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We construct a solvable deformation of two-dimensional theories with (2, 2) supersymmetry using an

irrelevant operator which is a bilinear in the supercurrents. This supercurrent-squared operator is manifestly

supersymmetric and equivalent to TT̄ after using conservation laws. As illustrative examples, we deform

theories involving a single (2, 2) chiral superfield. We show that the deformed free theory is on-shell

equivalent to the (2, 2) Nambu-Goto action. At the classical level, models with a superpotential exhibit

more surprising behavior: the deformed theory exhibits poles in the physical potential which modify the

vacuum structure. This suggests that irrelevant deformations of TT̄ type might also affect infrared physics.
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I. INTRODUCTION

Understanding the space of quantum field theories (QFTs)

is a fascinating question.A typical approach to this question is

to start with a particularly tractable model, such as a free,

conformal, or exactly solvable theory, and deform it infini-

tesimally by adding an integrated local operator. An infini-

tesimal relevant deformation generates a renormalization

group flow. The resulting theory will differ in the infrared

from the original undeformed theory. When the original

theory is conformal, there might exist exactly marginal

deformations which preserve the conformal symmetry for

finite values of the deformation parameters; the space of

marginal parameters defines the moduli space of the con-

formal field theory. Finally, if the deforming operator is

irrelevant, the ultraviolet properties of the theory change,

and it is usually difficult to understand this change in terms of

any kind of flow. This case is the most difficult to understand

because, in essence, the definition of the theory changes.

Irrelevant deformations of two-dimensional Poincaré-

invariant QFTs generated by the determinant of the stress-

energy tensor, detðTÞ ¼ T00T11 − T01T10, are special.

These TT̄ deformations define a flow along which certain

properties of the deformed theory can be computed exactly

[1]. Most important is the energy spectrum [2,3]. However,

in many cases the classical action can also be determined in

closed form along the flow [3,4]. This prompted the study

of TT̄ deformations of integrable theories [3,5,6], as well

as of more general theories [7–11], with a number of

applications to (effective) string theory [12–14], to two-

dimensional gravity [15–18], and to the AdS3=CFT2

correspondence [19–28].
1

One of the first examples studied was the deformation of

a theory of free bosons, which resulted in the Nambu-Goto

action [3].
2
Interestingly, the TT̄ deformed action for a

scalar theory with an arbitrary potential can also be exactly

constructed, at least classically. Imposing the TT̄ flow

equation for the Lagrangian

d

dλ
Lλ ¼ detðT½Lλ�Þ; ð1:1Þ

where the stress-energy tensor Tμν½Lλ� is computed in the

deformed theory itself, and setting the initial condition

L0 ¼
1

2
∂þþϕ∂−−

ϕþ VðϕÞ; ð1:2Þ
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3
.

1
More general “TJ̄” deformations, which break Lorentz

invariance, have also been considered [29–35].
2
This can also be seen by studying the world-sheet S matrix

of strings in flat space [12,13]. For a theory of free bosons
and fermions, one instead finds the Green-Schwarz action in the
light-cone gauge [36]. See also Refs. [23,37] for a discussion
of the relation between light-cone gauge-fixed strings and TT̄
deformations.
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gives [3,4]

Lλ ¼
1

2λ

1 − 2λVðϕÞ
1 − λVðϕÞ

"

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2λ
ð∂þþϕ∂−−

ϕþ 2VðϕÞÞð1 − λVðϕÞÞ
ð1 − 2λVðϕÞÞ2

s
#

: ð1:3Þ

This Lagrangian is fairly involved. It is interesting to con-

sider the potential energy at zero momentum, which means

discarding all interaction terms which involve derivatives.

This captures the potential for slowly varying fields,

Lλ ¼
1

2
∂þþϕ∂−−

ϕþ VðϕÞ
1 − λVðϕÞ þ � � � ; ð1:4Þ

where the ellipses denote interaction terms involving

derivatives. Although this is just a classical result, the

form of the deformed potential is striking: if we start from a

regular potential, we will generically develop poles for

sufficiently large jλj. These poles are invisible in perturba-

tion theory in the flow parameter λ. Were we able to trust

this result at the quantum level, this would point to a

dramatic modification of the theory. Namely, an irrelevant

deformation would end up changing the infrared structure

of the theory, resulting in a kind of “IR/UV mixing.”

It is generally not possible to draw firm conclusions about

the quantum properties of a theory by studying its classical

potential. A truly quantum analysis would certainly be pre-

ferable. Unfortunately, our current understanding of the TT̄
deformation at the quantum level is far from complete. When

the theory is studied in infinite volume, the deformation can

be defined by postulating that the S matrix only change by a

Castillejo-Dalitz-Dyson (CDD) factor [3]. This CDD factor,

however, spoils the analytic properties of the scattering

matrix at large values of the deformation parameter, taking

us away from the framework of local QFT. In finite volume,

on the other hand, a flow equation for the energy spectrum

follows from (1.1) [2].
3
However, generically along the flow

some energy levels will become complex; this phenomenon

is not completely understood. Which physical observables

make sense in the deformed theory is also currently rather

mysterious. All in all, a rigorous exploration of possible IR/

UV mixing requires a deeper understanding of the quantum

properties of the deformed theory.

One instance where a classical analysis of the potential

might allow us to draw more reliable conclusions about the

quantum theory is for models with extended supersymmetry.

As long as there is sufficient supersymmetry for the potential

to be partly controlled by a holomorphic quantity, there will

be partial protection from perturbative (and sometimes non-

perturbative) quantum effects. Models with N ¼ ð2; 2Þ
supersymmetry in two dimensions are precisely of this type,

provided that the TT̄ deformation is compatible with

manifest N ¼ ð2; 2Þ supersymmetry.

Recently it was shown that the TT̄ flow preserves

manifest N ¼ ð0;1Þ, N ¼ ð1;1Þ [36,38], and N ¼ ð0; 2Þ
supersymmetry [39]. Specifically, we can view the flow as

generated by the supersymmetric descendant of a compo-

site operator; this composite operator is built from a bilinear

in supercurrents. This construction both ensures supersym-

metry along the flow and is sufficient to reproduce, and

indeed slightly generalizes Zamolodchikov’s argument for

the well definedness and solvability of TT̄ [1]. Moreover,

for some simple supersymmetric actions it was possible to

explicitly construct the deformed Lagrangian in superspace,

gaining some insight on the resulting theory [36,38,39].

The main aim of this paper is to repeat this analysis in the

N ¼ ð2; 2Þ case and find a manifestly N ¼ ð2; 2Þ super-

symmetric version of the TT̄ flow. The case of N ¼ ð2; 2Þ
is particularly interesting for at least two reasons: first, it is

the most heavily studied class of two-dimensional super-

symmetric theories because of applications to string com-

pactifications. Second, these models are closely connected

to the dimensional reduction of N ¼ 1 theories in four

dimensions. Understanding more about the structure of the

N ¼ ð2; 2Þ theory might shed light on how to generalize

TT̄ to higher dimensions; see [38,40–42] for discussions of

such higher-dimensional generalizations. We plan to report

on results along this direction in [43].

In this work, we will establish the appearance of a sin-

gularity in the physical potential, such as the one appearing

in Eq. (1.4), in a manifestly N ¼ ð2; 2Þ form—where, as

usual, the role of VðϕÞ will be played by jW0ðϕÞj2 with

WðϕÞ the holomorphic superpotential. Our results on the

N ¼ ð2; 2Þ version of TT̄ provide a stepping stone toward

a fully quantum analysis of the vacuum structure of

nonconformal TT̄-deformed theories, which we plan to

explore in the future.

The paper is structured as follows: in Sec. II we review

the structure of the N ¼ ð2; 2Þ supercurrent multiplets

which we need to construct the supersymmetric deforma-

tion. In Sec. III we construct the supercurrent-squared

operator T T̄ as a bilinear in the supercurrents and discuss

its well definedness. Finally, in Sec. IV we construct the

deformed action for a few examples ofN ¼ ð2; 2Þ theories.
In particular, we focus on theories involving a single chiral

multiplet with an action determined by an arbitrary Kähler

potential, as well as models with a superpotential. In

Appendixes A, B, and C, we collect assorted results used

in the main body of the text.

3
For integrable theories, such a flow equation may also be

derived from the CDD deformation using the thermodynamic
Bethe ansatz [3].
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II. D= 2N = (2;2) SUPERCURRENT

MULTIPLETS

Our manifestly supersymmetric modification of TT̄ is

built from bilinears in fields of the supercurrent multiplet.

In this section we review the structure of such multiplets in

D ¼ 2, N ¼ ð2; 2Þ theories.

A. Conventions

We work in two-dimensional N ¼ ð2; 2Þ superspace

with a Lorentzian signature; see [44] for a classic reference

on the subject. Our four anticommuting coordinates are

written θ� and θ̄�, and we will collectively denote the

superspace coordinates by ζM ¼ ðxμ; θ�; θ̄�Þ. To more

easily interpret expressions involving both vector and

spinor quantities, we change to light-cone coordinates

using the bispinor conventions

x�� ¼ 1
ffiffiffi

2
p ðx0 � x1Þ; ð2:1Þ

and we define the corresponding partial derivatives

∂�� ¼ 1
ffiffiffi

2
p ð∂0 � ∂1Þ; ð2:2Þ

so that ∂��x
�� ¼ 1 and ∂��x

∓∓ ¼ 0.

Spinors in two dimensions carry a single index which is

raised or lowered as follows:

ψþ ¼ −ψ
−
; ψ− ¼ ψþ: ð2:3Þ

We write all vector indices as pairs of spinor indices. This

allows us to nicely compare terms in equations involving

combinations of spinor, vector, spinor-vector, and tensor

quantities. Using this notation, for example, the super-

current has components Sþþþ; S−−−; Sþ−−
, and S

−þþ,
which we can immediately identify as a spinor-vector

because it has three indices. Similarly, the stress-energy

tensor carries two vector indices which are repackaged into

four bispinor indices Tþþþþ; T−−−−
; Tþþ−−

¼ T
−−þþ.

The supercovariant derivatives, collectively denoted by

DA ¼ ð∂a; D�; D̄�Þ, are defined by

D� ¼ ∂

∂θ�
−

i

2
θ̄�∂��; D̄� ¼ −

∂

∂θ̄�
þ i

2
θ�∂��;

ð2:4Þ

and satisfy

fD�; D̄�g ¼ i∂��; ð2:5Þ

with all other (anti)commutators vanishing.

The supersymmetry transformations for an N ¼ ð2; 2Þ
superfield F ðζÞ ¼ F ðx��; θ�; θ̄�Þ are given by

δQF ≔ iϵþQþF þ iϵ−Q
−
F − iϵ̄þQ̄þF − iϵ̄−Q̄

−
F ;

ð2:6Þ

where on superfields the supercharges are represented by

the following differential operators:

Q� ¼ ∂

∂θ�
þ i

2
θ̄�∂��; Q̄� ¼ −

∂

∂θ̄�
−

i

2
θ�∂��;

ð2:7Þ

satisfying

fQ�; Q̄�g ¼ −i∂��; ð2:8Þ

and commuting with the covariant derivatives DA.

B. The S multiplet

For Lorentz invariant supersymmetric theories, there is

an essentially unique supermultiplet which contains the

stress-energy tensor Tμν, the supercurrent Sμα, and no other
operators with spin larger than one, under the assumption

that the multiplet, though in general reducible, cannot be

separated into decoupled supersymmetry multiplets;

namely that it is indecomposable [45]. This S-multiplet

can be defined in any theory with D ¼ 2, N ¼ ð2; 2Þ
supersymmetry. By “essentially unique,” we mean that the

S-multiplet is unique up to improvement terms which

preserve the superspace constraint equations.

For two-dimensional theories with (2, 2) supersymmetry,

the S-multiplet consists of superfields S��, χ�, and Y�
which satisfy the constraints:

D̄�S∓∓ ¼ �ðχ∓ þ Y∓Þ; ð2:9aÞ

D̄�χ� ¼ 0; D̄�χ∓ ¼ �Cð�Þ; Dþχ− − D̄
−
χ̄þ ¼ k;

ð2:9bÞ

D�Y� ¼ 0; D̄�Y∓ ¼∓ Cð�Þ; DþY−
þD

−
Yþ ¼ k0:

ð2:9cÞ

Here k and k0 are real constants and Cð�Þ is a complex

constant. The S-multiplet contains 8þ 8 independent real

component operators and the constants k; k0; Cð�Þ [45]. The
expansion in components of S��, χ�, and Y� are given for

convenience in Appendix A.

Among the various component fields it is important to

single out the complex supersymmetry current Sαμ and

the energy-momentum tensor Tμν. The complex super-

symmetry current, associated with Sþ�� and S
−��, is

conserved: ∂μSαμ ¼ 0. The energy-momentum tensor,

associated with T���� and Tþþ−−
¼ T

−−þþ, is real, con-
served (∂μTμν ¼ 0), and symmetric (Tμν ¼ Tνμ). In light-

cone notation the conservation equations are given by
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∂þþSþ−−
ðxÞ ¼ −∂

−−
SþþþðxÞ; ð2:10aÞ

∂þþS̄þ−−
ðxÞ ¼ − ∂

−−
S̄þþþðxÞ; ð2:10bÞ

∂þþT−−−−
ðxÞ ¼ − ∂

−−
ΘðxÞ; ð2:10cÞ

∂þþΘðxÞ ¼ − ∂
−−
TþþþþðxÞ; ð2:10dÞ

where we have defined as usual

ΘðxÞ ≔ Tþþ−−
ðxÞ ¼ T

−−þþðxÞ: ð2:11Þ

To conclude this subsection, let us describe the ambi-

guity in the form of the S multiplet which is parametrized

by a choice of improvement terms. If U is a real superfield,

we are free to modify the S-multiplet superfields as

follows:

S�� → S�� þ ½D�; D̄��U; ð2:12aÞ

χ� → χ� − D̄þD̄−
D�U; ð2:12bÞ

Y� → Y� −D�D̄þD̄−
U; ð2:12cÞ

which keeps invariant the conservation equations (2.9). In

general, the S multiplet is a reducible representation of

supersymmetry, and some of its component can consis-

tently be set to zero by a choice of improvement. The

reduced Ferrara-Zumino supercurrent multiplet, which

plays a central role in our paper, is described next.

C. The Ferrara-Zumino multiplet and

old-minimal supergravity

If there exists a well-defined superfield U such that

χ� ¼ D̄þD̄−
D�U, then we may use the transformation

(2.12) to set χ� ¼ 0 in the S multiplet. If in addition

k ¼ Cð�Þ ¼ 0, then the fields S�� and Y� satisfy the

defining equations for the Ferrara-Zumino (FZ) multiplet.

In this case, it is conventional to rename the field S�� to

J �� and write these defining equations as

D̄�J ∓∓ ¼ �Y∓; ð2:13aÞ

D�Y� ¼ 0; ð2:13bÞ

D̄�Y∓ ¼ 0; ð2:13cÞ

DþY−
þD

−
Yþ ¼ k0: ð2:13dÞ

The superfield J �� in the FZ multiplet turns out to be

associated with the axial Uð1ÞA R-symmetry current and

satisfies the conservation equation

∂
−−
J þþ − ∂þþJ −−

¼ 0: ð2:14Þ

This multiplet, which has 4þ 4 real components, is the

dimensionally reduced version of the D ¼ 4 N ¼ 1 FZ

multiplet [46]; see Appendix A for more details. All of the

models we consider in Sec. IV have the property that χ�
can be improved to zero; that is, they all have a well-defined

FZ multiplet.

Just as the bosonic Hilbert stress tensor Tμν represents

the response function of the Lagrangian to a linearized

perturbation hμν of the metric, the supercurrent multiplets

correspond to linearized couplings to supergravity.
4

Different formulations of off-shell supergravity couple to

different supercurrent multiplets. If a theory has a well-

defined FZ multiplet, as is the case for all the examples

found in Sec. IV, then the theory can be consistently

coupled to the old-minimal supergravity prepotentials

H�� and σ. The nomenclature “old-minimal” is again

inherited from D ¼ 4, N ¼ 1 supergravity; see [48,49] for

pedagogical reviews and references. Here H�� is the

conformal supergravity prepotential—the analogue of the

traceless part of the metric—and σ is a chiral conformal

compensator.

We refer the reader to [50–54] and references therein for

an exhaustive description of D ¼ 2, N ¼ ð2; 2Þ off-shell

supergravity in superspace, which we will use in our

analysis; see also Appendix B. For the scope of this work,

it will be enough to know the structure of linearized old-

minimal supergravity. For instance, at the linearized level

the gauge symmetry of the supergravity prepotentials

H��; σ, and σ̄, can be parametrized as follows:

δHþþ ¼ i

2
ðD̄

−
Lþ

−D
−
L̄þÞ; ð2:15aÞ

δH−− ¼ i

2
ðD̄þL

−
−DþL̄

−Þ; ð2:15bÞ

δσ ¼ −

i

2
D̄þD̄−

ðDþL
þ
−D

−
L−Þ; ð2:15cÞ

δσ̄ ¼ −

i

2
D

−
DþðD̄þL̄

þ
− D̄

−
L̄−Þ; ð2:15dÞ

in terms of unconstrained spinor superfields L� and their

complex conjugates.

The conservation law (2.13) for the FZ multiplet can be

derived by using the previous gauge transformations. The

linearized supergravity couplings for a given model are

written as
5

4
Rather than coupling to supergravity, one could define the

supercurrent multiplets using a superspace Noether procedure,
as is done forD ¼ 4 theories withN ¼ 1 supersymmetry in [47].
This was the approach followed for (1, 1) supersymmetry in [38].

5
We use the notation d2θ ≔ dθ−dθþ, d2θ̄ ≔ dθ̄þdθ̄−, and

d4θ ≔ d2θd2θ̄.
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Llinear ¼
Z

d4θðHþþJ þþ þH−−J
−−
Þ

−

Z

d2θσV −

Z

d2θ̄ σ̄ V̄; ð2:16Þ

with V a chiral superfield and V̄ its complex conjugate.

Assuming the matter superfields satisfy their equations of

motion, the change in the Lagrangian (2.16) under the

gauge transformation (2.15) is

δLlinear ¼
Z

d4θðδHþþJ þþ þ δH−−J
−−
Þ

−

Z

d2θδσV −

Z

d2θ̄δσ̄ V̄

¼ i

2

Z

d4θfðD̄
−
Lþ

−D
−
L̄þÞJ þþ

þ ðD̄þL
−
−DþL̄

−ÞJ
−−

− ðDþL
þ
−D

−
L−ÞV

− ðD̄þL̄
þ
− D̄

−
L̄−ÞV̄g

¼ i

2

Z

d4θfLþðD̄
−
J þþ þDþVÞ

þ L−ðD̄þJ −−
−D

−
VÞ þ c:c:g; ð2:17Þ

where we have integrated by parts. Demanding that the

variation vanishes for any gauge parameter L� gives

D̄
−
J þþ þDþV ¼ 0; D̄þJ −−

−D
−
V ¼ 0: ð2:18Þ

This matches the constraints (2.13) for the FZ multiplet if

we identify

Y� ¼ D�V ð2:19Þ

and set k0 ¼ 0.

As we will soon see, studying TT̄ deformations requires

consideration of a composite operator constructed out of

the square of the supercurrent multiplet. Hence to solve the

TT̄ flow equations we need to be able to calculate the

supercurrent multiplet explicitly. The coupling to super-

gravity provides a straightforward prescription for com-

puting the FZ multiplet for matter models that can be

coupled to old-minimal supergravity.
6
In particular, for a

given N ¼ ð2; 2Þ matter theory we will

(1) Begin with an undeformed superspace Lagrangian L

in flat N ¼ ð2; 2Þ superspace.
(2) Minimally couple L to the supergravity superfield

prepotentials H��, σ, and σ̄.

(3) Extract the superfields J ��, V, and V̄ which couple

linearly to H��, σ, and σ̄, respectively, in the D and

F terms of (2.16).

Thanks to the analysis given above, the superfields J ��, V,
and V̄ will automatically satisfy the FZ-multiplet con-

straints (2.18). A detailed description of the computation of

the FZ multiplet for the models relevant for our paper is

given in Appendix B.

III. THE TT̄ OPERATOR AND N = (2;2)
SUPERSYMMETRY

After having reviewed in the previous section the

structure of the S multiplet, we are ready to describe N ¼
ð2; 2Þ TT̄ deformations.

A. The T T̄ operator

Given a D ¼ 2, N ¼ ð2; 2Þ supersymmetric theory with

an S multiplet, we define the supercurrent-squared defor-

mation of this theory, denoted T T̄ in analogy with TT̄, by
the flow equation

∂λL ¼ −

1

8
T T̄ ; ð3:1Þ

where T T̄ is constructed from current bilinears with

T T̄ ≡ −

Z

d4θSþþS−−
−

�
Z

dθ−dθþχþχ−

þ
Z

dθ̄−dθþȲþY−
þ c:c:

�

; ð3:2Þ

and where the factor of 1

8
is chosen for later convenience.

This deformation generalizes the results we recently

obtained for D ¼ 2 theories possessing N ¼ ð0; 1Þ,
N ¼ ð1; 1Þ, and N ¼ ð0; 2Þ supersymmetry [36,38,39]

to theories with N ¼ ð2; 2Þ supersymmetry.

Let us recall the form of the TT̄ composite operator [1],

which we denote

TT̄ðxÞ ¼ TþþþþðxÞT−−−−
ðxÞ − ½ΘðxÞ�2: ð3:3Þ

An important property of the N ¼ ð0; 1Þ, N ¼ ð1; 1Þ, and
N ¼ ð0; 2Þ cases is that the TT̄ operator turns out to be the

bottom component of a long supersymmetric multiplet.

This is true up to both total vector derivatives (∂þþ and

∂
−−
) and terms that vanish upon using the supercurrent

conservation equations (Ward identities). For this reason, in

the supersymmetric cases studied previously, the original

TT̄ deformation of [1] is manifestly supersymmetric and

equivalent to the deformations constructed in terms of the

full superspace integrals of primary supercurrent-squared

composite operators [36,38,39].

6
Though we will not need it in our paper, it is worth

mentioning that the nonminimal supergravity results of [50–
54] allow the computation of the supercurrent multiplet for more
general classes of models.
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Remarkably, despite the much more involved structure

of the (2, 2) S multiplet compared to theories with fewer

supersymmetries, it is possible to prove that the following

relation holds:

T T̄ ðxÞ ¼ TT̄ðxÞ þEOM’sþ ∂þþð� � �Þ þ ∂
−−
ð� � �Þ: ð3:4Þ

In (3.4), we use EOM’s to denote terms that are identically

zero when Eqs. (2.9) are used. Showing (3.4) requires using

(A1)–(A3), along with several cancellations, integration by

parts, and the use of the (2, 2) S-multiplet conservation

equations (2.9).

In fact, the specific combination of current superfields

given in (3.2) was chosen precisely for (3.4) to hold. The

combination (3.4) is also singled out by being invariant

under the improvement transformation (2.12). The impor-

tant implication of (3.4) is that the TT̄ deformation for an

N ¼ ð2; 2Þ supersymmetric quantum field theory is man-

ifestly supersymmetric and equivalent to the T T̄ deforma-

tion of Eq. (3.2).

Note that in the N ¼ ð2; 2Þ case the deformation we

have introduced in (3.2) is conceptually different from the

cases with less supersymmetry. Specifically, the deforma-

tion is not given by the descendant of a single composite

superfield. On the other hand, suppose the S multiplet is

such that Cð�Þ ¼ k ¼ k0 ¼ 0, and it is possible to improve

the superfields χ� and Y� to a case where

Y� ¼ D�V; Ȳ� ¼ D̄�V̄; ð3:5aÞ

χþ ¼ iD̄þB̄; χ
−
¼ iD̄

−
B; χ̄þ ¼ −iDþB;

χ̄
−
¼ −iD

−
B̄; ð3:5bÞ

with V chiral and B twisted chiral:

D̄�V ¼ 0; D�V̄ ¼ 0; ð3:6aÞ

D̄þB ¼ D
−
B ¼ 0; DþB̄ ¼ D̄

−
B̄ ¼ 0: ð3:6bÞ

In this case (3.2) simplifies to

T T̄ ¼ −

Z

d4θSþþS−−
þ
�
Z

dθ−dθþD̄þB̄D̄−
B̄

−

Z

dθ̄−dθþD̄þV̄D−
V þ c:c:

�

¼ −

Z

d4θðSþþS−−
− 2BB̄ − 2VV̄Þ; ð3:7Þ

and we see that, up to EOM’s, TT̄ðxÞ is the bottom

component of a long supersymmetric multiplet. In this

situation, once we define the composite superfield

OðζÞ ≔ −SþþðζÞS−−
ðζÞ þ 2BðζÞB̄ðζÞ þ 2VðζÞV̄ðζÞ;

ð3:8Þ

Eq. (3.4) turns into the equivalent result
7

Z

d4θOðζÞ ¼ D
−
DþD̄þD̄−

OðζÞjθ¼0

¼ TT̄ðxÞ þ EOM’sþ ∂þþð� � �Þ þ ∂
−−
ð� � �Þ;

ð3:9Þ

stating that the D term of the operatorOðζÞ is equivalent to
the standard TT̄ðxÞ operator.
For a matter theory that can be coupled to old-minimal

supergravity, leading to the FZ multiplet described by

(2.18), the operator OðζÞ further simplifies thanks to the

fact that the twisted-(anti)chiral operators B and B̄ dis-

appear. For these cases, the TT̄ flow turns into the

following equation:

∂λL ¼ 1

8

Z

d4θðJ þþJ −−
− 2VV̄Þ: ð3:10Þ

This will be our starting point in analyzing N ¼ ð2; 2Þ
deformed models in Sec. IV.

B. Point splitting and well definedness

The TT̄ðxÞ operator (3.3) is quite magical because it is a

well-defined irrelevant composite local operator, free of

short distance divergences [1]. In fact, this property

generalizes to the larger class of operators

½AsðxÞA0
s0ðxÞ − Bsþ2ðxÞBs0−2ðxÞ�; ð3:11Þ

where ðAs; Bsþ2Þ and ðA0
s0 ; B

0
s0−2Þ are two pairs of con-

served currents with spins s and s0. The operator TT̄ðxÞ is a
particular example with s ¼ s0 ¼ 0. As proven in [2], these

composite operators of “Smirnov-Zamolodchikov’–type

have a well-defined point splitting which is free of

short-distance divergences. In the case of N ¼ ð0; 1Þ
and N ¼ ð1; 1Þ supersymmetric TT̄ deformations, the

entire supermultiplet whose bottom component is TT̄ðxÞ
is composed of well-defined Smirnov-Zamolodchikov–

type operators [36,38]. In theN ¼ ð0; 2Þ case, the primary
8

operator whose bottom component is TT̄ðxÞ is not of

Smirnov-Zamolodchikov–type. Nevertheless, also in this

case it was recently shown that, thanks to supersymmetry,

the whole multiplet is well defined [39].

7
In the subsequent discussion by θ ¼ 0 we will always mean

θ� ¼ θ̄� ¼ 0.
8
We denote as primary operator the top component of

a supersymmetric multiplet even when the theory is not
superconformal.
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In theN ¼ ð2; 2Þ case it is clear that the situation is more

complicated than any of the cases mentioned above. First,

in the general situation, according to (3.2), the T T̄

deformation is a linear combination of a D term together

with chiral and twisted-chiral F term contributions. Though

the F terms might be protected by standard perturbative

nonrenormalization theorems [see, for example, [48,49] for

the D ¼ 4, N ¼ 1 case which dimensionally reduces to

D ¼ 2, N ¼ ð2; 2Þ], the D term associated with the

SþþS−−
operator has no clear reason to be protected in

general from short-distance divergences in point-splitting

regularization, and hence has no obvious reason to be well

defined. This indicates that there might be a clash between

supersymmetry and a point-splitting procedure in the

general setting.

Wewill not attempt to analyze this issue in full generality

in the current paper; instead our aim is to describe a

subclass of models for which the T T̄ deformation turns out

to be well defined. A natural restriction to impose is that the

S multiplet is constrained by (3.5) and the T T̄ deformation

is therefore described by the D term (3.7). By trivially

extending the arguments used in [39] for the N ¼ ð0; 2Þ
case, it is not difficult to show that these restrictions are

sufficient to imply that the multiplet described by the N ¼
ð2; 2Þ primary operatorOðζÞ of (3.8) is indeed well defined
despite not being of Smirnov-Zamolodchikov–type. As in

theN ¼ ð0; 2Þ, unbrokenN ¼ ð2; 2Þ supersymmetry turns

out to be the reason for this to happen.

Let us quickly explain how this works for the FZ

multiplet and the deformation (3.10), which are the main

players in our paper. Note, however, that the same argument

extends to more general cases where both chiral and

twisted-chiral current superfields, χ� and Y�, satisfying
(3.5) are turned on. We also refer to [39] for details that we

will skip in the following discussion, which are trivial

extensions from the (0, 2) to the (2, 2) case.

A first indication of the well definedness of the multiplet

associated with OðζÞ comes by looking at the vacuum

expectation value of its lowest component. Define the

primary composite operator

OðxÞ ≔ −j
−−
ðxÞjþþðxÞ þ 2vðxÞv̄ðxÞ ¼ OðζÞjθ¼0 ð3:12Þ

and its point-split version

Oðx; x0Þ ≔ −j
−−
ðxÞjþþðx0Þ þ vðxÞv̄ðx0Þ þ v̄ðxÞvðx0Þ;

ð3:13Þ

where

j��ðxÞ ≔ J ��ðζÞjθ¼0; vðxÞ ≔ VðζÞjθ¼0;

v̄ðxÞ ≔ V̄ðζÞjθ¼0: ð3:14Þ

Note that Eq. (2.18) implies the following relation among

the component operators:

½Q̄�; j∓∓ðxÞ� ¼ �½Q∓; vðxÞ�;
½Q�; j∓∓ðxÞ� ¼ �½Q̄∓; v̄ðxÞ�; ð3:15Þ

withQ� and Q̄� denoting theN ¼ð2;2Þ supercharges.9 By
then using ∂��¼ ifQ�;Q̄�g, fQþ;Q−

g¼fQ̄þ;Q̄−
g¼0,

½Q̄�; vðxÞ� ¼ ½Q�; v̄ðxÞ� ¼ 0, super-Jacobi identities,

together with the conservation equations (3.15), and the

assumption that the vacuum is invariant under supersym-

metry, it is straightforward to show that the vacuum

expectation value (VEV) of Oðx; x0Þ satisfies

∂þþhj−−ðxÞjþþðx0Þi ¼ ih½fQþ; Q̄þg; j−−ðxÞ�jþþðx0Þi
¼ ihfQþ; ½Q−

; vðxÞ�gjþþðx0Þ þ fQ̄þ; ½Q̄−
; v̄ðxÞ�gjþþðx0Þi

¼ −ih½Qþ; vðxÞ�½Q−
; jþþðx0Þ� þ ½Q̄þ; v̄ðxÞ�½Q̄−

; jþþðx0Þ�i
¼ ih½Qþ; vðxÞ�½Q̄þ; v̄ðx0Þ� þ ½Q̄þ; v̄ðxÞ�½Qþ; vðx0Þ�i
¼ h½ifQ̄þ; Qþg; vðxÞgv̄ðx0Þ þ ½ifQþ; Q̄þg; vðxÞgv̄ðx0Þi
¼ ∂þþhvðxÞv̄ðx0Þ þ vðxÞv̄ðx0Þi; ð3:16Þ

and, after performing a similar calculation for h∂
−−
j
−−
ðxÞ×

jþþðx0Þi ¼ −hj
−−
ðxÞ∂ 0

−−
jþþðx0Þi, it is clear that the

relation

∂��hOðx; x0Þi ¼ 0 ð3:17Þ

holds. Therefore, hOðx; x0Þi is independent of the positions
and free of short distance divergences. It is worth noting

that similar to the argument showing that the two point

function of two chiral or twisted-chiral operators is inde-

pendent of the positions x and x0, the previous analysis for
hOðx; x0Þi necessarily relies on unbroken N ¼ ð2; 2Þ
supersymmetry.

The argument given above can be generalized to a

statement about operators in superspace in complete

analogy to the N ¼ ð0; 2Þ case of [39]. Let us investigate

the short distance singularities in the bosonic coordinates

by defining a point-split version of the N ¼ ð2; 2Þ primary

T T̄ operator,

Oðx; x0; θÞ ≔ −J
−−
ðx; θÞJ þþðx0; θÞ þ Vðx; θÞV̄ðx0; θÞ

þ V̄ðx; θÞVðx0; θÞ: ð3:18Þ

We want to show that the preceding bilocal superfield is

free of short distance divergences in the limit x → x0. A
straightforward calculation shows that

9
Given an operator FðxÞ defined as the θ ¼ 0 component of

the superfield F ðζÞ, FðxÞ ≔ F ðζÞjθ¼0, then its supersymmetry
transformations are such that ½Q�; FðxÞg ¼ Q�F ðζÞjθ¼0 ¼
D�F ðζÞjθ¼0 and ½Q̄�; FðxÞg ¼ Q̄�F ðζÞjθ¼0 ¼ D̄�F ðζÞjθ¼0.
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∂þþOðx; x0; θÞ ¼ −fiDþVðζÞ½D0
−
J þþðζ0Þ þ D̄0

þV̄ðζ0Þ� þ iD̄þV̄ðζÞ½D̄0
−
J þþðζ0Þ þD0

þVðζ0Þ�
þ iðQþ þQ0

þÞ½ðD̄þV̄ðζÞÞVðζ0Þ� þ iðQ̄þ þ Q̄0
þÞ½ðDþVðζÞÞV̄ðζ0Þ�

þ iðQ
−
þQ0

−
Þ½ðDþVðζÞÞJ þþðζ0Þ� þ iðQ̄

−
þ Q̄0

−
Þ½ðD̄þV̄ðζÞÞJ þþðζ0Þ�

þ ð∂þþ þ ∂ 0
þþÞ½θ̄þðD̄þV̄ðζÞÞVðζ0Þ þ θ̄−ðDþVðζÞÞJ þþðζ0Þ�

− ð∂þþ þ ∂ 0
þþÞ½θþðDþVðζÞÞV̄ðζ0Þ þ θ−ðD̄þV̄ðζÞÞJ þþðζ0Þ�gjθ¼θ0 : ð3:19Þ

Note that the first line in the preceding expression is zero

because of the FZ conservation equations (2.18), which hold

up to contact terms in correlation functions. The other lines

are either total vector derivatives or supersymmetry trans-

formations of bilocal operators. A similar equation holds for

∂
−−
Oðx; x0; θÞ showing that the operatorOðx; x0; θÞ satisfies

∂��Oðx; x0; θÞ ¼ 0þ EOM’sþ ½P;…� þ ½Q;…�; ð3:20Þ

where [P;…] and [Q;…] schematically indicate a translation

and supersymmetry transformation of some bilocal superfield

operator.
10
To conclude, by employing an operator product

expansion (OPE) argument completely analogous to the one

originally given by Zamolodchikov in [1] and extended to the

N ¼ ð0; 2Þ supersymmetric case in [39], one can show that

Eq. (3.20) implies

Oðx; x0; θÞ ¼ OðζÞ þ derivative terms: ð3:21Þ

Here “derivative terms” indicate superspace covariant deriv-

ativesDA ¼ ð∂��; D�; D̄�Þ acting on local superfield oper-
ators whileOðζÞ arises from the regular, nonderivative part of

the OPE of Oðx; x0; θÞ. As a result the integrated operator

SO ¼
Z

d2xd4θlim
ε→0

Oðx; xþ ε; θÞ

¼
Z

d2xd4θ∶Oðx; x; θÞ∶; ð3:22Þ

which can be considered as a definition of the integrated

T T̄ ðxÞ operator,11 is free of short distance divergences and is

well defined in complete analogy to the nonsupersymmetric

case [1] and the N ¼ ð0; 1Þ, N ¼ ð1; 1Þ, and N ¼ ð0; 2Þ
cases [36,38,39].

IV. DEFORMED (2, 2) MODELS

In this section, we will apply our supercurrent-squared

deformation (3.10) to a few examples of N ¼ ð2; 2Þ
supersymmetric theories for a chiral multiplet Φ. The

superfield Φ can be written in components as

Φ ¼ ϕþ θþψþ þ θ−ψ
−
þ θþθ−F − iθþθ̄þ∂þþϕ

− iθ−θ̄−∂
−−
ϕ − iθþθ−θ̄−∂

−−
ψþ − iθ−θþθ̄þ∂þþψ−

− θþθ−θ̄−θ̄þ∂þþ∂−−
ϕ; ð4:1Þ

where ϕ is a complex scalar field, ψ� are Dirac fermions,

and F is a complex auxiliary field. The multipletΦ satisfies

the chirality constraint D̄�Φ ¼ 0.

We denote the physical Lagrangian by L and the

superspace D term Lagrangian by A, so that

S ¼
Z

d2xL ¼
Z

d2xd4θA: ð4:2Þ

A broad class of two-derivative theories for a chiral

superfield can be described by superspace Lagrangians

of the form

L ¼
Z

d4θKðΦ; Φ̄Þ þ
Z

d2θWðΦÞ þ
Z

d2θ̄ W̄ðΦ̄Þ;

ð4:3Þ

whereKðΦ; Φ̄Þ is a real function called the Kähler potential
and WðΦÞ is a holomorphic function called the super-

potential. These are N ¼ ð2; 2Þ Landau-Ginzburg models.

In order for the kinetic terms of the component fields of Φ

to have the correct sign, we will assume thatKΦΦ̄ ¼ ∂2K
∂Φ∂Φ̄

is

positive.

Although we will not expand on this point in detail, all

the results found in this section can be derived almost

identically for the case of a generic model of a single scalar

twisted-chiral superfield Y, D̄þY ¼ D
−
Y ¼ 0, and its

conjugate. This is not surprising since theories containing

only chiral superfields are physically equivalent to theories

10
See Appendix A of [39] for the relation between the

operators ðQ� þQ0
�Þ, ðQ̄� þ Q̄0

�Þ and the generators of super-
symmetry transformations on bilocal superfields such as
Oðx; x0; θÞ. The extension of that analysis from N ¼ ð0; 2Þ to
N ¼ ð2; 2Þ is straightforward.

11
Note that, consistently, one can show that

fQþ; ½Q̄þ; fQ−
; ½Q̄

−
; Oðx; x0Þ�g�g ¼ T

−−−−
ðxÞTþþþþðx0Þ

− ΘðxÞΘðx0Þ þ EOM’s

þ ½P;…�; ð3:23Þ

implying that the descendant of the point-split primary operator
OðxÞ is equivalent, up to Ward identities and total vector
derivatives (∂��), to the point-split version of the descendant
TT̄ðxÞ operator.
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formulated in terms of twisted-chiral superfields; see, for

example, [50–54] for a discussion of this equivalence in

models with global and local supersymmetry. There are

also many more involved (2, 2) theories that one might also

want to study involving chiral, twisted-chiral and semi-

chiral superfields; see, for example, Ref. [55] for a recent

discussion and references. For this analysis, we have

chosen to consider only models based on a single chiral

multiplet.

A. Kähler potential

First we will set the superpotential W to zero and begin

with an undeformed superspace Lagrangian of the form

L ¼
Z

d4θKðΦ; Φ̄Þ ð4:4Þ

for some Kähler potential K. To leading order around this

undeformed theory, the FZ supercurrents are

J �� ¼ 2KΦΦ̄D�ΦD̄�Φ̄; ð4:5aÞ

V ¼ 0; ð4:5bÞ

where KΦ ¼ ∂K
∂Φ

; KΦΦ̄ ¼ ∂2K
∂Φ∂Φ̄

, etc. Therefore, at first order

the supercurrent-squared deformation driven by O ¼
ð−SþþS−−

þ 2VV̄Þwill source a four-fermion contribution

in the D term, giving

Lð1Þ ¼ Lð0Þ þ 1

2
λK2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄: ð4:6Þ

Next, we would like to find the all-orders solution for the

deformed theory. We make the ansatz that, at finite

deformation parameter λ, the Lagrangian takes the form

Lλ ¼
Z

d4θfKðΦ; Φ̄Þ

þ fðλ; x; x̄; yÞK2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄g; ð4:7Þ

where we define the combinations

x ¼ KΦΦ̄∂þþΦ∂
−−
Φ̄; y ¼ KΦΦ̄ðDþD−

ΦÞðD̄þD̄−
Φ̄Þ:
ð4:8Þ

Using the results in Appendix B, one finds that the super-

fields J �� and V appearing in our supercurrent-squared

deformation, computed for the Lagrangian (4.7), are given by

J þþ ¼ 2KΦΦ̄DþΦD̄þΦ̄

�

1þ fðxþ x̄ − 3yÞ þ x
∂f

∂x
ðx̄ − yÞ þ x̄

∂f

∂x̄
ðx − yÞ þ y

∂f

∂y
ðxþ x̄ − 2yÞ

�

þ 2K2

ΦΦ̄
D

−
ΦD̄

−
Φ̄∂þþΦ∂þþΦ̄

�

−f − x
∂f

∂x
− x̄

∂f

∂x̄
þ y

�

∂f

∂x
þ ∂f

∂x̄

��

− 2iK2

ΦΦ̄
DþΦD

−
Φ∂þþΦ̄D̄þD̄−

Φ̄

�

−f þ ðx − x̄Þ ∂f
∂x̄

þ ðx − yÞ ∂f
∂y

�

− 2iK2

ΦΦ̄
D̄þΦ̄D̄

−
Φ̄∂þþΦDþD−

Φ

�

f þ ðx − x̄Þ ∂f
∂x

þ ðy − x̄Þ ∂f
∂y

�

; ð4:9Þ

J
−−

¼ 2KΦΦ̄D−
ΦD̄

−
Φ̄

�

1þ fðxþ x̄ − 3yÞ þ x
∂f

∂x
ðx̄ − yÞ þ x̄

∂f

∂x̄
ðx − yÞ þ y

∂f

∂y
ðxþ x̄ − 2yÞ

�

þ 2K2

ΦΦ̄
DþΦD̄þΦ̄∂

−−
Φ∂

−−
Φ̄

�

−f − x
∂f

∂x
− x̄

∂f

∂x̄
þ y

�

∂f

∂x
þ ∂f

∂x̄

��

− 2iK2

ΦΦ̄
DþΦD

−
Φ∂

−−
Φ̄D̄þD̄−

Φ̄

�

−f þ ðx̄ − xÞ ∂f
∂x

þ ðx̄ − yÞ ∂f
∂y

�

− 2iK2

ΦΦ̄
D̄þΦ̄D̄

−
Φ̄∂

−−
ΦDþD−

Φ

�

f þ ðx̄ − xÞ ∂f
∂x̄

þ ðy − xÞ ∂f
∂y

�

; ð4:10Þ

and

V ¼ 2K2

ΦΦ̄

�

f þ y
∂f

∂y
þ x

∂f

∂x
þ x̄

∂f

∂x̄

�

½−i∂þþΦ̄ðDþD−
ΦÞD

−
ΦD̄

−
Φ̄þ ∂þþΦ̄∂

−−
Φ̄D

−
ΦDþΦ

− D̄
−
Φ̄D̄þΦ̄ðDþD−

ΦÞ2 − i∂
−−
Φ̄ðDþD−

ΦÞDþΦD̄þΦ̄�: ð4:11Þ

The supercurrent-squared flow then induces a differential equation for the superspace Lagrangian Aλ (where, again,

Lλ ¼
R

d4θAλ) given by
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d

dλ
Aλ ¼ −

1

8
O ¼ 1

8
ðJ þþJ −−

− 2VV̄Þ: ð4:12Þ

Given our ansatz (4.7), we see that

dAλ

dλ
¼ df

dλ
K2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄: ð4:13Þ

On the other hand, plugging our expressions (4.9), (4.10), and (4.11) for the supercurrents into the right-hand side

of (4.12) also gives a result proportional to K2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄. Equating the coefficients, we find a differential

equation for f:

df

dλ
¼ 1

2

�

−x̄y

�

f þ ðx̄ − xÞ ∂f
∂x̄

þ ðy − xÞ ∂f
∂y

�

2

− xy

�

f þ ðx − x̄Þ ∂f
∂x

þ ðy − x̄Þ ∂f
∂y

�

2

þ 2ðx − yÞðy − x̄Þ
�

f þ y
∂f

∂y
þ x̄

∂f

∂x̄
þ x

∂f

∂x

�

2

þ xx̄

�

f þ ðx̄ − yÞ ∂f
∂x̄

þ ðx − yÞ ∂f
∂x

�

2

þ
�

1þ ðxþ x̄ − 3yÞf þ ðxþ x̄ − 2yÞy ∂f
∂y

þ x̄ðx − yÞ ∂f
∂x̄

þ xðx̄ − yÞ ∂f
∂x

�

2
�

: ð4:14Þ

In particular, this shows that our ansatz (4.7) for the finite-λ

superspace action is consistent: the supercurrent-squared

deformation closes on an action of this form. It could have

been otherwise: the flow equation might have sourced

additional terms proportional, say, to two-fermion combi-

nations DþΦD̄þΦ̄, or required dependence on other

dimensionless variables such as λðDþD−
ΦÞ2, but these

complications do not arise in the case where the unde-

formed theory only has a Kähler potential.

On dimensional grounds, f must be proportional to λ

times a function of the dimensionless combinations λx and

λy. Thus, although the differential equation for f deter-

mined by (4.14) is complicated, one can solve order by

order in λ. The solution to Oðλ3Þ is

fðλ; x; x̄; yÞ ¼ λ

2
þ λ2

�

xþ x̄

4
−

3

4
y

�

þ λ3
�

x2 þ x̄2 þ 3xx̄

8
þ 37

24
y2 −

25

24
ðxþ x̄Þy

�

þ � � � : ð4:15Þ

Wewere unable to find a closed-form expression for f to all

orders in λ. However, the differential equation simplifies

dramatically when we impose the equations of motion for

the theory, and in this case one can write down an exact

formula. This is similar to the TT̄ flow of the free action

for a real N ¼ ð1; 1Þ scalar multiplet that was analyzed

in [36,38].

We claim that, on-shell, one may drop any terms where

y ∼ ðDþD−
ΦÞðD̄þD̄−

Φ̄Þ multiplies the four-fermion term

jDΦj4 ≡DþΦD̄þΦ̄D
−
ΦD̄

−
Φ̄. This is shown explicitly in

Appendix C and follows directly from the superspace

equation of motion and nilpotency of the fermionic terms

D�Φ and D̄�Φ̄. It is also an intuitive statement associated

with the fact that for these models, on-shell, N ¼ ð2; 2Þ
supersymmetry is not broken. In fact, note that the super-

fields ðDþD−
ΦÞ and ðD̄þD̄−

Φ̄Þ have as their lowest

components the auxiliary fields F and F̄. If supersymmetry

is not broken, the VEVof F has to be zero, hFi ¼ 0, which

implies that the auxiliary field F is on-shell at least

quadratic in fermions and, more precisely, can be proven

to be at least linear in ψ� ¼ D�Φjθ¼0 and ψ̄� ¼ D̄�Φ̄jθ¼0.

From this argument it follows that on-shell ðDþD−
ΦÞ is at

least linear in D�Φ and D̄�Φ̄, and then the two conditions

ðDþD−
ΦÞjDΦj4 ¼ 0 and yjDΦj4 ¼ 0 follow.

After removing from (4.14) the y-dependent terms which

vanish on-shell, we find a simpler differential equation for

the function f,

df

dλ
¼ 1

2

�

−xx̄

�

f þ x
∂f

∂x
þ x̄

∂f

∂x̄

�

2

þ
�

1þ ðxþ x̄Þf þ xx̄

�

∂f

∂x
þ ∂f

∂x̄

��

2
�

; ð4:16Þ

whose solution is

fðλ; x; x̄; y ¼ 0Þ

¼ λ

1 −
λ
2
ðxþ x̄Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λðxþ x̄Þ þ λ2

4
ðx − x̄Þ2

q : ð4:17Þ

Thus we have shown that the supercurrent-squared

deformed Lagrangian at finite λ is equivalent on-shell to

the following superspace Lagrangian:
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Lλ ¼
Z

d4θ

�

KðΦ; Φ̄Þ

þ
λK2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄

1 −
1

2
λK2

ΦΦ̄
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λK2

ΦΦ̄
Aþ 1

4
λ2K4

ΦΦ̄
B2

q

�

;

ð4:18Þ

where

A ¼ ∂þþΦ∂
−−
Φ̄þ ∂þþΦ̄∂

−−
Φ;

B ¼ ∂þþΦ∂
−−
Φ̄ − ∂þþΦ̄∂

−−
Φ: ð4:19Þ

When KðΦ; Φ̄Þ ¼ Φ̄Φ, it is simple to show that this

model represents an N ¼ ð2; 2Þ off-shell supersymmetric

extension of the D ¼ 4 Nambu-Goto string in an appro-

priate gauge—often referred to as a static gauge in the

presence of a B field, though it can be more naturally

described as a uniform light-cone gauge [56,57] (see

Refs. [23,37] for a discussion of this point). In particular,

by setting various component fields to zero and performing

the superspace integrals, one can show that (4.18) matches

the expected answer for TT̄ deformations in previously

known nonsupersymmetric cases. For instance, setting the

fermions to zero and integrating out the auxiliary fields F

and F̄ gives the TT̄ deformation of the complex free boson

ϕ, whose Lagrangian is

Lλ;bos ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2λaþ λ2b2
p

− 1

4λ

¼ a

4
− λ

∂þþϕ∂−−
ϕ∂þþϕ̄∂−−

ϕ̄

1þ λaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2λaþ λ2b2
p ; ð4:20Þ

where

a ¼ ∂þþϕ∂−−
ϕ̄þ ∂þþϕ̄∂−−

ϕ;

b ¼ ∂þþϕ∂−−
ϕ̄ − ∂þþϕ̄∂−−

ϕ: ð4:21Þ

The Lagrangian (4.20) indeed describes the D ¼ 4 light-

cone gauge-fixed Nambu-Goto string model.

Alternatively, setting all the bosons to zero in (4.18) can

be shown to give the TT̄ deformation of a complex free

fermion. These calculations are similar to those in the case

of the (0, 2) supercurrent-squared action, which are

presented in [39]. In fact, it can even be easily shown that

an N ¼ ð0; 2Þ truncation of (4.18) gives precisely the TT̄
deformation of a free N ¼ ð0; 2Þ chiral multiplet that was

derived in [39].

It is worth highlighting that, unlike the N ¼ ð2; 2Þ case,
an off-shell (0, 2) chiral scalar multiplet contains only

physical degrees of freedom and no auxiliary fields.

Interestingly, related to this fact, it turns out that (up to

integration by parts and total derivatives) the N ¼ ð0; 2Þ
off-shell supersymmetric extension of the D ¼ 4 Nambu-

Goto string action in the light-cone gauge is unique and

precisely matches the off-shell TT̄ deformation of a free

N ¼ ð0; 2Þ chiral multiplet action [39].

In the N ¼ ð2; 2Þ case, because of the presence of the

auxiliary field F in the chiral multiplet Φ, there are an

infinite set of inequivalent N ¼ ð2; 2Þ off-shell extensions
of the Lagrangian (4.20) that are all equivalent on-shell. A

representative of these equivalent actions is described by

(4.18) when KðΦ; Φ̄Þ ¼ Φ̄Φ.

The nonuniqueness of dynamical systems described by

actions of the form (4.18) can also be understood by

noticing that, for example, it is possible to perform a class

of redefinitions that leaves the action (4.18) invariant on-

shell. As a (very particular) example, note that we are free

to perform a shift of the form

DþD̄−
ðD̄þΦ̄D

−
ΦÞ → DþD̄−

ðD̄þΦ̄D
−
ΦÞ

þ aðDþD−
Φþ D̄þD̄−

Φ̄Þ2 ð4:22Þ

for any real number a. In terms of A and B, Eq. (4.22)
implements the shifts

A → Aþ aððDþD−
ΦÞ2 þ 2yþ ðD̄þD̄−

Φ̄Þ2Þ; B → B

ð4:23Þ

in (4.18). The resulting Lagrangian would enjoy the same

on-shell simplifications described in Appendix C and

would turn out to be on-shell equivalent to the

Lagrangian (4.18). In this infinite set of on-shell equivalent

actions, a particular choice would represent an exact

solution of the TT̄ flow equation (4.12)–(4.14), whose

leading terms in a λ series expansion are given in (4.15).

Another representative in this on-shell equivalence class is

the simplified model described by (4.18).

These types of redefinition and on-shell equivalentness

are not a surprise, nor really new. In fact, they are of the

same nature as redefinitions that have been studied in detail

in [58] (see also [59] for a description of these types of

“trivial symmetries”) in the context ofD ¼ 4,N ¼ 1 chiral

and linear superfield models possessing a nonlinearly

realized additional supersymmetry [58,60]. As in (4.23),

the field redefinition in this context does not affect the

dynamics of the physical fields—it basically corresponds

only to an arbitrariness in the definition of the auxiliary

fields that always appear quadratically in the action and

then are set to zero (up to fermion terms that will not

contribute due to nilpotency in the action) on-shell.

Although here we only focused on discussing the on-shell

ambiguity of the solution of the N ¼ ð2; 2Þ TT̄ flow, we

expect that the exact solution of the flow equations with y
nonzero (4.12)–(4.14) can be found by a field redefinition

of the kind we made in the action (4.18).

It is also interesting to note that similar freedoms and

field redefinitions are also described in the construction of

D ¼ 4, N ¼ 1 supersymmetric Born-Infeld actions; see,
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for example, Ref. [61]. In fact, as will be analyzed in more

detail elsewhere [43], it can be shown that the Lagrangian

(4.18) is structurally of the type described by Bagger and

Galperin for the D ¼ 4, N ¼ 1 supersymmetric Born-

Infeld action [61]. The equivalence can be formally shown

by identifyingWþ ¼ D̄þΦ̄,W
−
¼ D

−
Φ,W2 ¼ D̄þΦ̄D

−
Φ,

and DαWα ¼ DþD−
Φþ D̄

−
D̄þΦ̄ to match their conven-

tions. As a consequence, we can show that our solution

for the TT̄ flow possesses a second nonlinearly realized

N ¼ ð2; 2Þ supersymmetry, besides the (2, 2) supersym-

metry which is made manifest by the superspace con-

struction. This property is analyzed in detail in [43]. We

note that the presence of a second supersymmetry is

analogous to what happens in the N ¼ ð0; 2Þ case [39].

B. Adding a superpotential

Now suppose we begin with an undeformed theory that

has a superpotential WðΦÞ,

Lð0Þ ¼
Z

d4θKðΦ; Φ̄Þ þ
�
Z

d2θWðΦÞ
�

þ
�
Z

d2θ̄ W̄ðΦ̄Þ
�

: ð4:24Þ

As shown in Appendix B, the superpotential F term gives a

contribution δV ¼ 2WðΦÞ to the field V which appears in

supercurrent squared. To leading order in the deformation

parameter, the Lagrangian takes the form

Lð0Þ
→ Lð0Þ þ Lð1Þ

¼ Lð0Þ þ λ

Z

d4θ

×

�

1

2
K2

ΦΦ̄
DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄þWðΦÞW̄ðΦ̄Þ

�

:

ð4:25Þ
In addition to the four-fermion term which we saw in

Sec. IVA, we see that the deformation modifies the Kähler

potential, adding a term proportional to jWðΦÞj2.
Next consider the secondorder term in λ. For convenience,

we use the combination jDΦj4 ¼ DþΦD̄þΦ̄D
−
ΦD̄

−
Φ̄,

which is the four-fermion combination that appeared at first

order. Then

Lð2Þ ¼ λ2

4

Z

d4θðxþ x̄ − 3y − 2jW0ðΦÞj2

þWD
−
Dþ þ W̄D̄þD̄−

ÞjDΦj4: ð4:26Þ

The new terms involving supercovariant derivatives of

jDΦj4 will generate contributions with two fermions in

the D term.

As we continue perturbing to higher orders, the form of

the superspace Lagrangian becomes more complicated. It is

no longer true that the supercurrent-squared flow closes on

a simple ansatz with one undetermined function, as it did in

the case with only a Kähler potential. Indeed, the finite-λ

deformed superspace Lagrangian in the case with a super-

potential will depend not only on the variables x, x̄, and y as
in Sec. IVA but also, for example, on combinations such as

∂þþΦD̄þD̄−
Φ̄, which can appear multiplying the two-

fermion term D
−
ΦD̄

−
Φ̄ in the superspace Lagrangian. To

find the full solution, one would need to determine several

functions contributing to the D term—one multiplying the

four-fermion term jDΦj4 as in the Kähler case; one for the

deformed Kähler potential which may now depend on x, y,
and other combinations; and four functions multiplying the

two-fermion terms DþΦD
−
Φ, DþΦD̄

−
Φ̄, etc. Each func-

tion can depend on several dimensionless combinations.

In the presence of a superpotential, the situation might

further be complicated by the fact that supersymmetry can

be spontaneously broken. This would make it impossible,

for example, to use on-shell simplifications such as

yjDΦj4 ¼ 0 that we employed in Sec. IVA, where super-

symmetry is never spontaneously broken.

It should be clear that the case with a superpotential is

significantly more involved and rich than just a pure Kähler

potential. In this case, we have not attempted to find a

solution of the TT̄ flow equation in closed form. However,

it is evident from the form of supercurrent-squared

Eq. (4.12)—which is always written as a D term integral

of current bilinears—that this deformation will only affect

the D term and not the N ¼ ð2; 2Þ superpotential W
appearing in the chiral integral. Therefore the superpoten-

tial, besides being protected from perturbative quantum

corrections, is also protected from corrections along the

supercurrent-squared flow.

C. The physical classical potential

In view of the difficulty of finding the all-orders

deformed superspace action for a theory with a super-

potential, we now consider the simpler problem of finding

the local-potential approximation (or zero-momentum

potential) for the bosonic complex scalar ϕ contained in

the superfield Φ. We stress that our analysis here is purely

classical, and we will make a couple of comments about

possible quantum effects later in this section. For simplic-

ity, we will also restrict to the case in which the Kähler

potential is flat, KðΦ; Φ̄Þ ¼ Φ̄Φ. By “zero-momentum

potential” we mean the physical potential VðϕÞ which

appears in the Lagrangian after performing the superspace

integral in the deformed theory and then setting ∂��ϕ ¼ 0.

For instance, consider the undeformed Lagrangian

Lð0Þ ¼
Z

d4θΦ̄Φþ
Z

d2θWðΦÞ þ
Z

d2θ̄ W̄ðΦ̄Þ: ð4:27Þ

When we ignore all terms involving derivatives and the

fermions ψ�, the only contributions to the physical

Lagrangian (after performing the superspace integral) come
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from an jFj2 term from the kinetic term, plus the term

WðΦÞ ¼ WðϕÞ þW0ðϕÞθþθ−F. This gives us the zero-

momentum, zero-fermion component action

S ¼
Z

d2xðjFj2 þW0ðϕÞF þ W̄0ðϕ̄ÞF̄Þ: ð4:28Þ

We may integrate out the auxiliary field F using its

equation of motion F̄ ¼ −W0ðϕÞ, which yields

S ¼
Z

d2xð−jW0ðϕÞj2Þ; ð4:29Þ

so the zero-momentum potential for ϕ is V ¼ jW0ðϕÞj2, as
expected. Note that the previous potential might have

extrema that breakN ¼ ð2; 2Þ supersymmetry while super-

symmetric vacua will always set hFi ¼ hW0ðϕÞi ¼ 0. We

will assume supersymmetry of the undeformed theory not

to be spontaneously broken in our discussion.

Now suppose we deform by the supercurrent-squared

operator to second order in λ, which gives the superspace

expression (4.26). If we again perform the superspace

integral and discard any terms involving derivatives or

fermions, we now find the physical Lagrangian

Lj∂��ϕ¼0 ¼ jFj2 þ FW0 þ F̄W̄0 þ λ

�

1

2
jFj4 − jFj2jW0j2

�

þ 1

4
λ2jFj4ðW0F þ W̄0F̄Þ

−

1

2
λ2jW0j2jFj4 þ 3

4
λ2jFj6: ð4:30Þ

Remarkably, the equations of motion for the auxiliary F in

(4.30) admit the solution F ¼ −W̄0ðϕ̄Þ, F̄ ¼ −W0ðϕÞ,
which is the same as the unperturbed solution. This, for

instance, implies that if we start from a supersymmetric

vacua in the undeformed theory, we will remain super-

symmetric along the TT̄ flow. On the one hand, this is not a

surprise considering that we know the TT̄ flow preserves

the structure of the spectrum, and in particular should leave

a zero-energy supersymmetric vacuum unperturbed. On the

other hand, it is a reassuring check to see this property

explicitly appearing in our analysis.

Returning to (4.30) and integrating out the auxiliary

fields gives

Lj∂��ϕ¼0 ¼ −jW0ðϕÞj2 − 1

2
λjW0ðϕÞj4 − 1

4
λ2jW0ðϕÞj6:

ð4:31Þ

These are the leading terms in the geometric series
−jW0j2

1−
1

2
λjW0j2.

In fact, up to conventions for the scaling of λ, one could

have predicted this outcome from the form of the super-

current-squared operator and the known results for TT̄

deformations of a bosonic theory with a potential [3]. We

know that, up to terms which vanish on-shell, the effect of

adding supercurrent squared to the physical Lagrangian is

to deform by the usual TT̄ operator. However, in the zero-

momentum sector, we see that the TT̄ deformation reduces

to deforming by the square of the potential:

TT̄j∂��ϕ¼0 ¼ L2j∂��ϕ¼0 ¼ V2: ð4:32Þ

Therefore, it is easy to solve for the deformed potential if

we deform a physical Lagrangian L ¼ fðλ; ∂��ϕÞ þ
Vðλ;ϕÞ by TT̄, since the flow equation for the potential

term is simply

∂λL ¼ ∂V

∂λ
¼ V2; ð4:33Þ

which admits the solution

Vðλ;ϕÞ ¼ Vð0;ϕÞ
1 − λVð0;ϕÞ : ð4:34Þ

We can apply this result to the Lagrangian (4.28), treating

the entire expression involving the auxiliary field F as a

potential (since it is independent of derivatives). The

deformed theory has a zero-momentum piece which is

therefore equivalent to

SðλÞj∂��ϕ¼0 ¼
Z

d2x
ðjFj2 þW0ðϕÞF þ W̄0ðϕ̄ÞF̄Þ

1 − λðjFj2 þW0ðϕÞF þ W̄0ðϕ̄ÞF̄Þ ;

ð4:35Þ

at least on-shell. Integrating out the auxiliary now gives

SðλÞj∂��ϕ¼0 ¼
Z

d2x
−jW0ðϕÞj2

1 − λjW0ðϕÞj2 ð4:36Þ

as the deformed physical potential. This matches the first

few terms of (4.31), up to a convention-dependent factor of
1

2
in the scaling of λ.

Now one might ask what superspace Lagrangian would

yield the physical action (4.36) after performing the dθ
integrals. One candidate is

LðλÞj∂��ϕ¼0 ∼

Z

d4θðΦ̄Φ − λjWðΦÞj2Þ þ
Z

d2θWðΦÞ

þ
Z

d2θ̄ W̄ðΦ̄Þ; ð4:37Þ

where ∼ means “this superspace Lagrangian gives an

equivalent zero-momentum physical potential for the boson

ϕ on-shell.”

It is important to note that (4.37) is not the true solution

for the deformed superspace Lagrangian using supercurrent

squared. The genuine solution involves a four-fermion
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term, all possible two-fermion terms, and more complicated

dependence on the variable y ¼ λðDþD−
ΦÞðD̄þD̄−

Φ̄Þ in

the zero-fermion term. However, if one were to perform the

superspace integral in the true solution and then integrate

out the auxiliary field F using its equation of motion, one

would obtain the same zero-momentum potential for ϕ as

we find by performing the superspace integral in (4.37) and

integrating out F.
The form (4.37) is interesting because it shows that the

effect of supercurrent-squared on the physical potential for

ϕ can be interpreted as a change in the Kähler metric, which

for this Lagrangian is

KΦΦ̄ ¼ 1 − λjW0ðΦÞj2: ð4:38Þ

When one performs the superspace integrals in (4.37), the

result is

Lj∂��ϕ¼0 ¼ KΦΦ̄jFj2 þW0ðϕÞF þ W̄0ðϕ̄ÞF̄; ð4:39Þ

which admits the solution F ¼ −
W̄0ðϕ̄Þ
KΦΦ̄

. Substituting this

solution gives

Lj∂��ϕ¼0 ¼
−jW0ðϕÞj2

KΦΦ̄

¼ −jW0ðϕÞj2
1 − λjW0ðϕÞj2 ; ð4:40Þ

which agrees with (4.36).

As already mentioned, supersymmetric vacua of the

original, undeformed, theory are associated with critical

points of the superpotential WðϕÞ. Any vacuum of the

undeformed theory will persist in the deformed theory:

near a point where W0ðϕÞ ¼ 0, we see that the physical

potential VðϕÞ ¼ jW0j2
1−λjW0j2 also vanishes (away from the pole

jW0j2 ¼ 1

λ
, the deformed potential is a monotonically

increasing function of jW0j2). Further, the auxiliary field

F does not acquire a vacuum expectation value because

F ¼ −W̄0ðϕ̄Þ remains a solution to its equations of motion

in the deformed theory. Once more, this indicates that

supersymmetry is unbroken along the whole TT̄ flow if it is

in the undeformed theory.

However, this classical analysis suggests that the soliton

spectrum of the theory has changed dramatically at any

finite deformation parameter λ. There are now generically

poles in the physical potential VðϕÞ at points where

jW0j2 ¼ 1

λ
which might separate distinct supersymmetric

vacua of the theory. For instance, if the original theory had a

double-well superpotential with two critical points ϕ1, ϕ2

where W0ðϕiÞ ¼ 0, then this undeformed theory supports

Bogomol'nyi-Prasad-Sommerfield (BPS) soliton solutions

which interpolate between these two vacua. But if the

superpotential W reaches a value of order 1

λ
at some point

between ϕ1 and ϕ2, then this soliton solution appears

naively forbidden in the deformed theory because it

requires crossing an infinite potential barrier. Another

way of seeing this is by considering the effective Kähler

potential (4.38), which would change sign at some point

between the two supersymmetric vacua in the deformed

theory and thus give rise to a negative-definite Kähler

metric.

Our discussion has been purely classical. As we empha-

sized in the Introduction, a fully quantum analysis of this

problem is desirable, though subtle because of the nonlocal

nature of the TT̄ deformation. The advantage of performing

such an analysis in models with extended supersymmetry

is that holomorphy and associated nonrenormalization

theorems provide control over the form of any possible

quantum corrections. For example, the superpotential for the

models studied in this work is not renormalized perturba-

tively along the flow. It would be interesting to examine the

structure of perturbative quantum corrections along the lines

of [62], but in superspace with manifest supersymmetry. It

should be possible to absorb any quantum corrections visible

in perturbation theory by a change in the D-term Kähler

potential, meaning that at least the structure of the super-

symmetric vacua would be preserved.
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APPENDIX A: THE S MULTIPLET IN

COMPONENTS

In this appendix we provide the component expansion of

the superfields of the S multiplet introduced in Sec. II B.

The results presented below are equivalent to the results

first obtained in [45] up to differences in notation.

The constraints (2.9) are solved in terms of component

fields by

CHIH-KAI CHANG et al. PHYS. REV. D 101, 026008 (2020)

026008-14



S�� ¼ j�� − iθ�S��� − iθ∓ðS∓�� ∓ 2
ffiffiffi

2
p

iρ̄�Þ − iθ̄�S̄���

− iθ̄∓ðS̄∓�� � 2
ffiffiffi

2
p

iρ�Þ − θ�θ̄�T���� þ θ∓θ̄∓
�

A ∓
kþ k0

2

�

þ iθþθ−Ȳ�� þ iθ̄þθ̄−Y�� � iθþθ̄−Ḡ�� ∓ iθ−θ̄þG��

∓
1

2
θþθ−θ̄�∂��S∓�� ∓

1

2
θþθ−θ̄∓∂��ðS�∓∓ � 2

ffiffiffi

2
p

iρ̄∓Þ

∓
1

2
θ̄þθ̄−θ�∂��S̄∓�� ∓

1

2
θ̄þθ̄−θ∓∂��ðS̄�∓∓ ∓ 2

ffiffiffi

2
p

iρ∓Þ þ
1

4
θþθ−θ̄þθ̄−∂2

��j∓∓: ðA1Þ

Let us introduce the usual useful combinations: y�� ¼ x��
−

i
2
θ�θ̄� and ỹ�� ¼ x�� ∓ i

2
θ�θ̄�. The chiral superfields

χ� are

χþ ¼ −iλþðyÞ − iθþḠþþðyÞ þ θ−
�

EðyÞ þ k

2

�

þ θ̄−Cð−Þ þ θþθ−∂þþλ̄−ðyÞ; ðA2aÞ

χ
−
¼ −iλ

−
ðyÞ − θþ

�

ĒðyÞ − k

2

�

þ iθ−G
−−
ðyÞ − θ̄þCðþÞ

− θþθ−∂
−−
λ̄þðyÞ; ðA2bÞ

λ� ¼ �S̄∓�� þ
ffiffiffi

2
p

iρ�; ðA2cÞ

E ¼ 1

2
ðΘ − AÞ þ i

4
ð∂þþj−− − ∂

−−
jþþÞ; ðA2dÞ

0 ¼ ∂þþG−−
− ∂

−−
Gþþ; ðA2eÞ

and the twisted-(anti)chiral superfields Y� are given by

Yþ ¼
ffiffiffi

2
p

ρþð ¯̃yÞ þ θ−
�

Fð ¯̃yÞ þ k0

2

�

− iθ̄þYþþð ¯̃yÞ − θ̄−Cð−Þ þ
ffiffiffi

2
p

iθ−θ̄þ∂þþρ−ð ¯̃yÞ; ðA3aÞ

Y
−
¼

ffiffiffi

2
p

ρ
−
ðỹÞ − θþ

�

FðỹÞ − k0

2

�

þ θ̄þCðþÞ
− iθ̄−Y

−−
ðỹÞ þ

ffiffiffi

2
p

iθþθ̄−∂
−−
ρþðỹÞ; ðA3bÞ

F ¼ −

1

2
ðΘþ AÞ − i

4
ð∂þþj−− þ ∂

−−
jþþÞ; ðA3cÞ

0 ¼ ∂þþY−−
− ∂

−−
Yþþ: ðA3dÞ

For the FZ multiplet defined by the constraints (2.18), the S-multiplet reduces to a set of 4þ 4 real independent component

fields described by the j�� Uð1ÞA axial conserved R-symmetry current (∂þþj−− − ∂
−−
jþþ ¼ 0). In addition, there is a

complex scalar field vðxÞ [see Eq. (3.14)], together with the independent supersymmetry current and energy momentum

tensor:

S���ðxÞ ≔ iD�J ��ðζÞjθ¼0; ðA4aÞ

S̄���ðxÞ ≔ −iD̄�J ��ðζÞjθ¼0; ðA4bÞ

S∓��ðxÞ ≔ −iD∓J ��ðζÞjθ¼0 ¼ �iD̄�V̄ðζÞjθ¼0; ðA4cÞ

S̄∓��ðxÞ ≔ iD̄∓J ��ðζÞjθ¼0 ¼∓ iD�VðζÞjθ¼0; ðA4dÞ

T����ðxÞ ≔
1

2
½D�; D̄��J ��ðζÞjθ¼0; ðA4eÞ
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ΘðxÞ ≔ −

1

2
½Dþ; D̄þ�J −−

ðζÞjθ¼0 ¼ −

1

2
½D

−
; D̄

−
�J þþðζÞjθ¼0

¼ −

1

2
DþD−

VðζÞjθ¼0 þ
1

2
D̄þD̄−

V̄ðζÞjθ¼0: ðA4fÞ

For the FZ multiplet, the following relation holds:

J �� ¼ j�� − iθ�S��� − iθ̄�S̄��� þ iθ∓S∓�� þ iθ̄∓S̄∓��

− θ�θ̄�T���� þ θ∓θ̄∓Θþ iθþθ−∂��v̄þ iθ̄þθ̄−∂��v

∓
1

2
θþθ−θ̄�∂��S∓�� � 1

2
θþθ−θ̄∓∂��S�∓∓

∓
1

2
θ̄þθ̄−θ�∂��S̄∓�� � 1

2
θ̄þθ̄−θ∓∂��S̄�∓∓ þ 1

4
θþθ−θ̄þθ̄−∂2

��j∓∓: ðA5Þ

Moreover, the chiral superfields χ� are set to zero and the twisted-(anti)chiral superfields Y� ¼ D�V are given by

Yþ ¼ iS̄
−þþð ¯̃yÞ þ θ−Gð ¯̃yÞ − iθ̄þ∂þþvð ¯̃yÞ þ θ−θ̄þ∂þþS̄þ−−

ð ¯̃yÞ; ðA6aÞ

Y
−
¼ −iS̄þ−−

ðỹÞ − θþGðỹÞ − iθ̄−∂
−−
vðỹÞ þ θþθ̄−∂þþS̄−−−ðỹÞ; ðA6bÞ

G ¼ −Θ −

i

2
∂þþj−−: ðA6cÞ

APPENDIX B: DETAILS OF THE SUPERCURRENT MULTIPLET CALCULATION

In this appendix, we compute the fields J �� and σ appearing in the FZ multiplet for Lagrangians of a chiral superfieldΦ

with the general form

L0 ¼
�
Z

d4θAðΦ; D�Φ; DþD−
Φ; ∂��Φ; c:c:Þ

�

þ
�
Z

d2θWðΦÞ
�

þ
�
Z

d2θ̄ W̄ðΦ̄Þ
�

; ðB1Þ

where “c.c.” indicates dependence on the conjugates Φ̄; D̄�Φ̄; D̄þD̄−
Φ̄, and ∂��Φ̄. To do this, we will minimally

couple the theory to supergravity using the old-minimal supergravity formulation and extract the currents which couple

to the metric superfield H�� and the chiral compensator σ. The minimal coupling prescription involves promoting

L0 to
12

L0 → LSUGRA ¼
�
Z

d4θE−1AðΦ;∇�Φ;∇þ∇−
Φ;∇��Φ; c:c:Þ

�

þ
�
Z

d2θE−1WðΦÞ
�

þ
�
Z

d2θ̄Ē−1W̄ðΦ̄Þ
�

: ðB2Þ

Here ∇� is the derivative which is covariant with respect to

the full local supergravity gauge group, E−1 is the full

superspace measure, E−1 is the chiral measure, andΦ is the

covariantly chiral version of the chiral superfield Φ—that

is, ∇̄�Φ ¼ 0, whereas D̄�Φ ¼ 0.

Expressions for these supercovariant derivatives and

measures have been worked out in a series of papers

[50–54] from which we will import the results that we need

for our analysis. To leading order in Hm, the linearized

inverse superdeterminant of the supervielbein is

E−1 ¼ 1 − ½D̄þ; Dþ�Hþþ
− ½D̄

−
; D

−
�H−−; ðB3Þ

while the chiral measure is given by

E−1 ¼ e−2σð1 · eiHm∂⃖mÞ ¼ 1 − 2σ þ ið∂mH
mÞ þ � � � ;

ðB4Þ
12
Conforming to notation of [50–54], in this section we will

sometimes use the index notations α ¼ þ;− and Zm ¼ þþ;−−.
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where the ellipses are terms of higher order in Hm and σ.

The covariantly chiral superfieldΦ is related to the ordinary

chiral superfield Φ by

Φ ¼ eiH
m∂mΦ ¼ Φþ iðHþþ∂þþ þH−−∂

−−
ÞΦþOðH2Þ:

ðB5Þ

The spinor supercovariant derivatives ∇� are

∇α ¼ Eα þ ΩαM þ ΓαM̄ þ ΣαN; ðB6Þ

where M and N are linear combinations of the Lorentz,

Uð1ÞV , and Uð1ÞA generators which act on spinors as

½M;ψ�� ¼ � 1

2
ψ�; ½M; ψ̄�� ¼ 0; ðB7aÞ

½M̄; ψ̄�� ¼ � 1

2
ψ̄�; ½M̄;ψ � ¼ 0; ðB7bÞ

½N;ψ�� ¼ −

i

2
ψ�; ½N; ψ̄�� ¼ þ i

2
ψ̄�: ðB7cÞ

The spinor inverse of the supervielbein Eα ¼ Eα
M∂M, and

the structure group connections Ωα, Γα, and Σα can be

expressed to linear order in terms of the metric superfield

H�� and an unconstrained complex scalar compensator S.
In the case of old-minimal supergravity, the unconstrained

superfield S is related to the chiral compensator σ by

S ¼ σ −

i

2
∂mH

m
−

1

2
½D̄þ; Dþ�Hþþ

−

1

2
½D̄

−
; D

−
�H−−

ðB8Þ

to linear order. In the following analysis we will first obtain

expressions for the supercovariant derivatives in terms of

S ¼ SðHm; σÞ, and we use (B8) to give them in terms ofHm

and σ.

The spinorial inverse of the supervielbein is given at first

order in the prepotentials by

E� ¼ ð1þ S̄ÞD� þ iðD�H
mÞ∂m − 2ðD̄∓D�H

∓∓ÞD∓;

ðB9Þ

together with their complex conjugates. Meanwhile, the

connections Ωα, Γα, and Σα can be written to leading

order as

Γ� ¼ �2D�ðSþ S̄Þ ∓ 2D∓D̄∓D�H
∓∓; ðB10aÞ

Σ� ¼ −2iD�S̄þ 2iD∓D̄∓D�H
∓∓; ðB10bÞ

Ω� ¼∓ 2D∓D̄∓D�H
∓∓: ðB10cÞ

Using (B6), the vielbeins (B9), and the expression (B5) for

Φ, we find the supercovariant derivatives

∇�Φ ¼ ð1þ S̄ÞD�Φþ 2iðD�H
mÞ∂mΦþ iHmðD�∂mΦÞ − 2ðD̄∓D�H

∓∓ÞD∓Φ; ðB11aÞ

∇̄�Φ̄ ¼ ð1þ SÞD̄�Φ̄ − 2iðD̄�H
mÞ∂mΦ̄ − iHmðD̄�∂mΦ̄Þ − 2ðD̄�D∓H

∓∓ÞD̄∓Φ̄: ðB11bÞ

To compute the second supercovariant derivatives acting on Φ and Φ̄, we must include the contributions from Ωα, Γα, Σα,

and their conjugates. One finds

∇̄þ∇þΦ ¼ ið1þ Sþ S̄Þ∂þþΦ − 2ðD̄þD̄−
DþH

−−ÞD
−
Φþ 2iðD̄þDþH

mÞ∂mΦ

−Hm∂þþ∂mΦþ 2ðD̄þðSþ S̄Þ þ D̄
−
D

−
D̄þH

−−ÞDþΦ; ðB12aÞ

∇þ∇−
Φ ¼ ð1þ 2S̄ÞDþD−

Φþ 2iðDþD−
HmÞ∂mΦ − 2iðD

−
HmÞDþ∂mΦ

þ 2iðDþH
mÞD

−
∂mΦþ iHmDþD−

∂mΦ − 2ðDþD̄þD−
HþþÞDþΦ

þ 2ðD
−
D̄

−
DþH

−−ÞD
−
Φ; ðB12bÞ

∇̄
−
∇

−
Φ ¼ ið1þ Sþ S̄Þ∂

−−
Φ − 2ðD̄

−
D̄þD−

HþþÞDþΦþ 2iðD̄
−
D

−
HmÞ∂mΦ

−Hm∂
−−
∂mΦþ 2ðD̄

−
ðSþ S̄Þ þ D̄þDþD̄−

HþþÞD
−
Φ; ðB12cÞ

together with their complex conjugates. Armed with these expressions, we can linearize the supergravity couplings

in (B2). First let us consider the contribution from the D term. We would like to extract the terms proportional to H��

and σ in
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L ¼
Z

d4θE−1AðΦ;∇�Φ;∇þ∇−
Φ;∇��Φ; c:c:Þ;

∼

Z

d4θ

�

Hα _α½Dα; D̄ _α�Aþ i
∂A

∂Φ
Hm∂mΦþ ð∇αΦ −DαΦÞ ∂A

∂∇αΦ

þ ∂A

∂∇þ∇−
Φ
ð∇þ∇−

Φ −DþD−
ΦÞ þ ∂A

∂∇mΦ
ð∇mΦ − ∂mΦÞ þ c:c:

�

; ðB13Þ

where ∇�� ¼ −if∇�; ∇̄�g. Doing so, we see that the currents which couple to H�� are

J þþ ¼ ½Dþ; D̄þ�
�

1

2
A −

1

2

∂A

∂∇
−
Φ
D

−
Φ −

1

2

∂A

∂∇þΦ
DþΦþ ∂A

∂∇þ∇−
Φ
DþD−

Φþ ∂A

∂∇þþΦ
∂þþΦ

þ 2iD̄
−

�

∂A

∂∇
−−
Φ
D

−
Φ

�

þ 2iD̄þ

�

∂A

∂∇þþΦ
DþΦ

�

þ ∂A

∂∇
−−
Φ
∂
−−
Φ

�

þ i

�

∂A

∂Φ
∂þþΦþ 1

2
∂þþ

�

∂A

∂∇
−
Φ
D

−
Φ

�

− ∂þþ

�

∂A

∂∇þ∇−
Φ
DþD−

Φ

�

−

∂A

∂∇
−
Φ
D

−
∂þþΦ

− 2D
−

�

∂A

∂∇
−
Φ
∂þþΦ

�

þ 1

2
∂þþ

�

∂A

∂∇þΦ
DþΦ

�

−

∂A

∂∇þΦ
Dþ∂þþΦ − 2Dþ

�

∂A

∂∇þΦ
∂þþΦ

�

− 2D
−
Dþ

�

∂A

∂∇þ∇−
Φ
∂þþΦ

�

þ 2D
−

�

∂A

∂∇þ∇−
Φ
Dþ∂þþΦ

�

− 2Dþ

�

∂A

∂∇þ∇−
Φ
D

−
∂þþΦ

�

þ ∂A

∂∇þ∇−
Φ
DþD−

∂þþΦþ 2iDþD̄þ

�

∂A

∂∇þþΦ
∂þþΦ

�

þ 2iD
−
D̄

−

�

∂A

∂∇
−−
Φ
∂þþΦ

�

þ ∂A

∂∇þþΦ
∂2
þþΦþ ∂A

∂∇
−−
Φ
∂
−−
∂þþΦ

�

þ 2

�

−D
−
D̄þ

�

∂A

∂∇
−
Φ
DþΦ

�

−D
−
D̄þDþ

�

∂A

∂∇þ∇−
Φ
DþΦ

�

þ iD
−
D̄þD̄−

�

∂A

∂∇
−−
Φ
DþΦ

�

− iD̄
−
DþD̄þ

�

∂A

∂∇
−−
Φ
D

−
Φ

��

þ c:c: ðB14Þ

and

J
−−

¼ ½D
−
; D̄

−
�
�

1

2
A −

1

2

∂A

∂∇
−
Φ
D

−
Φ −

1

2

∂A

∂∇þΦ
DþΦþ ∂A

∂∇þ∇−
Φ
DþD−

Φþ ∂A

∂∇þþΦ
∂þþΦ

þ 2iD̄
−

�

∂A

∂∇
−−
Φ
D

−
Φ

�

þ 2iD̄þ

�

∂A

∂∇þþΦ
DþΦ

�

þ ∂A

∂∇
−−
Φ
∂
−−
Φ

�

þ i

�

∂A

∂Φ
∂
−−
Φþ 1

2
∂
−−

�

∂A

∂∇
−
Φ
D

−
Φ

�

− ∂
−−

�

∂A

∂∇þ∇−
Φ
DþD−

Φ

�

−

∂A

∂∇
−
Φ
D

−
∂
−−
Φ

− 2D
−

�

∂A

∂∇
−
Φ
∂
−−
Φ

�

þ 1

2
∂
−−

�

∂A

∂∇þΦ
DþΦ

�

−

∂A

∂∇þΦ
Dþ∂−−

Φ − 2Dþ

�

∂A

∂∇þΦ
∂
−−
Φ

�

− 2D
−
Dþ

�

∂A

∂∇þ∇−
Φ
∂
−−
Φ

�

þ 2D
−

�

∂A

∂∇þ∇−
Φ
Dþ∂−−

Φ

�

− 2Dþ

�

∂A

∂∇þ∇−
Φ
D

−
∂
−−
Φ

�

þ ∂A

∂∇þ∇−
Φ
DþD−

∂
−−
Φþ 2iDþD̄þ

�

∂A

∂∇þþΦ
∂
−−
Φ

�

þ 2iD
−
D̄

−

�

∂A

∂∇
−−
Φ
∂
−−
Φ

�

þ ∂A

∂∇þþΦ
∂þþ∂−−

Φþ ∂A

∂∇
−−
Φ
∂2
−−
Φ

�

þ 2

�

−DþD̄−

�

∂A

∂∇þΦ
D

−
Φ

�

þDþD̄−
D

−

�

∂A

∂∇þ∇−
Φ
D

−
Φ

�

þ iDþD̄−
D̄þ

�

∂A

∂∇þþΦ
D

−
Φ

�

− iD̄þD−
D̄

−

�

∂A

∂∇þþΦ
DþΦ

��

þ c:c:; ðB15Þ
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where þc:c: means to add the complex conjugates of all

preceding terms (including the real quantity 1

2
½D�; D̄��A

for which the complex conjugate merely removes the

factor of 1

2
).

The field V which appears in our deformation (3.10)

receives two contributions, one from the D term coupling

which depends only on A and one from the F term

coupling which depends only on the superpotential W.

Adding them, we find

V ¼ D̄þD̄−

�

−

∂A

∂∇αΦ
DαΦþ 2

∂A

∂∇þ∇−
Φ
DþD−

Φ

þ ∂A

∂∇mΦ
∂mΦþ ∂A

∂∇mΦ̄
∂mΦ̄

þ 2iD̄þ

�

∂A

∂∇þþΦ
DþΦ

�

þ 2iDþ

�

∂A

∂∇þþΦ̄
D̄þΦ̄

�

þ 2iD̄
−

�

∂A

∂∇
−−
Φ
D

−
Φ

�

þ 2iD
−

�

∂A

∂∇
−−
Φ̄
D̄

−
Φ̄

��

þ 2WðΦÞ: ðB16Þ

APPENDIX C: SIMPLIFYING THE

DEFORMATION ON-SHELL

In this appendix, we prove the claim that one can drop all

terms which involve products of ðDþD−
ΦÞ or ðD̄þD̄−

Φ̄Þ
and the four-fermion term jDΦj4 ¼ DþΦD̄þΦ̄D

−
ΦD̄

−
Φ̄

when the equations of motion are satisfied.

To see this for the models we consider, it suffices to

consider a superspace Lagrangian of the form

L ¼
Z

d4θAðΦ; D�Φ; DþD−
Φ; ∂��Φ; c:c:Þ

¼
Z

d4θðKðΦ; Φ̄Þ þ fðx; x̄; yÞjDΦj4Þ; ðC1Þ

which has the superspace equation of motion

D̄þD̄−
KΦ ¼ D̄þD̄−

�

Dα

�

∂ðfjDΦj4Þ
∂DαΦ

�

−DþD−

�

∂ðfjDΦj4Þ
∂DþD−

Φ

�

− ∂m

�

∂ðfjDΦj4Þ
∂ð∂mΦÞ

��

ðC2Þ

for Φ, and the conjugate equation of motion for Φ̄. If we

multiply (C2) on both sides by the four-fermion term

jDΦj4 ¼ DþΦD̄þΦ̄D
−
ΦD̄

−
Φ̄, then any term containing

ðD�ΦÞ and ðD̄�Φ̄Þ fermions in (C2) will vanish by

nilpotency. On the left, the only surviving term is

KΦΦ̄D̄þD̄−
Φ̄, while on the right we get contributions from

the first and second terms:

KΦΦ̄ðD̄þD̄−
Φ̄ÞjDΦj4 ¼ ðD̄þD̄−

Φ̄ÞjDΦj4

×

�

λD̄þD̄−

�

∂f

∂y
ð∂

−−
Φ̄Þð∂þþΦ̄Þ

�

−

�

xþ x̄

λ

�

f

�

: ðC3Þ

On collecting terms, the previous equation turns into

ðD̄þD̄−
Φ̄ÞjDΦj4

�

KΦΦ̄ þ
�

xþ x̄

λ

�

f

− λD̄þD̄−

�

∂f

∂y
ð∂

−−
Φ̄Þð∂þþΦ̄Þ

��

¼ 0: ðC4Þ

The parentheses multiplying ðD̄þD̄−
Φ̄ÞjDΦj4 in the pre-

vious expression do not vanish in general, at least for λ

small enough. Then for (C4) to be satisfied, the equation

ðD̄þD̄−
Φ̄ÞjDΦj4 ¼ 0 ðC5Þ

has to hold when the equations of motion are satisfied. This

justifies our claim in Sec. IVA that we may drop all terms

involving the product yjDΦj4 in the deformation, assuming

we restrict to on-shell configurations.
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