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1

Introduction

There has been considerable recent excitement about quantum field theories in two dimen-

sions deformed by the irrelevant operator TT [1, 2]. Part of the reason for excitement is

that the deformed theory appears to be a new structure, which is neither a local quantum

field theory nor a full-fledged string theory. There are many basic issues yet to be resolved,

like how to define observables in the theory. What is understood, however, is the finite

volume spectrum [2, 3] and the structure of the S-matrix [4, 5]. For a recent overview, see

the review [6].



Another reason for excitement is apparent at the classical level. The T'T deformation of
a two-dimensional Lagrangian leads to a classical flow equation for the deformed Lagrangian

Ly (z) of the form

d 1 -
aﬁ)\ —gTT o det (TM,,[AC)\]) , (1.1)

where T),,[£,] is the stress-energy tensor for the deformed theory at value A of the flow
parameter. When the undeformed theory is a free scalar theory,

1
S = 3 /de 0" ¢ , (1.2)

the deformed theory is the gauge-fixed Nambu-Goto string with string tension determined
by the deformation parameter X [3, 7]:

S = /d2 <—+2)\\/1+2)\80¢60¢> : (1.3)

This is a beautiful connection between 7T deformations and a field theory which classically
possesses a non-linearly realized D = 3 Lorentz symmetry; for other connections between
TT and classical string theory, see, for example, [8-15].

The magic of TT in two dimensions is that this composite operator is well-defined at the
quantum level. This property does not currently extend to higher-dimensional candidates
without some additional ingredients. Ome such potential ingredient is supersymmetry.
Deforming a supersymmetric D = 2 theory with T'T preserves the original supersymmetry
of the theory. The supercurrent-squared operators that make the original supersymmetry
manifest have been explicitly constructed for various theories in [15-18]. The usual TT
operator is found as a supersymmetric descendant of supercurrent-squared up to equations
of motion and total derivatives.

Some of the simplest examples studied so far are 7T deformations of supersymmetric
free theories. A remarkable feature of the deformed models is that the resulting interacting
higher-derivative actions possess a set of hidden non-linear supersymmetries, in addition
to their linearly realized ones. The deformed actions with A/ = (0,1), (1,1) and (0,2)
supersymmetry [15-17] coincide with gauge-fixed supersymmetric Nambu-Goto models,
which exhibit various partial supersymmetry breaking patterns [19].

This connection between TT and structures which are central in string theory leads
to a natural question: are more general classes of theories with non-linear symmetries
related to flow equations for some analogue of TT? One recent set of examples are the
N = (2,2) supersymmetric TT-deformed actions of [18]. Do they also admit non-linear
supersymmetries? The answer is yes! Following the ideas of [20], in this work we explicitly
construct two models describing the partial supersymmetry breaking pattern V' = (4,4) —
N =(2,2) in D = 2. These models have manifest N' = (2,2) supersymmetry from the
superspace structure used in their construction, but they also admit another hidden non-
linear N' = (2,2) supersymmetry. It turns out the resulting actions are exactly the same
as the ' = (2,2) chiral and twisted chiral TT-deformed actions of [18]. The intriguing
relation between non-linear supersymmetry and 77T therefore persists for models with



manifest ' = (2,2) supersymmetry. Interestingly, even the D = 2 Volkov-Akulov action,
describing the dynamics of the Goldstinos which arise from the spontaneous breaking of
N = (2,2) supersymmetry, satisfies a T'T flow equation [21].

This collection of examples motivates us to see whether any higher-dimensional theo-
ries with non-linear supersymmetries might also satisfy 7'T-like flow equations. It has been
known for more than two decades that the Bagger-Galperin action for the D = 4 N =1
Born-Infeld theory describes N' =2 — N = 1 partial supersymmetry breaking [22]. Does
the Bagger-Galperin action arise from a T'T-like deformation of N' = 1 Maxwell theory?
That the linear order deformation is given by a supercurrent-squared operator was noted
long ago in [23]. Much more recently, bosonic Born-Infeld theory was shown to satisfy a 72
flow equation, where T2 is an operator quadratic in the stress-energy tensor [24]. In this
work, we explicitly show that the Bagger-Galperin action indeed satisfies a supercurrent-
squared flow equation, generalizing the observation of [23] to all orders in the deformation
parameter. The supercurrent-squared deformation operator is constructed from supercur-
rent multiplets, but its top component contains other currents besides the stress-energy
tensor. This is different from D = 2 where the top component of the supercurrent-squared
operator is exactly the standard 7T operator on-shell.

This paper is organized as follows: in section 2, we show that D = 2 N' = (2,2)
deformed models of either free chiral or twisted chiral multiplets possess additional non-
linearly realized N' = (2,2) supersymmetries. In section 3, we describe a particular four-
dimensional analogue of T'T motivated by [24], and generalize it to a supercurrent-squared
operator for theories with A/ = 1 supersymmetry. Section 4 reviews the argument that
relates bosonic Born-Infeld theory to the solution of a T? flow equation [24]. In section 5,
we show that A/ = 1 Born-Infeld theory satisfies a supercurrent-squared flow equation to
all orders in the deformation parameter. In section 6 we show that a particular form of the
D = 4 Goldstino action also satisfies a supercurrent-squared flow, generalizing the D = 2
result of [21]. We end with concluding thoughts in section 7. Appendix A contains a useful
result for the analysis of section 5.

2 D=2 N = (2,2) flows and non-linear N' = (2, 2) Supersymmetry

The N = (2,2) supersymmetric extension of 7T was recently studied in [18], where the
existence of extra non-linearly realized supersymmetries for some solutions of the 7T flow
equation was briefly discussed. In this section, we are going to explore in detail how these
non-linear supersymmetries arise for the simplest N' = (2,2) TT flows. The undeformed
models are supersymmetrized theories of free scalars, while the deformed models are N =
(2,2) supersymmetric extensions of the D = 4 gauge-fixed Nambu-Goto string studied
in [18]. Before entering into the details of how the non-linear supersymmetry arises, let us
review some of the results of [18] that are relevant for the analysis in this section.

2.1 TT deformations with N' = (2, 2) supersymmetry

The composite operator

TT(x) = Ty (2) T (z) — [O(2)]?, (2.1)



written here in light-cone coordinates, possesses several remarkable features. Although it
is an irrelevant operator, it is quantum mechanically well-defined and preserves many of
the symmetries of the undeformed theory [1-3].

In particular, TT deformations preserve supersymmetry along the flow [15-18, 25].
More specifically, the TT(z) operator of a supersymmetric theory is related to a supersym-
metric descendant operator 77T (z),

TT(x)=TT(x) + EOM + 04 (- ) +0__(---) . (2.2)

The previous equation states the equivalence of TT(x) and 7T (z) up to total derivatives
and terms that vanish on-shell, which we have indicated with “EOM”. When N = (2,2)
supersymmetry is linearly realized and preserved along the flow, which is the case of in-
terest for this analysis, 77 (z) is expressed as a D-term, or full superspace integral, of a
supercurrent-squared primary operator [18]:

TT(x):/d490FZ(x,9), O¥%(2,0) == —T 4 (2,0)T__(x,0) + 2V(x,0)V(z,0) . (2.3)

Here Jx+(z,60), V(x,0) and its complex conjugate V(x, #) are the local operators describing
the Ferrara-Zumino (FZ) supercurrent multiplet for D = 2 N/ = (2,2) supersymmetry [26,
27].1 These operators satisfy the following conservation equations

DiJey = +DLV, DV =0, (2.4)

together with their complex conjugates. In superspace, assuming the supersymmetric La-
grangian Ly (z) along the flow is given by

Ly(z) = /d49 A (z,0), (2.5)

with Ay(z,0) the full superspace Lagrangian, the flow equation can be rewritten in a
manifestly N' = (2, 2) supersymmetric form:

d 1 1 _
ﬁA)\ = —g(’)FZ =3 (j++J—_ — QVV) . (2.6)

In [18] supersymmetric flows for various theories were studied. The simplest cases, on
which we will focus in this section, are TT-deformed theories of free scalars, fermions and
auxiliary fields. In the case of D = 2 N = (2,2) supersymmetry, a scalar multiplet can
have several different off-shell representations [28-31]. The two cases we will consider here
are chiral and twisted-chiral supermultiplets, which are the most commonly studied cases.

In N = (2,2) superspace, parametrized by coordinates (M = (z**, 0% 6%F), let
the complex superfields X (x,0) and Y (z,0) satisfy chiral and twisted-chiral constraints,
respectively,

DiX =0, D, Y=DY=0. (2.7)

!For simplicity, we have assumed that the D = 2 A/ = (2, 2) theory possesses a well-defined FZ multiplet.
For a description of the more general case where one needs to use the N' = (2,2) S-multiplet of currents,
discussed in [27], to define the the supercurrent-squared operator we refer to the original analysis of [18].



Here the supercovariant derivatives and supercharges are?

0 At _ 0 ot
Dy = aoﬁ +10701y, Dy = _%ﬁ — 307044, (2.8&)
e, - ~ .0
Q+ = Zaoﬁ +050sr, Qi= —Zaoﬁ — 0%,y (2.8b)
and they satisfy
D:Qt:D:Qt:Ov {D:taD:I:}:_2ia:|::ta [D:baﬂ::t] = [Dﬂ::a:l::l:] =0, (293‘)
Qi=Q1=0, {Q+,Qs} = 2004, [Q+,01++] = [Qx,0++] =0 . (2.9b)

There is one more caveat worth mentioning: in much of the N' = (2,2) literature, twisted-
chiral multiplets, often denoted ¥ in this context, naturally arise as field strengths for
N = (2,2) vector superfields V. The lowest component of such a superfield is a complex
scalar, but the top component proportional to §~61 encodes the gauge-field strength along
with a real auxiliary field. On the other hand, there are twisted chiral superfields denoted Y
whose bottom component is a complex scalar and whose top component is just a complex
auxiliary field. It is to this latter case that we restrict. The free Lagrangians for these
supermultiplets are given by

&= /d40X)_(, L = —/d40Y17 : (2.10)
In [18] it was shown that the following Lagrangian

MDD, XD,XD_XD_X
1- I+ /1= 24+ B2

¢ = /d49 XX + : (2.11a)

with
A - 8++X8,,X —|— 8++X0,,X, B - 0++X3,,X - 8++X8,,X, (211b)

is a solution of the flow equation (2.6) on-shell, and hence describes the T7T-
deformation (1.1) of the free chiral supermultiplet Lagrangian (2.10).

A simple way to generate the TT-deformation of the free twisted-chiral theory is to
remember that a twisted-chiral multiplet can be obtained from a chiral one by acting with
a Zs automorphism on the Grassmann coordinates of N' = (2,2) superspace:

OF 0T, 07 -0 . (2.12)

This leaves the D, and D, derivatives invariant while it exchanges D_ with D_. As
a result, the chiral and twisted-chiral differential constraints (2.7) are mapped into each
others under the automorphism (2.12).3

2The reader should be aware that in this section we follow the notation of [32], which is slightly different
from the notation used in [18].

3In the literature this Z, automorphism (2.12) is often called the “mirror-map” or “mirror-image”
because it exchanges the vector and axial U(1) R-symmetries.



Under the Zy automorphism (2.12), the Lagrangian (2.11a) turns into the following
twisted-chiral Lagrangian

AD,YD,YD_YD_Y
1= DM+ /1- 24+ s

Li = —/d49 YY + : (2.13a)

where
A - 8++Y877Y —|— 8++Y677Y, B — 3++Y8,,}7 - 8++}78,7Y . (213b)

Thanks to the map (2.12), by construction the Lagrangian (2.13a) is a TT-deformation (1.1)
and its superspace Lagrangian A, £ = [ d*0 A%, is an on-shell solution of the following
flow equation

d tc 1 R

—AY == (RysR__ —2BB) . 2.14

L=t ) .14
Here Rax(x,0), B(z,0) and its complex conjugate B(x,0) are the local operators de-
scribing the R-multiplet of currents for D = 2 N' = (2,2) supersymmetry that arise by
applying (2.12) to the FZ multiplet of the chiral theory (2.11a) [18]. They satisfy the

conservation equations,
D,R__=iD_B, D_R,, =iD.B, D,B=D_B=0, (2.15)

together with their complex conjugates. Like the case of the FZ-multiplet, the supercurrent-
squared operator

TT(z) = / d*0 OR(x,0), OF(z,0) = Ry (z,0)R__(x,0) + 2B(z,0)B(x,0), (2.16)

satisfies (2.2); namely, 7T (z) is equivalent to 7T (x) up to total derivatives and EOM [18].
Note that the bosonic truncation of both (2.11a) and (2.13a) give the Lagrangian

V 1 + 2\a + )\2b2 -1 i a 6++¢8__¢8++¢_56__5

Lobos = — 2 , 2.17
P 4 4 14 da+ V1+2ha+ A2 (2.17)

where
a=0y4¢0_¢+0;160__¢, b=011¢0— ¢ — 4400, (2.18)

and ¢ is either ¢ = X|p—g or ¢ = Y|p—o. This is the Lagrangian for the gauge-fixed
Nambu-Goto string in four dimensions [3].

The aim of the remainder of this section is to show that the Lagrangians (2.11a)
and (2.13a) are structurally identical to the Bagger-Galperin action for the D = 4 N =
1 supersymmetric Born-Infeld theory [22], which we will analyse in detail in section 5.
Since the Bagger-Galperin action possesses a second non-linearly realized D = 4 N =1
supersymmetry, we will show that the theories described by (2.11a) and (2.13a) also possess
an extra set of non-linearly realized N’ = (2,2) supersymmetries.



2.2 The TT-deformed twisted-chiral model and partial-breaking

Let us start with the twisted-chiral Lagrangian (2.13a) which, as we will show, is the one
more directly related to the D = 4 Bagger-Galperin action. In complete analogy to the
D = 4 case, we are going to show that (2.13a) is a model for a Nambu-Goldstone multiplet
of D=2N = (4,4) - N = (2,2) partial supersymmetry breaking. The analysis is similar
in spirit to the D = 4 construction of the Bagger-Galperin action using D = 4 N = 2
superspace proposed by Rocek and Tseytlin [20]; see also [33-35] for more recent analysis.

To describe manifest N' = (4,4) supersymmetry we can use N = (4,4) superspace
which augments the N/ = (2, 2) superspace coordinates (M = (z**, 6%, 6%) of the previous
section with the following additional complex Grassmann coordinates (%, 7%). The extra
supercovariant derivatives and supercharges are given by

D, = ot +i 1y, Dy “anr M 04+, (2.19a)
9 R
Q= 8 T 0 o1y, Q= —Zanﬁ =0 04y, (2.19Db)
with similar expressions for D_ and Q_. They satisfy

Di=D1 =0, {Dy,Di}=-2i0ssr, [Di,014]=[Dy,014]=0, (2.20a)
Q1 =091 =0, {Q4+,Q:i}=-2i0rs, [Qs,0++]=[0x,0:1]=0, (2.20Db)

while they (anti-)commute with all the usual Dy and Q4 operators.
Two-dimensional N = (4,4) supersymmetry can also be usefully described in the

language of N' = (2,2) superspace. In this section, we will largely refer to [32] for such
a description. In this approach from the full (4,4) supersymmetry, one copy of (2,2) is
manifest while a second (2,2) is hidden. For our goal of describing a model of partial
supersymmetry breaking, we view the hidden (2,2) supersymmetry as broken and non-
linearly realized. We will derive such a description starting from N = (4,4) superspace
and describe the broken/hidden supersymmetry using the n* directions.

The hidden supersymmetry transformation of a generic D = 2 N' = (4,4) superfield
U = U(x™*, 6%, 0%, n*, 7") under the hidden (2,2) supersymmetry is

SU=i(e"Qr+eQ_ —€eQ, —e Q. )U . (2.21)

The (2,2) supersymmetry, generated by the Q+ and Q4 operators, will always be manifest
and preserved, so we will not bother to discuss it in detail. For convenience, we also
introduce the chiral coordinate y** = z¥* + in*tp*. Using this coordinate, the spinor
covariant derivatives and supercharges take the form

0 L0 - )
Di=g +2mia ——, D=5z (2.22a)
9 _ 0 L9
QL = z—ani , Ot = z—an 2n 9yt (2.22D)



After this technical introduction, let us turn to our main construction. Consider a
(4,4) superfield which is chiral under the hidden (2, 2) supersymmetry:

DX =0. (2.23)
We can expand it in terms of hidden fermionic coordinates,
X=X+n"Xi+n X_+n"nF, (2.24)

where X = X (y**,0%,0%), X4 = Xo(y*t*,0%,0%) and F = F(y**,0%,0%) are them-
selves (2,2) superfields. In the following discussion, we will keep the 6%, 6% dependence
implicit. The hidden (2,2) supersymmetry transformation rules can then be straightfor-
wardly computed using (2.21) and (2.24). They take the form

06X = "X, —e X, (2.25a)
06X = FeTF — 2iet014 X, (2.25b)
OF = —2ie 0__X, +2ie 0,4 X_ . (2.25¢)

The X superfield is still reducible under N' = (4,4) supersymmetry so we can put ad-
ditional constraints on the (2,2) superfields X, X1 and F. Here we will consider (4,4)
twisted multiplets, and refer the reader to [28, 36—41] for a more detailed analysis. For
this discussion, we will follow the N = (2, 2) superspace description of [32]. One type of
twisted multiplet with (4,4) supersymmetry can be defined by setting

X, =D,Y, X =-D.Y, (2.26)

where X and Y are chiral and twisted-chiral, respectively, under the manifest (2,2) super-
symmetry:

Dy X=D_X=D,Y=D_.Y =0, Dy X=D_X=D,Y=D_.Y=0. (227
The superfield (2.24) becomes
X=X+n"D.Y -y D_Y+nty F. (2.28)
The supersymmetry transformation rules then become
6X = - D, Y+e DY, (2.29a)
OF = —2ie 0__D,Y —2iet0,, DY, (2.29b)

while § X remains the same as (2.25b). By using the conjugation property for two fermions,
x& = €x = —x¢&, and the conjugation property D, A = D, A for a bosonic superfield A4, it
follows that

5X=e¢D,Y-eDY. (2.30)

One can check that

§D*X = D?6X = D? <€+D+Y - E—D,Y) = 2iet0, D_Y +2ie0__D.Y, (2.31)



where D? = D, D_. Note that in the first equality we made use of the fact that the manifest
and hidden (2,2) supersymmetries are independent. The supersymmetry transformation
rule for —D?X is then exactly that of the auxiliary field F. Thus we can consistently set

F=-D?X, (2.32)

which is the last constraint necessary to describe a version of the (4,4) twisted multiplet in
terms of a chiral and twisted-chiral N = (2,2) superfields. The resulting (4, 4) superfield
X, expanded in terms of the hidden (2,2) fermionic coordinates, takes the form

X=X+n"D.Y -y D_Y —n"np D*X, (2.33)

which closely resembles the expansion of a D = 4 N = 2 vector multiplet when one
identifies the analogue of the D = 4 N = 1 chiral vector multiplet field strength W, with
the (2,2) chiral superfields DY and D_Y. Note in particular that X turns to be (4,4)
chiral:

D X =0, D X=0. (2.34)

To summarize: the entire (4,4) off-shell twisted multiplet is described in terms of one
chiral and one twisted-chiral (2,2) superfield, which possess the following hidden (2,2)
supersymmetry transformations:

60X = —"D.Y+e DY, (2.35a)
Y =e D_X+e¢ DX . (2.35Db)

Let us now introduce the action for a free N' = (4,4) twisted multiplet. Taking the
square of X in (2.33) we obtain

X2 =ty ( 92X DX + 2D+YD_Y) T (2.36)

where the ellipses denote terms that are not important for our analysis. Since X and there-
fore X? are chiral superfields, we can consider the chiral integral in the hidden direction

/ dntdn~X? =2XD*X —2D,Y -D_Y . (2.37)

Note also that, since X and Y are chiral and twisted-chiral under the manifest supersym-
metry (2.27), it follows that

/ P’z dfTdo=ditdd~ (XX - YY) = / d’*zdftdd~ D, D_(XX -YY),
_ / Prdo*dd(XD,D_X ~ D,V DY), (238)
which can also be rewritten as

/ d*xdftdo—ditdd (XX -YY) = / d*x dfTdo~ (XD+D_X - D.Y- D_Y> . (2.39)



The sum of the two equations above yields
4 / d?zdotdo~ditde (XX - YY) = / d?zd0Tdo~dnTdnT X% 4 c.c. . (2.40)

The left-hand side has an enhanced N' = (4,4) supersymmetry as discussed in [32]. This
becomes manifest from our (4,4) superspace construction on the right-hand side.

To describe N' = (4,4) — N = (2,2) supersymmetry breaking we can appropriately
deform the (4,4) twisted multiplet. Analogous to the case of a D = 4 N = 2 vector
multiplet deformed by a magnetic Fayet-Iliopoulos term [42] (see also [20, 33-35, 43]), we
add a deformation parameter to the auxiliary field F' of X, which is deformed to

Koot = X+ Dy¥ =0~ DY =y~ (DX + ) . (2.41)

Assuming that the auxiliary field F' gets a VEV, (F) = x or equivalently (D?X) = 0, then
by looking at the supersymmetry transformations of X for the deformed multiplet

5X. — +€T (DQX + n) — 29, X, (2.42)

we can see the N = (4,4) — N = (2, 2) supersymmetry breaking pattern arises; specifically,
the hidden N = (2,2) is spontaneously broken and non-linearly realized. For later use, it
is important to stress that, though the hidden transformations of 6 X1+ are modified by the
non-linear term proportional to x, the hidden transformation of X remains the same as in
the undeformed case given in eq. (2.29a).

In analogy to the D = 4 case of [20, 33, 34], to describe the Goldstone multiplet
associated to partial supersymmetry breaking we impose the following nilpotent constraint
on the deformed (4, 4) twisted superfield:

X2, =0= 2" <X(/<a + D2X)—D.Y - D_Y) T (2.43)
This implies the constraint
X(H + DQX) D,V - D.Y=0, (2.44)
which requires

D.Y-DY = W?
X = — — = — =,
k+ D?2X k+ D?2X

(2.45)

and its conjugate
- DY-DY  W?

X=""5Dx ~riDx° (246)

Here D? = D, D_,D? = —D, D_ and we have introduced the superfields:
W?=-X,X_ =D,Y-D.Y=D,D_(YY)=D*YY), (2.47a)
W?2=X,X_ =-D,.Y-DY=-D,D_(YY)=D*YY). (2.47Db)

~10 -



The constraint (2.44) is the D = 2 analogue of the Bagger-Galperin constraint for a
Maxwell-Goldstone multiplet for D =4 N = 2 — N = 1 supersymmetry breaking [22].
Combining (2.45) and (2.46) gives

D.Y-D.Y-D_.Y -D,Y
(k + D2X)(rk + D2X) |’

kX = DAYV — XX) = D? [YY _ (2.48)
which is consistent thanks to the x terms in the denominator. Because of the four fermion
coupling in the numerator of the last term, no fermionic terms can appear in the denomi-
nator. So effectively we have the equation

w2 D?W?
D2y :< D? __> e 2.49
(k+ Jeff = | K+ P S I K+I€+(D2X)eﬂ (2.49)
and its conjugate
o D22
D*X e = 2.50
Solving them we get
B — k? + VB2 + 2k2A + k4
(D) = DY tmer (2512)
K
o —_B— 2 B2 262 A 4
(D?X )t = R+ VB aPA+ KT (2.51b)
2K
Substituting these expressions into (2.48) gives
1_ _ 1 _ _ QW22
X = 2D%T, X =-DT, T=Y=YY — , (2.52)
K K A+ k% + VB2 +2r%2A + K*

where
A == D2W2 + D2W2 - {D2,D2}(Y§7) == 8++Y8,,}7 + 8++}7877Y , (253&)
B =D*W? - D*W?=[D*D*(YY)=0,,YO_ Y -0, YO__Y . (2.53b)

The result is that the N = (2,2) chiral part X of the N' = (4,4) twisted multiplet is
expressed in terms of the (2,2) twisted-chiral superfield Y. Thanks to the linearly realized
construction in terms of (4,4) superfields, it is straightforward to obtain the non-linearly
realized N = (2, 2) supersymmetry transformations for Y. In particular, it suffices to look
at the transformations of DY and D_Y that can be obtained by substituting back the
composite expression for X = X[Y] into the transformations (2.42). By construction, these
expressions ensure that 0.X transforms according to (2.29a).

Since X is chiral under the manifest (2,2) supersymmetry (2.27), we can consider the
chiral integral

1 1 -
Sy = —2/i/d2xd0+d9_X+c.c. = —2/d2x d9tdo~ D*Y + c.c.

= - / d?xdo*do~dotdo— Y . (2.54)
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A remarkable property of this action is that it is invariant under the hidden non-linearly
realized supersymmetry. Using (2.29a), we see that

1
082 = —5k / d2xD+D,5X‘9:éZO +c.c., (2.55a)

1

= —2H/d21‘< —2ie 0__D,Y — 2ie+8++D_)7> ‘9 3o +c.c.=0, (2.55b)

where we used the fact that Y is a twisted-chiral superfield (2.27).
Explicitly, the action reads

(2.56)

3 _ 3 2 21172
Sp2 = — / d*xdotdo=dotdo | VY — il ;
K2+ A+ VirY+ 2k2A + B2

which precisely matches the model of eq. (2.13a) if we identify the coupling constants:

A=—— (2.57)

2
This shows explicitly that the TT-deformation of the free twisted-chiral action possesses a
non-linearly realized ' = (2,2) hidden supersymmetry.
2.3 The TT-deformed chiral model and partial-breaking

Let us now turn to the 7T deformation of the free chiral model of eq. (2.11a). The construc-
tion follows the previous subsection with the difference that we will start with a different
formulation of the (4,4) twisted multiplet described in terms of (2, 2) superfields. Consider
again an N = (4, 4) superfield which is chiral under the hidden (2,2) supersymmetry:

D, Y=D.Yy=0. (2.58)
Its expansion in hidden superspace variables is
Y=Y+ Y+ Y. +0n G, (2.59)

where Y = Y (y**,0%,0%), Yo = Yi(y*tF,0%,0%) and G = G(y**,0%,0%) are them-
selves superfields with manifest (2,2) supersymmetry. The hidden (2,2) supersymmetry
transformation rules of the components are

Y = — 'Yy —€e Y., (2.60a)
0y = FeTG — 2iet0. Y, (2.60D)
0G = —2ie 0__Y, +2iet0,,Y_ . (2.60c)

This representation of (4,4) off-shell supersymmetry is again reducible so we can im-
pose constraints. As in the construction of the previous section, we impose

Y, =D,X, Y.=D_X, (2.61)

then
YV=Y+n"D,X+n D_X+n"nG. (2.62)

- 12 —



Here X and Y are consistently chosen to be chiral and twisted-chiral under the manifest
(2,2) supersymmetry:

D, X=D X=D,Y=D.Y =0, Dy X=D X=D,Y=D_Y=0. (263)

Then we have

Y =—"D, X —e D_X, (2.64)
as well as its conjugate
Y =D, X+e D_X . (2.65)
Hence it follows that
§(DyD_Y)=D,D Y =2iet0,,D_X —2ie 0__D,X . (2.66)

This should be compared with
0G =2ie" 0, D_X —2ie 0__D, X, (2.67)

showing that D, D_Y transforms exactly like the auxiliary field G. This enables us to
further constrain the (4,4) multiplet by setting

G=DyD_Y . (2.68)
Imposing these conditions gives a (4,4) twisted superfield
YV=Y+nt"D,X+n D_X+n"n DyD_Y, (2.69)

which by construction is twisted-chiral and chiral with respect to the manifest and hidden
(2,2) supersymmetries, respectively:

D, Y=D.Y=0, DiY=0. (2.70)
Its free dynamical action can be easily constructed by considering its square
Y2 — 2t (YD+D_Y D, X- D_X) o (2.71)
In fact, the following relations hold:
/ d?xdotdo~dotdd~ (XX - YY) = / d?xddtdi D, D_(XX -YY),
- / A2 do+ i~ (D+X D_X - ?DJ,Y) (2.72)
Alternatively,
/ Pz dfTdo=ditdd~ (XX - YY) = / d?xdfTdd"D,D_(XX -YY),

= /d%;de*da (D+X-D_X —YD+D_}7> - (2.73)
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These relations imply
4 / d*xdftdo—ditdd (XX - YY) = / d?xdodo—dntdn~ Y? +c.c. . (2.74)

Once again the (4,4) supersymmetry of the left hand side becomes manifest on the right
hand side.

As in the (4, 4) twisted multiplet considered in the previous subsection, we can deform
this representation to induce the partial breaking. The deformed multiplet is described by
the following (4,4) superfield:

Vet =Y + 0Dy X + 17 D_X + 00~ (D+D,Y n H) : (2.75)

The hidden supersymmetry transformations of the component (2,2) superfields can be
straightforwardly computed using the arguments of the previous subsection. For the goal
of this section, it is enough to mention that JY is the same as the undeformed case of
eq. (2.64).

To eliminate half of the degrees of freedom of Y4 and describe a Goldstone multi-
plet for N' = (4,4) — N = (2,2) partial supersymmetry breaking, we again impose the
nilpotent constraint

Vi =0=27"n" (Y(s+DyD_¥) =Dy XD X)+... . (2.76)

This yields the following constraint for the (2,2) superfields

Y(k+DyD_Y)-~D,X-D_X =0, (2.77)
which is equivalent to
_ _ —~ _ _ =2
D, X -D_X w? _ D_X-D,X W
y = /2 —=——b, Y= = S (2.78)
/{Z—|—D+D7Y /’i‘i‘ﬁ Y K+D+D7Y /{-|—D2Y

=2 _ ~ _
Here D = D,D_,D? = —D,D_ and we have introduced the following bilinears:

_ <2

—~ _ _ =2 _ _ ~ _
W?=D,X-D_X =D (XX), W =D_X-D,X =D*XX). (2.79)

Using exactly the same tricks as before and inspired by the D = 4 Bagger-Galperin
model, we can solve the constraints (2.77) to find

—_— =2

=2~ _ ~ o~ ~ = _ 2
Y:EDT, Y:lDQT, T="=XX— — QV[ZW _
K k A+ k24 VB2 + 2624 + K4

. (2.80)

where

A=DW?+ D*W2={D?D2}(XX) =0, XO__X +0,,X0__X , (2.81a)
~ ~ oy~ =2.<2 ~n < _ _ _
B=D*W?-DW =[D*D?(XX)=0,,X0__X—-09,,X0__X. (2.81b)
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Since Y is twisted-chiral under the manifest (2,2) supersymmetry (2.63), we can con-
sider the twisted-chiral integral

1 _ 1 _ =2~ o~

S 2= 2/6/(12:13 d0TdO"Y +c.c = 2/d2x d0tdo~D Y +c.c. = /d% dordo=doTdo—Y .

(2.82)

By using arguments analogous to those around egs. (2.55) of the previous subsection, the
action (2.82) proves to be N’ = (4,4) supersymmetric.

Explicitly, the action reads
T
S 2= / A’z dotdo—dotdo— | XX — - S— (2.83)
HQ+A+\/I€4+2I£2A+B2

which precisely matches the model of eq. (2.11a) if we identify the coupling constants:

2

(2.84)
This shows explicitly that the TT deformation of the free chiral action possesses a non-
linearly realized N’ = (2,2) supersymmetry.

3 D = 4 T? deformations and their supersymmetric extensions

In section (2) we exhibited the non-linear supersymmetry possessed by two D = 2 N =
(2,2) models constructed in [18] from the TT deformation of free actions. The striking
relationship with the D = 4 supersymmetric Born-Infeld (BI) theory naturally makes one
wonder whether some kind of T'T flow equation is satisfied by supersymmetric D = 4 BI,
and related actions. We will spend the rest of the paper exploring this possibility. In this
section, we start with a few general observations on T2 or supercurrent-squared operators
in D > 2.

3.1 Comments on the T? operator in D = 4

In two dimensions, by 7T we mean the operator T TH — (T} )2, which is proportional
to det[T},,] [1-3]. One can attempt to generalize this structure to D > 2. In general, one
could consider the following stress-tensor squared operator

ov, =rmr,, —re?,  e=Tk, (3.1)

with r a real constant parameter. In two dimensions, the unique choice r = 1 yields a well
defined operator which is free of short distance singularities [1, 2]. However, to the best of
our knowledge, there is no analogous argument in higher dimensions that guarantees a well-

]

defined irrelevant operator O¥2 at the quantum level. Nevertheless, in a D-dimensional
space-time, one possible extension is given by Og:l with » = 1/(D — 1), which reduces to
the T'T operator in two dimensions.

This operator has received some attention recently since it is motivated by a particular
holographic picture in D > 2 [44, 45]. We will not enter into a detailed discussion of the
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(1/(D-1)
T2
combination is invariant under a set of improvement transformations of the stress-energy

physical properties enjoyed by O ], but simply make two brief comments. First, this

tensor. Indeed it is easy to show that such a T2 operator transforms by,

Og}!(Dfl)] — O;!(Dfl)] + total derivatives, (3.2)

if the (symmetric) stress-energy tensor shifts by the following improvement transformation,
T — Ty + (0,00 — 0 0%)u, (3.3)

for an arbitrary scalar field u.

Second, for any operator O% in D > 2 dimensions (or on a curved space), the original
argument of [1] for the factorization of the TT operator will no longer hold. For this
reason, such an operator will not enjoy the same properties at the quantum level as the
original D = 2 operator introduced by Zamolodchikov. In the approach to defining a
higher-dimensional T'T deformation through cut-off holography, one can sidestep this issue
by taking a large N limit, in which the factorization property is expected to hold [45, 46];
the precise relative coefficient r = 1/(D — 1) can be derived from considerations of bulk
gravitational physics.

In four dimensions, there is another choice of interest, specifically » = 1/2. In fact, it
was shown in [24] that the bosonic Born-Infeld action can be obtained by deforming the
free Maxwell theory with the operator O[TIQ/ 24 I this work, we are going to use O%/ 2 as
our deforming operator. Once generalized to the supersymmetric case, we will see that this

operator plays a central role for various models possessing non-linearly realized symmetries.
1/2
i
grangian density of the theory, or equivalently a shift of the zero point energy. This can

One interesting property enjoyed by O is its invariance under a shift of the La-
serve as motivation for this particular combination. Under a constant shift of the La-

grangian density £, and correspondingly its stress-energy tensor,

Lo Lye, T T _cphv, (3.4)

r]

the composite operator O[T2 transforms in the following way:

ol — ol 4+ 2c(2r — 1)O + 421 — 1) . (3.5)

When the theory is not conformal, which is the general situation at an arbitrary point in
the flow since the deformation introduces a scale, and r # 1/2, the operator O% always
transforms in a non-trivial way because of the extra trace term. This implies that under a
constant shift in the Lagrangian, the dynamics is modified which is certainly peculiar since
the shift is trivial in the ul}deformed theory.?

However if r = %, Og:g is unaffected up to an honest field-independent cosmological
constant term. The shift of the vacuum energy does not affect the dynamics of the theory,

Tt is worth mentioning that another type of higher-dimensional generalization of TT-deformations,
specifically the operator |det T\l/(D”), was studied in [7, 47].
5Tt is worth noting that T'T in D = 2 shares this peculiarity.
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as long as the theory is not coupled to gravity. This property is especially interesting, since
the D = 4 N = 1 Goldstino action, which we will study in section 6 in the context of
T? flows, is the low-energy description of supersymmetry breaking which can generate a
cosmological constant. For these reasons, we will study the particular operator quadratic
in stress-energy tensors given by

1
Ops =TT, — 5@2 , (3.6)
in the remainder of the paper.

3.2 D =4 N = 1 supercurrent-squared operator

We would like to find the N = 1 supersymmetric extension of the Op2 operator in four
dimensions. As reviewed in section 2, in two dimensions the manifestly supersymmetric
TT deformation is roughly given by the square of the supercurrent superfields. One might
suspect that a similar construction holds in four dimensions.

For the remainder of this work, we will assume that the D = 4 A/ = 1 supersymmetric
theories under our consideration admit a Ferrara-Zumino (FZ) multiplet of currents [26].
Generalizations of this case involving the supercurrent multiplets described in [27, 48-54]
might be possible, but merit separate investigation. The operator content of the FZ mul-
tiplet, which has 12412 component fields, includes the conserved supersymmetry current
Sjia, its conjugate Sué‘ and the conserved symmetric energy-momentum tensor 7},

Ty =Top, T =0, S, =0"S,=0. (3.7)

The FZ multiplet also includes a complex scalar field x, as well as the R-current vector
field j,, which is not necessarily conserved [26].

In D =4 N = 1 superspace, the FZ multiplet is described by a vector superfield 7,
and a complex scalar superfield X satisfying the following constraints:%

D%Jus = Do X, DsX =0 . (3.9)

The constraints can be solved, and the FZ supercurrents expressed in terms of its 12 4+ 12
independent components read”

. o . .
Tu(x) = ju+0 <Su —~ \/iaux> +60 <Su + ﬁaux) + %92@3 — %«92aux
2

_ 1
405" 0 (2TMV — g’f]'w/@ — 2€yupo'apja>
1

i oo { = 1 .\ i _ -
_2929@5# i \/iou(f%() _ 2929@5# _ \@aﬁx>
1.~ 1
+§0292 (aua”j,, - 502 ju> , (3.10)

SWe follow the conventions of [55] except for the conversion between vector and bi-spinor indices. Fol-
lowing [27], we will use the convention vas = —20(‘;@1)“7 vy = i&o“j‘vad. Then it follows that

1

1 . 0B A
Tac = =205 T, J" = Zjaaﬁuaa7 T =" T T = —g€ ﬂeaﬁj&é‘jﬁﬁ : (3-8)

"For convenience, we have rescaled the supersymmetry current compared to [27]: Sﬂere = —iS;here.
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and

X(y) = x(y) + V20x(y) + 6°F(y), (3.11a)
Xa = ?(a“)wgﬁ‘, F= %9 + 90, 3" (3.11b)

where the chiral coordinate y* = z* + ifo*0, and we used @ = ot Oy, @ = o10,.

If we seek a manifestly supersymmetric completion of the operator (3.6) by using
combinations of the supercurrent superfields with dimension 4, it is clear that the only
possibility is the full superspace integral of a linear combination of J2 and XX. Up to
total derivatives and terms that vanish by using the supercurrent conservation equations,
or equivalently that vanish on-shell, the D-terms of J? and XX are given by®

1 2 1 Nl s Lo
‘72’9252 = nuujﬂjl/|92§2 == <2T,LW - gn,uu@ - flz,upaap]0> + ju<a'u8 Jv — 582]/1)

2 2

1 ] _
+50x0"% + ;(A - A> (3.13a)

4 5 2 3 1
— 2 02 _ Y N 2 92 9 cau
2(Tpw)” + 9@ 4<<9Hj ) 4ju8 JH+ 28#x8 X
+i(S,PS" — xPx ) + total derivatives + EOM, 3.13b
w
and
¥|g2g2 = FF — 9, x0Mx — i){x + total derivatives 14a
XX|p252 = FF — 9,x0* ) 1d 3.14
4 —

= §®2 + (auj’*)2 — 9ux0"x — ixPx + total derivatives . (3.14Db)

To get a manifestly supersymmetric extension of Oz = T? — %@2, we have to consider
the following linear combination”

1 D, 1 . 5. =
= —— My — = — ao Yy —
Or2 2<7] Ty + 4XX> 16j Tad SXX. (3.16)

In fact, the supersymmetric descendant of the supercurrent-squared operator Oz is

Ore = /d49 Op (3.17a)
1 3 3 ' au 9 _z
=72 _ 5@2 + ngOQjH + gﬁuxﬁ”i - ;(SM&SW - 4>_<$X>

+total derivatives + EOM . (3.17b)

8The composite A (and analogously its conjugate A) is given by

A= (S# - %qu() (@5’” - %U”é){) = S,P5" — xPx + V25" 8,X + total derivatives . (3.12)

The equality can be obtained with some algebra. Note that the last term drops after integration by parts

because of the conservation equation for S,,.
9More generally for the operator in (3.1), the supersymmetric generalization is given by

1
2

T v Or —2 v
ol = - (n“ T T + T2 XX) . (3.15)
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This result shows that Or2 is the natural supersymmetric extension of Or2. However, it
is worth emphasizing that in the D = 4 case, the supersymmetric descendent Op2 of Ope
has extra non-trivial contributions from other currents. This should be contrasted with
the D = 2 case where Op2 = Or2 up to EOM and total derivatives, see eq. (2.2).

It actually does not seem possible to find a linear combination of 72 and XX such
that an analogue of eq. (2.2) holds in D = 4. This suggests that, in contrast with the
D = 2 case, deformations of a Lagrangian triggered by the operators Opz and Op2 will in
general lead to different flows: one manifestly supersymmetric, while the other not.

4 Bosonic Born-Infeld as a T? flow

It was shown in [24] that the D = 4 Born-Infeld action arises from a D > 2 generalization
of the TT deformation. Specifically, the operator driving the flow equation was shown to
be the Op2 defined in eq. (3.6) of the preceding section. In this section we review this
result in detail as it is a primary inspiration for our supersymmetric extensions.

The D = 4 bosonic BI action on a flat background is given by

1
Spr = d*z [1 — \/— det(nu + oF, l,)]

:/d4

= -7 / d*z F? 4 higher derivative terms (4.1)

4

«
1oy J1+ 2 % (i)
\/jL 16 FF)

where F),, = (0,v, — 0,v,) is the field strength for an Abelian gauge field v, and
~ - 1
F?=F,F",  FF=F,F"= S Empo PP (4.2)

The stress-energy tensor for the BI action can be computed straightforwardly and it
reads [56]

FNFy 4 (14 P2 — S (FF) — 1= 5 )y

™ = — - — (4.3)
J1+SF (PR
This can be written in the following useful form
THY — Tl\/jll;xwell 77“1/ A* - B? (44)
VIt2A+ B oIt 2AT B I+ A4 VI T 241 B
where we used the stress-energy tensor for the Maxwell theory
y 1
Minsowen =~ F s+ L P2 (4.5)
while A and B are defined by
1 j .
A= a’F’,  B= iaQFF . (4.6)
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It is easy to compute the trace of the stress-energy tensor
4 A? — B?
a?V1+24+B%1+A+V1+24+ B?’

where, interestingly, the combination (A? — B?) proves to be related to the square of

0 =T"n,, = (4.7)

TY e~ Using the identity
(FF)? = i(em,paF“”Fp”V = AF,, F"PF,y F7" — 2(F?)? (4.8)
we see that
T = Fu PP E P = {(FF = (P92 4 (FFP) = (2= B9 (49)

Using tracelessness of the free Maxwell stress-energy tensor, the Op2 operator can be
easily computed:

1 4(A2%2 — B2 A2 — B?
Op=T%--0%= ( ) 2<1— ) (4.10a)
2 Oé4 1+2A+B2 (1—|—A+\/1+2A+B2)2

4(A2%2 — B2 1+4A—+V1+2A+ B2
— ( ) 5 <1 Lt teat > , (4.10Db)
oI+ 241 B? 1+ A++V1+2A+ B2
2 p2
_ 84 -5 ! (4.10¢)

a*V14+24+B21+A+V1+2A+ B2’

8(1+A—+/1+2A+ B?
(+A-yi+24+5% (4.10d)
a?y/1+2A + B?

The variation of the BI Lagrangian with respect to the parameter «

2 can be readily com-

puted, and it is given by

L, 1—1—%042F2— \/1—1—%042F2— %a‘l(FF)Q

7 = =
da aQ\/l + %a4F2 — %6044(FF)2

(4.11)

Once we use (4.6) it is clear that (4.10a) and (4.11) have exactly the same structure and
satisfy the following equivalence equation

(;fg‘ = éOTQ , (4.12)
showing that the BI Lagrangian satisfies a T2?-flow driven by the operator Og=.

Before turning to D = 4 supersymmetric analysis, it is worth mentioning that the
structure of the computation relating the Op2 operator to the bosonic BI theory, which
we just reviewed, is quite similar to what we saw in section 2 for the D = 2 N = (2,2)
supersymmetric 7T flows. For example, in the deformation of the free twisted-chiral mul-
tiplet action, the analogue of the A and B combinations of (4.6) is given by (2.53), but
the square root structure of the actions is completely analogous. This fact, together with
the non-linearly realized supersymmetry we investigated in section 2, naturally lead to the
guess that the D = 4 N/ = 1 supersymmetric Born-Infeld (BI) theory may also satisfy a
T? flow. The next section is devoted to explaining how this is the case.
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5 Supersymmetric Born-Infeld from supercurrent-squared deformation

In section 2 we proved, by analogy and extension of the D = 4 results of [22], that two
D = 2 supercurrent-squared flows possess additional non-linearly realized supersymmetry.
In this section we reverse the logic. We will look at a well-studied model, namely the
Bagger-Galperin construction [22] of D = 4 N = 1 Born-Infeld theory [23, 57], and show
that it satisfies a supercurrent-squared flow equation.

5.1 D =4 N = 1 supersymmetric BI and non-linear supersymmetry

Let us review some well known results about the D = 4 N' = 1 Born-Infeld theory [23],
the Bagger-Galperin action [22], the non-linearly realized second supersymmetry, and its
precise N' = 2 — N = 1 supersymmetry breaking pattern. For more detail, we refer to the
following references on the subject [20, 22, 23, 33-35].

We start with the following N/ = 2 superfield,

W(y,0,0) = X(y,0) + V2idW(y,0) — 2G(y,0),  y" = 2" +i0o"0 + o0, (5.1)

which is chiral with respect to both supersymmetries: '’

DeW = DWW =0 . (5.3)

Since we are ultimately interested in partial N’ = 2 — N = 1 supersymmetry breaking,
we will mostly use N' = 1 superfields associated to the § Grassmann variables to describe
manifest supersymmetry, while we use the § variable for the hidden non-linearly realized
supersymmetry. The N = 1 superfields X, W, and G of eq. (5.1) are chiral under the
manifest A/ = 1 supersymmetry. Under the additional hidden N = 1 supersymmetry, they
transform as follows:

0X = V2ieW , (5.4a)
oW = V20"€0, X + V2ieG, (5.4b)
0G = —V20,Wate . (5.4c)

The superfield (5.1) has 16+16 independent off-shell components and is reducible. It
contains the degrees of freedom of an N/ = 2 vector and tensor multiplet. To reduce the
degrees of freedom and describe an irreducible N' = 2 off-shell vector multiplet, we impose
the following conditions on the N’ =1 components of W:

(i) First that W, is the field-strength superfield of an N' = 1 vector multiplet satisfying,

DW, — DsW® =0, (5.5)

10We follow the conventions of [55]. The D =4, N = 2 superspace is parametrised by bosonic coordinates

2" and the Grasmannian coordinates (#%, 6%) and (6%, §%). In terms of the chiral coordinate y* introduced
in (5.1), the supercovariant derivatives are given by

0 o O
Da = ioh . 0% 5 & = T == .
504 + 2iot, 0 By D (5.2)

and similarly for ]ja, ]5&'.
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(ii) and that

G=-D?X. (5.6)

=

The latter condition can easily be seen to be consistent since it is straightforward to verify
that 2 D2X transforms in the same way as G given in (5.4c). Therefore we can impose (5.6)
without violating N = 2 supersymmetry.

Since W is chiral with respect to both sets of supersymmetries, we can consider the
following Lagrangian,

1 ~ 1 1 =52
o)zt = 4/d20d20w2 +c.c. = 4/d20<W2 — 2XD2X> +c.c. . (5.7)

On the other hand, the N' = 2 Maxwell theory written in terms of the N' = 1 chiral
superfields X and W, is given by

- J 1 1 _
ﬁj\l\//l_auzcwell = /d29d20XX+4/d29W2+4/d29W2’
1 1o
= 1 /d29 (W2 — 2XDQX) + c.c. + total derivative . (5.8)

We see that these two Lagrangians are the same, confirming that the extra constraint
imposed on W is correct. The off-shell N' = 2 vector multiplet can therefore be described
in term of the following NV = 2 superfield

W(y,0,0) = X(y,6) + V2i0W (y,0) — %92[)2)_((?;,«9) , (5.9)

where X and W, are N' = 1 chiral and vector multiplets, respectively. Their component
expansion reads:

Wo = —idg + 0aD — (0" 0) 0 F + 0* (0", \)a (5.10a)
X =2+V20x —6*F. (5.10b)
Following [20] (see also [33-35]), we break N' = 2 supersymmetry by considering a

Lorentz and NV = 1 invariant condensate with a non-trivial dependence on the hidden
Grassmann variables (W) = Wyt o 02 # 0, such that

W = Waew = W) + W =W + Waet , (5.11a)
~ 1ol =9 2
Whew = X + V2iW — Z92 (DQX + H) . (5.11b)

The hidden supersymmetry transformations of the N' = 1 components of the deformed
N = 2 vector multiplet turn out to be

60X = V2ieW , (5.12a)

W = ——et — eD?X +V20"€0, X . (5.12b)

V26 22
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Assuming the model under consideration preserves the manifest N’ = 1 supersymmetry,
which implies (D2X) = 0, the explicit non-linear x-dependent term in the transformation
of the fermionic W, signals the spontaneous partial breaking N' = 2 — N = 1 of the
hidden supersymmetry.

To describe the Maxwell-Goldstone multiplet for the partial breaking N' =2 — N =1,
we can impose the following nilpotent constraint on the deformed N = 2 superfield strength
Whew [20]

Waew)? = 0. (5.13)

Once reduced to N' = 1 superfields, following the expansion (5.11b), this constraint implies
the Bagger-Galperin constraint [22]

1 1o oo
—X =W?- 5XD2X, (5.14)
K

which can be solved to eliminate X in terms of W? = W*W,, and its complex conjugate
W2 = W,

X = sW? - *D? il (5.15)
1+ A+V1+24-82)’
where we have introduced:
K2 5 — K2 —o = —
A= ?(DZWQ +D*W?) =A, B= §(D2W2 —-D*W?* =-B. (5.16)

For later use we denote the lowest components of the composite superfields A and B
A= Alp—og, B = Bly—g - (5.17)

We will not repeat the derivation of (5.15) which can be found in the original paper [22],
and was reviewed and slightly modified in section 2 for our analysis in two dimensions.

The N = 1 supersymmetric BI action can be constructed using the following NV = 1
(anti-)chiral Lagrangian linear in X:

L, = L(/dzex +/d2§)‘<> : (5.18)

The second hidden supersymmetry eq. (5.12a) written in terms of the unconstrained real
vector multiplet V', where W, = —1/4D?D,V, takes the form:

- 1 _
0X = —Z\@ieO‘DQDaV . (5.19)

Using the fact that D2D?D,, o< 044 D%D®, one can immediately see that the supersymmetry
variation of £, in (5.18) is a total derivative. Therefore this supersymmetric BI action is
invariant under the second hidden non-linear supersymmetry.

Using the solution (5.15), the supersymmetric BI Lagrangian takes the explicit form

21172
L, = 1/d2¢9(mW2 — H3D2|: ww }) + c.c.
4k 1+ A+V1+24+ B2
1 1 . _ W22
== d29W2+/d29W2+2m2/d29d29 . (520
4/ 4 1+ A+VI+24+ B2 (5.20)
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which makes it clear that the supersymmetric Bl is a non-linear deformation of the free
N = 1 Maxwell theory. This supersymmetric extension of BI was first constructed by
Bagger and Galperin in [22]. In this work when we refer to the supersymmetric BI theory,
we will always mean the Bagger-Galperin action.

We can easily calculate the flow under the 2 coupling constant,

oL _ W22 1
= =92 [ d%0d%0 ) 5.21
OrK? / 1+ A+V1+24A+B2V1+2A+ 82 (5:21)

Our goal is now to show that the right hand side of this flow equation on-shell is the specific

supercurrent bilinear (3.16) that we introduced earlier. This will establish a supercurrent-
squared flow for the supersymmetric BI action.

Before turning to the core of this analysis let us recall that at the leading order in 2,
the fact that D = 4 N/ = 1 BI satisfies a supercurrent-squared flow was already noticed
in [23]. This result was also highlighted recently in the introduction of [16]. In fact, note
that in the free limit & = k = 0, the Lagrangian (5.20) becomes the N' = 1 supersymmetric

Maxwell theory. Its supercurrent multiplet is
jad = _4WaWda X = 07 (522)

where X = 0 because super-Maxwell theory is scale invariant. The supersymmetric 72
deformation operator (3.16) is then simply given by

1 . _ _
Op2 = TGJMJW — gxx = W2w?2, (5.23)
and to leading order (5.21) turns into [23]
gi’; = / 2OdPOW2W? + O(k?) = / d?0d?0 Op2 + O(K?) . (5.24)

This shows that the supercurrent-squared flow equation is satisfied at this order. The rest
of this section is devoted to demonstrating the full non-linear extension of this result. First,
we are going to look at the bosonic truncation of (5.20) and (5.21).

5.2 Bosonic truncation

In the pure bosonic case the gauginos are set to zero in (5.10a), A = A = 0, and W2 W?
only have 62,2 components, so A, B can only contribute the lowest components:

A= Alg—g = 252 (F2 - 2D2> . B=DBlg_o=2x%FF . (5.25)

Therefore the supersymmetric BI Lagrangian reduces to

1 N\ 2
L=—|1— \/1+4/€2(F2 —202) —4/<;4<FF>
8k2

The auxiliary field D = 0 after using its EOM, and the Lagrangian is equivalent to the

(5.26)

bosonic BI Lagrangian (4.1) with the identification a? = 8«2. This immediately implies
that on-shell the bosonic truncation of the supersymmetric BI satisfies a 72 flow equation
driven by the Oz operator (3.6), as we discussed in (4.10a). A similar story is going to
hold for the complete supersymmetric model of (5.20) and (5.21).
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5.3 Supersymmetric Born-Infeld as a supercurrent-squared flow

The supercurrent for the supersymmetric BI action (5.20) was computed in [58] for x? = %

To simplify notation, we will also consider the special case k2 = % in our intermediate com-

putations. The k-dependence can be restored easily and will appear in the final formulae.
We can straightforwardly use the results of [58] for our supercurrent-squared flow

analysis. The FZ multiplet was computed for a class of models described by the following

Lagrangian,
1 1 - 1 _ -
L=y /d20 W2+ 1 /d29 W2+ 4/d29d29 W2W?2A(u, @), (5.27)

where 1 1

u= §D2W2, = gD?W2 : (5.28)
The action (5.20) turns out to be given by the following choice of A(u, )

4
A(u,a) = , (5.29)
1+ A+ V1+2A4+ B2

where

A=2u+a), B=2u-—u). (5.30)
Following [58], we also introduce the composite superfields

A(uA) o D)

I'(u,w) = = 31
(wa)= DB pm) = 20D (5:31)
which, in the case of interest to us where (5.29) holds, satisfy
_ 4
'+T'—A= , 5.32a
(1+A+V1+24+B%)V1+2A4+ B2 (5:328)
_ 1
l+ul =1 ———— . (5.32Db)
V14244 B?
The supercurrents will also be functionals of the following composite
1o/~ 1 OA
M, = 1—-D?(W?(A+-D*(W?— .
iM, = W, { 1 (W ( + g <W 9 , (5.33a)
- Wa<1—2a1“) FWW( )+ W2, (5.33b)

where WW (- --) denotes terms which are proportional to W, W, while W2(---) denotes
terms proportional to W2. We will use similar notation with ellipses denoting quantities
with bare fermionic terms that will not contribute to the calculation because of nilpotency
conditions.

With the ingredients introduced above, the FZ multiplet for the supersymmetric BI
action is given by [58]

1 o _
X = ZW2D? (WQ(F 40— A)) , (5.34a)
AT N 1 > 27772 r
Tai = =2iMaWa + 2WaMs + 7 [Da, Dal <W W ) . (P yT - A)
HWRAW (- ) + W2 (---) . (5.34b)
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For our purposes, the superfields X and 7,4 can be further simplified as follows:

1 o _ _
X = SWRDHV?. (P+P—A) L WA, (5.35a)
W2 D212 ~
= WZDTW +W2AW(---), (5.35D)
3(1+A+\/1+2A+B2)

and

To = —AWaWa(l — al — ul) + %[pa,[yd] (w2i2) - (1 +F - A)

+WEW (o) + WRAW (- -+ ), (5.36a)
AW, N 2D W? - DaW?
VI+24A+8B2 3(1+A+V1+24+B2%)V1+2A+ B2
+WAW () + W2EW (), (5.36b)

where we used (5.32a).

The computation of XX is trivial and receives contributions only from the square of
the first term in (5.35b). The computation of J?2 is less trivial. It is obvious that the
last two complicated terms in the second line of (5.36b) make no contribution since all
the terms are proportional to WW, and we have the nilpotency property W WsW,, = 0.
The square of the first term is easy to compute, and it is proportional to W?2W?2. Next
we consider the cross product between the first and second term in (5.36b) which leads to
the relation:

W We - DW? . DYW? = W2(DW) - W3(DW) =0 . (5.37)
Remarkably, this cross term vanishes since, as shown in appendix A, on-shell it is true that

W2W?2DW =0 . (5.38)

A simple physical interpretation of this condition is that the manifest supersymmetry is
preserved on-shell, implying that the auxiliary field D o< D*W,|9—o has no vev, and is
at least linear in gaugino fields A\, o Wy|p—o. The vanishing of this cross term can be
compared with the pure bosonic case where the cross terms in 72 vanish because of the
tracelessness property of the free Maxwell stress tensor; see section 4. Finally, we compute
the square of the second term in (5.36b) which includes the following structure:

DW?. DAW?. D,2W? - DgW? = W2W?2D*W?2D*W? . (5.39)

Here we have used (Do W3)(D*WF) = —1D?*W? + WP D2Wj to simplify the result.
In summary, on-shell the contributions to the supercurrent-squared operator Op2 de-
fined in eq. (3.16) are given by

, 1 16w AW D2 DI
S|VI+24+ B 9V1+24+B2 (1+A+V1+24+B?)
B 4 217, 2D2 2D2 172
XX = WWZDTWEDTW (5.40b)

VIF2A+ B (1+ A+ VI+24+B?)°
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Adding these results gives the supersymmetric 72 primary operator Opz:

27172 21172 ND21172
OT2:1<j2+5XA?>: W 2<1 DTWDTW 2> (5.41a)
2 4 V1+ 24+ B2 41+ A+VI+24+B?)
277172 2 2
_ W 2<_ A B > (5.41b)
V1+2A+ B? (1+A+V1+24+B2)?

2W 22
= : 5.41
VI+2A+B2(1+ A+ V1+2A+ B?) (541¢)

It is worth noting that the simplifications occurring in constructing Op2 from the super-

currents are very similar to the bosonic case of (4.10a).
Comparing with (5.21), we see that eq. (5.41c) proves that the supersymmetric BI
action (5.20) is an on-shell solution of the flow equation

oL, 20121772

— = / d?0d*6* (5.42a)
Ok VI4+2A+B2(1+ A+ V1+2A4+B?)
= /d29d29_2 Or2 + total derivatives + EOM . (5.42b)
It therefore describes a supercurrent-squared deformation of the N/ = 1 free Maxwell

Lagrangian. This result establishes a relationship between non-linearly realized supersym-
metry and supercurrent-squared flow equations in D = 4.

Before closing this section, we should make a few comments regarding the on-shell
condition (5.38) used in establishing the supercurrent-squared flow equation for the D = 4
N =1 BI action. First it is important to stress that the flow equation is not satisfied by
the supersymmetric Bl action off-shell. Second, we note that the specific combination of
J? and XX studied is the unique choice for which (5.20) satisfies a supercurrent-squared
flow equation, even if only on-shell.

Such a non-trivial condition satisfied by the on-shell supersymmetric BI action is in-
triguing and hints at the existence of appropriate (super)field redefinitions which might
lead to a different supersymmetric extension of BI that satisfies the flow equation off-shell.
For example, it is know that the dependence of the off-shell extension on the auxiliary field
D can be modified by appropriate (super)field redefinitions, as well as redefinitions of the
full superspace Lagrangian. We refer to [59-62] for a list of relevant papers on this subject.
Under field redefinitions, the hidden supersymmetry will be modified but will remain a
non-linearly realized symmetry of the theory. The existence of an off-shell solution of the
supercurrent-squared flow is an interesting question for future research.

6 D = 4 Goldstino action from supercurrent-squared deformation

In section 5 we showed that the Bagger-Galperin action for the D = 4 A = 1 supersymmet-
ric BI theory satisfies a supercurrent-squared flow. It is known that the truncation of this
model to fermions describes a Goldstino action for D = 4 N' = 1 supersymmetry breaking;
see, for example, [61, 63, 64]. The A/ = 1 non-linearly realized supersymmetry arises as
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the non-linearly realized part of the N’ =2 — A = 1 breaking of the supersymmetric BI.
We have shown in sections 4 and 5.2 that the bosonic truncation of the supersymmetric BI
satisfies a T2 flow equation. The same should be true for the fermionic truncation. More
generally, one might argue that D = 4 N/ = 1 Goldstino models could satisfy a sort of flow
equation that organizes their expansion in the supersymmetry breaking scale parameter.

Note that in the D = 2 case, the intuition is similar. If we consider the actions analyzed
in section 2 that describe Goldstone models for partial D = 2 N = (4,4) - N = (2,2)
supersymmetry breaking, one can immediately argue that their fermionic truncation de-
scribes Goldstino actions possessing non-linearly realized D = 2 N = (2,2) supersymme-
try. These, by construction, are expected to satisfy a TT-flow equation. In fact, such
an argument is in agreement with the very nice recent analysis of [21] where a D = 2
Goldstino model possessing N = (2,2) non-linearly realized supersymmetry was shown
to satisfy the supercurrent-squared flow equation (2.6).! The model analyzed in [21] is
the analogue of the D = 4 model of [66, 67] and related on-shell to the Goldstino model
of [68].12 This section is devoted to showing that these D = 4 A" = 1 Goldstino models
satisfy a supercurrent-squared flow driven by the operator Op2 of the supersymmetric BI,
in agreement with the arguments given above.

6.1 D = 4 Goldstino actions

The Volkov-Akulov (VA) action is the low energy description of supersymmetry breaking.
There are several representations of the Goldstino action that are equivalent to the Volkov-
Akulov form; see [61, 69] for comprehensive discussions. Here we will focus on two models,
but we start by reviewing a few general features of Goldstino actions.

The original VA action was obtained by requiring its invariance under the the non-
linear supersymmetry transformation [70]

SN = 1€ iR(AT™E — £ X) DA . (6.1)
K

Explicitly, the original Lagrangian was proven to be

1 1 ] — _
Ly = —3,.2 det A = SCyehe %()\Um(‘)m)\ — OmAc"™\) + interactions, (6.2)
where
Ap® = 6,2 — k20, AT\ + iK2 AT O\ (6.3)

The alternative representation of the Goldstino action that interests us was originally
introduced by Casalbuoni et al. in [66], and later rediscovered and made fashionable by
Komargodski and Seiberg [67]. This model, which following recent literature we will call the
KS model, was constructed by imposing nilpotent superfield constraints as a generalization
of Rocek’s seminal ideas for the Goldstino model described in [68]. After integrating out

"We refer to [65] for a discussion of various models possessing non-linearly realized (2,2) supersymmetry.
2Note that the Goldstino models of [66-68] were shown in [61, 64] to be identical to the fermionic
truncation of the supersymmetric BI action up to a field redefinition of the Goldstino.
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an auxiliary field in the KS model, described in more detail in the next section, the explicit
form of the Lagrangian is given by the following very simple combination of terms:

1

»CKS = —f2 - %(wam md; - 8m¢0'm7vz) 4f2

_ 1 _ _
8“@028;11/)2 o Ww2w282w282¢2 ) (64)

The action is invariant under a quite involved non-linearly realized supersymmetry trans-
formation whose explicit form can be found in [64, 71]. The Goldstino actions described
by (6.2) and (6.4) prove to be equivalent off-shell up to a field redefinition [64, 71].

6.2 D = 4 KS Goldstino model as a supercurrent-squared flow

The goal in the rest of this section is to straightforwardly generalize the analysis of [21]
to D = 4 and to show how the KS action satisfies a flow equation arising from a 72
deformation of the free fermion action.

6.2.1 KS model
Let us start by reviewing the Goldstino model of [66, 67]. Consider the following Lagrangian

= 1 ([ _ 1-_
Lxs = /d40 PP + /d29<f¢> + 2A<I>2> + /d29 (f(I) + 2Aq>2> , (6.5)

where ®, ® are D = 4 A = 1 chiral and anti-chiral superfields, satisfying the constraints
Dy® = D,® = 0. The constant parameter f, which describes the supersymmetry breaking
scale, is real. The superfields A, A are chiral and anti-chiral Lagrange multipliers whose
EOM yield the nilpotent constraints

P?=0%2=0. (6.6)
The equation of motion for ® is
1 5= 1 5 o
ZD<I>:A<I>+f, ZD<I>:A<I>+f. (6.7)
As a consequence, we also have
PD?D =4fD, OD*® = 4fD, (6.8)

where the nilpotent properties of (6.6) are used. Note that the constraints (6.6) and (6.8)
are the ones originally used by Rocek to define his Goldstino model [68]. These observations
make manifest the on-shell equivalence of the KS model with Roéek’s Goldstino model in
a simple superspace setting. The off-shell equivalence of all these Golstino models up to
field redefinitions, including the VA action, was proven in [61].

The Lagrange multiplier in (6.5) imposes the nilpotent constraint ®? = 0 on the chiral
superfield ®. This condition can be solved in terms of the spinor field ¢ and the auxiliary
field F' of the chiral multiplet, [66, 67]:

2
b= 2 ’F .
2F+fe¢+9 , (6.9)
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which is sensible assuming that F' # 0. Substituting back into (6.5) gives a Lagrangian
expressed in terms of ¢ and the auxiliary field F,

Q,ZJQ

1¢2
Lks = —fiﬁaua;ﬂ/} + FF+ fa

) + fF +cc.. (6.10)
The auxiliary field can then be eliminated using its equation of motion, which can be solved
in closed form
¢ 3 27252 1292 72
F=—fl1+—"—F4 — 0“0 6.11
together with the complex conjugate expression for F. Plugging (6.11) into (6.10) gives
the Goldstino action (6.4) [66, 67].

6.2.2 D = 4 Goldstino action as a supercurrent-squared flow

One advantage of using the KS model compared to other Goldstino actions is the relatively
simple form of the action, thanks to the Lagrange multiplier, which makes the computation
of its supercurrent easier. The FZ multiplet resulting from the action (6.5) is

_ 9 _ _ 9 o
TJoe = 2D @ - D@ — g[Da, Dy](9P) = §D o® - Dg® — ;(@aadfb — <I>8ad<1>> ,(6.12a)
Ly a2 Loz 8 2
X =4(fo+ §A<I) - §D (D) = §f<1> + 2A0° . (6.12Db)
The composite operators J ad g o and XX are then
. 64 _
T T e = N f2®® + total derivatives + EOM , (6.13)
and
_64 L, -

XX:Ef ®P + EOM, (6.14)
where we used (6.6) and (6.7). The supercurrent-squared operator (3.16) then takes
the form

5 _ _
Opa = jwjm — SXX = —4f2dD 4+ EOM + total derivatives . (6.15)

The descendant operator Or 2 of eq. (3.17) becomes
Op> = /d29d29 Op2 = —4f2/d29d20 PP = 2f3/d29<1> + 2f3/d29<i>, (6.16)

where we used (6.8) in the last equality.
From (6.5), it is easy to see that the following relation holds:

57 _/d0<I>+ 200 . (6.17)

By identifying the coupling constants,

i (6.18)
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it follows immediately that the KS action,

S, = /d4x Lks (6.19)
satisfies the flow equation
8857 = / d*zd®0 ® + / dtzd*0 & = / d*zd*0d?0 Op2 = / dx Op . (6.20)
5

This proves that (6.5) satisfies a supercurrent-squared flow (or 72 flow) equation. Because
on-shell the actions (6.4) and (6.5) are equivalent, and the equation

/ d?0d*0 Op2 = Op»

holds, eq. (6.20) proves that the D = 4 A/ = 1 Goldstino action arises from a supercurrent-

squared deformation.'3

7 Conclusions and outlook

In this work we have explored the relationship between 77T deformations and non-linear
supersymmetry, extending the earlier analysis of [17, 18, 21]. We first showed how two
different D = 2 N = (2,2) TT deformations of free supersymmetric scalar models, studied
in [18], classically possess a hidden non-linearly realized N' = (2,2) supersymmetry. The
deformed theories are off-shell supersymmetric extensions of the gauge-fixed Nambu-Goto
string in four dimensions. One way to potentially understand the appearance of non-
linearly realized symmetries is by relating them to symmetries of the undeformed theories
using the field-dependent change of variables discussed in [25, 72].

These D = 2 models turn out to be structurally very similar to the Bagger-Galperin
action describing a D = 4 N' = 1 Born-Infeld theory, which possesses extra non-linearly
realized N' = 1 supersymmetry [22]. Inspired by this similarity and earlier work on the
bosonic BI theory [24], we proved that the N’ = 1 BI action satisfies a supercurrent-squared
flow equation to all orders in the deformation parameter, extending the beautiful initial
observation of [23].

Moreover, we concluded the paper by showing how the D = 4 N = 1 Goldstino
action also satisfies the same supercurrent-squared flow. This result extends the recent
D = 2 analysis of [21] to four dimensions. Our findings hint at an intriguing relation
between current-squared deformations and non-linear supersymmetry in various space-time
dimensions that calls for a deeper explanation.

For the D = 2 case where the TT operator is well-defined quantum mechanically, it
would be interesting to investigate other examples with various (super-)symmetry breaking

13The careful reader may find that the flow can also be satisfied by other supercurrent-squared operators,
J? — rXX, with arbitrary = because of the linearity between J2 and XX. It is worth pointing out the
same thing happens in D = 2 [21]. We stress that this is not the case for the supercurrent-squared flow
satisfied by the D = 4 supersymmetric Born-Infeld action.
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patterns, and analyze the consistency conditions required by the existence of non-linear
symmetries at the quantum level.!

Another interesting issue related to the quantum properties of D = 2 TT-deformed
models concerns their perturbative renormalization behavior. It is well known [4, 5] that the
effect of the T'T deformation in infinite volume is to modify the S-matrix of the undeformed
theory by a CDD factor. It is interesting to ask whether one could renormalize the classical
deformed action by adding some counter-terms and reproduce the S-matrix at the quantum
level. In [73], the authors managed to write down the one-loop effective action of the
deformed Lagrangian for a free massive scalar field. In the supersymmetric case it would be
interesting to see if with enough supersymmetry one could derive the effective action exactly
in A. For instance, if one deforms an N = (2,2) supersymmetric model with a Kéhler
potential K and superpotential W, it was shown in [18] that the superpotential W is left
untouched along the superspace 7T flow. Moreover, it is known that the superpotential W
is protected from perturbative quantum corrections. However, the Kahler potential suffers
from quantum corrections and a similar renormalization procedure of the one in [73] should
be performed to address the perturbative behavior of such Kéhler potential. We leave the
detailed analysis of this issue to the future.

For D > 2, to the best of our knowledge, there is no complete argument showing
[
of [44, 45], possesses any particularly nice quantum properties. By looking at our D = 4

that any of the proposed operators O;; of eq. (3.1), including the holographic operator

N =1 example, where the flow is controlled by the descendant operator @2 of (3.17), it
seems clear that any supersymmetric completion of Og:]Q will involve several other current-
squared operators. An important question is to understand whether such extensions have a
hope of providing well-defined operators at the quantum level. This seems most promising
in models with at least extended N > 1, and more likely maximal, supersymmetry.

In [45, 46], the authors studied the T2-deformation from an holographic perspective
ﬁ in the T? operator was motivated. In D = 4, the su-
persymmetric generalization of such a T2-operator is given in (3.15). It is interesting to

and a particular choice r =

study the supersymmetric generalization of the holographic setup in [45, 46], and especially
understand the role of other currents in supersymmetric T2-operator arising from the dif-
ference between Op2 and Op2. A purely field theoretical analysis of such a T2-operator
with r = ﬁ and its supersymmetric analog is also of great importance, in particular to
match the holographic result in the large- N limit. It is worth mentioning that in the case of
N = 4 supersymmetric Yang-Mills in four dimensions, some preliminary interesting results
of TT like irrelevant deformations preserving integrability were recently presented [74].
Putting aside the quantum properties of these deformations and flows, the connection
between non-linear symmetries and 77T flows might give a novel way to organize inter-
esting low-energy effective actions. The Born-Infeld and Goldstino actions that we have
analyzed in this paper are universal low-energy structures in string theory, and in the latter
case quantum field theory, precisely because of their non-linear symmetries, which can be

geometrically realized via brane physics.

14We are grateful to Guzmén Hernéndez-Chifflet for stimulating comments on this subject.
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The study of Volkov-Akulov-Dirac-Born-Infeld actions with extended supersymmetry
in various space-time dimensions and their relationship to string theory has received a lot of
attention in the past. We refer to the following (incomplete) list of references [20, 22, 57, 59,
60, 75-98]. It would be remarkable if the o’ expansion of these models can be reorganized
in a simple current-squared flow equation. An efficient way to address the cases we have
considered so far in D = 2 and D = 4 has been via superspace techniques. As a next step,
one could try to analyze possible flow equations satisfied by the D = 4 N’ = 2 extensions
of the DBI theory, which has been analyzed in superspace; see, for example, [89-95].

Another potentially tractable direction to be explored concerns the possible univer-
sality of the operator Op2 of (3.17) in the context of models with partial supersymmetry
breaking. In the literature there are other known models for D =4 N =2 — N = 1 super-
symmetry breaking that share structural similarities with the Maxwell-Goldstone model
of [22]. Well known are the Goldstone models based on the D =4 N = 1 tensor multi-
plet [62], see also [60, 61], which have a dual description based on a chiral N' = 1 multiplet.
It is simple to show that at first order these actions satisfy a supercurrent-squared flow
analogous to the Bagger-Galperin action. Whether that result extends beyond leading
order is a natural question.

A final avenue for future investigation concerns the relationship between T'T defor-
mations and amplitudes. In two dimensions, 77 simply modifies the S-matrix of the
undeformed theory by a CDD factor [4], but one might wonder about the S-matrices of
higher-dimensional theories deformed by generalizations of T7. One hint is that theories
with non-linearly realized symmetries exhibit enhanced soft behavior — indeed, in the case
of non-linearly realized supersymmetry, there is a proof that such symmetries generically
lead to constraints on the soft behavior of the S-matrix [99], a fact which has been applied
to the Volkov-Akulov action [100], which satisfies a T'T-like flow as we showed in section 6.

There are also examples involving purely bosonic theories. For instance, in four di-
mensions, the Dirac action is the unique Lorentz-invariant Lagrangian for a single scalar
which is consistent with factorization, has one derivative per field, and exhibits soft degree
o = 2 for its scattering amplitudes [101]. Similarly, it has been shown that the Born-
Infeld action for a vector can be fixed by demanding enhanced soft behavior in a particular
multi-soft limit [102], which can be understood in the context of T-duality and dimensional
reduction [103]. Given the hints of a deeper relationship between supercurrent-squared de-
formations, non-linearly realized symmetries, and actions of Dirac or Born-Infeld type,
it is natural to ask whether such deformations enhance the soft behavior of scattering
amplitudes in a more general context.
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A Deriving a useful on-shell identity

This appendix is devoted to deriving the on-shell relation (5.38). We are going to prove this
holds for an action of the form (5.27). Let us start by considering the following Lagrangian

1 1 S _ - o
L= 4/d20W2+ 4/d26W2 +/d29d20W2WZQ[D2W2,D2W2} . (A1)
Remember that W, and Wy satisfy the Bianchi identity D*W, = DsW¢ whose solution
is given in terms of a real but otherwise unconstrained scalar prepotential superfield V:

Wy = —1/4D?D,V and W = —1/4 D?2D,V . Tt is a straightforward calculation to derive
the EOM by varying the action (A.1) with respect to the prepotential V. The EOM reads

0= —D°W, + DC“D2 (W W2Q)

DaD
+ipelwpp? (wewe O o e (p2orwee O
2 ° D2W2 o(D2w2) )|

Because of the constraint that W,WgW, = 0 and its complex conjugate, multiplying
eq. (A.2) by W2W? and using the EOM gives the following condition

<W2WO‘Q> (A.2)

l\.’J\»—l

WADW,) (14 7(9) ) =0. (A3)
where the functional f(€) is given by
f(Q) = —%(DQW2 + D*W?HQ
5 (D2W2)(D2W2)a(;%v2) DWW (D) Da??/V?) (A4)
This implies
W2W?(D*W,) =0, (A.5)

which is precisely condition (5.38).
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