeed, GNGA loops appear to interact more strongly with CU:AG helices while GYAA prefers a CC:GG helix, according to denaturation studies (Jaeger *et al.* 1994), phylogenetic analyses, and *in vitro* selection (Costa & Michel, 1995, 1997). Such GNRA tetraloops–helix interactions are very common, found for example in Group I and II introns (Costa & Michel, 1995; Jaeger *et al.* 1994; Toor *et al.* 2008), RNase P (Brown *et al.* 1996; Massire *et al.* 1997; Reiter *et al.* 2010; Torres-Larios *et al.* 2006), and ribosomal RNA (Ban *et al.* 2000; Noller, 2005).

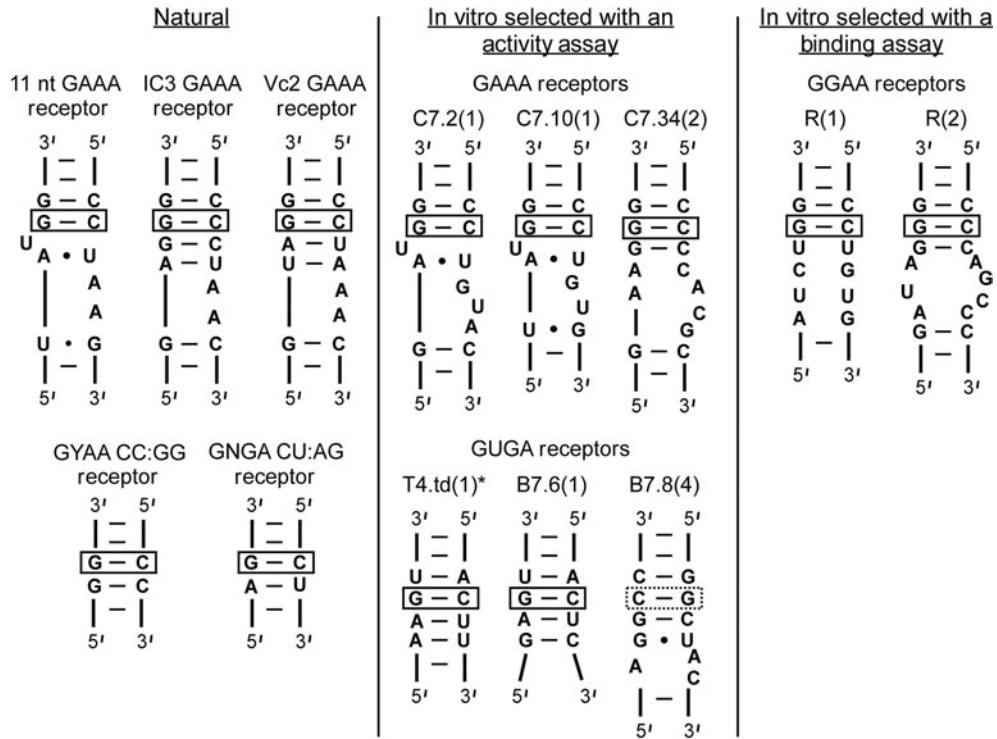

2.3 GAAA tetraloop–11 nt tetraloop receptor motif

While the continuous helix is the simplest tetraloop receptor, additional stability and specificity can be achieved with more complex receptor motifs. A natural such receptor motif is a highly conserved 11 nt asymmetric internal loop (Costa & Michel, 1995). Through chemical modifications, Murphy and Cech first identified a tertiary contact between a GAAA tetraloop and a conserved bulge on a distal helix that stabilizes the fold of the *Tetrahymena* ribozyme's P4–P6 domain. Studies of this 11 nt motif revealed a preference for interaction with GAAA tetraloops (Murphy & Cech, 1994). Through phylogenetic (co-variation) sequence analysis of group I and II introns, Costa and Michel observed that the 11 nt receptor is a highly conserved asymmetric internal loop of the sequence 5'-UAUGG-3':5'-CCUAAG-3', which frequently appears in combination with a GAAA tetraloop throughout introns (Fig. 2a) (Costa & Michel, 1995). It was demonstrated that the 11 nt receptor [R(11 nt)] is remarkably specific to the GAAA tetraloop [T(GAAA)] using an intron derived cleavage assay (see Section 2.5). The possible locations of the T(GAAA)–R(11 nt) interaction in group I introns are shown in Fig. 2a. Due to its specificity, affinity, and abundance, Costa and Michel proposed that this interaction is a common strategy for RNA helical packing (Costa & Michel, 1995). Indeed the T(GAAA)–R(11 nt) motif is the strongest, most specific and widespread GNRA–receptor interaction, stabilizing the folded structures of group I and group II Introns and RNase P (Adams *et al.* 2004b; Cate *et al.* 1996a; Costa & Michel, 1995, 1997; Geary *et al.* 2008; Krasilnikov *et al.* 2003; Toor *et al.* 2008). A GAAA tetraloop and the 11 nt tetraloop receptor motif have also been identified in riboswitches (Regulski *et al.* 2008; Weinberg *et al.* 2007). The specificity and affinity of this interaction will be discussed in more detail in Sections 2.5 and 3.

The 2.8 Å crystal structure of the *Tetrahymena* group I intron's 160 nt P4–P6 domain, which contains the canonical GAAA – 11 nt receptor interaction (Fig. 2b), reveals the remarkable

Fig. 2. Frequent use of the GAAA tetraloop and 11 nt [5'-CCUAAG ...UAUGG-3'] receptor motif in group I introns. (a) Common sites of the GAAA tetraloop and 11 nt receptor motif in group I introns (Costa & Michel, 1995). The dashed lines indicate that not all group I introns contain the region beyond P5. (b) Secondary structure and crystal structure of the *Tetrahymena thermophila* P4–P6 domain (PDB ID 1GID) highlighting the tetraloop (pink) and receptor (green) (Cate *et al.* 1996a).

Fig. 3. Structure of the GAAA tetraloop–11 nt tetraloop receptor motif in the P4–P6 domain (Cate *et al.* 1996a). (a) Schematic of the interaction with hydrogen bond contacts indicated by arrows and base stacking of the tetraloop onto A226 of the adenosine platform in the receptor indicated with a dashed box. (b) Ten hydrogen bonds between the tetraloop and receptor are shown as black dotted lines, blue = nitrogen, red = oxygen (hydrogens not shown). (c) A153, the last (3') adenine in the tetraloop, makes a base quadruplet with the receptor C223–G250 base pair. (d) A152, the penultimate adenine in the tetraloop, hydrogen bonds with the 2'-hydroxyls of U224 and G250, a ribose zipper motif. (e) A151, the first adenine in the tetraloop, makes two H-bonds with the U-A reverse Hoogsteen base pair (U224,A48). Hydrogen bond distances (Å) between the tetraloop and receptor are shown in black with a Watson–Crick pair (in (e)) labeled in green for comparison (PDB ID 1HR2).

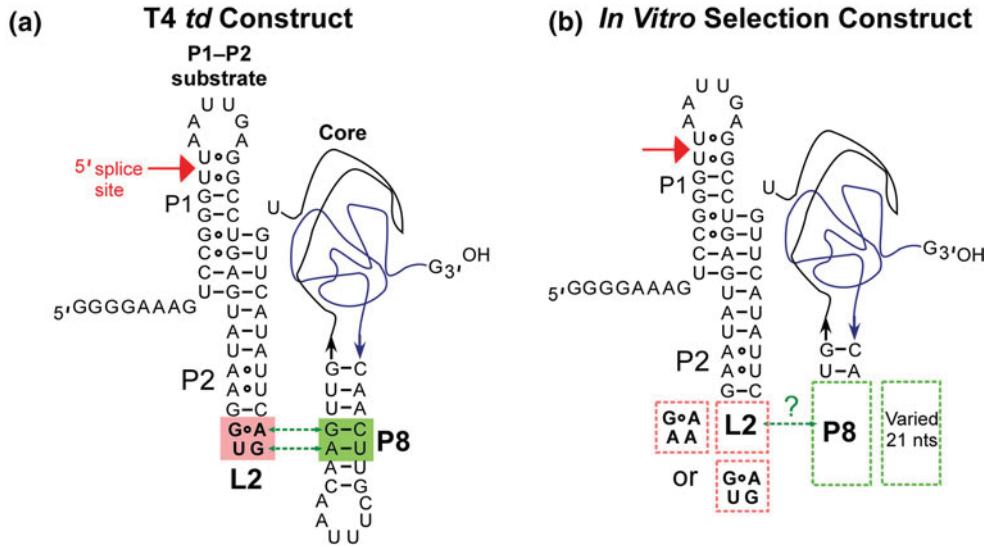

features that give rise to the specificity and affinity of this interaction (Cate *et al.* 1996a). Just as in the helical minor groove interactions, the tetraloop in this ‘tetraloop–receptor’ crystal structure is identical to the solution nuclear magnetic resonance (NMR) structure (Heus & Pardi, 1991), with the adenines primed to contour the minor groove (Fig. 2*b*). Each of the three consecutive adenines of the tetraloop pack tightly into the minor groove of the receptor helix (P6), which classifies them more broadly into the aforementioned A-minor motif (Doherty *et al.* 2001; Nissen *et al.* 2001). The T(GAAA)–R(11 nt) interaction is also characterized by a specific hydrogen bonding and base stacking pattern (Fig. 3). The first **A** (A151) of the tetraloop makes two H-bonds with the **A** of the U-A reverse Hoogsteen base pair (U224 and A248). The second **A** (A152) of the loop hydrogen bonds with the receptor’s G250 (1 H bond) below it and U224

(2 H bonds) above it via the ribose zipper motif, i.e., inter-digitated 2'-OH interactions (Tamura & Holbrook, 2002). The third **A** (A153) of the loop interacts with a C:G of the receptor, as predicted by mutagenesis (Murphy & Cech, 1994), such that the **G·A** pair of the tetraloop forms a base quadruplet with a C:G pair in the receptor (**G·A·C-G**) by making 4 H-bonds, identical to the A4 type I A-minor motif of the GAAA-minor groove interaction from the hammerhead structure in Fig. 1*b* (Pley *et al.* 1994*b*). Also, just as in the hammerhead structure, many of the hydrogen bonds of this tetraloop–receptor interaction utilize ribose 2'-hydroxyls. Furthermore, two consecutive adenines in the receptor (nts 225 and 226) are aligned side-by-side, forming a pseudo-base pair, called the adenosine platform motif, which stacks onto the G of the G.U wobble pair (Figs 3*a* and 3*b*). This stacking pattern achieves near coaxial alignment of the flanking helices despite the asymmetry of the internal loop (Cate *et al.* 1996*a, b*). The adenosine platform also serves to open the minor groove of the tetraloop receptor, thus allowing A151 to stack upon the platform (Cate *et al.* 1996*a, b*), as seen in Figs 3*a* and 3*b*. An additional hydrogen bond is also made between the 2'-hydroxyls of the terminal CG base pair (G251) of the receptor and the CG pair at the base of the tetraloop (C154), just as was seen below the L4 interaction in the GAAA–minor groove interaction (Fig. 1*b*). In total, 10 hydrogen bonds are formed between the tetraloop and the 11 nt tetraloop receptor, many of which are as short as Watson–Crick base pairing bonds, making the T(GAAA)–R(11 nt) motif a very strong and specific interaction, as mutations to the tetraloop would geometrically disrupt the hydrogen bonding network and/or introduce steric clashes (Cate *et al.* 1996*a*; Doherty *et al.* 2001). The effect of mutations on the T(GAAA)–R(11 nt) interaction will be discussed in Section 3.

Other high-resolution structures containing the T(GAAA)–R(11 nt) motif have revealed that the interaction is independent of context. For example, the crystal structures of (i) RNase P and (ii) other group I introns, as well as (iii) the NMR structure of a dimer system that isolates two T(GAAA)–R(11 nt) interactions, were all found to be identical (Adams *et al.* 2004*b*; Davis *et al.* 2005; Mondragon *et al.* 2003). The structural robustness of the motif has allowed the interaction to be the subject of extensive biophysical characterization, as will be the major focus of this review.

2.4 GAAA tetraloop–12 nt tetraloop receptor motifs (IC3 and Vc2)

A third type of natural tetraloop–receptor interactions has been identified in group IC3 introns, implicating a GAAA loop at the L2 position and a highly conserved 12 nt motif in the P8 domain (see Fig. 2*a* for these positions). The IC3 motif is shown in Fig. 4 (top left) as compared to the 11 nt motif with sequences 5'-CCCUAAC:GAGGG-3' *versus* 5'-CCUAAG:UAUGG-3', respectively. The 12 nt receptor appears to lack a strong preference for the GAAA tetraloop, based on substitutions of the loop with GUGA, GUAA and GAGA loops in an IC3 intron cleavage assay (Ikawa *et al.* 1999). This is in contrast to the 11 nt motif, where the ribozyme function was shown to be nearly obliterated when the GAAA tetraloop was mutated (Costa & Michel, 1995). Furthermore, though replacement of the 11 nt motif in the *Tetrahymena* ribozyme with the IC3 motif still resulted in cleavage, it was considerably less active, consistent with a lower affinity of the IC3 motif for a GAAA loop than with the 11 nt receptor, as will be shown in the following section. The IC3 motif has been posited to be the predecessor of the 11 nt motif (Ikawa *et al.* 2001). Interestingly, out of all known tetraloop receptors, the 11-nt motif recognizes a GAAA loop with highest specificity while the IC3 12 nt motif appears to be the least


Fig. 4. Natural and *in vitro* selected tetraloop receptors. The natural receptors have been found in ribozymes (Costa & Michel, 1995; Ikawa *et al.* 1999; Kulshina *et al.* 2009; Smith *et al.* 2009). GAAA and GUGA receptors (center panel) were selected based on a cleavage activity assay of T4.td (see Fig. 5 and Table 1) (Costa & Michel, 1997). GGAA receptors were selected using a gel-shift binding assay (see Fig. 6b) (Geary *et al.* 2008).

discriminatory (Ikawa *et al.* 2001), as further discussed in the following section. The structure of the T(GAAA)–R(IC3) interaction has not yet been determined.

In addition to the aforementioned motifs, other candidates for natural GNRA tetraloop–receptor interactions continue to be identified. For example, numerous possible GNRA tetraloop–receptor interactions are observed in riboswitches (Regulski *et al.* 2008; Sudarsan *et al.* 2008; Weinberg *et al.* 2007; Winkler & Breaker, 2005). One such receptor has been explicitly observed in a complex with a GAAA tetraloop in the crystal structures of the *Vibrio cholera* cyclic-di-GMP (Vc2) riboswitch (Kulshina *et al.* 2009; Smith *et al.* 2009). This so-called Vc2 receptor (Fig. 4) is thought to be a variant of the IC3 motif (Ishikawa *et al.* 2011). The functional importance of this interaction has also been examined, suggesting its role in riboswitch activity is to not only establish the 3D structure of the RNA but to also locally rigidify the Vc2 receptor (Fujita *et al.* 2012). In addition, a tetraloop–receptor-like interaction has been implicated in an intermolecular interaction between a ribozyme and a separate mRNA molecule (Birgisdottir *et al.* 2011).

2.5 *In vitro*-selected versus natural GNRA tetraloop–receptor interactions

In vitro selection for GUGA, GAAA and GGAA tetraloop receptors has yielded interesting receptor variations for these and other GNRA tetraloops, with at least two distinct classes of

Fig. 5. *Td* bacteriophage ribozyme used for *in vitro* selection of tetraloop–receptor interactions from co-adapted L2 and P8 sequences (Costa & Michel, 1997). (a) The *td* intron of bacteriophage T4 was converted into a two-piece construct, P1–P2 substrate and catalytic core, with the wild type L2–P8 interaction indicated by dashed arrows. The red arrow points to the splice site. (b) Constructs used for *in vitro* selection. The substrate contained either GAAA or a GUAA loop with random 21 nt sequences in the P8 hairpin regions, which are selected based on their ability to interact with the L2 loop of the substrate.

GGAA and GAAA receptors and five classes of GUGA receptors (Costa & Michel, 1997; Geary *et al.* 2008). Examples from the two most abundant class pools from each selection are shown in Fig. 4 compared with the natural receptors identified in Sections 2.2–2.4.

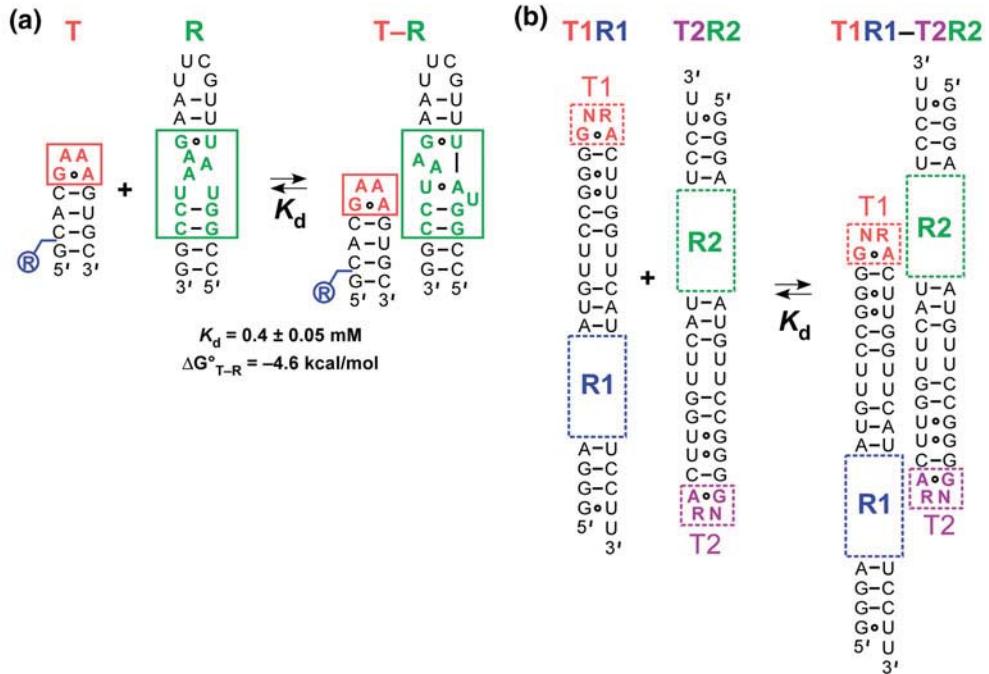
The *in vitro* selection assay for the GGAA and GAAA receptors (Fig. 4, center column) utilized a cleavage assay of the *td* intron of the T4 bacteriophage, the wild-type version of which relies on interaction between the GUGA P2 loop and the P8 helix (Michel *et al.* 2009), as shown in Fig. 5a (Costa & Michel, 1997). The construct is formed from incubation of molecules comprising the P1–P2 substrate and the core (Fig. 5a). Mixing of the two molecules was shown to result in splicing at the normal 5' site without the addition of a free guanosine cofactor, and therefore is caused by attack of the terminal G residue at the activated splice site (Fig. 5a). Catalytic activity relies on P8 recognition of the L2 loop to position the substrate within the active site. Therefore P8–L2 interaction affects the efficiency of catalysis, monitoring of which was used as a means to select for novel tetraloop receptors through randomization of the P8 helix (Fig. 5b) (Costa & Michel, 1997; Michel & Westhof, 1990). Resulting pool winners tested for tetraloop specificity are shown in Fig. 4 with the k_{cat}/K_m values summarized in Table 1.

Interestingly, the *td* wild-type (GUGA–CCU:AGG) was not the most efficient construct in terms of substrate cleavage, in line with expectations that the T(GAAA)–R(11) nt motif is significantly stronger (Table 1). This observation supports the idea that the L2–P8 interaction is less critical in the context of the full ribozyme and can explain why the stronger GAAA–11 nt pair is rarely found in this position, as opposed to its prevalence in the L5b–P6 and L9–P5 interactions (Fig. 2), which are more critical in forming a stable ribozyme core (Jaeger *et al.* 1994; Murphy & Cech, 1994). Some of the selected receptors actually prefer GGGA and GUAA loops even though they were selected for either GUGA or GAAA (Table 1). Furthermore, no selection

Table 1. k_{cat}/K_m ($\times 10^5 \text{ min}^{-1} \text{ M}^{-1}$) values for cleavage reactions of P1–P2 substrates of *td*-derived ribozymes (Fig. 5) with *in vitro* and naturally selected P8 tetraloop receptor interactions (Fig. 4) and varied GNRA L2 loops

P8 Receptor (5'-3')	L2 Tetraloop							
	GYRA				GRRA			
	GUGA	GCGA	GUAA	GCAA	GAAA	GAGA	GGAA	GGGA
GYAA Selected CCU:AGG*	0.36	ND	1.03	ND	0.12	ND	ND	ND
GUGA Selected T4.td CUU:AAG*	1.32	0.89	0.33	ND	0.09	0.13	ND	0.048
B7.6 CUC:GAG	1.14	0.95	0.26	ND	ND	0.10	ND	0.042
B7.8 GCUAC.AGGC	3.42	0.039	6.97	ND	ND	0.37	ND	0.05
GAAA Selected								
11 nt CCUAAG.UAUGG	0.03	ND	0.38	0.13	47.5	0.79	0.18	ND
C7.2 CCUGUAC.GAUGG	ND	ND	0.27	0.12	47.5	0.67	0.22	ND
C7.34 CCCCACCGC.GAAGGG	ND	ND	2.86	0.83	6	2.46	17.6	ND

(Costa & Michel, 1995, 1997).


The common C:G base pair identified in all tetraloop receptors is bolded. R = purine, Y pyrimidine base, ND = not determined.

* Wild-type ribozyme receptor sequence with GUGA tetraloop.

surpassed the natural T(GAAA)–R(11) nt motif in activity, though other comparable receptors containing minor variations on the motif (C7.2 and C7.34) were similarly active (see Table 1 and Fig. 4). These studies also revealed that interaction with continuous helices is best when the second position of the GNRA loops is a pyrimidine, likely due to a steric clash with GGAA loops. In addition, common recognition features of GNRA tetraloops were identified, the most critical of which is the receptor's possession of a C:G base pair that presumably positions the final A of the GNRA loop for binding, as was seen in the crystal structures of the GAAA-helix and GAAA-11 nt interactions (Cate *et al.* 1996a; Pley *et al.* 1994b). This putative interaction site is indicated for all of the receptors with a box in Fig. 4 (Costa & Michel, 1997).

An alternative and more direct approach to *in vitro* selection of tetraloop–receptor interactions was taken by Jaeger and co-workers by utilizing a binding assay for identification of possible GGAA receptors, which thus far have rarely been identified in nature (Geary *et al.* 2008). Such an approach allows for comparisons of new receptors with those previously identified by a more direct assessment of specificities than a catalysis assay, which is an indirect read-out of folding. The bimolecular approach to studying tertiary interactions can be challenging because the dissociation constant (K_d) for weak tertiary interactions is very high. Nevertheless, the K_d of the T(GAAA)–R(11 nt) motif was measured using site-directed spin labeling detection (Fig. 6a), which allowed for measurements of the amount of free [T] as function of [R], titrations of which allowed for determination of K_d for the simple scheme in Fig. 6a as

$$F_{\text{bound}} = \frac{[R]}{[R] + K_d}, \quad (1)$$

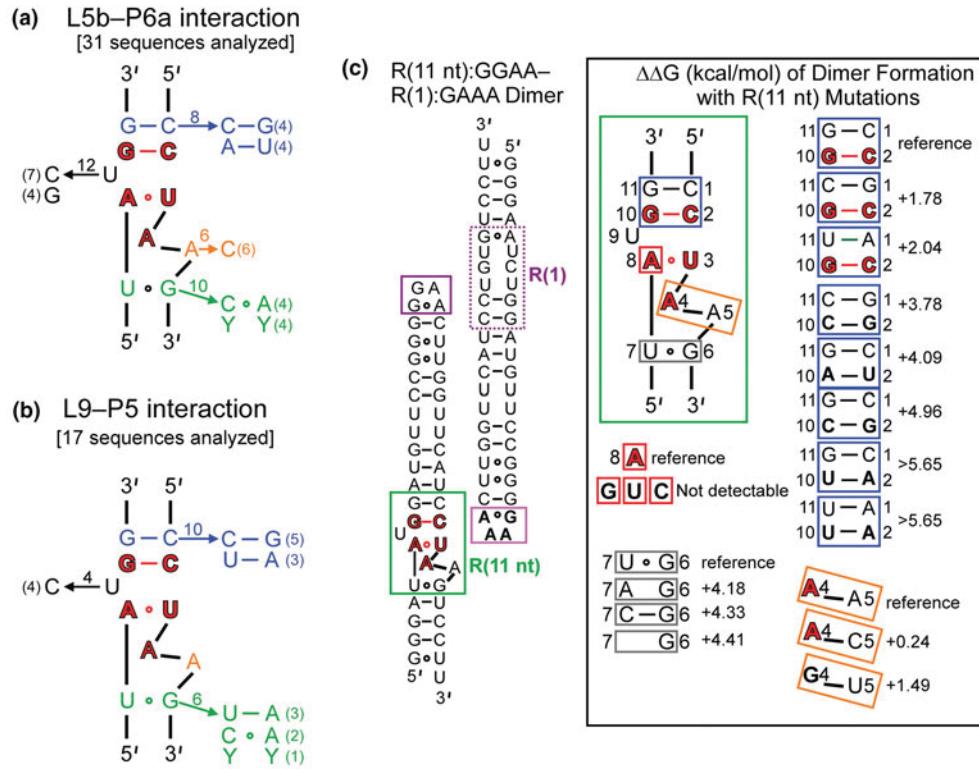
Fig. 6. Binding assays for measurement of tetraloop and receptor dissociation constants (K_d). (a) Nitroxide labeling scheme for EPR probing of the K_d for the GAAA tetraloop (T) and 11 nt receptor (R) construct (Qin *et al.* 2001b). (b) Dimerization scheme for forming two tetraloop–receptor interactions (T1–R2 and R1–T2) with varied Ts and Rs (Geary *et al.* 2008). The helical construct was optimized using the GAAA–11 nt receptor interaction (Jaeger *et al.* 2001). Both homodimer (T1 = T2, R1 = R2) and heterodimer (T1 \neq T2, TR1 \neq TR2) complexes were explored with a gel shift binding assay (Table 2).

where $[R]$ is the concentration of the receptor, K_d is the apparent dissociation constant for the T–R construct, and F_{bound} is the fraction of bound tetraloop (T) (Fig. 6a). Indeed the binding interaction was found to be relatively weak, with a K_d of 0.4 ± 0.05 mM at 125 mM MgCl₂. To allow a more sensitive detection of tetraloop–receptor binding, an optimized bimolecular construct design that contains two tetraloop–receptor interactions (TR–TR) was used as a selection assay (Fig. 6b) (Geary *et al.* 2008; Jaeger & Leontis, 2000; Jaeger *et al.* 2001). Specifically, a gel-shift assay was used to measure the K_d s for homo- and hetero-dimerization (T1 = T2, R1 = R2 and T1 ≠ T2, R1 ≠ R2) of dual tetraloop–receptor constructs, as summarized in Table 2 (Geary *et al.* 2008). Heterodimer constructs that contain one strong interaction enable detection of a second T–R interaction that would otherwise be too weak to observe with bimolecular association.

The affinity of the dual T(GAAA)–R(11 nt) constructs is five orders of magnitude greater than that of the single T–R interaction (Fig. 6 and Table 2). Specifically, $K_d = 3 \text{ nM}$ (dual) *versus* $0.4 \text{ mM} \pm 0.05 \text{ mM}$ (single), when both interactions are measured at saturating $[\text{MgCl}_2]$. Furthermore, K_{Mg} for the association of a single tetraloop and a receptor was found to be $\sim 39 \text{ mM}$, whereas $K_{\text{Mg}} \sim 1 \text{ mM}$ for the TR–TR assembly. As shown in Fig. 6*a*, $\Delta G^\circ_{\text{bind}}$ (single) = $-4.6 \pm 0.1 \text{ kcal mol}^{-1}$, where $\Delta G^\circ_{\text{bind}} = -RT \ln (K_{\text{bind}} \times 1 \text{ M})$. If the tetraloop–receptor interactions additively contributed to construct stability, one would predict $\Delta G^\circ_{\text{bind(dual)}} = 2 \Delta G^\circ_{\text{bind(single)}}$, or $-9.2 \text{ kcal mol}^{-1}$. However, $\Delta G^\circ_{\text{bind(dual)}}$ is actually

Table 2. Tetraloop–receptor specificities: Apparent dissociation constants (K_d , nM) of tetraloop–receptor dimers (T1R1–R2T2, Fig. 6b) with varied R1–T2 interactions and the specified T1–R2 binder

R1 receptor	T2 tetraloop					
	GAAA	GUAA	GGAA	GUGA	GAGA	GGGA
Homodimers (T1 = T2, R1 = R2)						
11 nt*	3	>100 000	>100 000	ND	ND	ND
C7.2	4	>100 000	>100 000	ND	ND	ND
C7.10	20	>100 000	>100 000	ND	ND	ND
IC3	1500	800	5000	ND	ND	ND
C7.34	2000	ND	40	ND	ND	ND
R(1)	>100 000	>100 000	40	ND	ND	ND
R(2)	>100 000	ND	200	ND	ND	ND
Heterodimers with T1–R2 interaction fixed as GAAA–11 nt						
IC3	ND	30	70	100	80	160
C7.34	ND	40	4	110	75	6
R(1)	ND	10 000	4.4	>20 000	>20 000	15 000
R(2)	ND	375	15	1000	500	17.5
Heterodimers with T1–R2 interaction fixed as GGAA–R(1)						
11 nt	4.4	>20 000	ND	>20 000	10 000	>20 000
C7.2	6.9	>20 000	ND	>20 000	8000	>20 000
C7.10	61	>20 000	ND	>20 000	20 000	>20 000


K_d determined at 15 mM Mg^{2+} , 10 °C, 89 mM Tris borate buffer at pH 8.3 by native gel electrophoresis (Geary *et al.* 2008). ND = not determined.

* The single GAAA–11 nt receptor system (Fig. 6a) yielded $K_d = 0.4 \pm 0.05$ mM at 125 mM Mg^{2+} , 100 mM NaCl, 50 mM MOPS, pH 6.6, and 20 °C using a site-directed spin labeling assay (Qin *et al.* 2001b).

–11.4 kcal mol^{−1}, which is significantly more favorable than the sum of two single interactions. The origin of this discrepancy will be discussed in Section 7 and is believed to be evidence of entropic cooperativity between the T–R interactions.

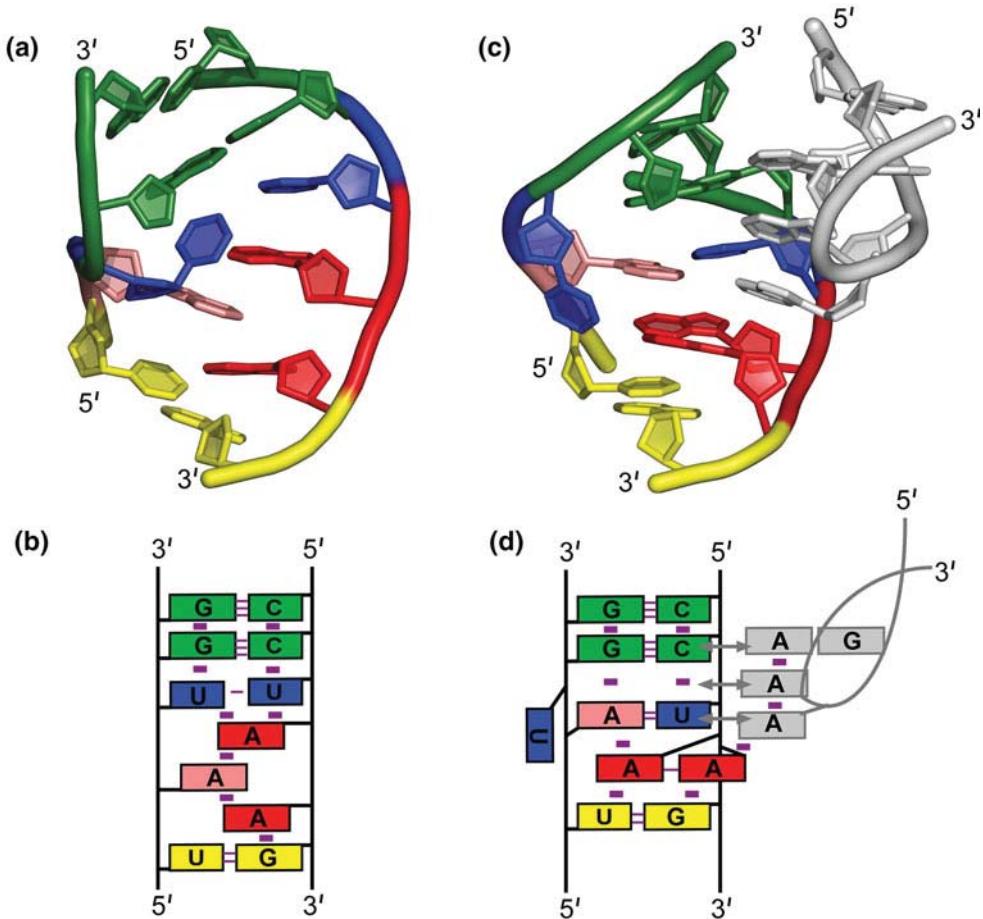
As shown in Table 2, the binding assay dovetails with the activity assay (Table 1) for the specificity and affinity trends of the various receptors. Again the GAAA–11 nt appears the strongest and is remarkably specific for GAAA, yet the GAAA–R(C7.2) *in vitro* selected receptor is very comparable. This study also confirmed that the IC3 motif, which was believed to be less stringent in its discrimination of various tetraloops, indeed binds GAAA, GUAA and GGAA receptors with similar affinities (Ikawa *et al.* 1999). Most interestingly, Geary *et al.*, revealed new classes of receptors called R(1) and R(2) that quite strongly bind GGAA loops, with a homodimeric $K_d = 40$ and 200 nM, respectively (Fig. 4 and Table 2). R(1) is a 12 nt receptor, which is quite similar to the 11 nt motif in that it specifically recognizes one type of loop. The R(2) affinities for the homodimeric and heterodimeric constructs are summarized in Table 2. Effects of mutations within the R(1) and R(11 nt) receptors were also explored. From these results, the authors proposed that tetraloop receptors can be categorized into two general classes dictated by the geometry of their A-minor interaction (Geary *et al.* 2008).

These studies have also revealed that the natural tetraloop–receptor interactions tend to be ‘AU-rich’ compared to their ‘GC-rich’ artificial counterparts (Afonin *et al.* 2012). Furthermore, in spite of comparable selectivity and stability to natural GNRA–receptor interactions, most of the *in vitro* selected motifs have not been found in natural RNAs, thus indicating an unknown evolutionary bias for tetraloop receptor selection (Afonin *et al.* 2012; Costa & Michel, 1997;

Fig. 7. Conservation of the 11 nt GAA tetraloop receptor and effect of mutations (Costa & Michel, 1997; Geary *et al.* 2008). (a, b) *In vivo* variability of the 11 nt GAAA tetraloop receptor in group I introns containing L5b-P6a and/or L9-P5 interactions (see Fig. 2a). Red outlined nucleotides are invariant. The numbers of sequences analyzed are indicated in square brackets. Numbers above each position correspond to the total number of changes observed at each position. Only the most frequent or relevant alternatives to the canonical sequence are shown. The L5b-P6a interaction is present only in subgroup IC1. (c) Effect of mutations on the binding of the T(GAAA)–R(11 nt) within a heterodimer complex, see also Fig. 6b.

Geary *et al.* 2008). A recent work has explored the origins of the evolutionary tetraloop receptor preferences using cleverly designed modular systems with competing tetraloop–receptor and pseudo-knot interactions (Afonin *et al.* 2012). This study supports the hypothesis that the natural motifs, in particular the evolutionary preference for ‘AU’ rich GNRA tetraloop–receptors, may be optimized to avoid misfolded states and kinetic traps in the global folding of the RNA. Nonetheless, the GAAA tetraloop–11 nt receptor motif is clearly the strongest and most frequently employed GNRA–receptor interaction. This motif has been examined in great biophysical detail, and is thus the focus of the remainder of this review.

3. Origins of sequence conservation in the 11 nt GAAA tetraloop receptor


Most group I introns possess GAAA tetraloops (Fig. 2) that are frequently paired with the canonical 11 nt receptor motif (Costa & Michel, 1997; Michel & Westhof, 1990). However, there are natural variations within the tetraloop receptor domains, the most common of which are shown in Figs 7a and 7b. Nonetheless, a central invariant core set of nucleotides is identified

(shown in *red*), and each of these is directly involved with the hydrogen bond network created with the GAAA tetraloop (Fig. 3). Furthermore, an additional adenosine (*orange*) that forms the AA platform is highly conserved, present 90% of the time with its only mutation being to a C. This mutation might be permissible because it potentially still allows formation of the platform that is critical to opening the minor groove to the tetraloop (Fig. 3*b*). Variations with a GAAA–11 nt interaction in group II introns were also analyzed (Costa & Michel, 1997).

As expected, any mutations to the invariant residues within the 11 nt motif considerably disrupt and even obliterate the interaction with the GAAA tetraloop when the binding affinity is assessed in the context of the heterodimeric complex (Fig. 7*c*) per Eq. (1). Mutations to the adenosine of the A:U Hoogsten base pair directly disrupt H-bonds with the first A of the GAAA loop (Fig. 3*d*) and make dimerization undetectable, while mutations to the first A of the adenosine platform to a G destabilizes the complex by 1.49 kcal mol⁻¹ (Fig. 7*c*). However, mutation of the next A of the platform to a C, the natural variant, is considerably less detrimental (0.24 kcal mol⁻¹), suggesting the platform is also formed in this mutant. Although other nucleotides of the receptor, e.g., the G:U wobble pair, show considerable variation, their mutation to unnatural sequences has a dramatic effect on the heterodimeric binding affinity (Fig. 7). The question remains if natural variants would also be detrimental to the interaction in this context or if they perhaps can accomplish a requisite structural task, such as metal ion recruitment and/or geometrical optimization for adenosine platform stacking (Cate *et al.* 1996b; Davis *et al.* 2007; Geary *et al.* 2008). Even though the first C:G base pair (*blue*) is not directly involved in any sequence specific interaction with the tetraloop region (Fig. 3), mutation to G:C, the most common natural variant (Figs 7*a* and 7*b*), destabilizes binding by 1.78 kcal mol⁻¹ (Fig. 7*c*). The origin of this disruption is not yet understood, though, just as in the case of the G:U wobble pair, a metal ion does localize in this region (see Section 5) and the sequential purines may be critical to this cation recruitment (Davis *et al.* 2007). As will be discussed in the following section, the C:G pair has also been proposed to be involved in the binding transition state (Butcher *et al.* 1997), though this alone would not explain why its mutation would destabilize the interaction. It is also possible that these natural mutations occurred under evolutionary stimuli reflecting needs other than optimization of interaction free energy (Costa & Michel, 1997).

4. Free versus bound structure of the GAAA tetraloop and 11 nt tetraloop receptor

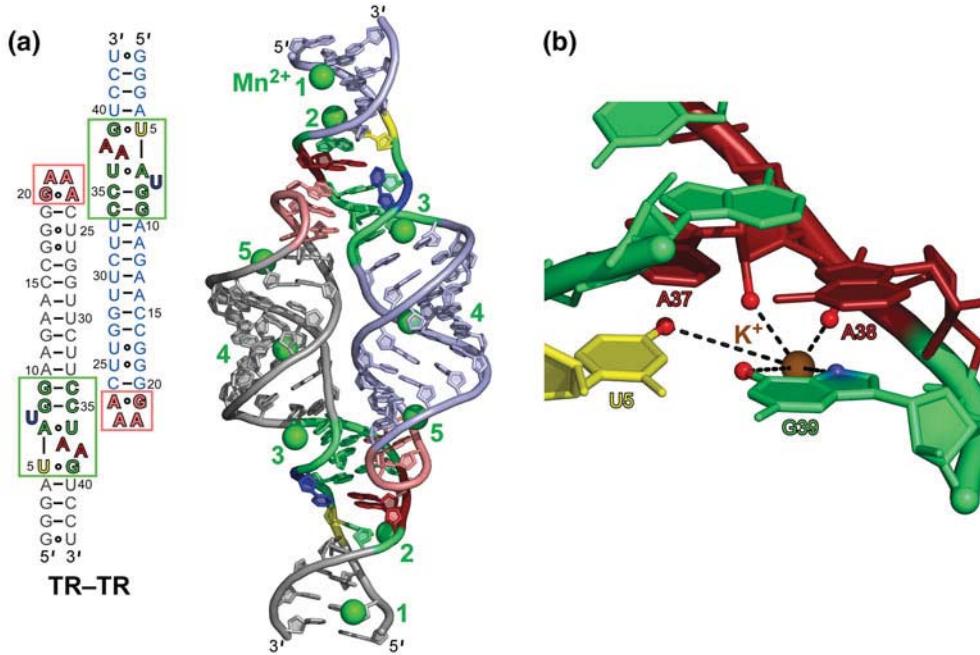

Although the GAAA tetraloop is a rigid unit, indistinguishable both free in solution or bound to a receptor (Cate *et al.* 1996a; Heus & Pardi, 1991; Jucker & Pardi, 1995), the bound and unbound forms of its 11 nt tetraloop receptor are markedly different, as depicted in Fig. 8 (Butcher *et al.* 1997; Cate *et al.* 1996a). Specifically, the free form of this tetraloop receptor involves a high degree of base stacking; the central region is made up the three inter-digitated adenosines (*red*) that form a ‘base zipper’ motif, while two uridines (*blue*) form a U:U mismatch pair stacked with the C:G base pairs (Fig. 8*a*). In the bound form, most of these stacking interactions are disrupted, with two of the A’s aligned side-by-side, making up the adenosine platform, while one of the U’s is unstacked and unpaired (Fig. 8*b*). These structural differences suggest that the tetraloop receptor must undergo conformational rearrangement upon tetraloop docking, i.e., an induced

Fig. 8. Solution NMR structure of the free 11 nt tetraloop receptor (Butcher *et al.* 1997) versus the GAAA bound structure. (a) Lowest energy structure of the free 11 nt receptor structure determined by solution NMR spectroscopy in the context of the receptor (R) construct shown in Fig. 6a. (a) The central region is made up of 3 inter-digitated adenosines (red). Two uridines (blue) form a U:U mismatch pair stacked with the C:G base pairs (PDB ID 1TLR). Hydrogen bonds within the receptor are indicated as purple lines and base stacking as purple rectangles. (b) Crystal structure of the GAAA bound tetraloop receptor from the P4–P6 domain (PDB ID 1HR2). GAAA–receptor hydrogen bonds are shown in detail in Fig. 3. In the bound form, two of the adenosines align side-by-side, making up the adenine platform. One U (blue) is unstacked and unpaired.

fit (Butcher *et al.* 1997). Even at very high $[Mg^{2+}] = 125$ mM, the native, unstacked formation of the tetraloop receptor is unobservable, as monitored by site-directed spin labeling (Qin *et al.* 2005).

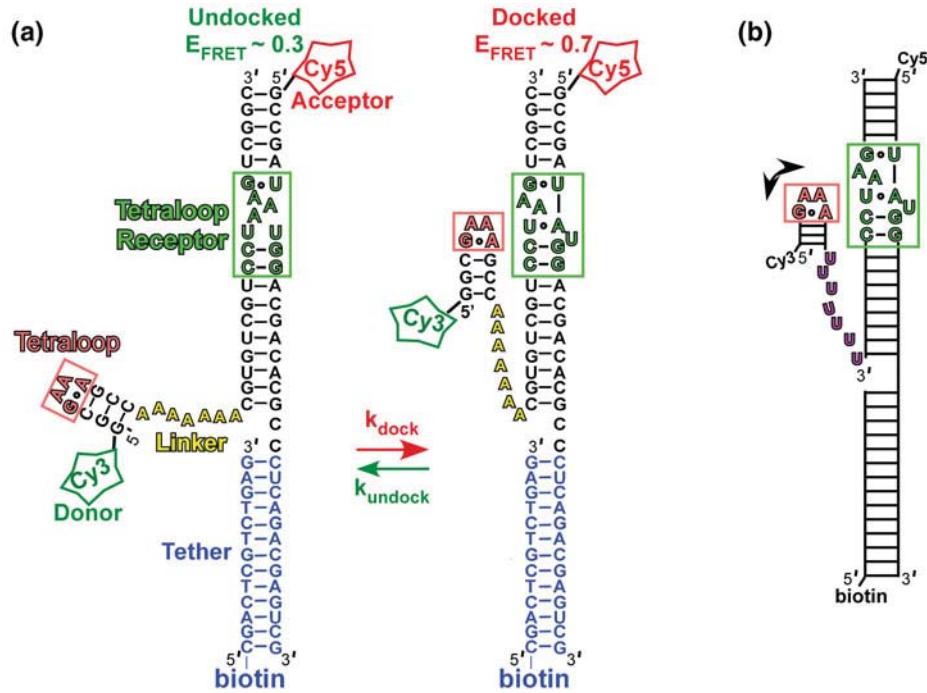
Study of the free form of the tetraloop receptor also addresses another interesting question: why is the first C:G base pair (Figs 7a and 7b) of the motif so highly conserved? It was proposed that this base pair may be implicated in the transition state for tetraloop binding. In this scheme, the tetraloop registers with the tandem C:G base pairs in the same fashion as in the simple tetraloop minor groove interaction (Fig. 1a), thereby nucleating a conformational change within the receptor (Butcher *et al.* 1997).

Fig. 9. Metal ions in the GAAA tetraloop-11 nt receptor structure. (a) Mn²⁺ (green) localized on the homodimer tetraloop-receptor complex, as determined by NMR (Davis *et al.* 2007). All ion positions could be satisfied by hydrated ions (PDB ID 217Z). (b) K⁺ chelation site below the AA platform in the Azoarcus group I intron crystal structure, with the nucleotides labeled according to analogy of location in the dimer of in (a). The five proposed chelation sites are shown (Adams *et al.* 2004b; Basu *et al.* 1998) (PDB ID 1U6B).

5. The role of metal ions and solvent in the GAAA tetraloop-11 nt receptor structure

Metal ions are critical to proper RNA folding, and formation of the GAAA tetraloop-11 nt receptor serves as model system for understanding RNA-ion interactions, for example it undergoes Mg²⁺-dependent formation (Jaeger & Leontis, 2000; Qin *et al.* 2001b). Metal ions associated with the bound T(GAAA)-R(11 nt) complex have been identified through NMR (Fig. 9a) and crystallography. In the crystal structure of the *Tetrahymena* P4-P6 domain, a number of potential metal ion binding sites have been identified near the GAAA tetraloop and receptor (see Figs 2 and 3 for numbering scheme): (i) a magnesium ion coordinated to the G250 phosphate oxygen of the receptor, which is analogous to G8 in Fig. 9a (Adams *et al.* 2004a, b; Cate *et al.* 1996a; Juneau *et al.* 2001), (ii) a monovalent ion (K⁺) coordination site below the adenosine platform nucleotides (Fig. 9b) (Adams *et al.* 2004a; Basu *et al.* 1998; Cate *et al.* 1996b) (Fig. 9b), and (iii) a cobalt hexamine binding site at the consecutive G.U wobble pairs (analogous to nts 18-25 and 17-26 in Fig. 9a) in the major groove of the tetraloop helix (Cate & Doudna, 1996; Juneau *et al.* 2001). The NMR structure of a dual tetraloop-receptor (TR-TR) complex in solution contains similar metal binding sites, as shown in Fig. 9a (Davis *et al.* 2007).

Through NMR studies, as many as five manganese ions or 2 cobalt hexamine ions have been shown to localize on the complex (Davis *et al.* 2007). Although the methods used were unable to discern hydration state of the ions, all of the locations could be occupied by fully hydrated ions


(Davis *et al.* 2007). The Mn²⁺ sites are shown in Fig. 9a. Sites 2, 3 and 5 are all in similar locations to the three sites noted for the crystal structures. Site 5 (the G.U wobbles) can be occupied by either manganese or cobalt hexamine ions and overlaps well with the crystal structure (Cate & Doudna, 1996; Juneau *et al.* 2001). Site 2 (the AA platform) shows an associated manganese, which is ~6.9 Å away from the K⁺ site observed in the crystal structure (Adams *et al.* 2004a, b; Basu *et al.* 1998; Cate *et al.* 1996b), potentially indicating a different coordination geometry (Figs 9a and 9b). The authors determined that divalent ions can compete with K⁺ for this site by comparing spectra with varying concentrations of Mn²⁺ and K⁺. However, K⁺ has been shown to enhance the activity of the *Azotarcus* ribozyme and has a higher affinity for this site over other monovalent ions (Basu *et al.* 1998; Lambert *et al.* 2009). Both manganese and cobalt hexamine localize at the sequential G:C base pairs (site 3), indicating that the direct coordination observed in the crystal structure is not required. Furthermore, nonlinear Poisson–Boltzmann calculations of the TR–TR electrostatic surface have revealed that the metal ion localization sites overlap with highly electronegative pockets, e.g. major grooves, as would be anticipated for diffusely bound ions (i.e., hydrated) rather than specifically bound ions (Davis *et al.* 2007; Misra & Draper, 2001; Misra *et al.* 2003). These calculations, combined with the observation that the TR–TR complex does not change conformation over a range of ionic conditions, suggest that metal ions do not play a specific structural role in the tetraloop–receptor interaction. Nevertheless, their clear electrostatic necessity for promoting folding is quite another story, which will be examined in later sections (Davis *et al.* 2007).

The solvent accessibility of the GAAA tetraloop–receptor interface has also been assessed. It was determined that ~730 Å of the solvent accessible surface area is buried at the interaction site (Juneau *et al.* 2001), which suggests that water/co-solutes must be released upon tetraloop docking into the receptor. Studies of the tetraloop–receptor in the presence of PEG or dextran 12 000 reveal a clear stabilization of the interaction. This stabilization supports the idea that RNA has a higher affinity for water than PEG, i.e., it is more costly to displace water than PEG when docking (Downey *et al.* 2007). Sucrose and glycerol had little effect on docking, suggesting that they have similar affinity for the RNA, likely due to the presence of the vicinal hydroxyl groups. It has also been observed that increased hydrostatic pressure destabilizes T(GAAA)–R(11 nt) formation, to which a number of interactions with the solvent may also contribute (Downey *et al.* 2007).

6. Cation-dependent kinetics and equilibrium of GAAA tetraloop–11 nt receptor docking/undocking

6.1 Single-molecule kinetics and equilibrium of tetraloop–receptor docking/undocking

Capitalizing on the fact that the T(GAAA)–R(11 nt) interaction can form outside of a natural ribozyme framework (Butcher *et al.* 1997; Qin *et al.* 2001b), we isolated it in a construct and tethered it to a passivated glass surface to monitor intramolecular docking/undocking of the tetraloop into the receptor using single-molecule FRET methods (Fig. 10) (Hodak *et al.* 2005). Linked by a flexible single-stranded junction (poly A or poly U), the GAAA tetraloop facilely and specifically docks into its receptor, modulating the fluorescence resonance energy transfer (FRET) between the donor (Cy3) and acceptor (Cy5) fluorophores (Hodak *et al.* 2005). Single-molecule confocal microscopy was used to monitor the donor and acceptor emission intensities, from which the efficiency of energy transfer (E_{FRET}) is calculated ratiometrically

Fig. 10. RNA FRET constructs designed to observe the intramolecular docking/undocking reaction of the GAAA tetraloop and 11 nt receptor (Downey *et al.* 2006; Hodak *et al.* 2005). (a) The GAAA tetraloop and 11 nt tetraloop receptor are connected by a single-stranded A₇ linker (yellow). Cy3 and Cy5 fluorophore labels allow for monitoring of docking and undocking using FRET methods. A biotinylated region (tether) is used for immobilization on streptavidin-coated glass surfaces. (b) Alternative linkers were also explored, e.g., U₇, as shown here.

(Fiore *et al.* 2008; Hodak *et al.* 2005). Such real-time E_{FRET} traces permitted exploration of the $[\text{Mg}^{2+}]$ -dependent docking (k_{dock}) and undocking (k_{undock}) kinetics for this tertiary contact, observable by bi-stable switching between well-resolved high (docked) and low (undocked) E_{FRET} states with FRET efficiencies of ~ 0.7 and 0.3 , respectively (Figs 10 and 11a). This method allows for isolation of the kinetics for forming the T(GAAA)-R(11 nt) interaction, which serves as a simplified system for benchmarking the role of ion-RNA interactions in RNA folding.

The real-time E_{FRET} traces reveal the $[\text{Mg}^{2+}]$ dependence of docking/undocking in the tetraloop-receptor FRET construct. In the absence of Mg^{2+} , the RNA spends most of its time undocked, whereas increasing $[\text{Mg}^{2+}]$ favors the docked conformation (Fig. 11a). The rate constants for docking and undocking are determined from the dwell times (τ) of the molecule in the undocked and docked states, respectively, as defined in the real-time trajectory by crossings of a threshold set at the minimum of the bimodal E_{FRET} distribution (Fig. 11a). To achieve a larger dynamic range and statistical accuracy, we calculated probability densities from cumulative histograms of these docked and undocked dwell times under each experimental condition, i.e., $P(\tau_i) = H(\tau_i)/[0.5(\tau_{i+1} - \tau_{i-1})]$, where $H(\tau_i)$ is the standard histogram value and τ_i represents an ordered list of nonzero time bins (Hodak *et al.* 2005). The resulting normalized docked and undocked dwell time probability densities, $P(\tau)/P(0)$, are well described by a single-exponential

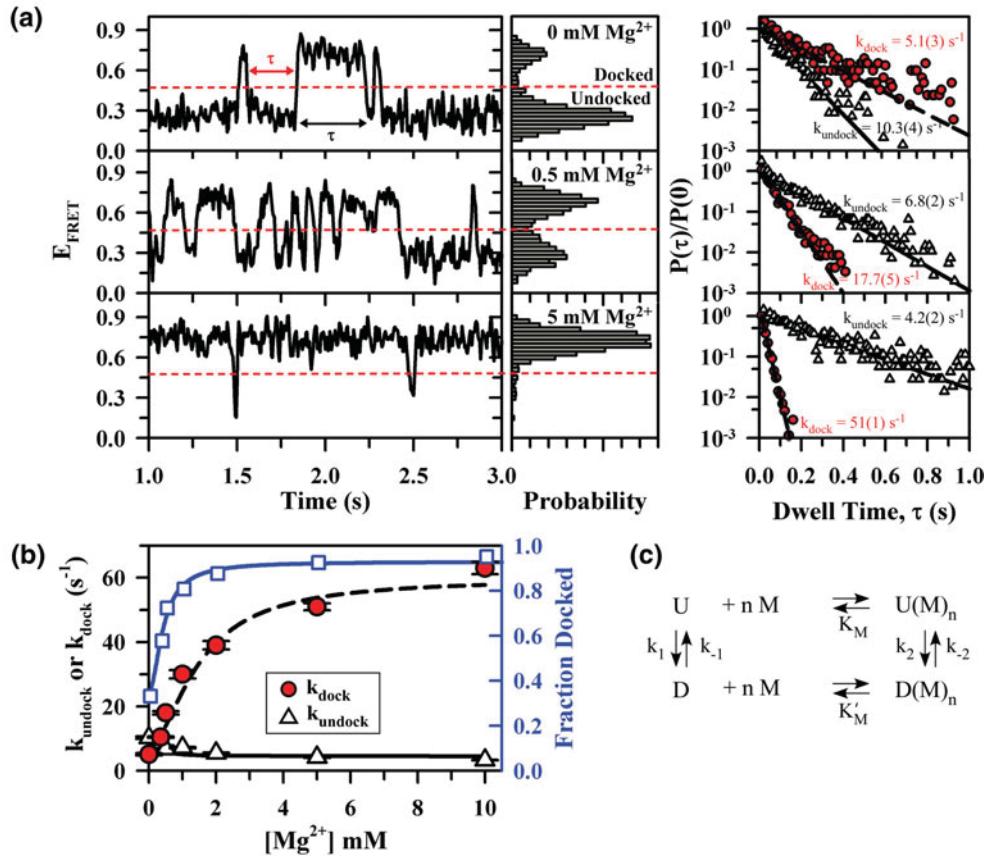
Table 3. Four-state model kinetic parameters (Fig. 11c) for the [cation]-dependent intramolecular docking/undocking of the GAAA tetraloop and 11 nt receptor via A₇ or U₇ linkers (Fig. 10) at 21 °C and specified background [NaCl]

	[NaCl] (mM)	k_1 (s ⁻¹)	k_{-1} (s ⁻¹)	k_2 (s ⁻¹)	k_{-2} (s ⁻¹)	K_M (mM)	K'_M (mM)	n
*Na ⁺	N/A	5±1	22±9	67±11	3.8±0.3	357±53	82±28	2.9±0.5
*K ⁺	0	5±1	18±14	70±6	3.1±0.4	371±17	102±37	3.4±0.7
Mg ^{2+*}	100	7±2	12±3	60±11	4.5±0.5	1.5±0.7	0.24±0.18	1.7±0.5
Ca ^{2+*}	100	7±2	11±3	67±12	5.8±0.5	1.8±0.4	0.53±0.24	2.4±0.7
Co(NH ₃) ₆ ^{3+*}	100	8±1	12±2	60±6	4.4±0.4	0.08±0.01	0.02±0.01	1.9±0.4
Spd ^{3+*}	100	5±1	10±2	22±6	5.3±0.5	0.34±0.26	0.05±0.05	1.1±0.4
Mg ²⁺ (U ₇)†	100	13±1	9±1	156±23	5.4±0.2	1.3±0.3	0.25±0.08	1.8±0.2
Mg ²⁺ (U ₇)†	25	2.8±0.4	10±1	180±113	6±1	2.7±0.6	1.8±0.4	5±1

* A₇ linked construct (Fig. 10a) (Fiore *et al.* 2012a).

† U₇ linked construct (Fig. 10b) (Fiore *et al.* 2012b).

decays over >3 orders of magnitude (Fig. 11a, right side), with only subtle deviation from mono-exponentiality at very long dwell times – an indication of possible kinetic heterogeneity (Hodak *et al.* 2005).


The [Mg²⁺] dependence of k_{dock} and k_{undock} at room temperature is shown in Fig. 11b for the A₇ linked GAAA tetraloop–receptor construct (Fig. 10a). Increasing [Mg²⁺] increases k_{dock} by 12-fold while decreasing k_{undock} by 3-fold over the range of 0–10 mM. These trends were fit to a four-state kinetic model with cation (M)-dependent and -independent pathways for docking (Fig. 11c). In this model, ion-bound and -free states rapidly equilibrate with dissociation constants K_M and K'_M for the undocked and docked states, respectively. Furthermore, the ion-bound and -free forms of the undocked or docked states are experimentally indistinguishable by FRET. Thus, the experimental rate constants (k_{dock} and k_{undock}) in a nominally two-state picture (Fig. 10a), can be modeled as the combination of cation-dependent (k_2 , k_{-2}) and cation-independent (k_1 , k_{-1}) pathways for docking and undocking, where

$$k_{\text{dock}} = \frac{k_1(K_M)^n + k_2[M]^n}{(K_M)^n + [M]^n}, \quad (2)$$

$$k_{\text{undock}} = \frac{k_{-1}(K'_M)^n + k_{-2}[M]^n}{(K'_M)^n + [M]^n}. \quad (3)$$

The resulting fit parameters are summarized in Table 3 for the A₇ and U₇ constructs (Fiore *et al.* 2012b; Hodak *et al.* 2005). At high [Mg²⁺], k_{dock} is large, suggesting that formation of this interaction is not a rate-limiting step in RNA folding (Hodak *et al.* 2005), yet k_{undock} is still appreciable, emphasizing how dynamic RNA structures can be under physiological conditions.

Motivated by ensemble equilibrium measurements of the T–R FRET construct (Fig. 10), which showed that T(GAAA)–R(11 nt) docking is enabled by many different cations (Downey *et al.* 2006), single-molecule methods were next used to investigate the role of cations in the kinetics of docking/undocking (Fiore *et al.* 2012a). Specifically, the cation-dependent kinetics have been studied as a systematic function of cationic size and charge for a series of monovalent (Na⁺ and K⁺), divalent (Mg²⁺ and Ca²⁺), and trivalent [Co(NH₃)₆³⁺ and spermidine³⁺] ions. Each of the cation titrations yielded a curvature remarkably similar to Mg²⁺ (Fig. 11b), namely

Fig. 11. Single-molecule $[\text{Mg}^{2+}]$ -dependent kinetics of intramolecular GAAA tetraloop-11 nt receptor docking/undocking at room temperature (Hodak *et al.* 2005). (a) Sample real-time single-molecule FRET efficiency (E_{FRET}) traces resolving docking and undocking transitions of the tetraloop and receptor (Fig. 10a) at varying $[\text{Mg}^{2+}]$. Two E_{FRET} states are resolved at all Mg^{2+} concentrations, as seen by the corresponding probability distributions. The cumulative probability densities are shown for the dwell time distributions (τ) at each $[\text{Mg}^{2+}]$ (right). Single-exponential fits of the dwell times for undocking and docking yield the rate constants for docking (k_{dock}) and undocking (k_{undock}), respectively. (b) $[\text{Mg}^{2+}]$ dependence of k_{dock} , k_{undock} , and the fractional population of the docked state (fraction docked). (c) The $[\text{Mg}^{2+}]$ dependence of k_{dock} and k_{undock} is fit to a four-state kinetic model. In this model, cation (M) bound and unbound forms of the undocked (U) and docked (D) states are indistinguishable by FRET, where k_1 and k_2 are the rate constants for docking in the absence and presence of cation, respectively, n is the Hill coefficient, and K_M is the apparent dissociation constant of cations from the undocked RNA. Similarly, k_{-1} and k_{-2} are the undocking rate constants in the absence and presence of cation respectively, and K'_M is the apparent dissociation equilibrium constant for Mg^{2+} binding to the docked RNA. The fit parameters are summarized in Table 3.

that increasing [cation] dramatically increased k_{dock} , while decreasing k_{undock} . Utilizing the same four-state model (Fig. 11c, Eqs. 2 and 3) to analyze the results, we found that cation charge provides the major distinction between the ion–RNA binding affinities (Table 3), i.e., valence is the decisive determinant of the effective counterion concentration required to promote docking. However, the individual rate constants within the kinetic model are strikingly similar, indicating that each of the cations, with the exception of spermidine $^{3+}$, has equal ability to perturb the RNA folding landscape when the concentration is sufficiently high. Spermidine $^{3+}$ promotes folding to

a lesser extent under saturating conditions than the other cations investigated, suggesting that steric effects prevent complete neutralization of the RNA phosphate groups. Analysis of the preferential interaction coefficient for cations with the RNA revealed that the number of cations taken up with folding changes dramatically as a function of cation identity and concentration, which is in line with other studies of the dual bimolecular construct (Lambert *et al.* 2009; Vander Meulen & Butcher, 2012).

Substitution of the A₇ linker with a more flexible U₇ alternative (Fig. 10) has a negligible effect on K_M , K'_M , an n (Table 3) (Fiore *et al.* 2012a, b). This observation suggests that cation uptake with folding is dominated by the tetraloop–receptor docking interaction rather than the linker. By way of contrast, the docking rate constants (i.e., k_1 and k_2) are nearly 2-fold faster for the U₇ linker construct. This result is consistent with prior expectation that base-stacking in the A₇ linker can weakly interfere with achieving the correct docking transition-state (Fiore *et al.* 2012b).


These single-molecule studies of intramolecular T(GAAA)–R(11 nt) docking can also be compared with studies of a bimolecular system. At any single-molecule condition, the equilibrium constant (K_{dock}) can be calculated by $k_{\text{dock}}/k_{\text{undock}}$, from which one can also determine the fractional amount of time the tetraloop is bound to the receptor (fraction docked = $K_{\text{dock}}/(K_{\text{dock}} + 1)$), as shown in Fig. 11b (Fiore *et al.* 2008). Thus, we can compare the single-molecule results to equilibrium studies of the bimolecular isolation of the GAAA tetraloop and 11 nt receptor (Fig. 6a). With the architecture of the single-molecule T–R construct and sufficient counterion screening, the tetraloop can access some effective volume (V_{eff}) surrounding the receptor, which can be rigorously obtained from a partition-function weighting of all possible linker conformations. Indeed, even for a perfectly flexible linker, this accessible volume is constrained by entropic effects, as demonstrated computationally in a model nucleic acid system (Bai *et al.* 2008). Nevertheless, the intramolecular T–R system can still be interpreted in terms of a simple bimolecular analog, whereby the linker acts to enhance the effective concentration (i.e., $\approx 1/V_{\text{eff}}$) of the tetraloop with respect to the receptor, as discussed elsewhere (Downey *et al.* 2006; Fiore *et al.* 2012b). As a simple upper limit of V_{eff} for the tetraloop, therefore, we use the geometrical parameters of a standard RNA A-form helix ($\sim 3 \text{ \AA bp}^{-1}$) with the tetraloop being extended by 11 bp (Fig. 10). Note that such a T–R construct conformation corresponds to a Cy3–Cy5 distance consistent with the observed undocked E_{FRET} value (Fig. 10). This extended conformation encompasses a sphere of radius 33 Å with a geometric volume of 151 nm³, yielding a lower limit to the effective receptor concentration, [R], of $\geq 11 \text{ mM}$. However, the receptor helix contained within this sphere prevents the tetraloop from accessing this entire volume, thus we subtract an excluded volume, as estimated by the cylindrical geometry of the receptor helix (radius 13 Å and height of $2 \times 33 \text{ \AA}$), yielding $[R] \approx 14 \text{ mM}$ (Downey *et al.* 2006; Fiore *et al.* 2012b). Based on the simple-binding expression in Eq. (1), we would thereby predict the corresponding bimolecular K_d to be $\sim 0.48 \pm 0.08 \text{ mM}$ for T–R dissociation from the single-molecule construct under 100 mM monovalent and saturating [Mg²⁺] conditions, where $K_{\text{dock}} = k_2/k_{-2} \approx 30$ (Table 3, U₇) and $K_d = [R]/K_{\text{dock}}$. Despite the simplicity of this treatment, it is worth pointing out that this result agrees remarkably well with the actual bimolecular measurement of $0.4 \pm 0.05 \text{ mM}$ (Qin *et al.* 2001b). The K_d for the A₇ construct is larger ($1.1 \pm 0.4 \text{ mM}$), as would be expected if base-stacking in the linker increases the barrier to docking. On this note, it has also been shown that the tetraloop–receptor interaction can be inhibited if single-stranded polyT is hybridized to the A linker, thereby making the junction too rigid to allow for docking (Downey *et al.* 2006). Both docking and undocking events are rare

when the linker is bound to polyT; therefore the rate constants for docking and undocking have not been reliably obtained in the presence of the polyT inhibitor.

The ‘on rates’ measured for bimolecular association of two constructs, one containing two GAAA tetraloops and one containing two 11 nt receptors (Fig. 9a), were also measured by a novel application of isothermal titration calorimetry (ITC) (Vander Meulen & Butcher, 2012) (see also Section 8.2). These on-rate constants can be readily compared with the single-molecule k_{dock} with the assumption that formation of the first tertiary interaction is the rate-limiting step to binding. On and off rate constants for this construct have been measured at a variety of $[\text{Mg}^{2+}]$ and $[\text{K}^+]$ conditions; we choose just one set to illustrate the remarkably similar results obtained from these dramatically different kinetic approaches. At 100 mM KCl, for example, the bimolecular rate constant k_{on} is observed to be $530 \pm 90 \text{ M}^{-1} \text{ s}^{-1}$ at 15 °C; thus a comparable ‘unimolecular’ rate constant for an effective receptor concentration ($[\text{R}]$) of 14 mM, would be $k_{\text{dock}} = 7.4 \pm 0.8 \text{ s}^{-1}$ ($k_{\text{dock}} = k_{\text{on}}[\text{R}]$). The most comparable condition observed in the single-molecule studies is for an A_7 linked construct at 100 mM KCl and 21 °C (Fiore *et al.* 2012a), with k_{dock} being largely temperature independent (Fiore *et al.* 2012b). These values compare remarkably well – $k_{\text{dock}} = 7.4 \pm 0.8 \text{ s}^{-1}$ *versus* $k_{\text{dock}} = 5.4 \pm 0.4 \text{ s}^{-1}$, for the ITC and single-molecule studies, respectively.

Despite the simplicity of the T(GAAA) – R(11 nt) model system (Fig. 10), significant kinetic heterogeneity is observed (Hodak *et al.* 2005), similar to that noted in more complex RNA systems (Bokinsky *et al.* 2003; Tan *et al.* 2003; Xie *et al.* 2004; Zhuang *et al.* 2000, 2002). Specifically, in addition to the ~70% actively docking/undocking, there is an ~30% inactive (‘non-docking’) subpopulation with no transitions on the time scale of observation (Hodak *et al.* 2005). Most importantly, this ‘non-docking’ population persists at elevated temperatures and is confirmed in studies of freely diffusing molecules (Fiore *et al.* 2008, 2009), thus ruling out potential artifacts due to surface tethering. Folding heterogeneity is also resolved with native gel electrophoresis (Downey *et al.* 2006). The physical origin of this robust ‘non-docking’ population is unknown. Recent single-molecule studies of the P4–P6 domain have shown that covalent modifications within an RNA can cause such long-lived kinetic heterogeneity and can be attributed to RNA preparations and purifications (Greenfeld *et al.* 2011). Further study is needed to elucidate if such covalent damage is responsible for heterogeneity in the tetraloop–receptor single-molecule construct or if it instead indicates an intrinsically deep furrow in the RNA folding landscape, as is suggested for functionally relevant kinetic heterogeneity in the hairpin ribozyme and *Tetrahymena* ribozymes (Ditzler *et al.* 2008; Solomatin *et al.* 2010). Trajectory data from the ‘non-docking’ tetraloop–receptor molecules are necessarily excluded from the single-molecule kinetic analysis, in that these molecules lack kinetic information due to the absence of docking/undocking events. Therefore, the rate constants obtained represent one possible folding pathway, i.e., reaction coordinate. The ability of single molecule methods to resolve kinetic heterogeneity highlights the power of such techniques to accurately characterize kinetic behavior.

In comparison with the single-molecule kinetics observed for other model RNA folding system, e.g., the hairpin ribozyme and P1 helix docking into the *Tetrahymena* ribozyme, the tetraloop–receptor system folds significantly faster (Bokinsky *et al.* 2003; Hodak *et al.* 2005; Tan *et al.* 2003; Zhuang *et al.* 2000). For example, under saturating cationic conditions at 21 °C, $k_{\text{dock}} = \sim 60 \text{ s}^{-1}$ in the GAAA tetraloop–receptor A_7 linker system (Table 3), whereas even under the most favorable conditions (37 °C), the hairpin ribozyme only achieves $k_{\text{dock}} \sim 1 \text{ s}^{-1}$ (Bokinsky *et al.* 2003; Fiore *et al.* 2012a). In that k_{dock} for the tetraloop–receptor system is largely temperature independent (Section 8.1), we can compare these two systems to demonstrate that in

Fig. 12. Freely diffusing single-molecule FRET study of Mg^{2+} and Na^+ -promoted GAAA tetraloop–11 nt receptor interaction at room temperature (Fiore *et al.* 2008). (a) E_{FRET} population histograms of the tetraloop–receptor construct (Fig. 10) as a function of $[\text{Mg}^{2+}]$ with a fit of two Gaussian distributions superimposed. (b) $[\text{Mg}^{2+}]$ and $[\text{Na}^+]$ dependence of the fractional population of the docked state, where fraction docked = $N_{\text{docked}}/(N_{\text{docked}} + N_{\text{undocked}})$. N_{docked} and N_{undocked} are determined from the integrated Gaussian area of the docked and undocked peaks. (c) Model of Mg^{2+} and Na^+ dependent docking used to describe the mixed salt environment of the fraction docked titration in (b).

spite of dramatic difference between the observed folding rates of the tetraloop–receptor and hairpin RNAs, the free energy barriers to folding are similarly large, e.g., ~ 15 and $\sim 18 \text{ kcal mol}^{-1}$, respectively (Fiore *et al.* 2012a, b). See Section 8.1 for discussion of barrier height determination from rate constants for folding.

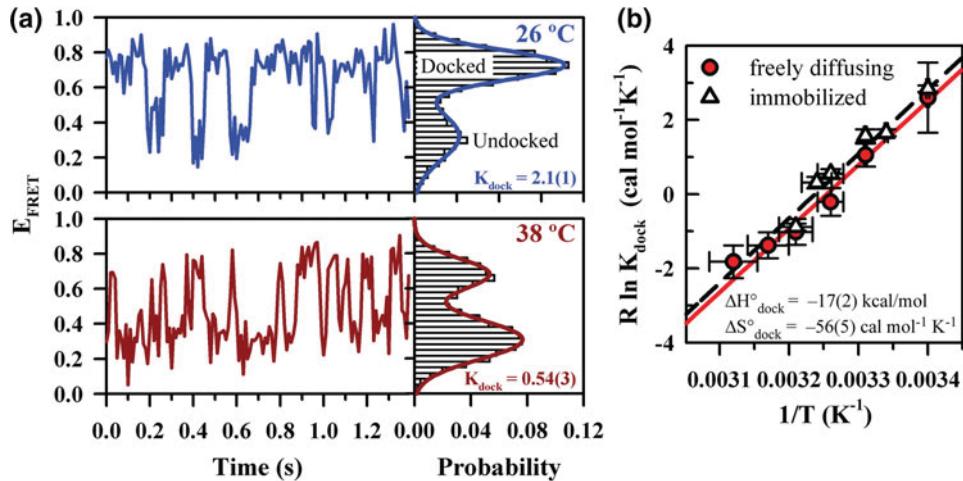
6.2 Freely diffusing single-molecule FRET studies of Na^+ - and Mg^{2+} -dependent tetraloop–receptor docking

As seen above, single-molecule FRET techniques can be used to resolve the underlying undocked and docked populations in the T(GAAA)–R(11 nt) construct. In particular, freely diffusing single-molecule studies allow one to observe RNA conformational distributions at equilibrium without the need to immobilize molecules for a long observation time (Fiore *et al.* 2008; Pljevaljcic *et al.* 2004). Such freely diffusing E_{FRET} population distributions have been determined for the T(GAAA)–R(11 nt) construct as a function of $[\text{Mg}^{2+}]$ (Fig. 12a) and $[\text{Na}^+]$. The fractional docked population under freely diffusing conditions, denoted by fraction docked = $N_{\text{docked}}/(N_{\text{docked}} + N_{\text{undocked}})$, where N_{docked} and N_{undocked} are determined from the integrated Gaussian area of the docked and undocked peaks (Pljevaljcic *et al.* 2004), is plotted versus $[\text{Na}^+]$ and $[\text{Mg}^{2+}]$ at low and moderate $[\text{Na}^+]$ background (Fig. 12b). Similar trends are observed in these plots for both ensemble and single-molecule kinetic studies; for example, the

titration midpoints in both cases are ~ 500 -fold larger for monovalent *versus* divalent cation concentrations (Downey *et al.* 2006; Fiore *et al.* 2008).

The freely diffusing single-molecule [salt] titrations revealed that (i) the docking pathway observed in the absence of Mg^{2+} (red circles in Fig. 12*b*, bottom) can be attributed to the 100 mM NaCl background (Fig. 12*b*, top) and (ii) that the fraction docked approaches an asymptote less than unity due to the presence of ‘non-docking’ molecules. In addition, the realization that folding in the absence of Mg^{2+} is due to Na^+ allowed for the metal ion dependence to be fit to a model including Mg^{2+} - and Na^+ -dependent pathways (Fig. 12*c*), and thereby enable determination of dissociation constants for both Na^+ and Mg^{2+} (Fiore *et al.* 2008; Hodak *et al.* 2005). However, this freely diffusing study could not account for the full complexity of Mg^{2+} binding (see Section 6.1), specifically that both the docking and undocking rates are dependent on Mg^{2+} , because such a model requires fitting variables that the freely diffusing study cannot access.

The freely diffusing study also revealed synergy between Mg^{2+} and Na^+ at very low ionic strengths (Fiore *et al.* 2008). As shown in Fig. 12*b*, at low ionic strength (50 mM HEPES, no added NaCl), the $[Mg^{2+}]$ curve becomes very cooperative and the titration midpoint increases. A similar increase in cooperativity is seen by the large n (Hill coefficient) in kinetic data for the U₇ linker, 25 mM NaCl (Table 3) (Fiore *et al.* 2012b). This cooperativity suggests that Na^+ electrostatically relaxes the undocked RNA, which was further examined by analysis of the E_{FRET} peak widths in the population distributions. Studies of the line-widths support that the undocked state is considerably less constrained than the docked state, a characteristic that becomes even more pronounced at very high [NaCl].


7. Thermodynamics of isolated GAAA tetraloop–11 nt tetraloop receptor binding: ITC and single-molecule studies

7.1 [Cation]-dependent single-molecule thermodynamics of intramolecular tetraloop–receptor docking equilibrium

We have explored the temperature dependence of the intramolecular T(GAAA)–R(11 nt) docking (Fig. 10*a*) using immobilized and freely diffusing single-molecule FRET methods (Fiore *et al.* 2009). The equilibrium constant (K_{dock}) for intramolecular docking has been obtained as a function of temperature ($T=20$ to 47 °C). Increasing temperature favors undocking, as seen in single-molecule FRET trajectories and the corresponding probability distributions (Fig. 13*a*). The undocked and docked conformation of the tetraloop–receptor construct are clearly assigned, allowing for determination of equilibrium constants from the ratios of integrated peak areas ($K_{dock}=$ area docked/area undocked). Here K_{dock} represents the fractional dwell time in the docked *versus* undocked state, which is consistent between immobilized or freely diffusing methods (Fiore *et al.* 2009). K_{dock} can also be calculated from the rate constants k_{dock} and k_{undock} ($K_{dock}=k_{dock}/k_{undock}$). To extract thermodynamic information from the equilibrium constants for docking, we analyzed both the immobilized and diffusing data sets according to the van’t Hoff equation,

$$R \ln K_{dock} = -\frac{\Delta H_{dock}^\circ}{T} + \Delta S_{dock}^\circ, \quad (4)$$

from which a plot of $R \ln K_{dock}$ *versus* $1/T$ yields a slope of $-\Delta H_{dock}^\circ$ and an intercept of ΔS_{dock}° , where R is the gas constant (Fig. 13*b*). Both data sets yield straight line van’t

Fig. 13. Single-molecule thermodynamic analysis of the GAAA tetraloop-11 nt receptor docking equilibrium (Fiore *et al.* 2009). (a) Single-molecule E_{FRET} trajectories and the corresponding probability distributions at 26 °C (top) and 38 °C (bottom) for the tetraloop–receptor FRET construct (Fig. 10a). The low and high E_{FRET} peaks correspond to the undocked and docked states, respectively. The equilibrium constant for docking, K_{dock} , is calculated as the ratio of the docked to undocked area, determined from the integrated areas of the undocked and docked peaks. Increasing temperature shifts the equilibrium to the undocked state (decreases K_{dock}). (b) The thermodynamics of tetraloop–receptor docking/undocking equilibrium are assessed by a van't Hoff analysis (see Eq. 4), with K_{dock} determined from freely diffusing and immobilized molecules. Linear fits of $R \ln K_{\text{dock}}$ versus $1/T$ yield a slope of $-\Delta H^{\circ}_{\text{dock}}$ and intercept of $\Delta S^{\circ}_{\text{dock}}$, which agree between both methods.

Hoff plots, from which least-squares fits yield $\Delta H^{\circ}_{\text{dock}} = -17 \pm 2$ kcal mol⁻¹ and $\Delta S^{\circ}_{\text{dock}} = -56 \pm 5$ cal mol⁻¹ K⁻¹. The immobilized and freely diffusing studies are in excellent agreement. Such an analysis assumes negligible temperature-dependent changes in $\Delta H^{\circ}_{\text{dock}}$ and $\Delta S^{\circ}_{\text{dock}}$, which is supported by calorimetry measurements of a dual tetraloop–receptor construct over the temperature range investigated in this work (Vander Meulen *et al.* 2008). These single-molecule studies have been extended to explore the effect of [Mg²⁺] in the A₇ and U₇ linked tetraloop–receptor construct, with the results summarized in Table 4 (top) (Fiore *et al.* 2012b). The free energy of the docking ‘reaction’, $\Delta G^{\circ}_{\text{dock}}$, can therefore be calculated at any temperature from these values ($\Delta G^{\circ}_{\text{dock}} = \Delta H^{\circ}_{\text{dock}} - T\Delta S^{\circ}_{\text{dock}}$), as is tabulated at 37 °C in Table 4.

Docking of the tetraloop with the receptor results in a substantial exothermicity with unfavorable entropy change (i.e., ‘enthalpy-driven folding’), resulting in $\Delta G^{\circ}_{\text{dock}}$ values near 0 at physiological temperatures (Table 4, top). The net effect is that the tetraloop–receptor construct is very dynamic (Fig. 13a) – a feature that is common in RNA due to such enthalpy-entropy compensation (Fiore *et al.* 2009).

The large exothermicity and entropic cost tetraloop–receptor docking was attributed to the enthalpically stabilizing and entropically unfavorable hydrogen-bonding and base-stacking interactions that form with docking and are described in Sections 2.3 and 4 (Butcher *et al.* 1997; Cate *et al.* 1996a; Serra *et al.* 1995; Silverman & Cech, 1999). The large entropic penalty for folding may also originate from loss of free orientational flexibility of the tetraloop in the undocked state to the strict alignment required for docking (Cate *et al.* 1996a; Davis *et al.* 2005; Fiore *et al.* 2009). Further studies also revealed that the origin of [Mg²⁺]-promoted tetraloop–receptor interaction is a reduced entropic penalty of docking. This observation was

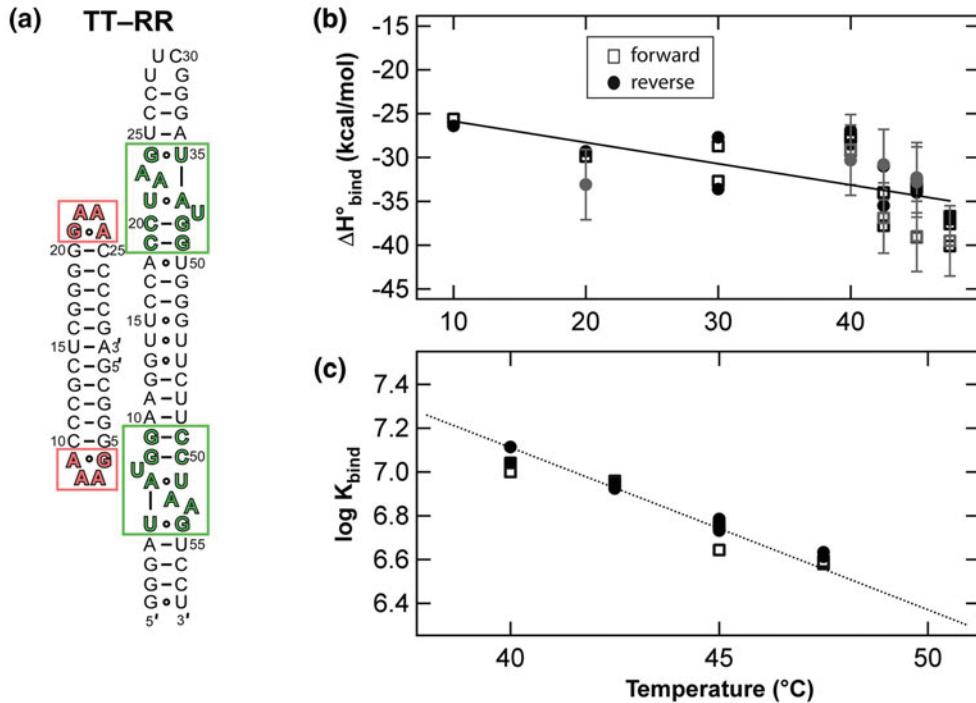
Table 4. Thermodynamic parameters for intramolecular (Fig. 10) and dual bimolecular (Fig. 14) G4AA tetraloop–11 nt receptor interaction at various conditions

[MgCl ₂] (mM)	[NaCl] (mM)	ΔH° _{dock} (kcal mol ⁻¹)	ΔS° _{dock} (cal mol ⁻¹ K)	ΔG° _{dock} [*] (kcal mol ⁻¹) at 37 °C	ΔS° _{bind} [†] (cal mol ⁻¹ K ⁻¹)	ΔG° _{bind} [†] (kcal mol ⁻¹) at 37 °C
Intramolecular T–R docking via U ₇ linker [‡]						
0	100	−24.0 ± 0.5	−80.7 ± 1.7	1.0 ± 0.7	−72.2 ± 1.7	−1.6 ± 0.7
0.35	100	−24.3 ± 0.8	−80.3 ± 2.6	0.6 ± 0.7	−71.8 ± 2.6	2.0 ± 0.7
0.5	100	−23.9 ± 0.9	−77.0 ± 3.2	−0.03 ± 1.3	−68.5 ± 3.2	−2.7 ± 1.1
1.0	100	−23.9 ± 0.8	−76.0 ± 2.6	−0.34 ± 1.1	−67.5 ± 2.6	−3.0 ± 1.1
1.0	25	−21.9 ± 1.2	−76.8 ± 4.8	1.9 ± 2.3	−68.3 ± 4.8	−0.7 ± 2.3
2.0§	25	−16.0 ± 0.7	−50.7 ± 2.2	−0.3 ± 0.7	−42.2 ± 2.3	−2.9 ± 0.7
Intramolecular T–R docking via A ₇ linker [‡]						
0.35	100	−25 ± 2	−84 ± 7	1.0 ± 3.0	−76 ± 7	−1.6 ± 3.0
0.5	100	−23 ± 1	−76 ± 5	0.2 ± 1.8	−67 ± 5	−2.4 ± 1.8
1.0	100	−15 ± 1	−47 ± 4	−0.43 ± 1.6	−39 ± 4	−3.1 ± 1.6
2.0	100	−11 ± 1	−34 ± 5	−0.46 ± 1.8	−25 ± 5	−3.1 ± 1.8
Bimolecular TT–RR binding¶						
[MgCl ₂] (mM)	[KCl] (mM)	ΔH° _{bind} (kcal mol ⁻¹)	T (°C)	—	ΔS° _{bind} (cal mol ⁻¹ K ⁻¹)	ΔG° _{bind} (kcal mol ⁻¹) at 37 °C
2.0§	20	−30.1 ± 1.5	30	—	ND	ND
2.0§	20	−27.6 ± 1.7	40	—	−56 ± 6	−10.2 ± 2.5
2.0	20	−34.5 ± 2.2	42.5	—	−78 ± 9	−10.5 ± 3.6
2.0	20	−33.8 ± 1.2	45	—	−75 ± 7	−10.6 ± 2.5

For additional thermodynamic parameters, including activation barriers, see Fiore *et al.* (2012b), Holmstrom *et al.* (2012) and Vander Meulen & Butcher, (2012). Unless otherwise specified, buffer also contains 50 mM hemisodium HEPES (pH 7.5) and 100 μM EDTA.

* $\Delta G°_{\text{dock}} = \Delta H°_{\text{dock}} - T\Delta S°_{\text{dock}} = -RT\ln K_{\text{dock}}$, where R is the gas constant.

† $\Delta G°_{\text{bind}}$ for intramolecular docking is calculated by treating the intramolecular system as bimolecular with an effective RNA concentration determined by the linker (see text), to yield a bimolecular binding constant, $K_{\text{bind}} = K_{\text{dock}}/[R]$, where $[R]$ is the local concentration of the receptor, or ~ 14 mM. $\Delta G°_{\text{bind}} = -RT\ln(K_{\text{bind}} \times 1 \text{ M}) = \Delta H°_{\text{dock}} - T\Delta S°_{\text{bind}}$ with $\Delta S°_{\text{bind}} = \Delta S°_{\text{dock}} - R\ln(14 \times 10^{-3})$.


‡ (Fiore *et al.* 2012b).

§ Most comparable conditions between the intramolecular and bimolecular measurements.

¶ 20 mM HEPES, pH 7.0, see Fig. 14 for additional data (Vander Meulen *et al.* 2008).

|| In the bimolecular TT–RR construct, K_{bind} and $\Delta H°_{\text{bind}}$ are measured, from which $\Delta S°_{\text{bind}}$ and $\Delta G°_{\text{bind}}$ are determined.

attributed to an increasing [Mg²⁺] decreasing the entropic penalty of counterion uptake with docking and/or reduced disorder of the unfolded conformational ensemble, e.g., by ordering the single-stranded RNA junction or the receptor region (Fiore *et al.* 2012b). Even more recently, the [monovalent]-dependence of T(GAAA)–R(11 nt) thermodynamics has been explored, similarly revealing that entropic rather than enthalpic factors are responsible for increased [monovalent] promoting folding. However, these entropic benefits of increased monovalent concentration come with an enthalpic penalty to folding that was completely absent in the [Mg²⁺]-dependence studies of the U₇ linked construct. This effect suggests that monovalents may play a more important role in stabilizing non-native structures in this construct (Holmstrom *et al.* 2012).

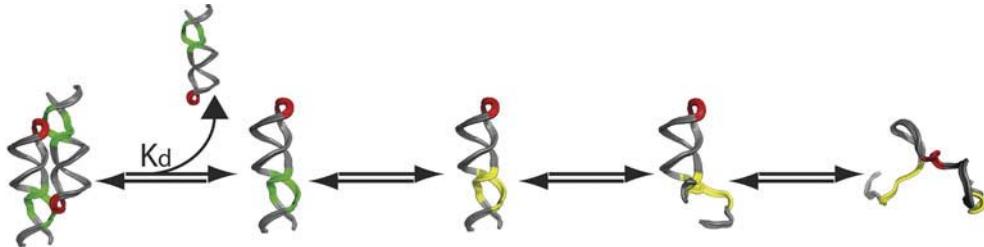


Fig. 14. Isothermal calorimetry (ITC) determination of dual GAAA tetraloop and dual 11 nt receptor constructs binding thermodynamics (TT-RR), adapted from Vander Meulen *et al.* (2008). (a) Secondary structure of the TT-RR heterodimer that is formed with two GAAA tetraloop–receptor interactions, as indicated with light red and green boxes. (b) Temperature dependence of the ITC-determined enthalpy of binding ($\Delta H^\circ_{\text{bind}}$) of the TT and RR constructs. The trend line shows the best linear fit to the data, with slope ($\Delta C_{p,\text{obs}}^0$) of $-0.24 \pm 0.04 \text{ kcal mol}^{-1} \text{ K}^{-1}$. (c) Plot of the logarithm of the binding constant [$\log (K_{\text{bind}} \times 1 \text{ M})$] versus temperature. The dotted line is the predicted temperature dependence of $\log K_{\text{bind}}$ using 40 °C as the reference state.

Formation of the tetraloop–receptor interaction can account for $\sim 60\%$ of the ΔH° and ΔS° of P4–P6 domain folding in the *Tetrahymena* ribozyme, suggesting that it may act as an enthalpic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy *versus* entropy-driven folding is determined by the number of hydrogen-bonding and base-stacking interactions (Fiore *et al.* 2009).

7.2 Calorimetry studies of bimolecular dual tetraloop–receptor receptor association

Calorimetry [ITC and differential scanning calorimetry (DSC)], NMR, UV methods have been used to explore the thermodynamics of the GAAA tetraloop–receptor interaction in the context of bimolecular association (Vander Meulen *et al.* 2008). ITC studies determined the observed enthalpy and entropy for binding ($\Delta H^\circ_{\text{bind}}$ and $\Delta S^\circ_{\text{bind}}$) of the dual tetraloop to dual receptor constructs (TT-RR) shown in Fig. 14a. These values are summarized in the bottom of Table 4 and are in good agreement with the single-molecule studies (Section 7.1), in that the tetraloop–receptor interaction is enthalpy driven, yet entropically costly (Vander Meulen *et al.* 2008). In the study by Butcher and co-workers, $\Delta H^\circ_{\text{bind}}$ was measured over the range of 10–47.5 °C, which revealed a heat capacity change of $-0.24 \text{ kcal mol}^{-1} \text{ K}^{-1}$ (Fig. 14b). In addition, the observed

Fig. 15. Proposed structural mechanism for the unfolding process of a GAAA tetraloop-11 nt receptor homodimer (TR-TR, Fig. 9a), adapted from Vander Meulen *et al.* (2008). The bimolecular complex dissociates then each TR construct unfolds via three isomerization steps. The tetraloop is shown in red and the receptor in green and yellow.

equilibrium constant for binding (K_{bind}) was determined as a function of temperature (Fig. 14c). The temperature sensitivity of the heat capacity was assigned to a temperature-dependent unbound receptor structure. Thermal denaturation experiments were also performed, which indicated that the TR-TR construct (Fig. 9a), unfolds by a minimally five-state pathway (Fig. 15) (Vander Meulen *et al.* 2008).

7.3 Calorimetry versus single-molecule thermodynamics of tetraloop-receptor binding

In Section 6 we compared the intramolecular docking of the GAAA tetraloop-receptor with the bimolecular association of a single tetraloop and single receptor (Fig. 6a). This comparison suggested that the intramolecular docking interaction (Fig. 10) can be viewed as bimolecular association, whereby the effective concentration of the receptor is determined by the linker. We again employ this type of argument to compare the bimolecular binding thermodynamics of the dual tetraloop-receptor (TT-RR, Fig. 14a) to the single intramolecular docking. First, if we assume that the enthalpies are additive, the TT-RR construct should be 2-fold more exothermic than the intramolecular T-R construct. Specifically, we compare the enthalpies for intramolecular poly U (the most passive linker) T-R docking with bimolecular TT-RR binding at 2 mM MgCl₂ with either 20 mM NaCl or 25 mM KCl, respectively, i.e., under the most comparable salt conditions. The U₇ construct studies are performed over a 20–40 °C window; thus we use the 30 °C ITC measurement in the middle of this range for comparison (indicated with § in Table 4). Under these conditions, $\Delta H^\circ_{\text{bind}}$ for TT-RR assembly is -30.1 ± 1.5 kcal mol⁻¹ or a single T-R binding enthalpy would be 15.5 ± 0.8 kcal mol⁻¹, which is in excellent agreement with the measurement of intramolecular T-R docking, $\Delta H^\circ_{\text{dock}} = -16.0 \pm 0.7$ kcal mol⁻¹.

To meaningfully compare the corresponding entropies of the ITC and single-molecule T-R assays, the intramolecular T(GAAA)-R(11 nt) system must again be treated as if it were bimolecular with a known concentration of the receptor, [R]. Thereby, we can translate the overall free energy of docking into a free energy of bimolecular association, or $\Delta G^\circ_{\text{bind}} = -RT \ln (K_{\text{dock}}/[R] \times 1 \text{ M}) = \Delta H^\circ_{\text{bind}} - T\Delta S^\circ_{\text{bind}}$, where [R] \sim 14 mM, as determined in Section 6.1. If we assume that the enthalpy of T-R docking is unaffected by unimolecular *versus* bimolecular context, we anticipate $\Delta H^\circ_{\text{dock}} = \Delta H^\circ_{\text{bind}}$, as shown above, and $\Delta S^\circ_{\text{bind}} = \Delta S^\circ_{\text{dock}} - R \ln [R]$. The calculated bimolecular association values for $\Delta S^\circ_{\text{bind}}$ translated from the unimolecular T-R measurement are listed in Table 4. If we again compare the most similar conditions,

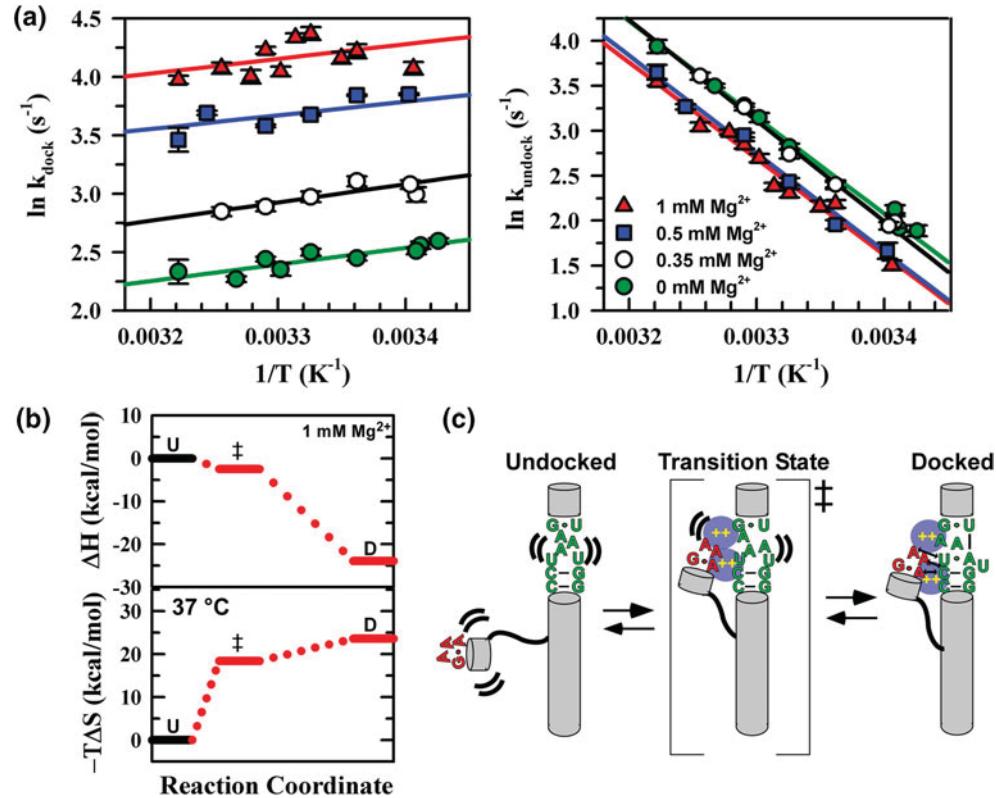
the single construct yields $\Delta S^\circ_{\text{bind}}(\text{T-R}) = -42.2 \pm 2.3 \text{ cal mol/K}^{-1}$, while $\Delta S^\circ_{\text{bind}}(\text{TT-RR}) = -56 \pm 6 \text{ cal mol}^{-1} \text{ K}^{-1}$. If $\Delta S^\circ_{\text{bind}}$ and $\Delta H^\circ_{\text{bind}}$ for each tertiary interaction were additive, then we would predict that $\Delta G^\circ_{\text{bind}}(\text{T-R})$ would be approximately half of $\Delta G^\circ_{\text{bind}}(\text{TT-RR})$ and we would predict $\Delta S^\circ_{\text{bind}}(\text{TT-RR})$ to be twice that of $\Delta S^\circ_{\text{bind}}(\text{T-R})$, or $-84.4 \text{ cal mol}^{-1} \text{ K}^{-1}$, whereas the actual measurement indicates a considerably less entropic loss upon binding. Correspondingly, $\Delta G^\circ_{\text{bind}}(\text{TT-RR})$ calculated at 37 °C is considerably more favorable than the addition of two T-R interactions, i.e. $-10.2 \pm 2.5 \text{ kcal mol}^{-1}$ versus $-5.8 \pm 1.4 \text{ kcal mol}^{-1}$ (Table 4, right most column).

In summary, though the enthalpy of folding due to formation of multiple tetraloop–receptor interactions appears to be the sum of the individual interactions, there is a clear suggestion of entropic tertiary cooperativity in the TT–RR construct, i.e., the binding of the first tetraloop and receptor may align and orient the second tetraloop for binding, thereby reducing the majority of entropic cost (rotational and translational) associated with binding of the second tetraloop and receptor (Vander Meulen *et al.* 2008). This effect can explain the dramatically higher K_{ds} for the single *versus* dual T-R constructs (Fig. 6). This agreement between isolated and dual tetraloop–receptor docking enthalpies supports a picture that tertiary structure formation in RNA may be largely enthalpically non-cooperative. In turn, this suggests an entropic origin of tertiary cooperativity, which is a characteristic of RNA folding that has been identified in several studies (Behrouzi *et al.* 2012; Chauhan & Woodson, 2008; Sattin *et al.* 2008).

8. Transition state thermodynamics of GAAA tetraloop–11 nt receptor docking: single molecule and ITC studies

8.1 An entropic barrier to tetraloop–receptor docking

The temperature dependence of the intramolecular docking and undocking kinetics of the GAAA tetraloop and 11 nt receptor (Fig. 10) has been probed to investigate the nature of the energy barrier for docking, i.e., the nature of the transition state and the thermodynamic origin of $[\text{Mg}^{2+}]$ -facilitated docking (Fiore *et al.* 2012b). Arrhenius plots ($\ln k$ versus $1/T$) for k_{dock} and k_{undock} reveal a steep increase in k_{undock} and a very slight decrease in k_{dock} with temperature (Fig. 16a). To extract the activation enthalpies and entropies from the Arrhenius plots, we invoked a simple transition-state thermodynamic analysis.


From generalized transition-state theory, the reaction rate constant (e.g., k_{dock} or k_{undock}) can be written as

$$k = v e^{(-\Delta G^\ddagger / RT)}, \quad (5)$$

where ΔG^\ddagger is the activation free energy and v is the attempt frequency for barrier crossing, as determined by the free energy well (Hanggi *et al.* 1990; Zhou 2010). If we further express the rate constant in logarithmic form, dissecting the free energy into its enthalpic and entropic components, we obtain

$$\ln(k) = \ln(v) + \frac{\Delta S^\ddagger}{R} - \frac{\Delta H^\ddagger}{RT}, \quad (6)$$

where ΔS^\ddagger and ΔH^\ddagger are the activation entropy and enthalpy, respectively, which can be inferred from linear least-squares fits of $\ln k$ versus $1/T$ plots. The activation enthalpy (ΔH^\ddagger) can be

Fig. 16. Single-molecule transition-state thermodynamics of GAAA tetraloop-11 nt receptor docking in a U_7 linked construct from measurements of temperature-dependent rate constants (Fiore *et al.* 2012b). (a) Linear fits of Arrhenius plots ($\ln k_{\text{dock}}$ and $\ln k_{\text{undock}}$) versus $1/T$ yield the activation enthalpies (ΔH^\ddagger) and entropies (ΔS^\ddagger) for docking and undocking at varying $[\text{Mg}^{2+}]$ (Eq. 6). Increasing temperature strongly favors undocking (endothermic), while docking is less T sensitive. (b) Schematic of the reaction coordinate for intramolecular tetraloop-receptor docking, U = undocked state, \ddagger = transition state, D = docked state. (c) Proposed mechanism for $[\text{Mg}^{2+}]$ -facilitated tetraloop-receptor docking. The early transition state (undocked-like tetraloop and receptor) requires entropically disfavored tetraloop-receptor proximity and alignment, with cation (e.g., Mg^{2+}) uptake to counter electrostatic repulsions. Subsequent docking results in additional loss of entropy to exothermic hydrogen bonding and base-stacking interactions.

extracted rigorously from the slope. However, determining ΔS^\ddagger from the intercept requires knowledge of $R \ln(v)$, which requires some model dependent understanding of the attempt frequency v . A reasonable upper limit for v is a typical bond vibrational frequency of $\sim 10^{13} \text{ s}^{-1}$ and a lower limit is imposed by solvent friction as $\sim 10^{10} \text{ s}^{-1}$ (Ansari *et al.* 1992; Hanggi *et al.* 1990; Zhou 2010). Note that the often assumed Eyring prefactor of $k_B T/h \sim 10^{13} \text{ s}^{-1}$ at room temperature is fortuitously close to these values, though this does not reflect any attempt frequency at all. In any event, the dependence of ΔS^\ddagger on v is logarithmic, therefore ΔS^\ddagger can be reasonably assessed (say, $\pm R$, where $R \approx 2 \text{ cal mol}^{-1} \text{ K}^{-1}$) even when v is not well known. Furthermore, any changes in the entropy of activation (i.e., $\Delta \Delta S^\ddagger$) can be made rigorously independent of v .

The shallow slope of $\ln k_{\text{dock}}$ versus $1/T$ indicates the lack of any significant enthalpic barrier to docking ($\Delta H_{\text{dock}}^\ddagger \approx 0$). However, achievement of the transition state results in a

considerable loss of entropy, i.e., yielding an entropic barrier $-T\Delta S^\ddagger \gg 0$ (Fig. 16*b*). The lack of enthalpic barrier implies an ‘early’ reactant-like (i.e., $\Delta H_{\text{dock}}^\ddagger \approx 0$) transition state, i.e., that native hydrogen bonds are not formed, nor do any enthalpic rearrangements of the tetraloop or receptor occur in the transition state. Conversely, the steep rise of the undocking rate constant (k_{undock}) with temperature yields a large enthalpic barrier and favorable entropy in achieving the transition state (i.e., $\Delta H_{\text{undock}}^\ddagger \gg 0$, $-T\Delta S_{\text{undock}}^\ddagger < 0$) (Fig. 16*b*). This observation corresponds to a ‘late’ transition state, i.e., one that first requires breaking of the hydrogen bonded interaction. Increasing $[\text{Mg}^{2+}]$ increases k_{dock} (Fig. 16*a*) by decreasing the entropic barrier for docking ($\Delta S_{\text{dock}}^\ddagger$), as is evident in the Arrhenius plots with the nearly identical slopes and yet increasing offset in y -intercepts with $[\text{Mg}^{2+}]$ (Fig. 16*a*, left).

With additional support from studies at low ionic strength and comparing the thermodynamics of A_7 *versus* U_7 linker tetraloop–receptor constructs (Fig. 10), this entropic barrier to docking was suggested to originate from diffusion and alignment of the tetraloop with respect to the receptor that requires cation (e.g., Mg^{2+} or Na^+) uptake to screen enthalpic repulsion of the tetraloop and receptor helices (Fig. 16*c*) (Fiore *et al.* 2012b). Past the transition state region, docking is enthalpy driven (exothermic) (Fig. 16*b*), likely corresponding to formation of the native hydrogen bonding and base-stacking interactions (Fig. 16*c*). The hydrogen bonding and base stacking can also account for the entropy loss from the transition state to the docked state, as a less ordered receptor becomes more ordered and/or more counterions are localized at regions of higher charge density. Additional studies of the role of monovalent ions in promoting docking also support that the transition state is ‘early,’ though it appears the transition state becomes ‘later’ as a function of $[\text{Na}^+]$ (Holmstrom *et al.* 2012). This shift in the transition state along the reaction coordinate has been suggested to result from stabilization of a non-native receptor structure. These studies also showed that, in spite of inducing similar docking rate constants, the underlying thermodynamics of docking can be quite different in the presence of Na^+ *versus* Mg^{2+} (Fiore *et al.* 2012b; Holmstrom *et al.* 2012). Analysis of the effect of mutations on the kinetic and thermodynamic (Φ -analysis) of the tetraloop–receptor docking interaction could give yet additional insight into the docking transition state (Bokinsky *et al.* 2003; Fersht *et al.* 1992).

One critical observation from the single-molecule transition-state analysis is that k_{dock} is nearly temperature independent, whereas the undocking rate constant is the strongly affected by temperature (Fiore *et al.* 2012b). As a result, initial stopped-flow FRET studies of the isolated tetraloop–receptor interaction (Downey *et al.* 2006) proved difficult to interpret. This difficulty arises because stopped-flow methods only allow for determination of the total rate of equilibration ($k_{\text{dock}} + k_{\text{undock}}$) for the nominally two-state system. This realization could have implications for other temperature-dependent kinetic studies. In particular, a steep temperature dependence of RNA unfolding may be a general property.

These thermodynamic studies of the simplified T(GAAA)–R(11 nt) constructs highlight the complex relationship of the ion atmosphere and the docked *versus* undocked conformational ensembles in determining the RNA folding landscape, defining a central role of entropy (Fiore *et al.* 2012a; Holmstrom *et al.* 2012). In spite of this complexity, a common theme to RNA folding does emerge – folding transition states can be early, i.e., with native tertiary interactions largely unformed (Bartley *et al.* 2003; Bokinsky *et al.* 2003; Fiore *et al.* 2012b; Maglott *et al.* 1999; Silverman & Cech, 2001; Young & Silverman, 2002).

8.2 ITC study of bimolecular tetraloop–receptor binding

A novel application of ITC has been implemented to study the free energy landscape for helical packing due to T(GAAA)–R(11 nt) interactions in bimolecular constructs (Fig. 14a). This study showed that in 100–200 mM KCl, the binding reaction is enthalpically barrierless, again supporting the idea that the transition-state for T–R docking is early (Vander Meulen & Butcher, 2012). Furthermore, these studies showed that folding is coupled to significant counterion uptake, consistent with the single-molecule kinetic studies (Fiore *et al.* 2012a, b; Vander Meulen & Butcher, 2012). This kinetic ITC work also revealed that an enthalpic barrier to bimolecular association is observed in the presence of Mg^{2+} , whereas an enthalpically barrierless transition is observed in a K^+ environment. The authors explained this observation in terms of a possible salt-dependence of the unfolded structure, or an enthalpic penalty to Mg^{2+} dehydration upon its uptake with docking (Vander Meulen & Butcher, 2012). In contrast to the majority of the single-molecule T–R folding landscape studies (Fiore *et al.* 2012b; Holmstrom *et al.* 2012), the ITC Mg^{2+} -dependent thermodynamic parameters were measured at low ionic strength. Thus, one should not be alarmed that the opposite monovalent *versus* divalent effect on the docking enthalpy was seen in the single-molecule studies (Fiore *et al.* 2012b; Holmstrom *et al.* 2012). When explicitly examining single-molecule thermodynamics under only low ionic strength, comparable to the ITC study, it does appear that Mg^{2+} alone increases the enthalpic barrier to folding. However, clearly the precise ionic conditions are critical in determining the underlying thermodynamics of the RNA folding landscape, as shown by these isolated studies of the tetraloop–receptor interactions.

9. Contribution of GAAA tetraloop–11 nt receptor interaction to global folding of large RNAs

Mutational and thermodynamic studies of GAAA tetraloop–11 nt receptor interaction in the P4–P6 domain of the *Tetrahymena* ribozyme have revealed that the tertiary interaction contributes only to the stability of the folded domain rather than the kinetics of folding, and have supported an early transition state for formation of the tetraloop–receptor interaction in folding (Silverman & Cech, 2001; Szewczak *et al.* 1998; Young & Silverman, 2002), consistent with the isolated studies (previous sections). The T(GAAA)–R(11 nt) motif has also been shown to contribute to the stability of a full group I intron (Chauhan *et al.* 2005). These studies supported that the tetraloop–receptor acts as a thermodynamic clamp to stabilize the folded RNAs (Murphy & Cech, 1994; Szewczak *et al.* 1998), consistent with the observations that T(GAAA)–R(11 nt) docking in isolation is highly exothermic and can become more favorable when the entropic cost for forming the interaction is reduced by other tertiary interactions (see Section 7.3) (Fiore *et al.* 2009; Vander Meulen *et al.* 2008).

Furthermore, the GAAA tetraloop–11 nt receptor interaction affects the folding pathways of ribozymes, e.g., the interaction can alter the ruggedness of the landscape or dictate the accuracy of folding (Baird *et al.* 2005; Chauhan & Woodson, 2008; Qin *et al.* 2001a; Shcherbakova & Brenowitz, 2005; Treiber & Williamson, 2001). The T(GAAA)–R(11 nt) interaction also directs the bending of a kink turn in the *Azotarcus* group I intron (Antonioli *et al.* 2010). Mutations of a GAAA tetraloop implicated in a tetraloop–receptor interaction in a group II intron suggested a slight morphological loop tolerance for this interaction. For example, the tetraloop could be nicked (GA.AA) and still preserve some catalytic activity (k_{cat}/K_m is 4·6 fold smaller) with loss of

another factor of 5 when additional adenines were inserted into the loop (Abramovitz & Pyle, 1997). Interactions in the *Tetrahymena* group I intron also show a functional tolerance to tetraloop–receptor mutations (Benz-Moy & Herschlag, 2011).

As mentioned above, the tetraloop–receptor interaction can play a role in tertiary cooperativity. Disruption of the tetraloop–receptor interaction was shown to destabilize tertiary interactions by 2–3 kcal mol^{−1} throughout a bacterial group I intron (Chauhan & Woodson, 2008). Direct observation of tertiary cooperativity of the tetraloop–receptor and metal core interactions was made in a single-molecule FRET study of the *Tetrahymena* P4–P6 domain (Sattin *et al.* 2008). In this study, a mutant cycle of the tertiary interactions responsible for folding of the P4–P6 domain revealed that the overall ΔG° of folding was much more favorable than the summed ΔG° ’s of the individual interactions. The comparison we made between isolated and dual tetraloop–receptor docking enthalpies supports a picture that tertiary structure formation in RNA may be largely enthalpically non-cooperative. In turn, this would imply an entropic origin of tertiary cooperativity between the tetraloop–receptor and metal–core interactions observed in folding of the complete P4–P6 domain (Sattin *et al.* 2008). Other studies show that tertiary cooperativity is also highly dependent on a global RNA structure (Behrouzi *et al.* 2012), perhaps another indication that tertiary interactions limit conformational searching for the subsequent tertiary formation, i.e., again suggesting an entropic cooperativity between interactions.

Many RNA folding systems rely on protein folding chaperones and cofactors to fold and function. GNRA tetraloop–receptor interactions are implicated in the process of RNP assembly (Duncan & Weeks, 2010). Specifically, MRS1, a protein co-factor that facilitates splicing, was shown to bind and stabilize the two GNRA tetraloop–receptor interactions (tandem base-pair interactions, Section 2.2) in the bI3 group I intron using a high throughput hydroxyl radical footprinting. Furthermore, MRS1 was also shown to interact with the GAAA tetraloop–11 nt receptor motifs in the *Azoracis* group I intron and RNase P (Duncan & Weeks, 2010).

10. Applications of the T(GAAA)–R(11 nt) interaction

As has been shown throughout this review, the canonical GAAA tetraloop–11 nt receptor is a strong and highly specific interaction; for this reason it is useful for many applications (Ishikawa *et al.* 2011), some of which we highlight here.

10.1 Tecto RNA nano-objects

As utilized in numerous studies highlighted in this review, dimerized constructs containing multiple tetraloops and receptors have allowed for the biophysical characterization of tertiary interactions that might otherwise be too weak to detect (Geary *et al.* 2008). These dimerized RNAs are called tecto RNAs (Westhof *et al.* 1996, 1998a, b), i.e., RNAs whose modular structure permits them to be used as building blocks for assembly of RNA nano-objects (Jaeger & Chworos, 2006; Jaeger & Leontis, 2000; Jaeger *et al.* 2001; Novikova *et al.* 2011). The selective interaction of GAAA tetraloops with 11 nt receptors indeed leads to nano-object self-assembly (Dibrov *et al.* 2011; Nasalean *et al.* 2006), e.g., RNA filaments, RNA squares, and supra-molecules (Ishikawa *et al.* 2011; Jaeger & Chworos, 2006; Nasalean *et al.* 2006).

10.2 A module for RNA crystallization and structure determination

A major challenge in determining RNA structures is efficiently obtaining quality crystals that diffract to atomic resolution in X-ray crystallography. It was discovered that incorporation of the GAAA tetraloop and 11 nt receptor for intermolecular RNA–RNA interaction can serve as a nucleation site to drive crystal growth, while not biochemically affecting the RNA structure (Ferre-D’Amare *et al.* 1998). This tetraloop–receptor module for crystallization is proving powerful, with the recent structural achievement of the bacterial RNase P holoenzyme in complex with tRNA (Reiter *et al.* 2010). The dual tetraloop–receptor homodimer complex (Fig. 9*a*) has also been used for developing and testing rapid global structure determination of RNA using NMR spectroscopy and small-angle X-ray scattering (Wang *et al.* 2010; Zuo *et al.* 2008).

10.3 RNA selection and control

Additional applications of GAAA tetraloop–11 nt receptor interaction have aimed to capitalize on the RNA structure–function relationship. The GAAA tetraloop–receptor interaction was employed as a target for development of methodologies for selection of a novel RNA–RNA interactions and self-folding RNAs (Ikawa *et al.* 2002; Ishikawa *et al.* 2011; Kashiwagi *et al.* 2009; Ohuchi *et al.* 2008; Shiohara *et al.* 2009). T(GAAA)–R(11 nt) interactions have also been incorporated into ribozymes to modulate catalytic activity in designed *trans*-acting ligase ribozyme and hammerhead ribozyme (Fedoruk-Wyszomirska *et al.* 2009; Matsumura *et al.* 2009).

11. Conclusions

GNRA tetraloop–receptor interactions are common building blocks of RNA tertiary structure. The GAAA tetraloop – 11 nt receptor interaction has served as a model system for exploring RNA folding, in particular the role of metal ions. The T(GAAA)–R(11 nt) motif has been isolated in both unimolecular and bimolecular constructs, yielding the isolated kinetics and thermodynamics for formation of this tertiary interaction, as well as giving insights into tertiary cooperativity. Although the GAAA tetraloop–11 nt receptor interaction has been the subject of extensive biophysical characterization, many questions still remain. A number of 11 nt receptor mutations have been investigated for their effect on the thermodynamics of tetraloop–receptor interaction, but many of the natural variants have not been explored (Fig. 7), which may yield insight into the evolution of these enzymes. The metal ion dependent folding of any mutant would also further elucidate the role of the metal-binding sites in the folding pathway (Fig. 9). Such studies will be critical in assessing the molecular origin of the manifested thermodynamics and will need to be coupled with theoretical efforts. In particular, molecular dynamics simulations, when coupled with structural studies, can be incredibly powerful in elucidating RNA-folding pathways (Venditti *et al.* 2009) and will hopefully give deeper understanding of the role of metal ions in the simplified tetraloop–receptor RNA folding systems.

Furthermore, it is crucial to characterize additional tertiary interactions at a similar level of scrutiny as the T(GAAA)–R(11 nt) interaction, both together and in isolation, to further develop predictive capabilities of RNA tertiary structure. Even very little kinetic and thermodynamic data are available for the other types of GNRA tetraloop–receptor interactions. For instance, the thermodynamic stability of GNRA tetraloop–base pair receptor interactions is not yet known (Section 2.2). Such weak interactions might now be accessible with the ITC and single-molecule

methods discussed in this review. A nearly identical folding motif to that of the GNRA tetraloop is also observed for UMAC (M = A or C) loops (Zhao *et al.* 2012). Hence it would be particularly interesting to explore if such loops actually have the potential to engage in interaction with receptors not previously observed.

The GAAA tetraloop–11 nt receptor motif has been shown to be very strong, and important to the stability of many large RNAs. The motif is present in group I and group II introns and RNase P. Given the remarkable utility of this interaction, it is surprising that it has not been identified more widely among RNAs, particularly viral RNA. Quite interestingly, the 11 nt receptor is found in an internal ribosome entry site (IRES), only differing in the flipping of the last C:G base pair to G:C. This is a common variation of the tetraloop receptor (Figs 7a and 1b) (Ramos & Martinez-Salas, 1999), though a companion tetraloop has not yet been identified. Will GAAA tetraloop–11 nt receptor interactions be found in other RNAs and will other tetraloop receptors continue to be identified remain as two outstanding questions for future experimental and theoretical efforts. In any event, we can safely expect tetraloop–receptor interactions to remain a critical target and benchmarking system for further elucidating the detailed mechanisms of RNA folding.

12. Acknowledgements

This work was funded through the National Science Foundation (CHE 1012685), with additional help from the National Institute for Standards and Technology. J. L. F. was supported in part by the Optical Science and Engineering Program NSF-IGERT and National Institutes of Health/University of Colorado Biophysics Training (T32 GM-065103) grant. We would like to thank Dr Samuel Butcher for many helpful discussions in preparation of this manuscript.

13. References

ABRAMOVITZ, D. L. & PYLE, A. M. (1997). Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop–receptor interaction. *Journal of Molecular Biology* **266**, 493–506.

ADAMS, P. L., STAHLLEY, M. R., GILL, M. L., KOSEK, A. B., WANG, J. M. & STROBEL, S. A. (2004a). Crystal structure of a group I intron splicing intermediate. *RNA* **10**, 1867–1887.

ADAMS, P. L., STAHLLEY, M. R., KOSEK, A. B., WANG, J. M. & STROBEL, S. A. (2004b). Crystal structure of a self-splicing group I intron with both exons. *Nature* **430**, 45–50.

AFONIN, K. A., LIN, Y. P., CALKINS, E. R. & JAEGER, L. (2012). Attenuation of loop–receptor interactions with pseudoknot formation. *Nucleic Acids Research* **40**, 2168–2180.

ANSARI, A., JONES, C. M., HENRY, E. R., HOFRICHTER, J. & EATON, W. A. (1992). The role of solvent viscosity in the dynamics of protein conformational changes. *Science* **256**, 1796–1798.

ANTAO, V. P. & TINOCO, I. (1992). Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. *Nucleic Acids Research* **20**, 819–824.

ANTAO, V. P., LAI, S. Y. & TINOCO, I. (1991). A thermodynamic study of unusually stable RNA and DNA hairpins. *Nucleic Acids Research* **19**, 5901–5905.

ANTONIOLI, A. H., COCHRANE, J. C., LIPCHOCK, S. V. & STROBEL, S. A. (2010). Plasticity of the RNA kink turn structural motif. *RNA* **16**, 762–768.

BAI, Y., CHU, V. B., LIPFERT, J., PANDE, V. S., HERSCLAG, D. & DONIACH, S. (2008). Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. *Journal of the American Chemical Society* **130**, 12334–12341.

BAIRD, N. J., WESTHOF, E., QIN, H., PAN, T. & SOSNICK, T. R. (2005). Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. *Journal of Molecular Biology* **352**, 712–722.

BAN, N., NISSEN, P., HANSEN, J., MOORE, P. B. & STEITZ, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. *Science* **289**, 905–920.

BARTLEY, L. E., ZHUANG, X. W., DAS, R., CHU, S. & HERSCLAG, D. (2003). Exploration of the transition state for tertiary structure formation between an RNA

helix and a large structured RNA. *Journal of Molecular Biology* **328**, 1011–1026.

BASU, S., RAMBO, R. P., STRAUSS-SOUKUP, J., CATE, J. H., FERRE-D'AMARE, A. R., STROBEL, S. A. & DOUDNA, J. A. (1998). A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. *Nature Structural Biology* **5**, 986–992.

BATEY, R. T., RAMBO, R. P. & DOUDNA, J. A. (1999). Tertiary motifs in RNA structure and folding. *Angewandte Chemie-International Edition* **38**, 2327–2343.

BEHROUZI, R., ROH, J. H., KILBURN, D., BRIBER, R. M. & WOODSON, S. A. (2012). Cooperative tertiary interaction network guides RNA folding. *Cell* **149**, 348–357.

BENZ-MOY, T. L. & HERSCLAG, D. (2011). Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. *Biochemistry* **50**, 8733–8755.

BIRGISDOTTIR, A. B., NIELSEN, H., BECKERT, B., MASQUIDA, B. & JOHANSEN, S. D. (2011). Intermolecular interaction between a branching ribozyme and associated homing endonuclease mRNA. *Biological Chemistry* **392**, 491–499.

BOKINSKY, G., RUEDA, D., MISRA, V. K., RHODES, M. M., GORDUS, A., BABCOCK, H. P., WALTER, N. G. & ZHUANG, X. W. (2003). Single-molecule transition-state analysis of RNA folding. *Proceedings of the National Academy of Sciences, USA* **100**, 9302–9307.

BRION, P. & WESTHOFF, E. (1997). Hierarchy and dynamics of RNA folding. *Annual Review of Biophysics and Biomolecular Structure* **26**, 113–137.

BROWN, J. W., NOLAN, J. M., HAAS, E. S., RUBIO, M. A. T., MAJOR, F. & PACE, N. R. (1996). Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. *Proceedings of the National Academy of Sciences, USA* **93**, 3001–3006.

BUTCHER, S. E. & PYLE, A. M. (2011). The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. *Accounts of Chemical Research* **44**, 1302–1311.

BUTCHER, S. E., DIECKMANN, T. & FEIGON, J. (1997). Solution structure of a GAAA tetraloop receptor RNA. *EMBO Journal* **16**, 7490–7499.

CATE, J. H. & DOUDNA, J. A. (1996). Metal-binding sites in the major groove of a large ribozyme domain. *Structure* **4**, 1221–1229.

CATE, J. H., GOODING, A. R., PODELL, E., ZHOU, K. H., GOLDEN, B. L., KUNDROT, C. E., CECH, T. R. & DOUDNA, J. A. (1996a). Crystal structure of a group I ribozyme domain: principles of RNA packing. *Science* **273**, 1678–1685.

CATE, J. H., GOODING, A. R., PODELL, E., ZHOU, K. H., GOLDEN, B. L., SZEWZAK, A. A., KUNDROT, C. E., CECH, T. R. & DOUDNA, J. A. (1996b). RNA tertiary structure mediation by adenosine platforms. *Science* **273**, 1696–1699.

CHAUHAN, S. & WOODSON, S. A. (2008). Tertiary interactions determine the accuracy of RNA folding. *Journal of the American Chemical Society* **130**, 1296–1303.

CHAUHAN, S., CALISKAN, G., BRIBER, R. M., PEREZ-SALAS, U., RANGAN, P., THIRUMALAI, D. & WOODSON, S. A. (2005). RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. *Journal of Molecular Biology* **353**, 1199–1209.

CORRELL, C. C. & SWINGER, K. (2003). Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 angstrom resolution. *RNA* **9**, 355–363.

CORRELL, C. C., MUNISHKIN, A., CHAN, Y. L., REN, Z., WOOL, I. G. & STREITZ, T. A. (1998). Crystal structure of the ribosomal RNA domain essential for binding elongation factors. *Proceedings of the National Academy of Sciences, USA* **95**, 13436–13441.

COSTA, M. & MICHEL, F. (1995). Frequent use of the same tertiary motif by self-folding RNAs. *EMBO Journal* **14**, 1276–1285.

COSTA, M. & MICHEL, F. (1997). Rules for RNA recognition of GNRA tetraloops deduced by *in vitro* selection: comparison with *in vivo* evolution. *EMBO Journal* **16**, 3289–3302.

DAVIS, J. H., FOSTER, T. R., TONELLI, M. & BUTCHER, S. E. (2007). Role of metal ions in the tetraloop-receptor complex as analyzed by NMR. *RNA* **13**, 76–86.

DAVIS, J. H., TONELLI, M., SCOTT, L. G., JAEGER, L., WILLIAMSON, J. R. & BUTCHER, S. E. (2005). RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. *Journal of Molecular Biology* **351**, 371–382.

DIBROV, S. M., MCLEAN, J., PARSONS, J. & HERMANN, T. (2011). Self-assembling RNA square. *Proceedings of the National Academy of Sciences, USA* **108**, 6405–6408.

DITZLER, M. A., RUEDA, D., MO, J. J., HAKANSSON, K. & WALTER, N. G. (2008). A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. *Nucleic Acids Research* **36**, 7088–7099.

DOHERTY, E. A., BATEY, R. T., MASQUIDA, B. & DOUDNA, J. A. (2001). A universal mode of helix packing in RNA. *Nature Structural Biology* **8**, 339–343.

DOWNEY, C. D., CRISMAN, R. L., RANDOLPH, T. W. & PARDI, A. (2007). Influence of hydrostatic pressure and cosolutes on RNA tertiary structure. *Journal of the American Chemical Society* **129**, 9290–9291.

DOWNEY, C. D., FIORE, J. L., STODDARD, C. D., HODAK, J. H., NESBITT, D. J. & PARDI, A. (2006). Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker. *Biochemistry* **45**, 3664–3673.

DUNCAN, C. D. S. & WEEKS, K. M. (2010). The Mrs1 splicing factor binds the b13 group I Intron at each of two tetraloop-receptor motifs. *PLoS ONE* **5**, e8983.

FEDORUK-WYSZOMIRSKA, A., SZYMANSKI, M., WYSZKO, E., BARCISZEWSKA, M. Z. & BARCISZEWSKI, J. (2009). Highly active low magnesium hammerhead ribozyme. *Journal of Biochemistry* **145**, 451–459.

FERRE-D'AMARE, A. R., ZHOU, K. H. & DOUDNA, J. A. (1998). A general module for RNA crystallization. *Journal of Molecular Biology* **279**, 621–631.

FERSHT, A. R., MATOUSCHEK, A. & SERRANO, L. (1992). The folding of an Enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. *Journal of Molecular Biology* **224**, 771–782.

FOIRE, J. L., HODAK, J. H., PIESTERT, O., DOWNEY, C. D. & NESBITT, D. J. (2008). Monovalent and divalent promoted GAAA tetraloop-receptor tertiary interactions from freely diffusing single-molecule studies. *Biophysical Journal* **95**, 3892–3905.

FOIRE, J. L., HOLMSTROM, E. D., FIEGLAND, L. R., HODAK, J. H. & NESBITT, D. J. (2012a). The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics. *Journal of Molecular Biology* **423**, 198–216.

FOIRE, J. L., HOLMSTROM, E. D. & NESBITT, D. J. (2012b). Entropic origin of Mg^{2+} -facilitated RNA folding. *Proceedings of the National Academy of Sciences, USA* **109**, 2902–2907.

FOIRE, J. L., KRAEMER, B., KOBERLING, F., ERDMANN, R. & NESBITT, D. J. (2009). Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop–receptor tertiary interaction. *Biochemistry* **48**, 2550–2558.

FUJITA, Y., TANAKA, T., FURUTA, H. & IKAWA, Y. (2012). Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. *Journal of Bioscience and Bioengineering* **113**, 141–145.

GEARY, C., BAUDREY, S. & JAEGER, L. (2008). Comprehensive features of natural and *in vitro* selected GNRA tetraloop-binding receptors. *Nucleic Acids Research* **36**, 1138–1152.

GREENFELD, M., SOLOMATIN, S. V. & HERSCHLAG, D. (2011). Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. *Journal of Biological Chemistry* **286**, 19872–19879.

GREENLEAF, W. J., FRIEDA, K. L., FOSTER, D. A. N., WOODSIDE, M. T. & BLOCK, S. M. (2008). Direct observation of hierarchical folding in single riboswitch aptamers. *Science* **319**, 630–633.

HANGGI, P., TALKNER, P. & BORKOVEC, M. (1990). Reaction-rate theory: 50 years after Kramers. *Reviews of Modern Physics* **62**, 251–341.

HEDENSTIerna, K. O. F., SIEFERT, J. L., FOX, G. E. & MURGOLA, E. J. (2000). Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions. *Biochimie* **82**, 221–227.

HENDRIX, D. K., BRENNER, S. E. & HOLBROOK, S. R. (2005). RNA structural motifs: building blocks of a modular biomolecule. *Quarterly Reviews of Biophysics* **38**, 221–243.

HEUS, H. A. & PARDI, A. (1991). Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. *Science* **253**, 191–194.

HODAK, J. H., DOWNEY, C. D., FIORE, J. L., PARDI, A. & NESBITT, D. J. (2005). Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. *Proceedings of the National Academy of Sciences, USA* **102**, 10505–10510.

HOLMSTROM, E. D., FIORE, J. L. & NESBITT, D. J. (2012). Thermodynamic origins of monovalent-facilitated RNA folding. *Biochemistry* **51**, 3732–3743.

IKAWA, Y., FUKADA, K., WATANABE, S., SHIRAISHI, H. & INOUE, T. (2002). Design, construction, and analysis of a novel class of self-folding RNA. *Structure* **10**, 527–534.

IKAWA, Y., NAITO, D., AONO, N., SHIRAISHI, H. & INOUE, T. (1999). A conserved motif in group IC3 introns is a new class of GNRA receptor. *Nucleic Acids Research* **27**, 1859–1865.

IKAWA, Y., NOHMI, K., ATSUMI, S., SHIRAISHI, H. & INOUE, T. (2001). A comparative study on two GNRA-tetraloop receptors: 11-nt and IC3 motifs. *Journal of Biochemistry* **130**, 251–255.

ISHIKAWA, J., FUJITA, Y., MAEDA, Y., FURUTA, H. & IKAWA, Y. (2011). GNRA/receptor interacting modules: versatile modular units for natural and artificial RNA architectures. *Methods* **54**, 226–238.

JAEGER, L. & CHWOROS, A. (2006). The architectonics of programmable RNA and DNA nanostructures. *Current Opinion in Structural Biology* **16**, 531–543.

JAEGER, L. & LEONTIS, N. B. (2000). Tecto-RNA: one-dimensional self-assembly through tertiary interactions. *Angewandte Chemie-International Edition* **39**, 2521–2524.

JAEGER, L., MICHEL, F. & WESTHOF, E. (1994). Involvement of a GNRA tetraloop in long-range tertiary interactions. *Journal of Molecular Biology* **236**, 1271–1276.

JAEGER, L., WESTHOF, E. & LEONTIS, N. B. (2001). TectoRNA: modular assembly units for the construction of RNA nano-objects. *Nucleic Acids Research* **29**, 455–463.

JUCKER, F. M. & PARDI, A. (1995). GNRA tetraloops make a U-Turn. *RNA* **1**, 219–222.

JUCKER, F. M., HEUS, H. A., YIP, P. F., MOORS, E. H. M. & PARDI, A. (1996). A network of heterogeneous hydrogen bonds in GNRA tetraloops. *Journal of Molecular Biology* **264**, 968–980.

JUNEAU, K., PODELL, E., HARRINGTON, D. J. & CECH, T. R. (2001). Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. *Structure* **9**, 221–231.

KASHIWAGI, N., YAMASHITA, K., FURUTA, H. & IKAWA, Y. (2009). Designed RNAs with two peptide-binding units as Artificial templates for native chemical ligation of RNA-binding peptides. *Chembiochem* **10**, 2745–2752.

KEATING, K. S., TOOR, N. & PYLE, A. M. (2008). The GANC Tetraloop: a novel Motif in the group IIC intron structure. *Journal of Molecular Biology* **383**, 475–481.

KLOSTERMAN, P. S., HENDRIX, D. K., TAMURA, M., HOLBROOK, S. R. & BRENNER, S. E. (2004). Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. *Nucleic Acids Research* **32**, 2342–2352.

KRASILNIKOV, A. S., YANG, X. J., PAN, T. & MONDRAGON, A. (2003). Crystal structure of the specificity domain of ribonuclease P. *Nature* **421**, 760–764.

KULSHINA, N., BAIRD, N. J. & FERRE-D'AMARE, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. *Nature Structural and Molecular Biology* **16**, 1212–1217.

LAMBERT, D., LEIPPLY, D., SHIMAN, R. & DRAPER, D. E. (2009). The influence of monovalent cation size on the stability of RNA tertiary structures. *Journal of Molecular Biology* **390**, 791–804.

LEE, J. C., GUTELL, R. R. & RUSSELL, R. (2006). The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. *Journal of Molecular Biology* **360**, 978–988.

LEONTIS, N. B., LESCOUTE, A. & WESTHOFF, E. (2006). The building blocks and motifs of RNA architecture. *Current Opinion in Structural Biology* **16**, 279–287.

MAGLOTT, E. J., GOODWIN, J. T. & GLICK, G. D. (1999). Probing the structure of an RNA tertiary unfolding transition state. *Journal of the American Chemical Society* **121**, 7461–7462.

MASSIRE, C., JAEGER, L. & WESTHOFF, E. (1997). Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. *RNA* **3**, 553–556.

MATSUMURA, S., OHMORI, R., SAITO, H., IKAWA, Y. & INOUE, T. (2009). Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. *FEBS Letters* **583**, 2819–2826.

MICHEL, F. & WESTHOFF, E. (1990). Modeling of the 3-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. *Journal of Molecular Biology* **216**, 585–610.

MICHEL, F., COSTA, M. & WESTHOFF, E. (2009). The ribozyme core of group II introns: a structure in want of partners. *Trends in Biochemical Sciences* **34**, 189–199.

MICHEL, F., HANNA, M., GREEN, R., BARTEL, D. P. & SZOSTAK, J. W. (1989). The guanosine binding-Site of the *Tetrahymena* ribozyme. *Nature* **342**, 391–395.

MISRA, V. K. & DRAPER, D. E. (2001). A thermodynamic framework for Mg^{2+} binding to RNA. *Proceedings of the National Academy of Sciences, USA* **98**, 12456–12461.

MISRA, V. K., SHIMAN, R. & DRAPER, D. E. (2003). A thermodynamic framework for the magnesium-dependent folding of RNA. *Biopolymers* **69**, 118–136.

MONDRAGON, P. A., KRASILNIKOV, A. S. & PAN, T. (2003). Structural studies of the specificity domain of ribonuclease P. *Biochemistry* **42**, 11.

MURPHY, F. L. & CECH, T. R. (1994). GAAA tetraloop and conserved bulge stabilize tertiary structure of a group-I intron domain. *Journal of Molecular Biology* **236**, 49–63.

NASALEAN, L., BAUDREY, S., LEONTIS, N. B. & JAEGER, L. (2006). Controlling RNA self-assembly to form filaments. *Nucleic Acids Research* **34**, 1381–1392.

NISSEN, P., IPPOLITO, J. A., BAN, N., MOORE, P. B. & STEITZ, T. A. (2001). RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. *Proceedings of the National Academy of Sciences, USA* **98**, 4899–4903.

NOLLER, H. F. (2005). RNA structure: reading the ribosome. *Science* **309**, 1508–1514.

NOVIKOVA, I. V., HASSAN, B. H., MIRZOYAN, M. G. & LEONTIS, N. B. (2011). Engineering cooperative tecto-RNA complexes having programmable stoichiometries. *Nucleic Acids Research* **39**, 2903–2917.

OHUCHI, S. P., IKAWA, Y. & NAKAMURA, Y. (2008). Selection of a novel class of RNA-RNA interaction motifs based on the ligase ribozyme with defined modular architecture. *Nucleic Acids Research* **36**, 3600–3607.

PLEY, H. W., FLAHERTY, K. M. & MCKAY, D. B. (1994a). 3-Dimensional structure of a hammerhead ribozyme. *Nature* **372**, 68–74.

PLEY, H. W., FLAHERTY, K. M. & MCKAY, D. B. (1994b). Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. *Nature* **372**, 111–113.

PLJEVIALJCIC, G., MILLAR, D. P. & DENIZ, A. A. (2004). Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. *Biophysical Journal* **87**, 457–467.

PROCTOR, D. J., SCHAAK, J. E., BEVILACQUA, J. M., FALZONE, C. J. & BEVILACQUA, P. C. (2002). Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. *Biochemistry* **41**, 12062–12075.

QIN, H., SOSNICK, T. R. & PAN, T. (2001a). Modular construction of a tertiary RNA structure: the specificity domain of the *Bacillus subtilis* RNase P RNA. *Biochemistry* **40**, 11202–11210.

QIN, P. Z., BUTCHER, S. E., FEIGON, J. & HUBBELL, W. L. (2001b). Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. *Biochemistry* **40**, 6929–6936.

QIN, P. Z., FEIGON, J. & HUBBELL, W. L. (2005). Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg^{2+} -dependent docking of a GAAA tetraloop. *Journal of Molecular Biology* **351**, 1–8.

RAMAKRISHNAN, V. (2002). Ribosome structure and the mechanism of translation. *Cell* **108**, 557–572.

RAMOS, R. & MARTINEZ-SALAS, E. (1999). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). *RNA* **5**, 1374–1383.

REGULSKI, E. E., MOY, R. H., WEINBERG, Z., BARRICK, J. E., YAO, Z., RUZZO, W. L. & BREAKER, R. R. (2008). A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. *Molecular Microbiology* **68**, 918–932.

REITER, N. J., OSTERMAN, A., TORRES-LARIOS, A., SWINGER, K. K., PAN, T. & MONDRAGON, A. (2010). Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. *Nature* **468**, 784–789.

SANTALUCIA, J., KIERZEK, R. & TURNER, D. H. (1992). Context dependence of hydrogen-bond free-energy revealed by substitutions in an RNA hairpin. *Science* **256**, 217–219.

SATTIN, B. D., ZHAO, W., TRAVERS, K., CHUT, S. & HERSCHLAG, D. (2008). Direct measurement of tertiary contact cooperativity in RNA folding. *Journal of the American Chemical Society* **130**, 6085–6087.

SERRA, M. J., TURNER, D. H., MICHAEL, L. J. & ACKERS, G. K. (1995). Predicting thermodynamic properties of RNA. *Methods in Enzymology* **259**, 242–261.

SHCHERBAKOVA, I. & BRENOWITZ, M. (2005). Perturbation of the hierarchical folding of a large RNA by the destabilization of its scaffold's tertiary structure. *Journal of Molecular Biology* **354**, 483–496.

SHIOHARA, T., SAITO, H. & INOUE, T. (2009). A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. *Nucleic Acids Research* **37**, e23.

SILVERMAN, S. K. & CECH, T. R. (1999). Energetics and cooperativity of tertiary hydrogen bonds in RNA structure. *Biochemistry* **38**, 8691–8702.

SILVERMAN, S. K. & CECH, T. R. (2001). An early transition state for folding of the P4-P6 RNA domain. *RNA* **7**, 161–166.

SMITH, K. D., LIPCHOCK, S. V., AMES, T. D., WANG, J. M., BREAKER, R. R. & STROBEL, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. *Nature Structural and Molecular Biology* **16**, 1218–U1227.

SOLOMATIN, S. V., GREENFIELD, M., CHU, S. & HERSCHLAG, D. (2010). Multiple native states reveal persistent ruggedness of an RNA folding landscape. *Nature* **463**, 681–686.

SUDARSEN, N., LEE, E. R., WEINBERG, Z., MOY, R. H., KIM, J. N., LINK, K. H. & BREAKER, R. R. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. *Science* **321**, 411–413.

SZEWCAK, A. A., PODELL, E. R., BEVILACQUA, P. C. & CECH, T. R. (1998). Thermodynamic stability of the P4-P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis. *Biochemistry* **37**, 11162–11170.

TAMURA, M. & HOLBROOK, S. R. (2002). Sequence and structural conservation in RNA ribose zippers. *Journal of Molecular Biology* **320**, 455–474.

TAN, E., WILSON, T. J., NAHAS, M. K., CLEGG, R. M., LILLEY, D. M. J. & HA, T. (2003). A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. *Proceedings of the National Academy of Sciences, USA* **100**, 9308–9313.

TINOCO, I. & BUSTAMANTE, C. (1999). How RNA folds. *Journal of Molecular Biology* **293**, 271–281.

TOOR, N., KEATING, K. S., TAYLOR, S. D. & PYLE, A. M. (2008). Crystal structure of a self-spliced group II intron. *Science* **320**, 77–82.

TORRES-LARIOS, A., SWINGER, K. K., PAN, T. & MONDRAGON, A. (2006). Structure of ribonuclease P – a universal ribozyme. *Current Opinion in Structural Biology* **16**, 327–335.

TREIBER, D. K. & WILLIAMSON, J. R. (2001). Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. *Journal of Molecular Biology* **305**, 11–21.

VANDER MEULEN, K. A. & BUTCHER, S. E. (2012). Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. *Nucleic Acids Research* **40**, 2140–2151.

VANDER MEULEN, K. A., DAVIS, J. H., FOSTER, T. R., RECORD, T. & BUTCHER, S. E. (2008). Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing. *Journal of Molecular Biology* **384**, 702–717.

VENDITTI, V., CLOS, L., NICCOLAI, N. & BUTCHER, S. E. (2009). Minimum-energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. *Journal of Molecular Biology* **391**, 894–905.

WANG, Y. X., ZUO, X. B., WANG, J. B., YU, P. & BUTCHER, S. E. (2010). Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. *Methods* **52**, 180–191.

WEINBERG, Z., BARRICK, J. E., YAO, Z., ROTH, A., KIM, J. N., GORE, J., WANG, J. X., LEE, E. R., BLOCK, K. F., SUDARSEN, N., NEPH, S., TOMPA, M., RUZZO, W. L. & BREAKER, R. R. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. *Nucleic Acids Research* **35**, 4809–4819.

WESTHOF, E., JAEGER, L., LEHNERT, V., MASSIRE, C. & MICHEL, F. (1998a). The modular assembly of large RNAs: 3-D models of self-splicing introns and bacterial RNase P. *FASEB Journal* **12**, 50.

WESTHOF, E., MASQUIDA, B. & JAEGER, L. (1996). RNA tectonics: towards RNA design. *Folding and Design* **1**, R78–R88.

WESTHOF, E., MASQUIDA, B. & JAEGER, L. (1998b). RNA tectonics and modular modeling of RNA. *In Molecular*

Modeling of Nucleic Acids. Washington, DC: American Chemical Society, vol. **682**, pp. 346–358.

WINKLER, W. C. & BREAKER, R. R. (2005). Regulation of bacterial gene expression by riboswitches. *Annual Review of Microbiology* **59**, 487–517.

WOESE, C. R., WINKLER, S. & GUTELL, R. R. (1990). Architecture of ribosomal-RNA: constraints on the sequence of Tetra-loops. *Proceedings of the National Academy of Sciences, USA* **87**, 8467–8471.

XIE, Z., SRIVIDYA, N., SOSNICK, T. R., PAN, T. & SCHERER, N. F. (2004). Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. *Proceedings of the National Academy of Sciences, USA* **101**, 534–539.

XIN, Y. R., LAING, C., LEONTIS, N. B. & SCHLICK, T. (2008). Annotation of tertiary interactions in RNA structures reveals variations and correlations. *RNA* **14**, 2465–2477.

YOUNG, B. T. & SILVERMAN, S. K. (2002). The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain. *Biochemistry* **41**, 12271–12276.

ZHAO, Q., HUANG, H. C., NAGASWAMY, U., XIA, Y., GAO, X. & FOX, G. E. (2012). UNAC tetraloops: to what extent do they mimic GNRA tetraloops?. *Biopolymers* **97**, 617–628.

ZHOU, H. X. (2010). Rate theories for biologists. *Quarterly Reviews of Biophysics* **43**, 219–293.

ZHUANG, X. W., BARTLEY, L. E., BABCOCK, H. P., RUSSELL, R., HA, T. J., HERSCHLAG, D. & CHU, S. (2000). A single-molecule study of RNA catalysis and folding. *Science* **288**, 2048–2051.

ZHUANG, X. W., KIM, H., PEREIRA, M. J. B., BABCOCK, H. P., WALTER, N. G. & CHU, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. *Science* **296**, 1473–1476.

ZUO, X. B., WANG, J. B., FOSTER, T. R., SCHWIETERS, C. D., TIEDE, D. M., BUTCHER, S. E. & WANG, Y. X. (2008). Global molecular structure and interfaces: refining an RNA: RNA complex structure using solution X-ray scattering data. *Journal of the American Chemical Society* **130**, 3292–3293.