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We construct a solvable deformation of two-dimensional theories with (2, 2) supersymmetry using an
irrelevant operator which is a bilinear in the supercurrents. This supercurrent-squared operator is manifestly
supersymmetric and equivalent to TT after using conservation laws. As illustrative examples, we deform
theories involving a single (2, 2) chiral superfield. We show that the deformed free theory is on-shell
equivalent to the (2, 2) Nambu-Goto action. At the classical level, models with a superpotential exhibit
more surprising behavior: the deformed theory exhibits poles in the physical potential which modify the

vacuum structure. This suggests that irrelevant deformations of 77 type might also affect infrared physics.
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I. INTRODUCTION

Understanding the space of quantum field theories (QFTs)
is a fascinating question. A typical approach to this question is
to start with a particularly tractable model, such as a free,
conformal, or exactly solvable theory, and deform it infini-
tesimally by adding an integrated local operator. An infini-
tesimal relevant deformation generates a renormalization
group flow. The resulting theory will differ in the infrared
from the original undeformed theory. When the original
theory is conformal, there might exist exactly marginal
deformations which preserve the conformal symmetry for
finite values of the deformation parameters; the space of
marginal parameters defines the moduli space of the con-
formal field theory. Finally, if the deforming operator is
irrelevant, the ultraviolet properties of the theory change,
and it is usually difficult to understand this change in terms of
any kind of flow. This case is the most difficult to understand
because, in essence, the definition of the theory changes.

Irrelevant deformations of two-dimensional Poincaré-
invariant QFTs generated by the determinant of the stress-
energy tensor, det(7T) = Ty T — T T19, are special.
These TT deformations define a flow along which certain
properties of the deformed theory can be computed exactly
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[1]. Most important is the energy spectrum [2,3]. However,
in many cases the classical action can also be determined in
closed form along the flow [3,4]. This prompted the study
of TT deformations of integrable theories [3,5,6], as well
as of more general theories [7-11], with a number of
applications to (effective) string theory [12-14], to two-
dimensional gravity [15-18], and to the AdS;/CFT,
correspondence [19-28]. :

One of the first examples studied was the deformation of
a theory of free bosons, which resulted in the Nambu-Goto
action [3].? Interestingly, the 7T deformed action for a
scalar theory with an arbitrary potential can also be exactly
constructed, at least classically. Imposing the 7T flow
equation for the Lagrangian

d
Ly = de(TIL,)). (1.1)

where the stress-energy tensor 7, [£;] is computed in the
deformed theory itself, and setting the initial condition

Lo =30, 40—+ V() (12)

"More general “TJ” deformations, which break Lorentz
invariance, have also been considered [29-35].

*This can also be seen by studying the world-sheet S matrix
of strings in flat space [12,13]. For a theory of free bosons
and fermions, one instead finds the Green-Schwarz action in the
light-cone gauge [36]. See also Refs. [23,37] for a discussion
of the relation between light-cone gauge-fixed strings and TT
deformations.
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gives [3.4]

11 =22V(e)
A2 1-V(9)

This Lagrangian is fairly involved. It is interesting to con-
sider the potential energy at zero momentum, which means
discarding all interaction terms which involve derivatives.
This captures the potential for slowly varying fields,

V(¢)
1-2V(¢)

where the ellipses denote interaction terms involving
derivatives. Although this is just a classical result, the
form of the deformed potential is striking: if we start from a
regular potential, we will generically develop poles for
sufficiently large |4|. These poles are invisible in perturba-
tion theory in the flow parameter 1. Were we able to trust
this result at the quantum level, this would point to a
dramatic modification of the theory. Namely, an irrelevant
deformation would end up changing the infrared structure
of the theory, resulting in a kind of “IR/UV mixing.”

It is generally not possible to draw firm conclusions about
the quantum properties of a theory by studying its classical
potential. A truly quantum analysis would certainly be pre-
ferable. Unfortunately, our current understanding of the TT
deformation at the quantum level is far from complete. When
the theory is studied in infinite volume, the deformation can
be defined by postulating that the S matrix only change by a
Castillejo-Dalitz-Dyson (CDD) factor [3]. This CDD factor,
however, spoils the analytic properties of the scattering
matrix at large values of the deformation parameter, taking
us away from the framework of local QFT. In finite volume,
on the other hand, a flow equation for the energy spectrum
follows from (1.1) [2].” However, generically along the flow
some energy levels will become complex; this phenomenon
is not completely understood. Which physical observables
make sense in the deformed theory is also currently rather
mysterious. All in all, a rigorous exploration of possible IR/
UV mixing requires a deeper understanding of the quantum
properties of the deformed theory.

One instance where a classical analysis of the potential
might allow us to draw more reliable conclusions about the
quantum theory is for models with extended supersymmetry.
As long as there is sufficient supersymmetry for the potential
to be partly controlled by a holomorphic quantity, there will
be partial protection from perturbative (and sometimes non-
perturbative) quantum effects. Models with AN = (2,2)
supersymmetry in two dimensions are precisely of this type,

1
Ll :§a++¢a__¢+ +"', (1.4)

3For integrable theories, such a flow equation may also be
derived from the CDD deformation using the thermodynamic
Bethe ansatz [3].

(000 +2V($)) (1= AV(9))]

—1+\/1+22

(1= 22V (9)P (13)

provided that the 77 deformation is compatible with
manifest NV = (2,2) supersymmetry.

Recently it was shown that the TT flow preserves
manifest N = (0,1), N = (1,1) [36,38], and N = (0,2)
supersymmetry [39]. Specifically, we can view the flow as
generated by the supersymmetric descendant of a compo-
site operator; this composite operator is built from a bilinear
in supercurrents. This construction both ensures supersym-
metry along the flow and is sufficient to reproduce, and
indeed slightly generalizes Zamolodchikov’s argument for
the well definedness and solvability of 77 [1]. Moreover,
for some simple supersymmetric actions it was possible to
explicitly construct the deformed Lagrangian in superspace,
gaining some insight on the resulting theory [36,38,39].

The main aim of this paper is to repeat this analysis in the
N =(2,2) case and find a manifestly A" = (2,2) super-
symmetric version of the TT flow. The case of N = (2,2)
is particularly interesting for at least two reasons: first, it is
the most heavily studied class of two-dimensional super-
symmetric theories because of applications to string com-
pactifications. Second, these models are closely connected
to the dimensional reduction of A/ =1 theories in four
dimensions. Understanding more about the structure of the
N = (2,2) theory might shed light on how to generalize
TT to higher dimensions; see [38,40—42] for discussions of
such higher-dimensional generalizations. We plan to report
on results along this direction in [43].

In this work, we will establish the appearance of a sin-
gularity in the physical potential, such as the one appearing
in Eq. (1.4), in a manifestly A" = (2,2) form—where, as
usual, the role of V(¢) will be played by |W'(¢)|> with
W(¢) the holomorphic superpotential. Our results on the
N = (2,2) version of TT provide a stepping stone toward
a fully quantum analysis of the vacuum structure of
nonconformal 77-deformed theories, which we plan to
explore in the future.

The paper is structured as follows: in Sec. II we review
the structure of the A = (2,2) supercurrent multiplets
which we need to construct the supersymmetric deforma-
tion. In Sec. III we construct the supercurrent-squared
operator 77 as a bilinear in the supercurrents and discuss
its well definedness. Finally, in Sec. IV we construct the
deformed action for a few examples of N = (2, 2) theories.
In particular, we focus on theories involving a single chiral
multiplet with an action determined by an arbitrary Kéhler
potential, as well as models with a superpotential. In
Appendixes A, B, and C, we collect assorted results used
in the main body of the text.
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IL. D=2N =(2,2) SUPERCURRENT
MULTIPLETS

Our manifestly supersymmetric modification of 77T is
built from bilinears in fields of the supercurrent multiplet.
In this section we review the structure of such multiplets in
D =2, N = (2,2) theories.

A. Conventions

We work in two-dimensional A/ = (2,2) superspace
with a Lorentzian signature; see [44] for a classic reference
on the subject. Our four anticommuting coordinates are
written 8% and 6%, and we will collectively denote the
superspace coordinates by ¢M = (x#,6%,6%). To more
easily interpret expressions involving both vector and
spinor quantities, we change to light-cone coordinates
using the bispinor conventions

1
= (O ), 2.1
£ @)
and we define the corresponding partial derivatives
Doy = (@£ 0)) (22)
++ = NG 0 1)s .

so that 9, x** =1 and 0, xTF = 0.
Spinors in two dimensions carry a single index which is
raised or lowered as follows:
yr=—y., v =wy (23)
We write all vector indices as pairs of spinor indices. This
allows us to nicely compare terms in equations involving
combinations of spinor, vector, spinor-vector, and tensor
quantities. Using this notation, for example, the super-
current has components S, ,,,S___,S, _, and S_,,
which we can immediately identify as a spinor-vector
because it has three indices. Similarly, the stress-energy
tensor carries two vector indices which are repackaged into
four bispinor indices T, ,, T T o =T__ .

The supercovariant derivatives, collectively denoted by
Dy = (8,,D.,D,), are defined by

0 i _ o i
D, :%—Eé’iati, D :_ﬁ‘l'zeiaiiv
(2.4)
and satisfy
{D:bD_:t} = ia:l::b (25)

with all other (anti)commutators vanishing.
The supersymmetry transformations for an N' = (2,2)
superfield F () = F(x**, 0%, 0%) are given by

SoF =ietQ, F +ie Q_F —ietQ, F —ieQ_F,
(2.6)

where on superfields the supercharges are represented by
the following differential operators:

7] i = o i

Qp = aF""Eeiaiiv

satisfying

{Qi, Qi} = _iaii-’ (2-8)

and commuting with the covariant derivatives D,.

B. The S multiplet

For Lorentz invariant supersymmetric theories, there is
an essentially unique supermultiplet which contains the
stress-energy tensor 7, the supercurrent S, and no other
operators with spin larger than one, under the assumption
that the multiplet, though in general reducible, cannot be
separated into decoupled supersymmetry multiplets;
namely that it is indecomposable [45]. This S-multiplet
can be defined in any theory with D =2, N = (2,2)
supersymmetry. By “essentially unique,” we mean that the
S-multiplet is unique up to improvement terms which
preserve the superspace constraint equations.

For two-dimensional theories with (2, 2) supersymmetry,
the S-multiplet consists of superfields S, y4, and YV,
which satisfy the constraints:

DySzy = £(rx + V=), (2.9a)

Diy-—=D_y, =k,
(2.9b)

D.y. =0, D.y: =+CH),

D. Y. =0, D_iyq: =+ C(i), DY +D.Y, = K.

(2.9¢)

Here k and k' are real constants and C*) is a complex
constant. The S-multiplet contains 8 + 8 independent real
component operators and the constants k, k', C*) [45]. The
expansion in components of S, ., ¥, and ) are given for
convenience in Appendix A.

Among the various component fields it is important to
single out the complex supersymmetry current S,, and
the energy-momentum tensor 7,,. The complex super-
symmetry current, associated with S, ., and S_.., is
conserved: 9"S,, =0. The energy-momentum tensor,
associated with 7', and T, ,__ =T__, ., is real, con-
served (9T, = 0), and symmetric (T, = T,,). In light-
cone notation the conservation equations are given by
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014 Sy——(x) ==0__8, 14 (x). (2.10a)
9y Si_(x)==0__8, ., (x), (2.10b)
0y T____(x) =—0__0(x), (2.10c)
9,00 ==0_ T .\ (x). (2.10d)
where we have defined as usual
Ox) =T —(x) =T__;;(x). (2.11)

To conclude this subsection, let us describe the ambi-
guity in the form of the S multiplet which is parametrized
by a choice of improvement terms. If I/ is a real superfield,
we are free to modify the S-multiplet superfields as
follows:

Sii = Siy+[Dy, DU, (2.12a)
X+ —x+—D,D DU, (2.12b)
Y. —>Y.—-DiD D U, (2.12¢)

which keeps invariant the conservation equations (2.9). In
general, the S multiplet is a reducible representation of
supersymmetry, and some of its component can consis-
tently be set to zero by a choice of improvement. The
reduced Ferrara-Zumino supercurrent multiplet, which
plays a central role in our paper, is described next.

C. The Ferrara-Zumino multiplet and

old-minimal supergravity
If there exists a well-defined superfield ¢/ such that
x+ =D_.D_D,U, then we may use the transformation
(2.12) to set y. =0 in the S multiplet. If in addition
k=C®) =0, then the fields S,, and ), satisfy the
defining equations for the Ferrara-Zumino (FZ) multiplet.
In this case, it is conventional to rename the field S, to

J 1+ and write these defining equations as

DyJ e =+, (2.13a)
D,Y. =0, (2.13b)
D.Y, =0, (2.13c)

D.Y_+D.Y, =K. (2.13d)

The superfield 7., in the FZ multiplet turns out to be
associated with the axial U(1), R-symmetry current and
satisfies the conservation equation

0 _Jii—0,.T__=0. (2.14)

This multiplet, which has 4 4+ 4 real components, is the
dimensionally reduced version of the D =4 N =1 FZ
multiplet [46]; see Appendix A for more details. All of the
models we consider in Sec. IV have the property that y .
can be improved to zero; that is, they all have a well-defined
FZ multiplet.

Just as the bosonic Hilbert stress tensor T, represents
the response function of the Lagrangian to a linearized
perturbation £, of the metric, the supercurrent multiplets
correspond to linearized couplings to supergravity.4

Different formulations of off-shell supergravity couple to
different supercurrent multiplets. If a theory has a well-
defined FZ multiplet, as is the case for all the examples
found in Sec. IV, then the theory can be consistently
coupled to the old-minimal supergravity prepotentials
H** and . The nomenclature “old-minimal” is again
inherited from D = 4, A = 1 supergravity; see [48,49] for
pedagogical reviews and references. Here H** is the
conformal supergravity prepotential—the analogue of the
traceless part of the metric—and ¢ is a chiral conformal
compensator.

We refer the reader to [50-54] and references therein for
an exhaustive description of D =2, N' = (2,2) off-shell
supergravity in superspace, which we will use in our
analysis; see also Appendix B. For the scope of this work,
it will be enough to know the structure of linearized old-
minimal supergravity. For instance, at the linearized level
the gauge symmetry of the supergravity prepotentials
H** 6, and &, can be parametrized as follows:

i

SH' = L(D_L" ~D_L"), (2.150)
SH— — é (DL - D), (2.15b)
56 = —%D+[)_(D+L+ _D.L7),  (2.150)
56— —SD_D (D.I*-D_L-), (2.15d)

2

in terms of unconstrained spinor superfields L* and their
complex conjugates.

The conservation law (2.13) for the FZ multiplet can be
derived by using the previous gauge transformations. The
linearized supergravity couplings for a given model are
written as

*Rather than coupling to supergravity, one could define the
supercurrent multiplets using a superspace Noether procedure,
as is done for D = 4 theories with A" = 1 supersymmetry in [47].
This was the approach followed for (1, 1) supersymmetry in [38].

SWe use the notation d26 := d0~-do*, d*0 = dO+Tdo-, and
d*0 = d?0d*6.
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['linear - /d46(H++k7++ + H__j——)

_ / LY — / LG5V,

with V a chiral superfield and V its complex conjugate.
Assuming the matter superfields satisfy their equations of
motion, the change in the Lagrangian (2.16) under the
gauge transformation (2.15) is

(2.16)

5‘Clinear = /d49(5H++j++ + 5H__j——)

- / 056V / 2655V

_ % / #O{(D_L"—D_L)T,,
+D. L~ =D, L7)J__—(D,LT=D_L7)V
C(B.L* DLV}

_ % / PO{L(D_T ., +D.V)

+L=(D,J__—-D_.V)+cc.}, (2.17)
where we have integrated by parts. Demanding that the
variation vanishes for any gauge parameter L* gives
D_J..+D, V=0, D.J__-D_V=0. (2.18)
This matches the constraints (2.13) for the FZ multiplet if
we identify

Y, =D,V (2.19)
and set k' = 0. .

As we will soon see, studying 77 deformations requires
consideration of a composite operator constructed out of
the square of the supercurrent multiplet. Hence to solve the
TT flow equations we need to be able to calculate the
supercurrent multiplet explicitly. The coupling to super-
gravity provides a straightforward prescription for com-
puting the FZ multiplet for matter models that can be
coupled to old-minimal supergravity.6 In particular, for a
given N = (2,2) matter theory we will

(1) Begin with an undeformed superspace Lagrangian £

in flat NV = (2,2) superspace.

(2) Minimally couple £ to the supergravity superfield

prepotentials H**, ¢, and &.

®Though we will not need it in our paper, it is worth
mentioning that the nonminimal supergravity results of [50—
54] allow the computation of the supercurrent multiplet for more
general classes of models.

(3) Extract the superfields J**, V, and V which couple
linearly to H**, ¢, and &, respectively, in the D and
F terms of (2.16).
Thanks to the analysis given above, the superfields 7+, V,
and V will automatically satisfy the FZ-multiplet con-
straints (2.18). A detailed description of the computation of
the FZ multiplet for the models relevant for our paper is
given in Appendix B.

III. THE TT OPERATOR AND N =(2,2)
SUPERSYMMETRY

After having reviewed in the previous section the
structure of the S multiplet, we are ready to describe N' =
(2,2) TT deformations.

A. The 7T operator

Givena D =2, N' = (2,2) supersymmetric theory with
an S multiplet, we define the supercurrent-squared defor-
mation of this theory, denoted 77 in analogy with TT, by
the flow equation

1 -
8,15 - —gTT, (31)

where 77 is constructed from current bilinears with

TT =- / d*0S, . S__ — < / d0~doy ..y

+ / do-do+y.,y_ + c.c.), (3.2)

and where the factor of % is chosen for later convenience.
This deformation generalizes the results we recently
obtained for D =2 theories possessing N = (0,1),
N =(1,1), and N = (0,2) supersymmetry [36,38,39]
to theories with N = (2,2) supersymmetry.

Let us recall the form of the TT composite operator [1],
which we denote

TT(x) = Tyop (DT (x) = B2 (3.3)

An important property of the A" = (0,1), V" = (1, 1), and
N = (0,2) cases is that the TT operator turns out to be the
bottom component of a long supersymmetric multiplet.
This is true up to both total vector derivatives (0., and
0__) and terms that vanish upon using the supercurrent
conservation equations (Ward identities). For this reason, in
the supersymmetric cases studied previously, the original
TT deformation of [1] is manifestly supersymmetric and
equivalent to the deformations constructed in terms of the
full superspace integrals of primary supercurrent-squared
composite operators [36,38,39].
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Remarkably, despite the much more involved structure
of the (2, 2) & multiplet compared to theories with fewer
supersymmetries, it is possible to prove that the following
relation holds:

TT(x)=TT(x)+EOM’s + 0, (---)+0__(---). (3.4)
In (3.4), we use EOM’s to denote terms that are identically
zero when Eqgs. (2.9) are used. Showing (3.4) requires using
(A1)-(A3), along with several cancellations, integration by
parts, and the use of the (2, 2) S-multiplet conservation
equations (2.9).

In fact, the specific combination of current superfields
given in (3.2) was chosen precisely for (3.4) to hold. The
combination (3.4) is also singled out by being invariant
under the improvement transformation (2.12). The impor-
tant implication of (3.4) is that the 7T deformation for an
N = (2,2) supersymmetric quantum field theory is man-
ifestly supersymmetric and equivalent to the 77 deforma-
tion of Eq. (3.2).

Note that in the A" = (2,2) case the deformation we
have introduced in (3.2) is conceptually different from the
cases with less supersymmetry. Specifically, the deforma-
tion is not given by the descendant of a single composite
superfield. On the other hand, suppose the S multiplet is
such that C#) = k = k' = 0, and it is possible to improve
the superfields y; and ), to a case where

Y. =D,V, Y. =D.V, (3.5a)
y.=iD.B,  y_=iD_B,  j,=-iD.B,
7. =—iD_B, (3.5b)
with V chiral and B twisted chiral:
D,V =0, D.V =0, (3.6a)
D,B=D_B=0, D.,B=D_B=0. (3.6b)
In this case (3.2) simplifies to
TT = - / d*0S,. . S__ + < / do~do*D_BD_B
- / d9-do+*D.VD_V + C.c.>
= - / d*0(S..S__ —2BB-2VV), (3.7)

and we see that, up to EOM’s, TT(x) is the bottom
component of a long supersymmetric multiplet. In this
situation, once we define the composite superfield

O({) = =8, (£)S__(§) +2B($)B(&) + 2V(E)V(0),
(3.8)

Eq. (3.4) turns into the equivalent result’

/ #00(8) = D_D, D, D_O)py

=TT (x) +EOM’s + 0, (---) + 0__(--),
(3.9)

stating that the D term of the operator O({) is equivalent to
the standard 77(x) operator.

For a matter theory that can be coupled to old-minimal
supergravity, leading to the FZ multiplet described by
(2.18), the operator O({) further simplifies thanks to the
fact that the twisted-(anti)chiral operators B and B dis-
appear. For these cases, the TT flow turns into the
following equation:

0.0 — % / POT T —2VD).  (3.10)

This will be our starting point in analyzing N = (2,2)
deformed models in Sec. IV.

B. Point splitting and well definedness

The TT(x) operator (3.3) is quite magical because it is a
well-defined irrelevant composite local operator, free of
short distance divergences [1]. In fact, this property
generalizes to the larger class of operators

A, ()AL (x) = Bya(0Bys(x)]. (B11)
where (A, B,,,) and (A!,, B/, ,) are two pairs of con-
served currents with spins s and s’. The operator TT (x) is a
particular example with s = s’ = 0. As proven in [2], these
composite operators of “Smirnov-Zamolodchikov’—type
have a well-defined point splitting which is free of
short-distance divergences. In the case of N = (0,1)
and N = (1,1) supersymmetric 7T deformations, the
entire supermultiplet whose bottom component is 77 (x)
is composed of well-defined Smirnov-Zamolodchikov—
type operators [36,38]. In the V' = (0, 2) case, the primary®
operator whose bottom component is T7(x) is not of
Smirnov-Zamolodchikov—type. Nevertheless, also in this
case it was recently shown that, thanks to supersymmetry,
the whole multiplet is well defined [39].

"In the subsequent discussion by # = 0 we will always mean
6+ =6 = 0.

*We denote as primary operator the top component of
a supersymmetric multiplet even when the theory is not
superconformal.
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Inthe N = (2, 2) case it is clear that the situation is more
complicated than any of the cases mentioned above. First,
in the general situation, according to (3.2), the 7 T
deformation is a linear combination of a D term together
with chiral and twisted-chiral F term contributions. Though
the F terms might be protected by standard perturbative
nonrenormalization theorems [see, for example, [48,49] for
the D =4, N' =1 case which dimensionally reduces to
D=2, N =(2,2)], the D term associated with the
S..S__ operator has no clear reason to be protected in
general from short-distance divergences in point-splitting
regularization, and hence has no obvious reason to be well
defined. This indicates that there might be a clash between
supersymmetry and a point-splitting procedure in the
general setting.

We will not attempt to analyze this issue in full generality
in the current paper; instead our aim is to describe a
subclass of models for which the 77 deformation turns out
to be well defined. A natural restriction to impose is that the
S multiplet is constrained by (3.5) and the 77 deformation
is therefore described by the D term (3.7). By trivially
extending the arguments used in [39] for the N = (0, 2)
case, it is not difficult to show that these restrictions are
sufficient to imply that the multiplet described by the N =
(2,2) primary operator O({) of (3.8) is indeed well defined
despite not being of Smirnov-Zamolodchikov-type. As in
the N' = (0, 2), unbroken A/ = (2, 2) supersymmetry turns
out to be the reason for this to happen.

Let us quickly explain how this works for the FZ
multiplet and the deformation (3.10), which are the main
players in our paper. Note, however, that the same argument
extends to more general cases where both chiral and
twisted-chiral current superfields, y, and )., satisfying
(3.5) are turned on. We also refer to [39] for details that we
will skip in the following discussion, which are trivial
extensions from the (0, 2) to the (2, 2) case.

A first indication of the well definedness of the multiplet
associated with O({) comes by looking at the vacuum
expectation value of its lowest component. Define the
primary composite operator

O(x) = =j—(x)j1+ (x) + 20(x)0(x) =

and its point-split version

O@lg=o  (3.12)

O(x,x") = =j__(x)j 1 (x) + v(x)5(x') + D(x)v(x'),
(3.13)
where
Jirx(x) =T 12(0)lg=0- v(x) = V()]g—o
(x) = V($)lg=o- (3.14)

Note that Eq. (2.18) implies the following relation among
the component operators:

[Qr ij:F(x)] =

[Q:I:J.:F?(x)] = (3.15)

with Q. and Q.. denoting the A" = (2,2) supercharges.’ By
then using 0., =i{Q:.0.}. {Q4.0-}={0,.0_} =0,
[Q4,v(x)] =[Q4,5(x)] =0, super-Jacobi identities,
together with the conservation equations (3.15), and the
assumption that the vacuum is invariant under supersym-
metry, it is straightforward to show that the vacuum
expectation value (VEV) of O(x,x’) satisfies

o5
+

() () = ({04, 04 s ()] (*))
i({Q 4. [0 ()]} (¥) +{04. [0 5(0)]}j 41 (1))
= —i{[Q4, v(X)][Q, j 1+ (X)] + [Q+7 ()HQ T ()]

= i([04, v(V)][Q4, 5(x)] + [0, T(x)][Q, v(x")])
= <{Z{Q+’Q+} v(x)}o(x') + [i {Q+1Q+} v(x)}o(x"))
=0, (v(x)5(x') + v(x)5(x')), (3.16)

(x)x

(x)0__j . (x)), it is clear that the

and, after performing a similar calculation for (0__j__

Jre () =—={j—-

relation

9,0 (0(x.x)) = 0 (3.17)

holds. Therefore, (O(x, x’)) is independent of the positions
and free of short distance divergences. It is worth noting
that similar to the argument showing that the two point
function of two chiral or twisted-chiral operators is inde-
pendent of the positions x and x’, the previous analysis for
(O(x,x")) necessarily relies on unbroken N = (2,2)
supersymmetry.

The argument given above can be generalized to a
statement about operators in superspace in complete
analogy to the A" = (0,2) case of [39]. Let us investigate
the short distance singularities in the bosonic coordinates
by defining a point-split version of the N' = (2,2) primary
T7 operator,

O(x.x'.0) = =J __(x.0)T (¥, 0) + V(x.0)V(x'.6)

+V(x,0)V(x, 0). (3.18)

We want to show that the preceding bilocal superfield is
free of short distance divergences in the limit x — x/. A
straightforward calculation shows that

°Given an operator F (x) defined as the & = 0 component of
the superfield F(¢), F(x) := F({)|yg—o. then its supersymmetry
transformations are such that [Qy, F(x)} = Q. F({)lg—o =

D.F($)lg—o and [Q4. F(x)} = QL F({)lg—o = DL F({)]p—o-
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91,0(x,x',0) = ~{iD V()[D_T (') + DV
V()WL)
+i(Q-+ QDY) T ++ ()] +
+(0y + 0, )[0H(DV(E)V
DET(DLV)

+i(Qy + QD

- (044 + 0,

Note that the first line in the preceding expression is zero
because of the FZ conservation equations (2.18), which hold
up to contact terms in correlation functions. The other lines
are either total vector derivatives or supersymmetry trans-
formations of bilocal operators. A similar equation holds for
0__O(x, x’, 0) showing that the operator O(x, x’, 6) satisfies
8iiO(x, X/, 9) = 0 + EOM’S + [P

40, (3.20)

where [P, ...]and [Q, ...] schematically indicate a translation
and supersymmetry transformation of some bilocal superfield
operator.10 To conclude, by employing an operator product
expansion (OPE) argument completely analogous to the one
originally given by Zamolodchikov in [1] and extended to the
N = (0,2) supersymmetric case in [39], one can show that
Eq. (3.20) implies
O(x,x',0)

= O(¢) + derivative terms.  (3.21)

Here “derivative terms” indicate superspace covariant deriv-
atives D4 = (0,4, D4, D) acting on local superfield oper-
ators while O(¢) arises from the regular, nonderivative part of
the OPE of O(x, x’, 6). As a result the integrated operator

So = aaxd49hrré(9(x, x+¢€,0)

= /szd492 O(x, x,0):, (3.22)

which can be considered as a definition of the integrated
7T (x) operator,' ' is free of short distance divergences and is

"See Appendix A of [39] for the relation between the
operators (Q + Q' ), (Q. + Q') and the generators of super-
symmetry transformations on bilocal superfields such as
O(x,x',0). The extension of that analysis from A = (0,2) to
./\/ (2 2) is straightforward.

"Note that, consistently, one can show that

{0+.[0+.{0-.[0-. O(x. ¥ )}]} =T _(N)T s 11 (x')
—O(x)O(x") + EOM’s
IR (3.23)

implying that the descendant of the point-split primary operator
O(x) is equivalent, up to Ward identities and total vector
derivatives (04.), to the point-split version of the descendant
TT(x) operator.

&
V(&) + 6~ (D V()T 1+ ()]} oz

N 4 i, POIDLT . () + DLV
i(Qy + Q)DL
i(Q- + )DL V()T +4(L)]
)+ 0 (D V()T (&)
(3.19)

well defined in complete analogy to the nonsupersymmetric
case [1] and the V' = (0,1), N' = (1,1), and N = (0,2)
cases [36,38,39].

IV. DEFORMED (2, 2) MODELS

In this section, we will apply our supercurrent-squared
deformation (3.10) to a few examples of N = (2,2)
supersymmetric theories for a chiral multiplet ®. The
superfield @ can be written in components as

O=¢p+0Ty, +0y_+0T0°F—i0T070 ¢
- ig_é_a__¢ - i9+6_9__8__y/+ - i0_9+é+a++l//_
-070-0-0%0,,0__¢, (4.1)
where ¢ is a complex scalar field, y are Dirac fermions,
and F is a complex auxiliary field. The multiplet @ satisfies
the chirality constraint D, ® = 0.

We denote the physical Lagrangian by £ and the
superspace D term Lagrangian by 4, so that

S = /d2x£ = /dzxd“GA.

A broad class of two-derivative theories for a chiral
superfield can be described by superspace Lagrangians
of the form

(4.2)

L= /d491<(c1>,d’>) +/d29W(d>)+/d2éW(q3),
(4.3)

where K(®, ®) is a real function called the Kihler potential
and W(®) is a holomorphic function called the super-
potential. These are N' = (2, 2) Landau-Ginzburg models.

In order for the kinetic terms of the component fields of ©
32
2 s

to have the correct sign, we will assume that Ko = 5555

positive.

Although we will not expand on this point in detail, all
the results found in this section can be derived almost
identically for the case of a generic model of a single scalar
twisted-chiral superfield Y, D Y=D_Y=0, and its
conjugate. This is not surprising since theories containing
only chiral superfields are physically equivalent to theories
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formulated in terms of twisted-chiral superfields; see, for
example, [50-54] for a discussion of this equivalence in
models with global and local supersymmetry. There are
also many more involved (2, 2) theories that one might also
want to study involving chiral, twisted-chiral and semi-
chiral superfields; see, for example, Ref. [55] for a recent
discussion and references. For this analysis, we have
chosen to consider only models based on a single chiral
multiplet.

A. Kihler potential

First we will set the superpotential W to zero and begin
with an undeformed superspace Lagrangian of the form

L= / d*0K (®, D) (4.4)

for some Kihler potential K. To leading order around this
undeformed theory, the FZ supercurrents are

j:l::t = 2K¢q’)Diq)D_iq_), (45«"1)

V=0, (4.5b)

_OPK_
0DOD’
the supercurrent-squared deformation driven by O =
(=S, S__ +2VV) will source a four-fermion contribution

in the D term, giving

where K¢ = g%, Ko = etc. Therefore, at first order

1 _ _
1) _ (0 2
£V = L0 + SIKL 6D, @D OD_OD_.
Next, we would like to find the all-orders solution for the
deformed theory. We make the ansatz that, at finite
deformation parameter 4, the Lagrangian takes the form

(4.6)

L, = /d49{K(<I>, <I3)

+ f(A.x.%,y)K3 5D ®D,®D_OD_d}, (4.7)
where we define the combinations
X = Kq,q38++CD8__<I3, y= K¢@(D+D_®)(D+D_CI3).

(4.8)
Using the results in Appendix B, one finds that the super-

fields J 44 and V appearing in our supercurrent-squared
deformation, computed for the Lagrangian (4.7), are given by

af af

j++:2K¢@D+¢D+CI_>[1+f(x+f—3y)—|—x—x()€—y)+)f—(x—y)—|—y8—y(x+)€—2y)

ox

Y ox

Oox Ox

12K, D_®D_$0, D, b {—f RPL y(g—i—g)}

~2iK2 D, ®D_®J, , ®D,D_& {—f + (x =) o, (x—y) =

—2iK3 5D, ®D_®0, PD,.D_® {f + (x = %) of +(y—x%) —] .

J__ =2KesD_®D_® {1 + f(x+x—-3y) +xa—£

of
0x 8)}

(4.9)

0x Oy

of

(f—y)+f%(x—y)+ya—y(x+i—2y)

o ) Of of  of
, .95 _of 22
+2K45D+ @D PI__DI__D { fox Ox * ox Ty (6)6 - 6)2)]

—2iK3 5D ®D_®0__dD, D_& [— f+(E—x)=—+(x

A o _of
—2iK3 5D, ®D_®O__®D, D_P [f +(x—x) Fra (y—x) —} ,

and

of of _of
g 2_ —_— —_— —_—
V_qu’q’(f+y8y+x8x+x8X

—~D_®D, ®(D,.D_®)* - id__®(D,.D_®)D D, D).

of Bf]

ox (¥=) dy
of

% (4.10)

) [-i0,,®(D,.D_®)D_®D_® + 9, ,PI__OD_®D, D

(4.11)

The supercurrent-squared flow then induces a differential equation for the superspace Lagrangian .A; (where, again,

L, = [d*0A;) given by

026008-9



CHIH-KAI CHANG et al.

PHYS. REV. D 101, 026008 (2020)

d 1
— A, =—- — -2 4.12
o ="59=% (T4 T =2VV). (4.12)
Given our ansatz (4.7), we see that
dAl df
PRy (DCDD+<I>D+CDD ®D_o. (4.13)

On the other hand, plugging our expressions (4.9), (4.10), and (4.11) for the supercurrents into the right-hand side
of (4.12) also gives a result proportional to K3 ;D ,®D,®D_®D_d. Equating the coefficients, we find a differential

equation for f:

af

B _of
g ol e -0l

[ of

+2(x=y)(y —x){f+ya +X—+x

L

4 [1+(x+i—3y)f—l—(x+f—2)’)y

In particular, this shows that our ansatz (4.7) for the finite-1
superspace action is consistent: the supercurrent-squared
deformation closes on an action of this form. It could have
been otherwise: the flow equation might have sourced
additional terms proportional, say, to two-fermion combi-
nations D, ®D_,®, or required dependence on other
dimensionless variables such as A(D,D_®)?, but these
complications do not arise in the case where the unde-
formed theory only has a Kdhler potential.

On dimensional grounds, f must be proportional to 4
times a function of the dimensionless combinations Ax and
Ay. Thus, although the differential equation for f deter-
mined by (4.14) is complicated, one can solve order by
order in A. The solution to O(4?) is

A L,(x+x 3
=3t (T_Zy>
s+ X +3xx 37 , 25
+4 (78 547 24(x—|—x)
4. (4.15)

f(4,x.%,y)

We were unable to find a closed-form expression for f to all
orders in A. However, the differential equation simplifies
dramatically when we impose the equations of motion for
the theory, and in this case one can write down an exact
formula. This is similar to the 7T flow of the free action
for a real ' = (1, 1) scalar multiplet that was analyzed
in [36,38].

We claim that, on-shell, one may drop any terms where
y~ (D, D_®)(D,_D_®) multiplies the four-fermion term
|DO|* = D, ®D, ®D_®D_®. This is shown explicitly in
Appendix C and follows directly from the superspace

GfT

of
a——i—x(x— y) ==

“wlr+ -9+ 6-n
?] ”P+W—>g+“_”gr

o)
[

B
equation of motion and nilpotency of the fermionic terms
D, ® and D, ®. It is also an intuitive statement associated
with the fact that for these models, on-shell, N = (2,2)
supersymmetry is not broken. In fact, note that the super-
fields (D,D_®) and (D,D_®) have as their lowest
components the auxiliary fields F and F. If supersymmetry
is not broken, the VEV of F has to be zero, (F) = 0, which
implies that the auxiliary field F is on-shell at least
quadratic in fermions and, more precisely, can be proven
to be at least linear in y, = D, ®|,_, and 7. = D . ®|,_,.
From this argument it follows that on-shell (D D_®) is at
least linear in D, ® and D, ®, and then the two conditions
(D, D_ cI>)|Dc1>|4 =0 and y|D®[* = 0 follow.

After removing from (4.14) the y-dependent terms which
vanish on-shell, we find a simpler differential equation for
the function f,

ar _1 or . ;9f
5_2{ {f+x8x+x8x}

[l+(x+x)f+ (gﬁ gﬁ)] } (4.16)

whose solution is

+ (% - (4.14)

_ , . (417)
P304 )+ /1= A+ 0) +2 (x - 22

Thus we have shown that the supercurrent-squared
deformed Lagrangian at finite 4 is equivalent on-shell to
the following superspace Lagrangian:
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L, = / da*o <K((I>, )

N AK% 5D, ®D, SD_0D_d > |
1= 32K A + /1 = AKG A + LKL o B
(4.18)
where
A=0,,®I_D+0, PI__0,
B=0, ®)__® -0, ®I__0. (4.19)

When K(®,®) = ®®d, it is simple to show that this
model represents an A = (2,2) off-shell supersymmetric
extension of the D = 4 Nambu-Goto string in an appro-
priate gauge—often referred to as a static gauge in the
presence of a B field, though it can be more naturally
described as a uniform light-cone gauge [56,57] (see
Refs. [23,37] for a discussion of this point). In particular,
by setting various component fields to zero and performing
the superspace integrals, one can show that (4.18) matches
the expected answer for 7T deformations in previously
known nonsupersymmetric cases. For instance, setting the
fermions to zero and integrating out the auxiliary fields F
and F gives the TT deformation of the complex free boson
¢, whose Lagrangian is

V1+2ha+2b* -1
E/I.bos = 4

_a_ 1 0y pO__0, PO__¢p (4.20)

4 14+ 2a+V1+22a+ 12

where

a=0, . p0__¢p+ 0, p0__¢,
b= 8++¢3——¢3 - 3++(l_58——¢~

The Lagrangian (4.20) indeed describes the D = 4 light-
cone gauge-fixed Nambu-Goto string model.

Alternatively, setting all the bosons to zero in (4.18) can
be shown to give the TT deformation of a complex free
fermion. These calculations are similar to those in the case
of the (0, 2) supercurrent-squared action, which are
presented in [39]. In fact, it can even be easily shown that
an N = (0,2) truncation of (4.18) gives precisely the TT
deformation of a free N/ = (0,2) chiral multiplet that was
derived in [39].

It is worth highlighting that, unlike the " = (2,2) case,
an off-shell (0, 2) chiral scalar multiplet contains only
physical degrees of freedom and no auxiliary fields.
Interestingly, related to this fact, it turns out that (up to
integration by parts and total derivatives) the N = (0, 2)
off-shell supersymmetric extension of the D = 4 Nambu-
Goto string action in the light-cone gauge is unique and

(4.21)

precisely matches the off-shell 77 deformation of a free
N = (0,2) chiral multiplet action [39].

In the N = (2,2) case, because of the presence of the
auxiliary field F in the chiral multiplet @, there are an
infinite set of inequivalent " = (2, 2) off-shell extensions
of the Lagrangian (4.20) that are all equivalent on-shell. A
representative of these equivalent actions is described by
(4.18) when K(®@,®) = 0.

The nonuniqueness of dynamical systems described by
actions of the form (4.18) can also be understood by
noticing that, for example, it is possible to perform a class
of redefinitions that leaves the action (4.18) invariant on-
shell. As a (very particular) example, note that we are free
to perform a shift of the form

D.D_(D,®D_®) - D, D_(D,®D_®)

+a(D,D_®+ D, D_®)* (4.22)

for any real number a. In terms of A and B, Eq. (4.22)
implements the shifts

B—>B
(4.23)

A—>A+a((D,D_®)*>+2y+ (D .D_®)?),

in (4.18). The resulting Lagrangian would enjoy the same
on-shell simplifications described in Appendix C and
would turn out to be on-shell equivalent to the
Lagrangian (4.18). In this infinite set of on-shell equivalent
actions, a particular choice would represent an exact
solution of the TT flow equation (4.12)—(4.14), whose
leading terms in a A series expansion are given in (4.15).
Another representative in this on-shell equivalence class is
the simplified model described by (4.18).

These types of redefinition and on-shell equivalentness
are not a surprise, nor really new. In fact, they are of the
same nature as redefinitions that have been studied in detail
in [58] (see also [59] for a description of these types of
“trivial symmetries”) in the context of D = 4, ' = 1 chiral
and linear superfield models possessing a nonlinearly
realized additional supersymmetry [58,60]. As in (4.23),
the field redefinition in this context does not affect the
dynamics of the physical fields—it basically corresponds
only to an arbitrariness in the definition of the auxiliary
fields that always appear quadratically in the action and
then are set to zero (up to fermion terms that will not
contribute due to nilpotency in the action) on-shell.
Although here we only focused on discussing the on-shell
ambiguity of the solution of the N' = (2,2) TT flow, we
expect that the exact solution of the flow equations with y
nonzero (4.12)—(4.14) can be found by a field redefinition
of the kind we made in the action (4.18).

It is also interesting to note that similar freedoms and
field redefinitions are also described in the construction of
D=4, N =1 supersymmetric Born-Infeld actions; see,
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for example, Ref. [61]. In fact, as will be analyzed in more
detail elsewhere [43], it can be shown that the Lagrangian
(4.18) is structurally of the type described by Bagger and
Galperin for the D =4, N =1 supersymmetric Born-
Infeld action [61]. The equivalence can be formally shown
by identifying W, =D, ®, W_ = D_®, W? = D, ®D_®,
and D°W, = D, D_® + D_D,® to match their conven-
tions. As a consequence, we can show that our solution
for the TT flow possesses a second nonlinearly realized
N = (2,2) supersymmetry, besides the (2, 2) supersym-
metry which is made manifest by the superspace con-
struction. This property is analyzed in detail in [43]. We
note that the presence of a second supersymmetry is
analogous to what happens in the N = (0,2) case [39].

B. Adding a superpotential

Now suppose we begin with an undeformed theory that
has a superpotential W(®),

L0 = / d*OK (@, D) + ( / dZGW(cD))

+ (/JZéW(qS))

As shown in Appendix B, the superpotential F term gives a
contribution 5 = 2W(®) to the field V which appears in
supercurrent squared. To leading order in the deformation
parameter, the Lagrangian takes the form

L£O) 5 £0) 1 p£0)

= L0 +/1/d49

(4.24)

1 o o
x <§KééD+®D+CI>D_d>D_(D + W(<I>)W((I>)> :

(4.25)

In addition to the four-fermion term which we saw in
Sec. IVA, we see that the deformation modifies the Kihler
potential, adding a term proportional to |W(®)|>.

Next consider the second order term in A. For convenience,
we use the combination |D®[* = D, ®D OD_®D_d,
which is the four-fermion combination that appeared at first
order. Then

2
L2 = %/ d*O(x + X = 3y = 2|W'(®)?

+WD_D, + WD, D_)|D®|*. (4.26)
The new terms involving supercovariant derivatives of
|D®|* will generate contributions with two fermions in
the D term.

As we continue perturbing to higher orders, the form of
the superspace Lagrangian becomes more complicated. It is
no longer true that the supercurrent-squared flow closes on

a simple ansatz with one undetermined function, as it did in
the case with only a Kihler potential. Indeed, the finite-A
deformed superspace Lagrangian in the case with a super-
potential will depend not only on the variables x, X, and y as
in Sec. IV A but also, for example, on combinations such as
0., ®D,D_®, which can appear multiplying the two-
fermion term D_®D_® in the superspace Lagrangian. To
find the full solution, one would need to determine several
functions contributing to the D term—one multiplying the
four-fermion term |D®|* as in the Kihler case; one for the
deformed Kéhler potential which may now depend on x, v,
and other combinations; and four functions multiplying the
two-fermion terms D, ®D_®, D, ®D_®, etc. Each func-
tion can depend on several dimensionless combinations.

In the presence of a superpotential, the situation might
further be complicated by the fact that supersymmetry can
be spontaneously broken. This would make it impossible,
for example, to use on-shell simplifications such as
y|D®|* = 0 that we employed in Sec. IVA, where super-
symmetry is never spontaneously broken.

It should be clear that the case with a superpotential is
significantly more involved and rich than just a pure Kihler
potential. In this case, we have not attempted to find a
solution of the 77T flow equation in closed form. However,
it is evident from the form of supercurrent-squared
Eq. (4.12)—which is always written as a D term integral
of current bilinears—that this deformation will only affect
the D term and not the N = (2,2) superpotential W
appearing in the chiral integral. Therefore the superpoten-
tial, besides being protected from perturbative quantum
corrections, is also protected from corrections along the
supercurrent-squared flow.

C. The physical classical potential

In view of the difficulty of finding the all-orders
deformed superspace action for a theory with a super-
potential, we now consider the simpler problem of finding
the local-potential approximation (or zero-momentum
potential) for the bosonic complex scalar ¢ contained in
the superfield ®. We stress that our analysis here is purely
classical, and we will make a couple of comments about
possible quantum effects later in this section. For simplic-
ity, we will also restrict to the case in which the Kihler
potential is flat, K(®,®) = ®d. By “zero-momentum
potential” we mean the physical potential V(¢) which
appears in the Lagrangian after performing the superspace
integral in the deformed theory and then setting 0_..¢ = 0.
For instance, consider the undeformed Lagrangian

£0) = / d*6dd + / d*OW (@) + / dOW(d). (4.27)

When we ignore all terms involving derivatives and the
fermions ., the only contributions to the physical
Lagrangian (after performing the superspace integral) come
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from an |F|* term from the kinetic term, plus the term
W(D) = W(¢p) + W (4)0T6~F. This gives us the zero-
momentum, zero-fermion component action

s— / Px(|F2 + W(QF + W(HF).  (4.28)

We may integrate out the auxiliary field F using its
equation of motion F = —W’(¢), which yields

5= [ @x-wip)P) (4.29)
so the zero-momentum potential for ¢ is V = |W(¢)|?, as
expected. Note that the previous potential might have
extrema that break N = (2, 2) supersymmetry while super-
symmetric vacua will always set (F) = (W/(¢)) = 0. We
will assume supersymmetry of the undeformed theory not
to be spontaneously broken in our discussion.

Now suppose we deform by the supercurrent-squared
operator to second order in 4, which gives the superspace
expression (4.26). If we again perform the superspace
integral and discard any terms involving derivatives or
fermions, we now find the physical Lagrangian

—
Lo gm0 = [FP + FW + FW' + ﬂ(i |FI* - |F|2|W’|2>
1 - -
+RIFH(WF + W'F)

L wep 42 2. (430)

2 4
Remarkably, the equations of motion for the auxiliary F in
(4.30) admit the solution F = —-W'(¢), F=-W(¢),
which is the same as the unperturbed solution. This, for
instance, implies that if we start from a supersymmetric
vacua in the undeformed theory, we will remain super-
symmetric along the 7T flow. On the one hand, this is not a
surprise considering that we know the TT flow preserves
the structure of the spectrum, and in particular should leave
a zero-energy supersymmetric vacuum unperturbed. On the
other hand, it is a reassuring check to see this property
explicitly appearing in our analysis.

Returning to (4.30) and integrating out the auxiliary
fields gives

1 1
Lo, gm0 = =IW(@) =AW ()" = 2 2 W (#)[°.
(4.31)

. . . . —_— 712

These are the leading terms in the geometric series %
2

In fact, up to conventions for the scaling of A, one could

have predicted this outcome from the form of the super-

current-squared operator and the known results for T7T

deformations of a bosonic theory with a potential [3]. We
know that, up to terms which vanish on-shell, the effect of
adding supercurrent squared to the physical Lagrangian is
to deform by the usual 77 operator. However, in the zero-
momentum sector, we see that the 77 deformation reduces
to deforming by the square of the potential:

TT|8;{:1¢:O - Ezlaii¢:0 = Vz. (432)
Therefore, it is easy to solve for the deformed potential if
we deform a physical Lagrangian £ = f(1,0..¢) +
V(4,¢) by TT, since the flow equation for the potential
term is simply

ov 5
0,L = s Ve, (4.33)
which admits the solution
V(0,¢)
= 4.34

We can apply this result to the Lagrangian (4.28), treating
the entire expression involving the auxiliary field F as a
potential (since it is independent of derivatives). The
deformed theory has a zero-momentum piece which is
therefore equivalent to

(IF]> + W'(¢)F + W'($)F)
1= A([F|> + W($)F + W($)F)
(4.35)

Sl go = [

at least on-shell. Integrating out the auxiliary now gives

— W' ()2
SWlo..p=0 :/dzx%

as the deformed physical potential. This matches the first
few terms of (4.31), up to a convention-dependent factor of
1 in the scaling of A.

Now one might ask what superspace Lagrangian would
yield the physical action (4.36) after performing the df
integrals. One candidate is

(4.36)

L(Na,,p=0~ / d*9(dD — AW (®)?) + / d*OW (@)

+ / oW (D), (4.37)
where ~ means “this superspace Lagrangian gives an
equivalent zero-momentum physical potential for the boson
¢ on-shell.”

It is important to note that (4.37) is not the true solution
for the deformed superspace Lagrangian using supercurrent
squared. The genuine solution involves a four-fermion
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term, all possible two-fermion terms, and more complicated
dependence on the variable y = A(D D_®)(D,D_®) in
the zero-fermion term. However, if one were to perform the
superspace integral in the true solution and then integrate
out the auxiliary field F using its equation of motion, one
would obtain the same zero-momentum potential for ¢ as
we find by performing the superspace integral in (4.37) and
integrating out F.

The form (4.37) is interesting because it shows that the
effect of supercurrent-squared on the physical potential for
¢ can be interpreted as a change in the Kihler metric, which
for this Lagrangian is

Kog = 1 — AW (@) (4.38)
When one performs the superspace integrals in (4.37), the
result is

Llp, .40 = Koa|FI* + W($)F + W()F,  (4.39)

W(9) Substituting this

PP

which admits the solution F = —
solution gives

TR LA ) e LA
P Kee 1= AW (PP

(4.40)

which agrees with (4.36).

As already mentioned, supersymmetric vacua of the
original, undeformed, theory are associated with critical
points of the superpotential W(¢). Any vacuum of the
undeformed theory will persist in the deformed theory:
near a point where W’(¢) =0, we see that the physical
potential V(¢) = WP also vanishes (away from the pole

=AW
|W/|> =1, the deformed potential is a monotonically

increasing function of |W’|?). Further, the auxiliary field
F does not acquire a vacuum expectation value because
F = —W'(¢) remains a solution to its equations of motion
in the deformed theory. Once more, this indicates that
supersymmetry is unbroken along the whole 77 flow if it is
in the undeformed theory.

However, this classical analysis suggests that the soliton
spectrum of the theory has changed dramatically at any
finite deformation parameter A. There are now generically
poles in the physical potential V(¢) at points where
|W|> =1 which might separate distinct supersymmetric
vacua of the theory. For instance, if the original theory had a
double-well superpotential with two critical points ¢, ¢,
where W'(¢;) = 0, then this undeformed theory supports
Bogomol'nyi-Prasad-Sommerfield (BPS) soliton solutions
which interpolate between these two vacua. But if the
superpotential W reaches a value of order % at some point
between ¢, and ¢,, then this soliton solution appears
naively forbidden in the deformed theory because it
requires crossing an infinite potential barrier. Another

way of seeing this is by considering the effective Kahler
potential (4.38), which would change sign at some point
between the two supersymmetric vacua in the deformed
theory and thus give rise to a negative-definite Kéhler
metric.

Our discussion has been purely classical. As we empha-
sized in the Introduction, a fully quantum analysis of this
problem is desirable, though subtle because of the nonlocal
nature of the 7T deformation. The advantage of performing
such an analysis in models with extended supersymmetry
is that holomorphy and associated nonrenormalization
theorems provide control over the form of any possible
quantum corrections. For example, the superpotential for the
models studied in this work is not renormalized perturba-
tively along the flow. It would be interesting to examine the
structure of perturbative quantum corrections along the lines
of [62], but in superspace with manifest supersymmetry. It
should be possible to absorb any quantum corrections visible
in perturbation theory by a change in the D-term Kihler
potential, meaning that at least the structure of the super-
symmetric vacua would be preserved.
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APPENDIX A: THE S MULTIPLET IN
COMPONENTS

In this appendix we provide the component expansion of
the superfields of the S multiplet introduced in Sec. II B.
The results presented below are equivalent to the results
first obtained in [45] up to differences in notation.

The constraints (2.9) are solved in terms of component
fields by
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Sy = jos — i0FSusy —i0F (Sqoe F 2V2ip.) — i0FS, iy

—@ﬂgﬂih@%%ﬁ%wﬂﬂ+mﬁcwﬁ;%

+i0T0" Y, +i0T0Y, +i0T0 G Fi0O0TG

¥ %9+9‘§i8ﬁ3¢ii ¥ %am—(ﬁaﬁ(siﬂ +2v2ip;)

F 50000, 5 us F 3070070, (Surr F 2V2ips) + 0700 G P (A1)

Let us introduce the usual useful combinations: y=* = x** — £g** and §** = x** F L6=0*. The chiral superfields
y 4 are

- k _ _
Yo =—id(y) = i07G(y) + 0~ (E()’) + 5) +6CH 461670, A_(y). (A2a)
y-=—il_(y)—-0" <E(y) - g) +i0~G__(y) = 07CH) —010-0__1,(y), (A2b)
Ay =38, + V2ip., (A2c)
1 i . )
E :§<®_A) +Z(a++J—— —0__jit) (A2d)
O = a++G__ - a__G++, (A2e)

and the twisted-(anti)chiral superfields )/, are given by

V. =20, () + 6 (F@‘) n "5) _iBY, (5) = B-C) 4 V3i6-640, ,p_(5). (A3a)

Y. =\ip (5) -6 (F@) - "5) L OHCH — B Y (5) + V30 T0__p, (5). (A3b)
1 |

F==2(0+A) =7 (0j+0_j). (A3c)

0=0..Y_ -0 _Y,,. (A3d)

For the FZ multiplet defined by the constraints (2.18), the S-multiplet reduces to a set of 4 + 4 real independent component
fields described by the j.. U(1), axial conserved R-symmetry current (0, ,j__ —0__j,, = 0). In addition, there is a
complex scalar field v(x) [see Eq. (3.14)], together with the independent supersymmetry current and energy momentum
tensor:

$1es0) = iDL T Oloco (Aa)
$oc4(0) = =102 T (Oloco (Adh)
S22 (8) = D2 T4 0)lo-o = HIDV(E) oo, (A)
Sya2(x) = iD2T 21 (0)lo—o =F iDLV(0)lgo, (Add)
Teis(t) = 3[04 DT (Ol (Ade)
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O(x) = =3[0, D17 ©lpoo = =3[P D17 . ©locy
== 3D D Vloo 3D, DI (a41)
For the FZ multiplet, the following relation holds:
Tig = jagx —i05Ssy —i0FS 0 + 0TSy + iéﬁ%ii
— 0 O T +0TOTO+i0TO 0L 0 +i0T0 0 s
¥ %ew—éiaﬁstﬁ + %em—émﬁsﬁg
F 0N 000,y £ 5070070, S, + 08000 P (AS)

Moreover, the chiral superfields y. are set to zero and the twisted-(anti)chiral superfields }V, = D,V are given by

Vi =iS_ 1 (5)+0°GH)—i0'd, v(F)+670"9,. 5. __(y), (A6a)
Y_=~iS,__(5)-07G(3) —i00__v(3) + 07670, ,5___(), (A6D)
G—-0- %aH i (A6e)

APPENDIX B: DETAILS OF THE SUPERCURRENT MULTIPLET CALCULATION

In this appendix, we compute the fields 7, . and ¢ appearing in the FZ multiplet for Lagrangians of a chiral superfield ®
with the general form

Ly = ( / d*0A(D, Ditl),DJrD_(I),aiid),c.c.)) + ( / a’20W(<I>)> + ( / d*0 W(cﬁ)), (B1)

where “c.c.” indicates dependence on the conjugates @, D, . ®, D, D_®, and 9., ®. To do this, we will minimally
couple the theory to supergravity using the old-minimal supergravity formulation and extract the currents which couple

to the metric superfield H** and the chiral compensator ¢. The minimal coupling prescription involves promoting
£0 tOlz

£0 - ‘CSUGRA = </ d46E_1.A((I), Vi(l), V+V_(I), vii(D,C.C.))

+ ( / d295-1W(¢>)> + ( / dZéE’—lW(cI‘))>.

(B2)

Here V. is the derivative which is covariant with respect to
the full local supergravity gauge group, E~' is the full
superspace measure, £~ is the chiral measure, and @ is the
covariantly chiral version of the chiral superfield ®—that
is, V_.® = 0, whereas D, ® = 0.

Expressions for these supercovariant derivatives and
measures have been worked out in a series of papers

12Conforming to notation of [50-54], in this section we will
sometimes use the index notations &« = +, — and Zm = ++, ——.

[50-54] from which we will import the results that we need
for our analysis. To leading order in H™, the linearized
inverse superdeterminant of the supervielbein is

E'=1-[D,,D,JH"" —=[D_,D_|JH—, (B3)
while the chiral measure is given by
£ =e20(1- ¢t"0n) = 1 =26+ i(0,, H") + - - -,
(B4)
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where the ellipses are terms of higher order in H” and o.
The covariantly chiral superfield @ is related to the ordinary
chiral superfield @ by

@ =eM"n®d =0+ i(H0,, + H0__)®+ O(H?).
(BS)

The spinor supercovariant derivatives V. are
Vo=E,+QM+T,M+Z,N, (B6)

where M and N are linear combinations of the Lorentz,
U(1)y, and U(1), generators which act on spinors as

1 _
M, yi] = EWs M,y =0, (B7a)
o 1 _ _
M, .] = iill/r M,y] =0, (B7b)
i _ i _
N,w.] = EELES N y.] = +51//¢- (B7c)

The spinor inverse of the supervielbein E, = E,M9,, and
the structure group connections Q,, I',, and X, can be
expressed to linear order in terms of the metric superfield
H** and an unconstrained complex scalar compensator S.
In the case of old-minimal supergravity, the unconstrained
superfield S is related to the chiral compensator ¢ by

V.® = (1+8)D.® +2i(DLH™)D,® + iH" (D19, ®) — 2(DD.HTF)D @,

Vi® = (1+8)D.® - 2i(D.H")),,® — iH"(D.0,,®) — 2(D.D HTT)D_®.

i 1 1 -
S=0-50,H"~[D..D.JH"" —S[D_.D_]H

(B8)

to linear order. In the following analysis we will first obtain
expressions for the supercovariant derivatives in terms of
S = S(H™,0), and we use (B8) to give them in terms of H™
and o.

The spinorial inverse of the supervielbein is given at first
order in the prepotentials by

E.=(1+8)Dy+i(D+H™)D, —2(DzD HTF)D_,
(B9)
together with their complex conjugates. Meanwhile, the

connections €,, 'y, and X, can be written to leading
order as

L =42D,(S+S8) F2D-D:D.HTF,  (Bl0a)
L, =-2iD;S+2iD-D_-D.HT¥,  (BI10b)
Q. =F2D_ D .D,HFF. (B10c)

Using (B6), the vielbeins (B9), and the expression (B5) for
®, we find the supercovariant derivatives

(Blla)

(B11b)

To compute the second supercovariant derivatives acting on @ and ®, we must include the contributions from Q,, I',,, Z,,,

and their conjugates. One finds

V. V.®=i(1+S+85)d,,®-2(D.D_D,H~)D_® + 2i(D,D,H™)),,®

- H"9,,0,®+2(D,.(S+S)+D_D_D,H")D,®,

(B12a)

V.V_® = (14 238)D,D_® + 2i(D,.D_H™)d,,® — 2i(D_H™)D., 8,,®
+2i(D,H™\D_8,,® + iH"D, D_0,,® - 2(D,.D,D_H*+)D_ @

+2(D_D_D,H)D_®,

(B12b)

V.V.®=i(l+S+S8)o__®—-2(D_D,D_H"*)D,® + 2i(D_D_H")),,®

-H"0__0,®+2(D_(S+S8)+D,D,D_H"")D_®,

(B12c)

together with their complex conjugates. Armed with these expressions, we can linearize the supergravity couplings
in (B2). First let us consider the contribution from the D term. We would like to extract the terms proportional to H**

and ¢ in
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L - / d40E_1A(q), viq), V+v_(1), Viiq), C.C.),

/d“@(HW[Da,D ]A—H%H”@ ®+ (V& - D, D) ——— oA

0P oV,
+ av?% (V,V_.®-D D @)+ agAcI) (V,®-0,P) +c.c. > (B13)
where V., = —i{V,, V_i}. Doing so, we see that the currents which couple to H** are
J+r =1[D., D] { A_%ag—Ach‘cD ;8§A¢D+®+ av?’é_q)mD_d) +%8++©
+2iD_ (agAch cb) +2iD,, (%D@) + avaAcp a__qn]
oot (0 0)-0. () o

0A 0A 0A 0A
—2D_(av—q)6 ) 50+t (w q)D+<I>> oo —= D 9§, D- 2D+(8V GI)a++c1>>

0A 0A
- 2D_D+ <8V v (Da++ > + ZD_ (W D+8++<I>>

0A 0A A 0A
- 2D+ <WD_8++¢> + WD+D_8++® + 21D+D+ <ma++®)

A oA A
V_o qu)) T, o o
Y ) A
+ 2{—D_D+ <8V q)D+d>> -D.D.D. <WD+(D>
0.4
Vo

+2iD_D_ ( a__qu)}

+iD_D,D_ ( D+<l>> —iD_D,D, ( 3vaAq>D @)} +ecoc. (B14)

1 1 0A 1 0A 0A 0A

J--=1b-.D] {EA_E(‘)V_GDD‘(D v, o T av v e PP T v, e
0A

A 0A = 0A
+2lD_ <8V__(I) D_@) + 21D+ <WD+¢> —+ 8v__(D 8__®:|
+,P““a 10 <8A D(D) a_(imp_cp) A oo

,,®

oD oV_d OV, V_o ov_®
(0 o) o (0.0) - 2Aip0 0o (0 o)

-2D_D, <av?7€_q> a__<1>> +2D_ <ava% D+a__q>) -2D, <% D_a__<1>>

+ av?%maa_cb +2iD, D (avaiq) 8__¢> +2iD_D_ <8$A(D 6__d>>

+ Wai 5 0, 0__®+ agf 3 a%_cb] +2 [—D ( agAq,D cb) +D,D_D_ <<9V(37€_CD D_qn)
+iD.D_D, (% D_q>> _ib,D_D. (% D+<D)] +ec, (B15)
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where +c.c. means to add the complex conjugates of all
preceding terms (including the real quantity [D.,D,]A
for which the complex conjugate merely removes the
factor of 3).

The field V which appears in our deformation (3.10)
receives two contributions, one from the D term coupling
which depends only on .4 and one from the F term
coupling which depends only on the superpotential W.
Adding them, we find

V= D,Db. [ aavfcb Dy +2 av‘fé_(b D.D_®
+2iD, < ) +2iD., ( avaiq') D@)
+2iD_ (agAq) > +2iD_ (avafcﬁ D_® ]
+2W(D). (B16)

APPENDIX C: SIMPLIFYING THE
DEFORMATION ON-SHELL

In this appendix, we prove the claim that one can drop all
terms which involve products of (D, D_®) or (D,D_®)
and the four-fermion term |D®|* = D, ®D,®D_dD_d
when the equations of motion are satisfied.

To see this for the models we consider, it suffices to
consider a superspace Lagrangian of the form

L= /d49A((I),DiCD,D+D_CD,aiiq),c.c.)
= /d49(1<(q>, ®) + f(x,%,y)|DDP*), (C1)

which has the superspace equation of motion

D.D_Ky=D,D_ {Da {%;4)]

(€2)

for @, and the conjugate equation of motion for ®. If we
multiply (C2) on both sides by the four-fermion term
|DO|* = D, ®D,®D_®D_®, then any term containing
(D, ®) and (D.®) fermions in (C2) will vanish by
nilpotency. On the left, the only surviving term is
KogD . D_®, while on the right we get contributions from
the first and second terms:

Kog(D, D_®)|D®* = (D, D_®)|DD|*
- - |0 _ _
X {/ID+D_ [a—i ((9__<I>)(8++<D)}
X+Xx
-(57)
On collecting terms, the previous equation turns into
e

—iD.D_ {?yf(a__qs)(m@)} } =0. (C4)

(C3)

The parentheses multiplying (D D_®)|D®|* in the pre-
vious expression do not vanish in general, at least for 4
small enough. Then for (C4) to be satisfied, the equation

(D.D_®)|DD* =0 (C3)
has to hold when the equations of motion are satisfied. This
justifies our claim in Sec. IV A that we may drop all terms
involving the product y| D®|* in the deformation, assuming
we restrict to on-shell configurations.
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