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1 Introduction

There has been considerable recent excitement about quantum field theories in two dimen-

sions deformed by the irrelevant operator T T̄ [1, 2]. Part of the reason for excitement is

that the deformed theory appears to be a new structure, which is neither a local quantum

field theory nor a full-fledged string theory. There are many basic issues yet to be resolved,

like how to define observables in the theory. What is understood, however, is the finite

volume spectrum [2, 3] and the structure of the S-matrix [4, 5]. For a recent overview, see

the review [6].
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Another reason for excitement is apparent at the classical level. The T T̄ deformation of

a two-dimensional Lagrangian leads to a classical flow equation for the deformed Lagrangian

Lλ(x) of the form
d

dλ
Lλ = −1

8
T T̄ ∝ det

(
Tµν [Lλ]

)
, (1.1)

where Tµν [Lλ] is the stress-energy tensor for the deformed theory at value λ of the flow

parameter. When the undeformed theory is a free scalar theory,

S =
1

2

∫
d2x ∂µφ∂

µφ , (1.2)

the deformed theory is the gauge-fixed Nambu-Goto string with string tension determined

by the deformation parameter λ [3, 7]:

S =

∫
d2x

(
− 1

2λ
+

1

2λ

√
1 + 2λ∂σφ∂σφ

)
. (1.3)

This is a beautiful connection between T T̄ deformations and a field theory which classically

possesses a non-linearly realized D = 3 Lorentz symmetry; for other connections between

T T̄ and classical string theory, see, for example, [8–15].

The magic of T T̄ in two dimensions is that this composite operator is well-defined at the

quantum level. This property does not currently extend to higher-dimensional candidates

without some additional ingredients. One such potential ingredient is supersymmetry.

Deforming a supersymmetric D = 2 theory with T T̄ preserves the original supersymmetry

of the theory. The supercurrent-squared operators that make the original supersymmetry

manifest have been explicitly constructed for various theories in [15–18]. The usual T T̄

operator is found as a supersymmetric descendant of supercurrent-squared up to equations

of motion and total derivatives.

Some of the simplest examples studied so far are T T̄ deformations of supersymmetric

free theories. A remarkable feature of the deformed models is that the resulting interacting

higher-derivative actions possess a set of hidden non-linear supersymmetries, in addition

to their linearly realized ones. The deformed actions with N = (0, 1), (1, 1) and (0, 2)

supersymmetry [15–17] coincide with gauge-fixed supersymmetric Nambu-Goto models,

which exhibit various partial supersymmetry breaking patterns [19].

This connection between T T̄ and structures which are central in string theory leads

to a natural question: are more general classes of theories with non-linear symmetries

related to flow equations for some analogue of T T̄? One recent set of examples are the

N = (2, 2) supersymmetric T T̄ -deformed actions of [18]. Do they also admit non-linear

supersymmetries? The answer is yes! Following the ideas of [20], in this work we explicitly

construct two models describing the partial supersymmetry breaking pattern N = (4, 4) →
N = (2, 2) in D = 2. These models have manifest N = (2, 2) supersymmetry from the

superspace structure used in their construction, but they also admit another hidden non-

linear N = (2, 2) supersymmetry. It turns out the resulting actions are exactly the same

as the N = (2, 2) chiral and twisted chiral T T̄ -deformed actions of [18]. The intriguing

relation between non-linear supersymmetry and T T̄ therefore persists for models with
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manifest N = (2, 2) supersymmetry. Interestingly, even the D = 2 Volkov-Akulov action,

describing the dynamics of the Goldstinos which arise from the spontaneous breaking of

N = (2, 2) supersymmetry, satisfies a T T̄ flow equation [21].

This collection of examples motivates us to see whether any higher-dimensional theo-

ries with non-linear supersymmetries might also satisfy T T̄ -like flow equations. It has been

known for more than two decades that the Bagger-Galperin action for the D = 4 N = 1

Born-Infeld theory describes N = 2 → N = 1 partial supersymmetry breaking [22]. Does

the Bagger-Galperin action arise from a T T̄ -like deformation of N = 1 Maxwell theory?

That the linear order deformation is given by a supercurrent-squared operator was noted

long ago in [23]. Much more recently, bosonic Born-Infeld theory was shown to satisfy a T 2

flow equation, where T 2 is an operator quadratic in the stress-energy tensor [24]. In this

work, we explicitly show that the Bagger-Galperin action indeed satisfies a supercurrent-

squared flow equation, generalizing the observation of [23] to all orders in the deformation

parameter. The supercurrent-squared deformation operator is constructed from supercur-

rent multiplets, but its top component contains other currents besides the stress-energy

tensor. This is different from D = 2 where the top component of the supercurrent-squared

operator is exactly the standard T T̄ operator on-shell.

This paper is organized as follows: in section 2, we show that D = 2 N = (2, 2)

deformed models of either free chiral or twisted chiral multiplets possess additional non-

linearly realized N = (2, 2) supersymmetries. In section 3, we describe a particular four-

dimensional analogue of T T̄ motivated by [24], and generalize it to a supercurrent-squared

operator for theories with N = 1 supersymmetry. Section 4 reviews the argument that

relates bosonic Born-Infeld theory to the solution of a T 2 flow equation [24]. In section 5,

we show that N = 1 Born-Infeld theory satisfies a supercurrent-squared flow equation to

all orders in the deformation parameter. In section 6 we show that a particular form of the

D = 4 Goldstino action also satisfies a supercurrent-squared flow, generalizing the D = 2

result of [21]. We end with concluding thoughts in section 7. Appendix A contains a useful

result for the analysis of section 5.

2 D = 2 N = (2, 2) flows and non-linear N = (2, 2) Supersymmetry

The N = (2, 2) supersymmetric extension of T T̄ was recently studied in [18], where the

existence of extra non-linearly realized supersymmetries for some solutions of the T T̄ flow

equation was briefly discussed. In this section, we are going to explore in detail how these

non-linear supersymmetries arise for the simplest N = (2, 2) T T̄ flows. The undeformed

models are supersymmetrized theories of free scalars, while the deformed models are N =

(2, 2) supersymmetric extensions of the D = 4 gauge-fixed Nambu-Goto string studied

in [18]. Before entering into the details of how the non-linear supersymmetry arises, let us

review some of the results of [18] that are relevant for the analysis in this section.

2.1 T T̄ deformations with N = (2, 2) supersymmetry

The composite operator

T T̄ (x) = T++++(x)T−−−−(x)−
[
Θ(x)

]2
, (2.1)

– 3 –
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written here in light-cone coordinates, possesses several remarkable features. Although it

is an irrelevant operator, it is quantum mechanically well-defined and preserves many of

the symmetries of the undeformed theory [1–3].

In particular, T T̄ deformations preserve supersymmetry along the flow [15–18, 25].

More specifically, the T T̄ (x) operator of a supersymmetric theory is related to a supersym-

metric descendant operator T T̄ (x),

T T̄ (x) = T T̄ (x) + EOM+ ∂++(· · · ) + ∂−−(· · · ) . (2.2)

The previous equation states the equivalence of T T̄ (x) and T T̄ (x) up to total derivatives

and terms that vanish on-shell, which we have indicated with “EOM”. When N = (2, 2)

supersymmetry is linearly realized and preserved along the flow, which is the case of in-

terest for this analysis, T T̄ (x) is expressed as a D-term, or full superspace integral, of a

supercurrent-squared primary operator [18]:

T T̄ (x) =

∫
d4θOFZ(x, θ) , OFZ(x, θ) := −J++(x, θ)J−−(x, θ) + 2V(x, θ)V̄(x, θ) . (2.3)

Here J±±(x, θ), V(x, θ) and its complex conjugate V̄(x, θ) are the local operators describing
the Ferrara-Zumino (FZ) supercurrent multiplet for D = 2 N = (2, 2) supersymmetry [26,

27].1 These operators satisfy the following conservation equations

D̄±J∓∓ = ±D∓V , D̄±V = 0 , (2.4)

together with their complex conjugates. In superspace, assuming the supersymmetric La-

grangian Lλ(x) along the flow is given by

Lλ(x) =

∫
d4θAλ(x, θ) , (2.5)

with Aλ(x, θ) the full superspace Lagrangian, the flow equation can be rewritten in a

manifestly N = (2, 2) supersymmetric form:

d

dλ
Aλ = −1

8
OFZ =

1

8

(
J++J−− − 2VV̄

)
. (2.6)

In [18] supersymmetric flows for various theories were studied. The simplest cases, on

which we will focus in this section, are T T̄ -deformed theories of free scalars, fermions and

auxiliary fields. In the case of D = 2 N = (2, 2) supersymmetry, a scalar multiplet can

have several different off-shell representations [28–31]. The two cases we will consider here

are chiral and twisted-chiral supermultiplets, which are the most commonly studied cases.

In N = (2, 2) superspace, parametrized by coordinates ζM = (x±±, θ±, θ̄±), let

the complex superfields X(x, θ) and Y (x, θ) satisfy chiral and twisted-chiral constraints,

respectively,

D̄±X = 0 , D̄+Y = D−Y = 0 . (2.7)

1For simplicity, we have assumed that the D = 2 N = (2, 2) theory possesses a well-defined FZ multiplet.

For a description of the more general case where one needs to use the N = (2, 2) S-multiplet of currents,

discussed in [27], to define the the supercurrent-squared operator we refer to the original analysis of [18].
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Here the supercovariant derivatives and supercharges are2

D± =
∂

∂θ±
+ iθ̄±∂±± , D̄± = − ∂

∂θ̄±
− iθ±∂±± , (2.8a)

Q± = i
∂

∂θ±
+ θ̄±∂±± , Q̄± = −i ∂

∂θ̄±
− θ±∂±± , (2.8b)

and they satisfy

D2
± = D̄2

± = 0 , {D±, D̄±} = −2i∂±± , [D±, ∂±±] = [D̄±, ∂±±] = 0 , (2.9a)

Q2
± = Q̄2

± = 0 , {Q±, Q̄±} = −2i∂±± , [Q±, ∂±±] = [Q̄±, ∂±±] = 0 . (2.9b)

There is one more caveat worth mentioning: in much of the N = (2, 2) literature, twisted-

chiral multiplets, often denoted Σ in this context, naturally arise as field strengths for

N = (2, 2) vector superfields V . The lowest component of such a superfield is a complex

scalar, but the top component proportional to θ̄−θ+ encodes the gauge-field strength along

with a real auxiliary field. On the other hand, there are twisted chiral superfields denoted Y

whose bottom component is a complex scalar and whose top component is just a complex

auxiliary field. It is to this latter case that we restrict. The free Lagrangians for these

supermultiplets are given by

Lc
0 =

∫
d4θ XX̄ , Ltc

0 = −
∫
d4θ Y Ȳ . (2.10)

In [18] it was shown that the following Lagrangian

Lc
λ =

∫
d4θ


XX̄ +

λD+XD̄+X̄D−XD̄−X̄

1− 1
2λA+

√
1− λA+ 1

4λ
2B2


 , (2.11a)

with

A = ∂++X∂−−X̄ + ∂++X̄∂−−X , B = ∂++X∂−−X̄ − ∂++X̄∂−−X , (2.11b)

is a solution of the flow equation (2.6) on-shell, and hence describes the T T̄ -

deformation (1.1) of the free chiral supermultiplet Lagrangian (2.10).

A simple way to generate the T T̄ -deformation of the free twisted-chiral theory is to

remember that a twisted-chiral multiplet can be obtained from a chiral one by acting with

a Z2 automorphism on the Grassmann coordinates of N = (2, 2) superspace:

θ+ ↔ θ+ , θ− ↔ − θ̄− . (2.12)

This leaves the D+ and D̄+ derivatives invariant while it exchanges D− with D̄−. As

a result, the chiral and twisted-chiral differential constraints (2.7) are mapped into each

others under the automorphism (2.12).3

2The reader should be aware that in this section we follow the notation of [32], which is slightly different

from the notation used in [18].
3In the literature this Z2 automorphism (2.12) is often called the “mirror-map” or “mirror-image”

because it exchanges the vector and axial U(1) R-symmetries.
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Under the Z2 automorphism (2.12), the Lagrangian (2.11a) turns into the following

twisted-chiral Lagrangian

Ltc
λ = −

∫
d4θ


Y Ȳ +

λD+Y D̄+Ȳ D̄−Y D−Ȳ

1− 1
2λA+

√
1− λA+ 1

4λ
2B2


 , (2.13a)

where

A = ∂++Y ∂−−Ȳ + ∂++Ȳ ∂−−Y , B = ∂++Y ∂−−Ȳ − ∂++Ȳ ∂−−Y . (2.13b)

Thanks to the map (2.12), by construction the Lagrangian (2.13a) is a T T̄ -deformation (1.1)

and its superspace Lagrangian Atc
λ , Ltc

λ =
∫
d4θAtc

λ , is an on-shell solution of the following

flow equation

d

dλ
Atc

λ =
1

8

(
R++R−− − 2BB̄

)
. (2.14)

Here R±±(x, θ), B(x, θ) and its complex conjugate B̄(x, θ) are the local operators de-

scribing the R-multiplet of currents for D = 2 N = (2, 2) supersymmetry that arise by

applying (2.12) to the FZ multiplet of the chiral theory (2.11a) [18]. They satisfy the

conservation equations,

D̄+R−− = iD̄−B , D−R++ = iD+B , D̄+B = D−B = 0 , (2.15)

together with their complex conjugates. Like the case of the FZ-multiplet, the supercurrent-

squared operator

T T̄ (x) =

∫
d4θOR(x, θ) , OR(x, θ) := −R++(x, θ)R−−(x, θ) + 2B(x, θ)B̄(x, θ) , (2.16)

satisfies (2.2); namely, T T̄ (x) is equivalent to T T̄ (x) up to total derivatives and EOM [18].

Note that the bosonic truncation of both (2.11a) and (2.13a) give the Lagrangian

Lλ,bos =

√
1 + 2λa+ λ2b2 − 1

4λ
=
a

4
− λ

∂++φ∂−−φ∂++φ̄∂−−φ̄

1 + λa+
√
1 + 2λa+ λ2b2

, (2.17)

where

a = ∂++φ∂−−φ̄+ ∂++φ̄∂−−φ , b = ∂++φ∂−−φ̄− ∂++φ̄∂−−φ , (2.18)

and φ is either φ = X|θ=0 or φ = Y |θ=0. This is the Lagrangian for the gauge-fixed

Nambu-Goto string in four dimensions [3].

The aim of the remainder of this section is to show that the Lagrangians (2.11a)

and (2.13a) are structurally identical to the Bagger-Galperin action for the D = 4 N =

1 supersymmetric Born-Infeld theory [22], which we will analyse in detail in section 5.

Since the Bagger-Galperin action possesses a second non-linearly realized D = 4 N = 1

supersymmetry, we will show that the theories described by (2.11a) and (2.13a) also possess

an extra set of non-linearly realized N = (2, 2) supersymmetries.

– 6 –
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2.2 The T T̄ -deformed twisted-chiral model and partial-breaking

Let us start with the twisted-chiral Lagrangian (2.13a) which, as we will show, is the one

more directly related to the D = 4 Bagger-Galperin action. In complete analogy to the

D = 4 case, we are going to show that (2.13a) is a model for a Nambu-Goldstone multiplet

of D = 2 N = (4, 4) → N = (2, 2) partial supersymmetry breaking. The analysis is similar

in spirit to the D = 4 construction of the Bagger-Galperin action using D = 4 N = 2

superspace proposed by Roček and Tseytlin [20]; see also [33–35] for more recent analysis.

To describe manifest N = (4, 4) supersymmetry we can use N = (4, 4) superspace

which augments the N = (2, 2) superspace coordinates ζM = (x±±, θ±, θ̄±) of the previous

section with the following additional complex Grassmann coordinates (η±, η̄±). The extra

supercovariant derivatives and supercharges are given by

D+ =
∂

∂η+
+ iη̄+∂++ , D̄+ = − ∂

∂η̄+
− iη+∂++ , (2.19a)

Q+ = i
∂

∂η+
+ η̄+∂++ , Q̄+ = −i ∂

∂η̄+
− η+∂++ , (2.19b)

with similar expressions for D− and Q−. They satisfy

D2
± = D̄2

± = 0 , {D±, D̄±} = −2i∂±± , [D±, ∂±±] = [D̄±, ∂±±] = 0 , (2.20a)

Q2
± = Q̄2

± = 0 , {Q±, Q̄±} = −2i∂±± , [Q±, ∂±±] = [Q̄±, ∂±±] = 0 , (2.20b)

while they (anti-)commute with all the usual D± and Q± operators.

Two-dimensional N = (4, 4) supersymmetry can also be usefully described in the

language of N = (2, 2) superspace. In this section, we will largely refer to [32] for such

a description. In this approach from the full (4, 4) supersymmetry, one copy of (2, 2) is

manifest while a second (2, 2) is hidden. For our goal of describing a model of partial

supersymmetry breaking, we view the hidden (2, 2) supersymmetry as broken and non-

linearly realized. We will derive such a description starting from N = (4, 4) superspace

and describe the broken/hidden supersymmetry using the η± directions.

The hidden supersymmetry transformation of a generic D = 2 N = (4, 4) superfield

U = U(x±±, θ±, θ̄±, η±, η̄±) under the hidden (2, 2) supersymmetry is

δU = i(ε+Q+ + ε−Q− − ε̄+Q̄+ − ε̄−Q̄−)U . (2.21)

The (2, 2) supersymmetry, generated by the Q± and Q̄± operators, will always be manifest

and preserved, so we will not bother to discuss it in detail. For convenience, we also

introduce the chiral coordinate y±± = x±± + iη±η̄±. Using this coordinate, the spinor

covariant derivatives and supercharges take the form

D± =
∂

∂η±
+ 2iη̄±

∂

∂y±±
, D̄± = − ∂

∂η̄±
, (2.22a)

Q± = i
∂

∂η±
, Q̄± = −i ∂

∂η̄±
− 2η±

∂

∂y±±
. (2.22b)
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After this technical introduction, let us turn to our main construction. Consider a

(4, 4) superfield which is chiral under the hidden (2, 2) supersymmetry:

D̄±X = 0 . (2.23)

We can expand it in terms of hidden fermionic coordinates,

X = X + η+X+ + η−X− + η+η−F , (2.24)

where X = X(y±±, θ±, θ̄±), X± = X±(y
±±, θ±, θ̄±) and F = F (y±±, θ±, θ̄±) are them-

selves (2, 2) superfields. In the following discussion, we will keep the θ±, θ̄± dependence

implicit. The hidden (2, 2) supersymmetry transformation rules can then be straightfor-

wardly computed using (2.21) and (2.24). They take the form

δX = −ε+X+ − ε−X− , (2.25a)

δX± = ∓ε∓F − 2iε̄±∂±±X, (2.25b)

δF = −2iε̄−∂−−X+ + 2iε̄+∂++X− . (2.25c)

The X superfield is still reducible under N = (4, 4) supersymmetry so we can put ad-

ditional constraints on the (2, 2) superfields X, X± and F . Here we will consider (4, 4)

twisted multiplets, and refer the reader to [28, 36–41] for a more detailed analysis. For

this discussion, we will follow the N = (2, 2) superspace description of [32]. One type of

twisted multiplet with (4, 4) supersymmetry can be defined by setting

X+ = D̄+Ȳ , X− = −D̄−Y , (2.26)

where X and Y are chiral and twisted-chiral, respectively, under the manifest (2, 2) super-

symmetry:

D̄+X = D̄−X = D̄+Y = D−Y = 0 , D+X̄ = D−X̄ = D+Ȳ = D̄−Ȳ = 0 . (2.27)

The superfield (2.24) becomes

X = X + η+D̄+Ȳ − η−D̄−Y + η+η−F . (2.28)

The supersymmetry transformation rules then become

δX = −ε+D̄+Ȳ + ε−D̄−Y , (2.29a)

δF = −2iε̄−∂−−D̄+Ȳ − 2iε̄+∂++D̄−Y , (2.29b)

while δX± remains the same as (2.25b). By using the conjugation property for two fermions,

χξ = ξ̄χ̄ = −χ̄ξ̄, and the conjugation property D+A = D̄+Ā for a bosonic superfield A, it

follows that

δX̄ = ε̄+D+Y − ε̄−D−Ȳ . (2.30)

One can check that

δD̄2X̄ = D̄2δX̄ = D̄2
(
ε̄+D+Y − ε̄−D−Ȳ

)
= 2iε̄+∂++D̄−Y + 2iε̄−∂−−D̄+Y , (2.31)

– 8 –
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where D̄2 = D̄+D̄−. Note that in the first equality we made use of the fact that the manifest

and hidden (2, 2) supersymmetries are independent. The supersymmetry transformation

rule for −D̄2X is then exactly that of the auxiliary field F . Thus we can consistently set

F = −D̄2X̄ , (2.32)

which is the last constraint necessary to describe a version of the (4, 4) twisted multiplet in

terms of a chiral and twisted-chiral N = (2, 2) superfields. The resulting (4, 4) superfield

X , expanded in terms of the hidden (2, 2) fermionic coordinates, takes the form

X = X + η+D̄+Ȳ − η−D̄−Y − η+η−D̄2X̄ , (2.33)

which closely resembles the expansion of a D = 4 N = 2 vector multiplet when one

identifies the analogue of the D = 4 N = 1 chiral vector multiplet field strength Wα with

the (2, 2) chiral superfields D̄+Ȳ and D̄−Y . Note in particular that X turns to be (4, 4)

chiral:

D̄±X = 0 , D̄±X = 0 . (2.34)

To summarize: the entire (4, 4) off-shell twisted multiplet is described in terms of one

chiral and one twisted-chiral (2, 2) superfield, which possess the following hidden (2, 2)

supersymmetry transformations:

δX = −ε+D̄+Ȳ + ε−D̄−Y , (2.35a)

δY = ε̄−D−X + ε+D̄+X̄ . (2.35b)

Let us now introduce the action for a free N = (4, 4) twisted multiplet. Taking the

square of X in (2.33) we obtain

X 2 = η+η−
(
− 2XD̄2X̄ + 2D̄+Ȳ D̄−Y

)
+ . . . , (2.36)

where the ellipses denote terms that are not important for our analysis. Since X and there-

fore X 2 are chiral superfields, we can consider the chiral integral in the hidden direction

∫
dη+dη−X 2 = 2XD̄2X̄ − 2D̄+Ȳ · D̄−Y . (2.37)

Note also that, since X and Y are chiral and twisted-chiral under the manifest supersym-

metry (2.27), it follows that

∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ+dθ−D̄+D̄−(XX̄ − Y Ȳ ) ,

=

∫
d2x dθ+dθ−

(
XD̄+D̄−X̄ − D̄+Ȳ · D̄−Y

)
, (2.38)

which can also be rewritten as
∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ̄+dθ̄−

(
X̄D+D−X −D+Y ·D−Ȳ

)
. (2.39)
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The sum of the two equations above yields

4

∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ+dθ−dη+dη−X 2 + c.c. . (2.40)

The left-hand side has an enhanced N = (4, 4) supersymmetry as discussed in [32]. This

becomes manifest from our (4, 4) superspace construction on the right-hand side.

To describe N = (4, 4) → N = (2, 2) supersymmetry breaking we can appropriately

deform the (4, 4) twisted multiplet. Analogous to the case of a D = 4 N = 2 vector

multiplet deformed by a magnetic Fayet-Iliopoulos term [42] (see also [20, 33–35, 43]), we

add a deformation parameter to the auxiliary field F of X , which is deformed to

X def = X + η+D+Ȳ − η−D̄−Y − η+η−
(
D̄2X̄ + κ

)
. (2.41)

Assuming that the auxiliary field F gets a VEV, 〈F 〉 = κ or equivalently 〈D̄2X̄〉 = 0, then

by looking at the supersymmetry transformations of X± for the deformed multiplet

δX± = ±ε∓
(
D̄2X̄ + κ

)
− 2iε̄±∂±±X , (2.42)

we can see theN = (4, 4) → N = (2, 2) supersymmetry breaking pattern arises; specifically,

the hidden N = (2, 2) is spontaneously broken and non-linearly realized. For later use, it

is important to stress that, though the hidden transformations of δX± are modified by the

non-linear term proportional to κ, the hidden transformation of X remains the same as in

the undeformed case given in eq. (2.29a).

In analogy to the D = 4 case of [20, 33, 34], to describe the Goldstone multiplet

associated to partial supersymmetry breaking we impose the following nilpotent constraint

on the deformed (4, 4) twisted superfield:

X 2
def = 0 = −2η+η−

(
X(κ+ D̄2X̄)− D̄+Ȳ · D̄−Y

)
+ . . . . (2.43)

This implies the constraint

X
(
κ+ D̄2X̄

)
− D̄+Ȳ · D̄−Y = 0 , (2.44)

which requires

X =
D̄+Ȳ · D̄−Y

κ+ D̄2X̄
=

W 2

κ+ D̄2X̄
, (2.45)

and its conjugate

X̄ = −D+Y ·D−Ȳ

κ+D2X
=

W̄ 2

κ+D2X
. (2.46)

Here D̄2 = D̄+D̄−, D
2 = −D+D− and we have introduced the superfields:

W 2 = −X+X− = D̄+Ȳ · D̄−Y = D̄+D̄−(Y Ȳ ) = D̄2(Y Ȳ ) , (2.47a)

W̄ 2 = X̄+X̄− = −D+Y ·D−Ȳ = −D+D−(Y Ȳ ) = D2(Y Ȳ ) . (2.47b)
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The constraint (2.44) is the D = 2 analogue of the Bagger-Galperin constraint for a

Maxwell-Goldstone multiplet for D = 4 N = 2 → N = 1 supersymmetry breaking [22].

Combining (2.45) and (2.46) gives

κX = D̄2(Y Ȳ −XX̄) = D̄2

[
Y Ȳ − D̄+Ȳ · D̄−Y ·D−Ȳ ·D+Y

(κ+D2X)(κ+ D̄2X̄)

]
, (2.48)

which is consistent thanks to the κ terms in the denominator. Because of the four fermion

coupling in the numerator of the last term, no fermionic terms can appear in the denomi-

nator. So effectively we have the equation

(κ+D2X)eff =
(
κ+D2 W 2

κ+ D̄2X̄

)
eff

= κ+
D2W 2

κ+ (D̄2X̄)eff
, (2.49)

and its conjugate

(κ+ D̄2X̄)eff = κ+
D̄2W̄ 2

κ+ (D2X)eff
. (2.50)

Solving them we get

(D2X)eff =
B − κ2 +

√
B2 + 2κ2A+ κ4

2κ
, (2.51a)

(D̄2X̄)eff =
−B − κ2 +

√
B2 + 2κ2A+ κ4

2κ
. (2.51b)

Substituting these expressions into (2.48) gives

X =
1

κ
D̄2Υ , X̄ =

1

κ
D2Υ , Υ = Ῡ = Y Ȳ − 2W 2W̄ 2

A+ κ2 +
√
B2 + 2κ2A+ κ4

, (2.52)

where

A = D2W 2 + D̄2W̄ 2 = {D2, D̄2}(Y Ȳ ) = ∂++Y ∂−−Ȳ + ∂++Ȳ ∂−−Y , (2.53a)

B = D2W 2 − D̄2W̄ 2 = [D2, D̄2](Y Ȳ ) = ∂++Y ∂−−Ȳ − ∂++Ȳ ∂−−Y . (2.53b)

The result is that the N = (2, 2) chiral part X of the N = (4, 4) twisted multiplet is

expressed in terms of the (2, 2) twisted-chiral superfield Y . Thanks to the linearly realized

construction in terms of (4, 4) superfields, it is straightforward to obtain the non-linearly

realized N = (2, 2) supersymmetry transformations for Y . In particular, it suffices to look

at the transformations of D+Y and D̄−Y that can be obtained by substituting back the

composite expression for X = X[Y ] into the transformations (2.42). By construction, these

expressions ensure that δX transforms according to (2.29a).

Since X is chiral under the manifest (2, 2) supersymmetry (2.27), we can consider the

chiral integral

Sκ2 = −1

2
κ

∫
d2x dθ+dθ−X + c.c. = −1

2

∫
d2x dθ+dθ−D̄2Υ+ c.c.

= −
∫
d2x dθ+dθ−dθ̄+dθ̄−Υ . (2.54)
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A remarkable property of this action is that it is invariant under the hidden non-linearly

realized supersymmetry. Using (2.29a), we see that

δSκ2 = −1

2
κ

∫
d2xD+D−δX

∣∣∣
θ=θ̄=0

+ c.c. , (2.55a)

= −1

2
κ

∫
d2x
(
− 2iε−∂−−D+Y − 2iε+∂++D−Ȳ

)∣∣∣
θ=θ̄=0

+ c.c. = 0 , (2.55b)

where we used the fact that Y is a twisted-chiral superfield (2.27).

Explicitly, the action reads

Sκ2 = −
∫
d2x dθ+dθ−dθ̄+dθ̄−

(
Y Ȳ − 2W 2W̄ 2

κ2 +A+
√
κ4 + 2κ2A+B2

)
, (2.56)

which precisely matches the model of eq. (2.13a) if we identify the coupling constants:

λ = − 2

κ2
. (2.57)

This shows explicitly that the T T̄ -deformation of the free twisted-chiral action possesses a

non-linearly realized N = (2, 2) hidden supersymmetry.

2.3 The T T̄ -deformed chiral model and partial-breaking

Let us now turn to the T T̄ deformation of the free chiral model of eq. (2.11a). The construc-

tion follows the previous subsection with the difference that we will start with a different

formulation of the (4, 4) twisted multiplet described in terms of (2, 2) superfields. Consider

again an N = (4, 4) superfield which is chiral under the hidden (2,2) supersymmetry:

D̄+Y = D̄−Y = 0 . (2.58)

Its expansion in hidden superspace variables is

Y = Y + η+Y+ + η−Y− + η+η−G , (2.59)

where Y = Y (y±±, θ±, θ̄±), Y± = Y±(y
±±, θ±, θ̄±) and G = G(y±±, θ±, θ̄±) are them-

selves superfields with manifest (2, 2) supersymmetry. The hidden (2, 2) supersymmetry

transformation rules of the components are

δY = −ε+Y+ − ε−Y− , (2.60a)

δY± = ∓ε∓G− 2iε̄±∂±±Y , (2.60b)

δG = −2iε̄−∂−−Y+ + 2iε̄+∂++Y− . (2.60c)

This representation of (4, 4) off-shell supersymmetry is again reducible so we can im-

pose constraints. As in the construction of the previous section, we impose

Y+ = D̄+X̄ , Y− = D−X , (2.61)

then

Y = Y + η+D̄+X̄ + η−D−X + η+η−G . (2.62)
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Here X and Y are consistently chosen to be chiral and twisted-chiral under the manifest

(2, 2) supersymmetry:

D̄+X = D̄−X = D̄+Y = D−Y = 0 , D+X̄ = D−X̄ = D+Ȳ = D̄−Ȳ = 0 . (2.63)

Then we have

δY = −ε+D̄+X̄ − ε−D−X , (2.64)

as well as its conjugate

δȲ = ε̄+D+X + ε̄−D̄−X̄ . (2.65)

Hence it follows that

δ(D̄+D−Ȳ ) = D̄+D−δȲ = 2iε̄+∂++D−X − 2iε̄−∂−−D̄+X̄ . (2.66)

This should be compared with

δG = 2iε̄+∂++D−X − 2iε̄−∂−−D̄+X̄ , (2.67)

showing that D̄+D−Ȳ transforms exactly like the auxiliary field G. This enables us to

further constrain the (4, 4) multiplet by setting

G = D̄+D−Ȳ . (2.68)

Imposing these conditions gives a (4, 4) twisted superfield

Y = Y + η+D̄+X̄ + η−D−X + η+η−D̄+D−Ȳ , (2.69)

which by construction is twisted-chiral and chiral with respect to the manifest and hidden

(2, 2) supersymmetries, respectively:

D̄+Y = D−Y = 0 , D̄±Y = 0 . (2.70)

Its free dynamical action can be easily constructed by considering its square

Y2 = 2η+η−
(
Y D̄+D−Ȳ − D̄+X̄ ·D−X

)
+ . . . . (2.71)

In fact, the following relations hold:

∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ+dθ̄−D̄+D−(XX̄ − Y Ȳ ) ,

=

∫
d2x dθ+dθ̄−

(
D+X · D̄−X̄ − Ȳ D+D̄−Y

)
. (2.72)

Alternatively,

∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ̄+dθ−D+D̄−(XX̄ − Y Ȳ ) ,

=

∫
d2x dθ̄+dθ−

(
D̄+X̄ ·D−X − Y D̄+D−Ȳ

)
. (2.73)
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These relations imply

4

∫
d2x dθ+dθ−dθ̄+dθ̄−(XX̄ − Y Ȳ ) =

∫
d2x dθ+dθ̄−dη+dη− Y2 + c.c. . (2.74)

Once again the (4, 4) supersymmetry of the left hand side becomes manifest on the right

hand side.

As in the (4, 4) twisted multiplet considered in the previous subsection, we can deform

this representation to induce the partial breaking. The deformed multiplet is described by

the following (4, 4) superfield:

Ydef = Y + η+D̄+X̄ + η−D−X + η+η−
(
D̄+D−Ȳ + κ

)
. (2.75)

The hidden supersymmetry transformations of the component (2, 2) superfields can be

straightforwardly computed using the arguments of the previous subsection. For the goal

of this section, it is enough to mention that δY is the same as the undeformed case of

eq. (2.64).

To eliminate half of the degrees of freedom of Ydef and describe a Goldstone multi-

plet for N = (4, 4) → N = (2, 2) partial supersymmetry breaking, we again impose the

nilpotent constraint

Y2
def = 0 = 2η+η−

(
Y (κ+ D̄+D−Ȳ )− D̄+X̄ ·D−X

)
+ . . . . (2.76)

This yields the following constraint for the (2, 2) superfields

Y (κ+ D̄+D−Ȳ )− D̄+X̄ ·D−X = 0 , (2.77)

which is equivalent to

Y =
D̄+X̄ ·D−X

κ+ D̄+D−Ȳ
=

W̃ 2

κ+ D̃
2
Ȳ
, Ȳ =

D̄−X̄ ·D+X

κ+ D̄+D−Ȳ
=

¯̃
W

2

κ+ D̃2Ȳ
. (2.78)

Here
¯̃
D

2
= D̄+D−, D̃

2 = −D+D̄− and we have introduced the following bilinears:

W̃ 2 ≡ D̄+X̄ ·D−X =
¯̃
D

2
(XX̄),

¯̃
W

2
≡ D̄−X̄ ·D+X = D̃2(XX̄) . (2.79)

Using exactly the same tricks as before and inspired by the D = 4 Bagger-Galperin

model, we can solve the constraints (2.77) to find

Y =
1

κ
¯̃
D

2
Υ̃ , Ȳ =

1

κ
D̃2Υ̃ , Υ̃ =

¯̃
Υ = XX̄ − 2W̃ 2 ¯̃

W
2

Ã+ κ2 +
√
B̃2 + 2κ2Ã+ κ4

, (2.80)

where

Ã = D̃2W̃ 2 +
¯̃
D2 ¯̃
W 2 = {D̃2,

¯̃
D2}(XX̄) = ∂++X∂−−X̄ + ∂++X̄∂−−X , (2.81a)

B̃ = D̃2W̃ 2 − ¯̃
D

2 ¯̃
W

2
= [D̃2,

¯̃
D2](XX̄) = ∂++X∂−−X̄ − ∂++X̄∂−−X . (2.81b)
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Since Y is twisted-chiral under the manifest (2, 2) supersymmetry (2.63), we can con-

sider the twisted-chiral integral

Sκ2 =
1

2
κ

∫
d2x dθ+dθ̄−Y + c.c =

1

2

∫
d2x dθ+dθ̄−

¯̃
D

2
Υ̃ + c.c. =

∫
d2x dθ+dθ−dθ̄+dθ̄−Υ̃ .

(2.82)

By using arguments analogous to those around eqs. (2.55) of the previous subsection, the

action (2.82) proves to be N = (4, 4) supersymmetric.

Explicitly, the action reads

Sκ2 =

∫
d2x dθ+dθ−dθ̄+dθ̄−

(
XX̄ − 2W̃ 2 ¯̃

W
2

κ2 + Ã+
√
κ4 + 2κ2Ã+ B̃2

)
, (2.83)

which precisely matches the model of eq. (2.11a) if we identify the coupling constants:

λ = − 2

κ2
. (2.84)

This shows explicitly that the T T̄ deformation of the free chiral action possesses a non-

linearly realized N = (2, 2) supersymmetry.

3 D = 4 T 2 deformations and their supersymmetric extensions

In section (2) we exhibited the non-linear supersymmetry possessed by two D = 2 N =

(2, 2) models constructed in [18] from the T T̄ deformation of free actions. The striking

relationship with the D = 4 supersymmetric Born-Infeld (BI) theory naturally makes one

wonder whether some kind of T T̄ flow equation is satisfied by supersymmetric D = 4 BI,

and related actions. We will spend the rest of the paper exploring this possibility. In this

section, we start with a few general observations on T 2 or supercurrent-squared operators

in D > 2.

3.1 Comments on the T 2 operator in D = 4

In two dimensions, by T T̄ we mean the operator TµνT
µν − (Tµ

µ )2, which is proportional

to det[Tµν ] [1–3]. One can attempt to generalize this structure to D > 2. In general, one

could consider the following stress-tensor squared operator

O
[r]
T 2 = TµνTµν − rΘ2 , Θ ≡ Tµ

µ , (3.1)

with r a real constant parameter. In two dimensions, the unique choice r = 1 yields a well

defined operator which is free of short distance singularities [1, 2]. However, to the best of

our knowledge, there is no analogous argument in higher dimensions that guarantees a well-

defined irrelevant operator O
[r]
T 2 at the quantum level. Nevertheless, in a D-dimensional

space-time, one possible extension is given by O
[r]
T 2 with r = 1/(D − 1), which reduces to

the T T̄ operator in two dimensions.

This operator has received some attention recently since it is motivated by a particular

holographic picture in D > 2 [44, 45]. We will not enter into a detailed discussion of the
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physical properties enjoyed by O
[1/(D−1)]
T 2 , but simply make two brief comments. First, this

combination is invariant under a set of improvement transformations of the stress-energy

tensor. Indeed it is easy to show that such a T 2 operator transforms by,

O
[1/(D−1)]
T 2 → O

[1/(D−1)]
T 2 + total derivatives , (3.2)

if the (symmetric) stress-energy tensor shifts by the following improvement transformation,

Tµν → Tµν +
(
∂µ∂ν − ηµν∂

2
)
u , (3.3)

for an arbitrary scalar field u.

Second, for any operator O
[r]
T 2 in D > 2 dimensions (or on a curved space), the original

argument of [1] for the factorization of the T T̄ operator will no longer hold. For this

reason, such an operator will not enjoy the same properties at the quantum level as the

original D = 2 operator introduced by Zamolodchikov. In the approach to defining a

higher-dimensional T T̄ deformation through cut-off holography, one can sidestep this issue

by taking a large N limit, in which the factorization property is expected to hold [45, 46];

the precise relative coefficient r = 1/(D − 1) can be derived from considerations of bulk

gravitational physics.

In four dimensions, there is another choice of interest, specifically r = 1/2. In fact, it

was shown in [24] that the bosonic Born-Infeld action can be obtained by deforming the

free Maxwell theory with the operator O
[1/2]
T 2 .4 In this work, we are going to use O

[1/2]
T 2 as

our deforming operator. Once generalized to the supersymmetric case, we will see that this

operator plays a central role for various models possessing non-linearly realized symmetries.

One interesting property enjoyed by O
[1/2]
T 2 is its invariance under a shift of the La-

grangian density of the theory, or equivalently a shift of the zero point energy. This can

serve as motivation for this particular combination. Under a constant shift of the La-

grangian density L, and correspondingly its stress-energy tensor,

L → L+ c , T µν → Tµν − c ηµν , (3.4)

the composite operator O
[r]
T 2 transforms in the following way:

O
[r]
T 2 → O

[r]
T 2 + 2c(2r − 1)Θ + 4c2(1− r) . (3.5)

When the theory is not conformal, which is the general situation at an arbitrary point in

the flow since the deformation introduces a scale, and r 6= 1/2, the operator O
[r]
T 2 always

transforms in a non-trivial way because of the extra trace term. This implies that under a

constant shift in the Lagrangian, the dynamics is modified which is certainly peculiar since

the shift is trivial in the undeformed theory.5

However if r = 1
2 , O

[r]
T 2 is unaffected up to an honest field-independent cosmological

constant term. The shift of the vacuum energy does not affect the dynamics of the theory,

4It is worth mentioning that another type of higher-dimensional generalization of T T̄ -deformations,

specifically the operator | detT |1/(D−1), was studied in [7, 47].
5It is worth noting that T T̄ in D = 2 shares this peculiarity.
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as long as the theory is not coupled to gravity. This property is especially interesting, since

the D = 4 N = 1 Goldstino action, which we will study in section 6 in the context of

T 2 flows, is the low-energy description of supersymmetry breaking which can generate a

cosmological constant. For these reasons, we will study the particular operator quadratic

in stress-energy tensors given by

OT 2 ≡ TµνTµν −
1

2
Θ2 , (3.6)

in the remainder of the paper.

3.2 D = 4 N = 1 supercurrent-squared operator

We would like to find the N = 1 supersymmetric extension of the OT 2 operator in four

dimensions. As reviewed in section 2, in two dimensions the manifestly supersymmetric

T T̄ deformation is roughly given by the square of the supercurrent superfields. One might

suspect that a similar construction holds in four dimensions.

For the remainder of this work, we will assume that the D = 4 N = 1 supersymmetric

theories under our consideration admit a Ferrara-Zumino (FZ) multiplet of currents [26].

Generalizations of this case involving the supercurrent multiplets described in [27, 48–54]

might be possible, but merit separate investigation. The operator content of the FZ mul-

tiplet, which has 12+12 component fields, includes the conserved supersymmetry current

Sµα, its conjugate S̄µ
α̇ and the conserved symmetric energy-momentum tensor Tµν :

Tµν = Tνµ , ∂µTµν = 0 , ∂µSµ = ∂µS̄µ = 0 . (3.7)

The FZ multiplet also includes a complex scalar field x, as well as the R-current vector

field jµ, which is not necessarily conserved [26].

In D = 4 N = 1 superspace, the FZ multiplet is described by a vector superfield Jµ

and a complex scalar superfield X satisfying the following constraints:6

D̄α̇Jαα̇ = DαX , D̄α̇X = 0 . (3.9)

The constraints can be solved, and the FZ supercurrents expressed in terms of its 12 + 12

independent components read7

Jµ(x) = jµ + θ

(
Sµ − 1√

2
σµχ̄

)
+ θ̄

(
S̄µ +

1√
2
σ̄µχ

)
+
i

2
θ2∂µx̄−

i

2
θ̄2∂µx

+θσν θ̄

(
2Tµν −

2

3
ηµνΘ− 1

2
ενµρσ∂

ρjσ
)

− i

2
θ2θ̄

(
/̄∂Sµ +

1√
2
σ̄µ/∂χ̄

)
− i

2
θ̄2θ

(
/∂S̄µ − 1√

2
σµ /̄∂χ

)

+
1

2
θ2θ̄2

(
∂µ∂

νjν −
1

2
∂2jµ

)
, (3.10)

6We follow the conventions of [55] except for the conversion between vector and bi-spinor indices. Fol-

lowing [27], we will use the convention vαα̇ = −2σµ
αα̇vµ, vµ = 1

4
σ̄αα̇vαα̇. Then it follows that

Jαα̇ = −2σµ
αα̇Jµ, J µ =

1

4
Jαα̇σ̄

µα̇α, J 2 ≡ ηµνJµJν = −1

8
εαβεα̇β̇Jαα̇Jββ̇ . (3.8)

7For convenience, we have rescaled the supersymmetry current compared to [27]: Shere
µ = −iSthere

µ .

– 17 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
6

and

X (y) = x(y) +
√
2θχ(y) + θ2F(y) , (3.11a)

χα =

√
2

3
(σµ)αα̇S̄

α̇
µ , F =

2

3
Θ + i∂µj

µ , (3.11b)

where the chiral coordinate yµ = xµ + iθσµθ̄, and we used /∂ = σµ∂µ, /̄∂ = σ̄µ∂µ.

If we seek a manifestly supersymmetric completion of the operator (3.6) by using

combinations of the supercurrent superfields with dimension 4, it is clear that the only

possibility is the full superspace integral of a linear combination of J 2 and XX̄ . Up to

total derivatives and terms that vanish by using the supercurrent conservation equations,

or equivalently that vanish on-shell, the D-terms of J 2 and XX̄ are given by8

J 2|θ2θ̄2 ≡ ηµνJµJν |θ2θ̄2 = −1

2

(
2Tµν −

2

3
ηµνΘ− 1

2
ενµρσ∂

ρjσ
)2

+ jµ
(
∂µ∂

νjν −
1

2
∂2jµ

)

+
1

2
∂µx∂

µ
x̄+

i

2

(
A− Ā

)
(3.13a)

= −2(Tµν)
2 +

4

9
Θ2 − 5

4

(
∂µj

µ
)2

− 3

4
jµ∂

2jµ +
1

2
∂µx̄∂

µ
x

+i
(
Sµ/∂S̄

µ − χ̄/̄∂χ
)
+ total derivatives + EOM , (3.13b)

and

XX̄ |θ2θ̄2 = FF̄− ∂µx∂
µ
x̄− iχ̄/̄∂χ+ total derivatives (3.14a)

=
4

9
Θ2 + (∂µj

µ)2 − ∂µx∂
µ
x̄− iχ̄/̄∂χ+ total derivatives . (3.14b)

To get a manifestly supersymmetric extension of OT 2 = T 2− 1
2Θ

2, we have to consider

the following linear combination9

OT 2 = −1

2

(
ηµνJµJν +

5

4
XX̄

)
=

1

16
J αα̇Jαα̇ − 5

8
XX̄ . (3.16)

In fact, the supersymmetric descendant of the supercurrent-squared operator OT 2 is

OT 2 =

∫
d4θOT 2 (3.17a)

= T 2 − 1

2
Θ2 +

3

8
jµ∂

2jµ +
3

8
∂µx∂

µ
x̄− i

2

(
Sµ/∂S̄

µ − 9

4
χ̄/̄∂χ

)

+total derivatives + EOM . (3.17b)

8The composite A (and analogously its conjugate Ā) is given by

A =

(

Sµ − 1√
2
σµχ̄

)(

/∂S̄µ − 1√
2
σµ /̄∂χ

)

= Sµ/∂S̄
µ − χ̄/̄∂χ+

√
2S̄µ∂µχ̄+ total derivatives . (3.12)

The equality can be obtained with some algebra. Note that the last term drops after integration by parts

because of the conservation equation for Sµ.
9More generally for the operator in (3.1), the supersymmetric generalization is given by

O[r]

T2 = −1

2

(

ηµνJµJν +
9r − 2

2
XX̄

)

. (3.15)
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This result shows that OT 2 is the natural supersymmetric extension of OT 2 . However, it

is worth emphasizing that in the D = 4 case, the supersymmetric descendent OT 2 of OT 2

has extra non-trivial contributions from other currents. This should be contrasted with

the D = 2 case where OT 2 = OT 2 up to EOM and total derivatives, see eq. (2.2).

It actually does not seem possible to find a linear combination of J 2 and XX̄ such

that an analogue of eq. (2.2) holds in D = 4. This suggests that, in contrast with the

D = 2 case, deformations of a Lagrangian triggered by the operators OT 2 and OT 2 will in

general lead to different flows: one manifestly supersymmetric, while the other not.

4 Bosonic Born-Infeld as a T 2 flow

It was shown in [24] that the D = 4 Born-Infeld action arises from a D > 2 generalization

of the T T̄ deformation. Specifically, the operator driving the flow equation was shown to

be the OT 2 defined in eq. (3.6) of the preceding section. In this section we review this

result in detail as it is a primary inspiration for our supersymmetric extensions.

The D = 4 bosonic BI action on a flat background is given by

SBI =
1

α2

∫
d4x

[
1−

√
− det(ηµν + αFµν)

]

=
1

α2

∫
d4x

[
1−

√
1 +

α2

2
F 2 − α4

16
(FF̃ )2

]

= −1

4

∫
d4x F 2 + higher derivative terms , (4.1)

where Fµν = (∂µvν − ∂νvµ) is the field strength for an Abelian gauge field vµ, and

F 2 ≡ FµνF
µν , F F̃ ≡ FµνF̃

µν =
1

2
εµνρσF

µνF ρσ . (4.2)

The stress-energy tensor for the BI action can be computed straightforwardly and it

reads [56]

Tµν = −
FµλF ν

λ + 1
α2

(√
1 + α2

2 F
2 − α4

16 (FF̃ )
2 − 1− α2

2 F
2
)
ηµν

√
1 + α2

2 F
2 − α4

16 (FF̃ )
2

. (4.3)

This can be written in the following useful form

Tµν =
Tµν
Maxwell√

1 + 2A+B2
+

ηµν

α2
√
1 + 2A+B2

A2 −B2

1 +A+
√
1 + 2A+B2

, (4.4)

where we used the stress-energy tensor for the Maxwell theory

Tµν
Maxwell = −FµλF ν

λ +
1

4
F 2ηµν , (4.5)

while A and B are defined by

A =
1

4
α2F 2 , B =

i

4
α2FF̃ . (4.6)
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It is easy to compute the trace of the stress-energy tensor

Θ = Tµνηµν =
4

α2
√
1 + 2A+B2

A2 −B2

1 +A+
√
1 + 2A+B2

, (4.7)

where, interestingly, the combination (A2 − B2) proves to be related to the square of

Tµν
Maxwell. Using the identity

(FF̃ )2 =
1

4
(εµνρσF

µνF ρσ)2 = 4FµνF
νρFρσF

σµ − 2(F 2)2 , (4.8)

we see that

T 2
Maxwell = FµνF

νρFρσF
σµ − 1

4
(F 2)2 =

1

4

(
(F 2)2 + (FF̃ )2

)
=

4

α4
(A2 −B2) . (4.9)

Using tracelessness of the free Maxwell stress-energy tensor, the OT 2 operator can be

easily computed:

OT 2 = T 2 − 1

2
Θ2 =

4(A2 −B2)

α4
√
1 + 2A+B22

(
1− A2 −B2

(1 +A+
√
1 + 2A+B2)2

)
, (4.10a)

=
4(A2 −B2)

α4
√
1 + 2A+B22

(
1− 1 +A−

√
1 + 2A+B2

1 +A+
√
1 + 2A+B2

)
, (4.10b)

=
8(A2 −B2)

α4
√
1 + 2A+B2

1

1 +A+
√
1 + 2A+B2

, (4.10c)

=
8(1 +A−

√
1 + 2A+B2)

α2
√
1 + 2A+B2

. (4.10d)

The variation of the BI Lagrangian with respect to the parameter α2 can be readily com-

puted, and it is given by

∂Lα

∂α2
=

1 + 1
4α

2F 2 −
√

1 + 1
2α

2F 2 − 1
16α

4(FF̃ )2

α2
√
1 + 1

2α
4F 2 − 1

16α
4(FF̃ )2

. (4.11)

Once we use (4.6) it is clear that (4.10a) and (4.11) have exactly the same structure and

satisfy the following equivalence equation

∂Lα

∂α2
=

1

8
OT 2 , (4.12)

showing that the BI Lagrangian satisfies a T 2-flow driven by the operator OT 2 .

Before turning to D = 4 supersymmetric analysis, it is worth mentioning that the

structure of the computation relating the OT 2 operator to the bosonic BI theory, which

we just reviewed, is quite similar to what we saw in section 2 for the D = 2 N = (2, 2)

supersymmetric T T̄ flows. For example, in the deformation of the free twisted-chiral mul-

tiplet action, the analogue of the A and B combinations of (4.6) is given by (2.53), but

the square root structure of the actions is completely analogous. This fact, together with

the non-linearly realized supersymmetry we investigated in section 2, naturally lead to the

guess that the D = 4 N = 1 supersymmetric Born-Infeld (BI) theory may also satisfy a

T 2 flow. The next section is devoted to explaining how this is the case.
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5 Supersymmetric Born-Infeld from supercurrent-squared deformation

In section 2 we proved, by analogy and extension of the D = 4 results of [22], that two

D = 2 supercurrent-squared flows possess additional non-linearly realized supersymmetry.

In this section we reverse the logic. We will look at a well-studied model, namely the

Bagger-Galperin construction [22] of D = 4 N = 1 Born-Infeld theory [23, 57], and show

that it satisfies a supercurrent-squared flow equation.

5.1 D = 4 N = 1 supersymmetric BI and non-linear supersymmetry

Let us review some well known results about the D = 4 N = 1 Born-Infeld theory [23],

the Bagger-Galperin action [22], the non-linearly realized second supersymmetry, and its

precise N = 2 → N = 1 supersymmetry breaking pattern. For more detail, we refer to the

following references on the subject [20, 22, 23, 33–35].

We start with the following N = 2 superfield,

W(y, θ, θ̃) = X(y, θ) +
√
2iθ̃W (y, θ)− θ̃2G(y, θ) , yµ = xµ + iθσµθ̄ + iθ̃σµ

¯̃
θ , (5.1)

which is chiral with respect to both supersymmetries:10

D̄α̇W = ¯̃Dα̇W = 0 . (5.3)

Since we are ultimately interested in partial N = 2 → N = 1 supersymmetry breaking,

we will mostly use N = 1 superfields associated to the θ Grassmann variables to describe

manifest supersymmetry, while we use the θ̃ variable for the hidden non-linearly realized

supersymmetry. The N = 1 superfields X, Wα, and G of eq. (5.1) are chiral under the

manifest N = 1 supersymmetry. Under the additional hidden N = 1 supersymmetry, they

transform as follows:

δ̃X =
√
2iεW , (5.4a)

δ̃W =
√
2σµε̄∂µX +

√
2iεG , (5.4b)

δ̃G = −
√
2∂µWσµε̄ . (5.4c)

The superfield (5.1) has 16+16 independent off-shell components and is reducible. It

contains the degrees of freedom of an N = 2 vector and tensor multiplet. To reduce the

degrees of freedom and describe an irreducible N = 2 off-shell vector multiplet, we impose

the following conditions on the N = 1 components of W:

(i) First that Wα is the field-strength superfield of an N = 1 vector multiplet satisfying,

DαWα − D̄α̇W̄
α̇ = 0 , (5.5)

10We follow the conventions of [55]. The D = 4, N = 2 superspace is parametrised by bosonic coordinates

xµ and the Grasmannian coordinates (θα, θ̄α̇) and (θ̃α,
¯̃
θα̇). In terms of the chiral coordinate yµ introduced

in (5.1), the supercovariant derivatives are given by

Dα =
∂

∂θα
+ 2iσµ

αα̇θ̄
α̇ ∂

∂yµ
, D̄α̇ = − ∂

∂θ̄α̇
, (5.2)

and similarly for D̃α,
¯̃Dα̇.
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(ii) and that

G =
1

4
D̄2X̄ . (5.6)

The latter condition can easily be seen to be consistent since it is straightforward to verify

that 1
4D̄

2X̄ transforms in the same way as G given in (5.4c). Therefore we can impose (5.6)

without violating N = 2 supersymmetry.

Since W is chiral with respect to both sets of supersymmetries, we can consider the

following Lagrangian,

LN=2
W2 =

1

4

∫
d2θd2θ̃W2 + c.c. =

1

4

∫
d2θ

(
W 2 − 1

2
XD̄2X̄

)
+ c.c. . (5.7)

On the other hand, the N = 2 Maxwell theory written in terms of the N = 1 chiral

superfields X and Wα is given by

LN=2
Maxwell =

∫
d2θd2θ̄ X̄X +

1

4

∫
d2θW 2 +

1

4

∫
d2θ W̄ 2 ,

=
1

4

∫
d2θ

(
W 2 − 1

2
XD̄2X̄

)
+ c.c.+ total derivative . (5.8)

We see that these two Lagrangians are the same, confirming that the extra constraint

imposed on W is correct. The off-shell N = 2 vector multiplet can therefore be described

in term of the following N = 2 superfield

W(y, θ, θ̃) = X(y, θ) +
√
2iθ̃W (y, θ)− 1

4
θ̃2D̄2X̄(y, θ) , (5.9)

where X and Wα are N = 1 chiral and vector multiplets, respectively. Their component

expansion reads:

Wα = −iλα + θαD− i(σµνθ)αFµν + θ2(σµ∂µλ̄)α , (5.10a)

X = x+
√
2θχ− θ2 F . (5.10b)

Following [20] (see also [33–35]), we break N = 2 supersymmetry by considering a

Lorentz and N = 1 invariant condensate with a non-trivial dependence on the hidden

Grassmann variables 〈W〉 = Wdef ∝ θ̃2 6= 0, such that

W → Wnew = 〈W〉+W = W +Wdef , (5.11a)

Wnew = X +
√
2iθ̃W − 1

4
θ̃2
(
D̄2X̄ +

2

κ

)
. (5.11b)

The hidden supersymmetry transformations of the N = 1 components of the deformed

N = 2 vector multiplet turn out to be

δ̃X =
√
2iεW , (5.12a)

δ̃W =
i√
2κ
ε+

i

2
√
2
εD̄2X̄ +

√
2σµε̄∂µX . (5.12b)
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Assuming the model under consideration preserves the manifest N = 1 supersymmetry,

which implies 〈D̄2X〉 = 0, the explicit non-linear κ-dependent term in the transformation

of the fermionic Wα signals the spontaneous partial breaking N = 2 → N = 1 of the

hidden supersymmetry.

To describe the Maxwell-Goldstone multiplet for the partial breaking N = 2 → N = 1,

we can impose the following nilpotent constraint on the deformed N = 2 superfield strength

Wnew [20]

(Wnew)
2 = 0 . (5.13)

Once reduced to N = 1 superfields, following the expansion (5.11b), this constraint implies

the Bagger-Galperin constraint [22]

1

κ
X =W 2 − 1

2
XD̄2X̄ , (5.14)

which can be solved to eliminate X in terms of W 2 = WαWα and its complex conjugate

W̄ 2 = W̄α̇W̄
α̇:

X = κW 2 − κ3D̄2

[
W 2W̄ 2

1 +A+
√
1 + 2A− B2

]
, (5.15)

where we have introduced:

A =
κ2

2
(D2W 2 + D̄2W̄ 2) = A , B =

κ2

2
(D2W 2 − D̄2W̄ 2) = −B . (5.16)

For later use we denote the lowest components of the composite superfields A and B

A = A|θ=0 , B = B|θ=0 . (5.17)

We will not repeat the derivation of (5.15) which can be found in the original paper [22],

and was reviewed and slightly modified in section 2 for our analysis in two dimensions.

The N = 1 supersymmetric BI action can be constructed using the following N = 1

(anti-)chiral Lagrangian linear in X:

Lκ =
1

4κ

(∫
d2θX +

∫
d2θ̄X̄

)
. (5.18)

The second hidden supersymmetry eq. (5.12a) written in terms of the unconstrained real

vector multiplet V , where Wα = −1/4D̄2DαV , takes the form:

δ̃X = −1

4

√
2iεαD̄2DαV . (5.19)

Using the fact thatD2D̄2Dα ∝ ∂αα̇D
2D̄α̇, one can immediately see that the supersymmetry

variation of Lκ in (5.18) is a total derivative. Therefore this supersymmetric BI action is

invariant under the second hidden non-linear supersymmetry.

Using the solution (5.15), the supersymmetric BI Lagrangian takes the explicit form

Lκ =
1

4κ

∫
d2θ

(
κW 2 − κ3D̄2

[
W 2W̄ 2

1 +A+
√
1 + 2A+ B2

])
+ c.c.

=
1

4

∫
d2θW 2 +

1

4

∫
d2θ̄ W̄ 2 + 2κ2

∫
d2θd2θ̄

W 2W̄ 2

1 +A+
√
1 + 2A+ B2

, (5.20)
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which makes it clear that the supersymmetric BI is a non-linear deformation of the free

N = 1 Maxwell theory. This supersymmetric extension of BI was first constructed by

Bagger and Galperin in [22]. In this work when we refer to the supersymmetric BI theory,

we will always mean the Bagger-Galperin action.

We can easily calculate the flow under the κ2 coupling constant,

∂Lκ

∂κ2
= 2

∫
d2θd2θ̄

W 2W̄ 2

1 +A+
√
1 + 2A+ B2

1√
1 + 2A+ B2

. (5.21)

Our goal is now to show that the right hand side of this flow equation on-shell is the specific

supercurrent bilinear (3.16) that we introduced earlier. This will establish a supercurrent-

squared flow for the supersymmetric BI action.

Before turning to the core of this analysis let us recall that at the leading order in κ2,

the fact that D = 4 N = 1 BI satisfies a supercurrent-squared flow was already noticed

in [23]. This result was also highlighted recently in the introduction of [16]. In fact, note

that in the free limit α = κ = 0, the Lagrangian (5.20) becomes the N = 1 supersymmetric

Maxwell theory. Its supercurrent multiplet is

Jαα̇ = −4WαW̄α̇ , X = 0 , (5.22)

where X = 0 because super-Maxwell theory is scale invariant. The supersymmetric T 2

deformation operator (3.16) is then simply given by

OT 2 =
1

16
Jαα̇J αα̇ − 5

8
XX̄ =W 2W̄ 2 , (5.23)

and to leading order (5.21) turns into [23]

∂Lκ

∂κ2
=

∫
d2θd2θ̄ W 2W̄ 2 +O(κ2) =

∫
d2θd2θ̄OT 2 +O(κ2) . (5.24)

This shows that the supercurrent-squared flow equation is satisfied at this order. The rest

of this section is devoted to demonstrating the full non-linear extension of this result. First,

we are going to look at the bosonic truncation of (5.20) and (5.21).

5.2 Bosonic truncation

In the pure bosonic case the gauginos are set to zero in (5.10a), λ = λ̄ = 0, and W 2, W̄ 2

only have θ2, θ̄2 components, so A,B can only contribute the lowest components:

A = A|θ=0 = 2κ2
(
F 2 − 2D2

)
, B = B|θ=0 = 2κ2iF F̃ . (5.25)

Therefore the supersymmetric BI Lagrangian reduces to

L =
1

8κ2

[
1−

√
1 + 4κ2

(
F 2 − 2D2

)
− 4κ4

(
FF̃
)2
]
. (5.26)

The auxiliary field D = 0 after using its EOM, and the Lagrangian is equivalent to the

bosonic BI Lagrangian (4.1) with the identification α2 = 8κ2. This immediately implies

that on-shell the bosonic truncation of the supersymmetric BI satisfies a T 2 flow equation

driven by the OT 2 operator (3.6), as we discussed in (4.10a). A similar story is going to

hold for the complete supersymmetric model of (5.20) and (5.21).
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5.3 Supersymmetric Born-Infeld as a supercurrent-squared flow

The supercurrent for the supersymmetric BI action (5.20) was computed in [58] for κ2 = 1
2 .

To simplify notation, we will also consider the special case κ2 = 1
2 in our intermediate com-

putations. The κ-dependence can be restored easily and will appear in the final formulae.

We can straightforwardly use the results of [58] for our supercurrent-squared flow

analysis. The FZ multiplet was computed for a class of models described by the following

Lagrangian,

L =
1

4

∫
d2θW 2 +

1

4

∫
d2θ̄ W̄ 2 +

1

4

∫
d2θd2θ̄ W 2W̄ 2Λ(u, ū) , (5.27)

where

u =
1

8
D2W 2 , ū =

1

8
D̄2W̄ 2 . (5.28)

The action (5.20) turns out to be given by the following choice of Λ(u, ū)

Λ(u, ū) =
4

1 +A+
√
1 + 2A+ B2

, (5.29)

where

A = 2(u+ ū) , B = 2(u− ū) . (5.30)

Following [58], we also introduce the composite superfields

Γ(u, ū) =
∂(uΛ)

∂u
, Γ̄(u, ū) =

∂(ūΛ)

∂ū
, (5.31)

which, in the case of interest to us where (5.29) holds, satisfy

Γ + Γ̄− Λ =
4(

1 +A+
√
1 + 2A+ B2

)√
1 + 2A+ B2

, (5.32a)

ūΓ + uΓ̄ = 1− 1√
1 + 2A+ B2

. (5.32b)

The supercurrents will also be functionals of the following composite

iMα = Wα

[
1− 1

4
D̄2

(
W̄ 2

(
Λ +

1

8
D2

(
W 2∂Λ

∂u

)))]
, (5.33a)

= Wα

(
1− 2ūΓ

)
+WW̄ (· · · ) +W 2(· · · ) , (5.33b)

where WW̄ (· · · ) denotes terms which are proportional to WαW̄α̇, while W
2(· · · ) denotes

terms proportional to W 2. We will use similar notation with ellipses denoting quantities

with bare fermionic terms that will not contribute to the calculation because of nilpotency

conditions.

With the ingredients introduced above, the FZ multiplet for the supersymmetric BI

action is given by [58]

X =
1

6
W 2D̄2

(
W̄ 2(Γ + Γ̄− Λ)

)
, (5.34a)

Jαα̇ = −2iMαW̄α̇ + 2iWαM̄α̇ +
1

12
[Dα, D̄α̇]

(
W 2W̄ 2

)
·
(
Γ + Γ̄− Λ

)

+W 2W̄ (· · · ) + W̄ 2W (· · · ) . (5.34b)
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For our purposes, the superfields X and Jαα̇ can be further simplified as follows:

X =
1

6
W 2D̄2W̄ 2 ·

(
Γ + Γ̄− Λ

)
+W 2W̄ (· · · ) , (5.35a)

=
2W 2D̄2W̄ 2

3
(
1 +A+

√
1 + 2A+ B2

) +W 2W̄ (· · · ) , (5.35b)

and

Jαα̇ = −4WαW̄α̇(1− ūΓ− uΓ̄) +
1

12
[Dα, D̄α̇]

(
W 2W̄ 2

)
·
(
Γ + Γ̄− Λ

)

+W 2W̄ (· · · ) + W̄ 2W (· · · ) , (5.36a)

= − 4WαW̄α̇√
1 + 2A+ B2

+
2DαW

2 · D̄α̇W̄
2

3
(
1 +A+

√
1 + 2A+ B2

)√
1 + 2A+ B2

+W 2W̄ (· · · ) + W̄ 2W (· · · ) , (5.36b)

where we used (5.32a).

The computation of XX̄ is trivial and receives contributions only from the square of

the first term in (5.35b). The computation of J 2 is less trivial. It is obvious that the

last two complicated terms in the second line of (5.36b) make no contribution since all

the terms are proportional to WW̄ , and we have the nilpotency property WαWβWγ = 0.

The square of the first term is easy to compute, and it is proportional to W 2W̄ 2. Next

we consider the cross product between the first and second term in (5.36b) which leads to

the relation:

WαW̄α̇ ·DαW 2 · D̄α̇W̄ 2 =W 2(DW ) · W̄ 2(D̄W̄ ) = 0 . (5.37)

Remarkably, this cross term vanishes since, as shown in appendix A, on-shell it is true that

W 2W̄ 2DW = 0 . (5.38)

A simple physical interpretation of this condition is that the manifest supersymmetry is

preserved on-shell, implying that the auxiliary field D ∝ DαWα|θ=0 has no vev, and is

at least linear in gaugino fields λα ∝ Wα|θ=0. The vanishing of this cross term can be

compared with the pure bosonic case where the cross terms in T 2 vanish because of the

tracelessness property of the free Maxwell stress tensor; see section 4. Finally, we compute

the square of the second term in (5.36b) which includes the following structure:

DαW 2 · D̄α̇W̄ 2 ·DαW
2 · D̄α̇W̄

2 =W 2W̄ 2D2W 2D̄2W̄ 2 . (5.39)

Here we have used (DαWβ)(D
αW β) = −1

2D
2W 2 +W βD2Wβ to simplify the result.

In summary, on-shell the contributions to the supercurrent-squared operator OT 2 de-

fined in eq. (3.16) are given by

J 2 = −1

8

{
16W 2W̄ 2

√
1 + 2A+ B22

+
4W 2W̄ 2D2W 2D̄2W̄ 2

9
√
1 + 2A+ B22

(
1 +A+

√
1 + 2A+ B2

)2

}
, (5.40a)

XX̄ =
4

9

W 2W̄ 2D2W 2D̄2W̄ 2

√
1 + 2A+ B22

(
1 +A+

√
1 + 2A+ B2

)2 . (5.40b)
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Adding these results gives the supersymmetric T 2 primary operator OT 2 :

OT 2 = −1

2

(
J 2 +

5

4
XX̄

)
=

W 2W̄ 2

√
1 + 2A+ B22

(
1− D2W 2D̄2W̄ 2

4
(
1 +A+

√
1 + 2A+ B2

)2
)

(5.41a)

=
W 2W̄ 2

√
1 + 2A+ B22

(
1− A2 − B2

(1 +A+
√
1 + 2A+ B2)2

)
(5.41b)

=
2W 2W̄ 2

√
1 + 2A+ B2

(
1 +A+

√
1 + 2A+ B2

) . (5.41c)

It is worth noting that the simplifications occurring in constructing OT 2 from the super-

currents are very similar to the bosonic case of (4.10a).

Comparing with (5.21), we see that eq. (5.41c) proves that the supersymmetric BI

action (5.20) is an on-shell solution of the flow equation

∂Lκ

∂κ2
=

∫
d2θd2θ̄2

2W 2W̄ 2

√
1 + 2A+ B2

(
1 +A+

√
1 + 2A+ B2

) (5.42a)

=

∫
d2θd2θ̄2OT 2 + total derivatives + EOM . (5.42b)

It therefore describes a supercurrent-squared deformation of the N = 1 free Maxwell

Lagrangian. This result establishes a relationship between non-linearly realized supersym-

metry and supercurrent-squared flow equations in D = 4.

Before closing this section, we should make a few comments regarding the on-shell

condition (5.38) used in establishing the supercurrent-squared flow equation for the D = 4

N = 1 BI action. First it is important to stress that the flow equation is not satisfied by

the supersymmetric BI action off-shell. Second, we note that the specific combination of

J 2 and XX̄ studied is the unique choice for which (5.20) satisfies a supercurrent-squared

flow equation, even if only on-shell.

Such a non-trivial condition satisfied by the on-shell supersymmetric BI action is in-

triguing and hints at the existence of appropriate (super)field redefinitions which might

lead to a different supersymmetric extension of BI that satisfies the flow equation off-shell.

For example, it is know that the dependence of the off-shell extension on the auxiliary field

D can be modified by appropriate (super)field redefinitions, as well as redefinitions of the

full superspace Lagrangian. We refer to [59–62] for a list of relevant papers on this subject.

Under field redefinitions, the hidden supersymmetry will be modified but will remain a

non-linearly realized symmetry of the theory. The existence of an off-shell solution of the

supercurrent-squared flow is an interesting question for future research.

6 D = 4 Goldstino action from supercurrent-squared deformation

In section 5 we showed that the Bagger-Galperin action for the D = 4 N = 1 supersymmet-

ric BI theory satisfies a supercurrent-squared flow. It is known that the truncation of this

model to fermions describes a Goldstino action for D = 4 N = 1 supersymmetry breaking;

see, for example, [61, 63, 64]. The N = 1 non-linearly realized supersymmetry arises as
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the non-linearly realized part of the N = 2 → N = 1 breaking of the supersymmetric BI.

We have shown in sections 4 and 5.2 that the bosonic truncation of the supersymmetric BI

satisfies a T 2 flow equation. The same should be true for the fermionic truncation. More

generally, one might argue that D = 4 N = 1 Goldstino models could satisfy a sort of flow

equation that organizes their expansion in the supersymmetry breaking scale parameter.

Note that in the D = 2 case, the intuition is similar. If we consider the actions analyzed

in section 2 that describe Goldstone models for partial D = 2 N = (4, 4) → N = (2, 2)

supersymmetry breaking, one can immediately argue that their fermionic truncation de-

scribes Goldstino actions possessing non-linearly realized D = 2 N = (2, 2) supersymme-

try. These, by construction, are expected to satisfy a T T̄ -flow equation. In fact, such

an argument is in agreement with the very nice recent analysis of [21] where a D = 2

Goldstino model possessing N = (2, 2) non-linearly realized supersymmetry was shown

to satisfy the supercurrent-squared flow equation (2.6).11 The model analyzed in [21] is

the analogue of the D = 4 model of [66, 67] and related on-shell to the Goldstino model

of [68].12 This section is devoted to showing that these D = 4 N = 1 Goldstino models

satisfy a supercurrent-squared flow driven by the operator OT 2 of the supersymmetric BI,

in agreement with the arguments given above.

6.1 D = 4 Goldstino actions

The Volkov-Akulov (VA) action is the low energy description of supersymmetry breaking.

There are several representations of the Goldstino action that are equivalent to the Volkov-

Akulov form; see [61, 69] for comprehensive discussions. Here we will focus on two models,

but we start by reviewing a few general features of Goldstino actions.

The original VA action was obtained by requiring its invariance under the the non-

linear supersymmetry transformation [70]

δξλ
α =

1

κ
ξα − iκ(λσmξ̄ − ξσmλ̄)∂mλ

α . (6.1)

Explicitly, the original Lagrangian was proven to be

LVA = − 1

2κ2
detA = − 1

2κ2
− i

2
(λσm∂mλ̄− ∂mλσ

mλ̄) + interactions , (6.2)

where

Am
a = δm

a − iκ2∂mλσ
aλ̄+ iκ2λσa∂mλ̄ . (6.3)

The alternative representation of the Goldstino action that interests us was originally

introduced by Casalbuoni et al. in [66], and later rediscovered and made fashionable by

Komargodski and Seiberg [67]. This model, which following recent literature we will call the

KS model, was constructed by imposing nilpotent superfield constraints as a generalization

of Roček’s seminal ideas for the Goldstino model described in [68]. After integrating out

11We refer to [65] for a discussion of various models possessing non-linearly realized (2, 2) supersymmetry.
12Note that the Goldstino models of [66–68] were shown in [61, 64] to be identical to the fermionic

truncation of the supersymmetric BI action up to a field redefinition of the Goldstino.
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an auxiliary field in the KS model, described in more detail in the next section, the explicit

form of the Lagrangian is given by the following very simple combination of terms:

LKS = −f2 − i

2
(ψσm∂mψ̄ − ∂mψσ

mψ̄)− 1

4f2
∂µψ̄2∂µψ

2 − 1

16f6
ψ2ψ̄2∂2ψ2∂2ψ̄2 . (6.4)

The action is invariant under a quite involved non-linearly realized supersymmetry trans-

formation whose explicit form can be found in [64, 71]. The Goldstino actions described

by (6.2) and (6.4) prove to be equivalent off-shell up to a field redefinition [64, 71].

6.2 D = 4 KS Goldstino model as a supercurrent-squared flow

The goal in the rest of this section is to straightforwardly generalize the analysis of [21]

to D = 4 and to show how the KS action satisfies a flow equation arising from a T 2

deformation of the free fermion action.

6.2.1 KS model

Let us start by reviewing the Goldstino model of [66, 67]. Consider the following Lagrangian

LKS =

∫
d4θ Φ̄Φ +

∫
d2θ

(
fΦ+

1

2
ΛΦ2

)
+

∫
d2θ̄

(
fΦ̄ +

1

2
Λ̄Φ̄2

)
, (6.5)

where Φ, Φ̄ are D = 4 N = 1 chiral and anti-chiral superfields, satisfying the constraints

D̄α̇Φ = DαΦ̄ = 0. The constant parameter f , which describes the supersymmetry breaking

scale, is real. The superfields Λ, Λ̄ are chiral and anti-chiral Lagrange multipliers whose

EOM yield the nilpotent constraints

Φ2 = Φ̄2 = 0 . (6.6)

The equation of motion for Φ is

1

4
D̄2Φ̄ = ΛΦ + f ,

1

4
D2Φ = Λ̄Φ̄ + f . (6.7)

As a consequence, we also have

ΦD̄2Φ̄ = 4fΦ , Φ̄D2Φ = 4fΦ̄ , (6.8)

where the nilpotent properties of (6.6) are used. Note that the constraints (6.6) and (6.8)

are the ones originally used by Roček to define his Goldstino model [68]. These observations

make manifest the on-shell equivalence of the KS model with Roček’s Goldstino model in

a simple superspace setting. The off-shell equivalence of all these Golstino models up to

field redefinitions, including the VA action, was proven in [61].

The Lagrange multiplier in (6.5) imposes the nilpotent constraint Φ2 = 0 on the chiral

superfield Φ. This condition can be solved in terms of the spinor field ψ and the auxiliary

field F of the chiral multiplet, [66, 67]:

Φ =
ψ2

2F
+

√
2θψ + θ2F , (6.9)
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which is sensible assuming that F 6= 0. Substituting back into (6.5) gives a Lagrangian

expressed in terms of ψ and the auxiliary field F ,

LKS = − i

2
ψσµ∂µψ̄ +

1

2
F̄F +

1

8

ψ̄2

F̄
∂2
(
ψ2

F

)
+ fF + c.c. . (6.10)

The auxiliary field can then be eliminated using its equation of motion, which can be solved

in closed form

F = −f
(
1 +

ψ̄2

4f4
∂2ψ2 − 3

16f8
ψ2ψ̄2∂2ψ2∂2ψ̄2

)
, (6.11)

together with the complex conjugate expression for F̄ . Plugging (6.11) into (6.10) gives

the Goldstino action (6.4) [66, 67].

6.2.2 D = 4 Goldstino action as a supercurrent-squared flow

One advantage of using the KS model compared to other Goldstino actions is the relatively

simple form of the action, thanks to the Lagrange multiplier, which makes the computation

of its supercurrent easier. The FZ multiplet resulting from the action (6.5) is

Jαα̇ = 2DαΦ · D̄α̇Φ̄− 2

3
[Dα, D̄α̇](ΦΦ̄) =

2

3
DαΦ · D̄α̇Φ̄− 2i

3

(
Φ∂αα̇Φ̄− Φ̄∂αα̇Φ

)
, (6.12a)

X = 4

(
fΦ+

1

2
ΛΦ2

)
− 1

3
D̄2(ΦΦ̄) =

8

3
fΦ+ 2ΛΦ2 . (6.12b)

The composite operators J αα̇Jαα̇ and XX̄ are then

J αα̇Jαα̇ =
64

9
f2ΦΦ̄ + total derivatives + EOM , (6.13)

and

XX̄ =
64

9
f2ΦΦ̄ + EOM , (6.14)

where we used (6.6) and (6.7). The supercurrent-squared operator (3.16) then takes

the form

OT 2 =
1

16
J αα̇Jαα̇ − 5

8
XX̄ = −4f2ΦΦ̄ + EOM+ total derivatives . (6.15)

The descendant operator OT 2 of eq. (3.17) becomes

OT 2 =

∫
d2θd2θ̄ OT 2 = −4f2

∫
d2θd2θ̄ ΦΦ̄ = 2f3

∫
d2θΦ+ 2f3

∫
d2θ̄ Φ̄ , (6.16)

where we used (6.8) in the last equality.

From (6.5), it is easy to see that the following relation holds:

∂LKS

∂f
=

∫
d2θΦ+

∫
d2θ̄ Φ̄ . (6.17)

By identifying the coupling constants,

γ = − 1

4f2
, (6.18)
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it follows immediately that the KS action,

Sγ =

∫
d4xLKS , (6.19)

satisfies the flow equation

∂Sγ
∂γ

=

∫
d4xd2θΦ+

∫
d4xd2θ̄ Φ̄ =

∫
d4xd2θd2θ̄ OT 2 =

∫
d4xOT 2 . (6.20)

This proves that (6.5) satisfies a supercurrent-squared flow (or T 2 flow) equation. Because

on-shell the actions (6.4) and (6.5) are equivalent, and the equation

∫
d2θd2θ̄ OT 2 = OT 2

holds, eq. (6.20) proves that the D = 4 N = 1 Goldstino action arises from a supercurrent-

squared deformation.13

7 Conclusions and outlook

In this work we have explored the relationship between T T̄ deformations and non-linear

supersymmetry, extending the earlier analysis of [17, 18, 21]. We first showed how two

different D = 2 N = (2, 2) T T̄ deformations of free supersymmetric scalar models, studied

in [18], classically possess a hidden non-linearly realized N = (2, 2) supersymmetry. The

deformed theories are off-shell supersymmetric extensions of the gauge-fixed Nambu-Goto

string in four dimensions. One way to potentially understand the appearance of non-

linearly realized symmetries is by relating them to symmetries of the undeformed theories

using the field-dependent change of variables discussed in [25, 72].

These D = 2 models turn out to be structurally very similar to the Bagger-Galperin

action describing a D = 4 N = 1 Born-Infeld theory, which possesses extra non-linearly

realized N = 1 supersymmetry [22]. Inspired by this similarity and earlier work on the

bosonic BI theory [24], we proved that the N = 1 BI action satisfies a supercurrent-squared

flow equation to all orders in the deformation parameter, extending the beautiful initial

observation of [23].

Moreover, we concluded the paper by showing how the D = 4 N = 1 Goldstino

action also satisfies the same supercurrent-squared flow. This result extends the recent

D = 2 analysis of [21] to four dimensions. Our findings hint at an intriguing relation

between current-squared deformations and non-linear supersymmetry in various space-time

dimensions that calls for a deeper explanation.

For the D = 2 case where the T T̄ operator is well-defined quantum mechanically, it

would be interesting to investigate other examples with various (super-)symmetry breaking

13The careful reader may find that the flow can also be satisfied by other supercurrent-squared operators,

J 2 − rX̄X , with arbitrary r because of the linearity between J 2 and X̄X . It is worth pointing out the

same thing happens in D = 2 [21]. We stress that this is not the case for the supercurrent-squared flow

satisfied by the D = 4 supersymmetric Born-Infeld action.
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patterns, and analyze the consistency conditions required by the existence of non-linear

symmetries at the quantum level.14

Another interesting issue related to the quantum properties of D = 2 T T̄ -deformed

models concerns their perturbative renormalization behavior. It is well known [4, 5] that the

effect of the T T̄ deformation in infinite volume is to modify the S-matrix of the undeformed

theory by a CDD factor. It is interesting to ask whether one could renormalize the classical

deformed action by adding some counter-terms and reproduce the S-matrix at the quantum

level. In [73], the authors managed to write down the one-loop effective action of the

deformed Lagrangian for a free massive scalar field. In the supersymmetric case it would be

interesting to see if with enough supersymmetry one could derive the effective action exactly

in λ. For instance, if one deforms an N = (2, 2) supersymmetric model with a Kähler

potential K and superpotential W , it was shown in [18] that the superpotential W is left

untouched along the superspace T T̄ flow. Moreover, it is known that the superpotential W

is protected from perturbative quantum corrections. However, the Kähler potential suffers

from quantum corrections and a similar renormalization procedure of the one in [73] should

be performed to address the perturbative behavior of such Kähler potential. We leave the

detailed analysis of this issue to the future.

For D > 2, to the best of our knowledge, there is no complete argument showing

that any of the proposed operators O
[r]
T 2 of eq. (3.1), including the holographic operator

of [44, 45], possesses any particularly nice quantum properties. By looking at our D = 4

N = 1 example, where the flow is controlled by the descendant operator OT 2 of (3.17), it

seems clear that any supersymmetric completion of O
[r]
T 2 will involve several other current-

squared operators. An important question is to understand whether such extensions have a

hope of providing well-defined operators at the quantum level. This seems most promising

in models with at least extended N > 1, and more likely maximal, supersymmetry.

In [45, 46], the authors studied the T 2-deformation from an holographic perspective

and a particular choice r = 1
D−1 in the T 2 operator was motivated. In D = 4, the su-

persymmetric generalization of such a T 2-operator is given in (3.15). It is interesting to

study the supersymmetric generalization of the holographic setup in [45, 46], and especially

understand the role of other currents in supersymmetric T 2-operator arising from the dif-

ference between OT 2 and OT 2 . A purely field theoretical analysis of such a T 2-operator

with r = 1
D−1 and its supersymmetric analog is also of great importance, in particular to

match the holographic result in the large-N limit. It is worth mentioning that in the case of

N = 4 supersymmetric Yang-Mills in four dimensions, some preliminary interesting results

of T T̄ like irrelevant deformations preserving integrability were recently presented [74].

Putting aside the quantum properties of these deformations and flows, the connection

between non-linear symmetries and T T̄ flows might give a novel way to organize inter-

esting low-energy effective actions. The Born-Infeld and Goldstino actions that we have

analyzed in this paper are universal low-energy structures in string theory, and in the latter

case quantum field theory, precisely because of their non-linear symmetries, which can be

geometrically realized via brane physics.

14We are grateful to Guzmán Hernández-Chifflet for stimulating comments on this subject.

– 32 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
6

The study of Volkov-Akulov-Dirac-Born-Infeld actions with extended supersymmetry

in various space-time dimensions and their relationship to string theory has received a lot of

attention in the past. We refer to the following (incomplete) list of references [20, 22, 57, 59,

60, 75–98]. It would be remarkable if the α′ expansion of these models can be reorganized

in a simple current-squared flow equation. An efficient way to address the cases we have

considered so far in D = 2 and D = 4 has been via superspace techniques. As a next step,

one could try to analyze possible flow equations satisfied by the D = 4 N = 2 extensions

of the DBI theory, which has been analyzed in superspace; see, for example, [89–95].

Another potentially tractable direction to be explored concerns the possible univer-

sality of the operator OT 2 of (3.17) in the context of models with partial supersymmetry

breaking. In the literature there are other known models for D = 4 N = 2 → N = 1 super-

symmetry breaking that share structural similarities with the Maxwell-Goldstone model

of [22]. Well known are the Goldstone models based on the D = 4 N = 1 tensor multi-

plet [62], see also [60, 61], which have a dual description based on a chiral N = 1 multiplet.

It is simple to show that at first order these actions satisfy a supercurrent-squared flow

analogous to the Bagger-Galperin action. Whether that result extends beyond leading

order is a natural question.

A final avenue for future investigation concerns the relationship between T T̄ defor-

mations and amplitudes. In two dimensions, T T̄ simply modifies the S-matrix of the

undeformed theory by a CDD factor [4], but one might wonder about the S-matrices of

higher-dimensional theories deformed by generalizations of T T̄ . One hint is that theories

with non-linearly realized symmetries exhibit enhanced soft behavior — indeed, in the case

of non-linearly realized supersymmetry, there is a proof that such symmetries generically

lead to constraints on the soft behavior of the S-matrix [99], a fact which has been applied

to the Volkov-Akulov action [100], which satisfies a T T̄ -like flow as we showed in section 6.

There are also examples involving purely bosonic theories. For instance, in four di-

mensions, the Dirac action is the unique Lorentz-invariant Lagrangian for a single scalar

which is consistent with factorization, has one derivative per field, and exhibits soft degree

σ = 2 for its scattering amplitudes [101]. Similarly, it has been shown that the Born-

Infeld action for a vector can be fixed by demanding enhanced soft behavior in a particular

multi-soft limit [102], which can be understood in the context of T-duality and dimensional

reduction [103]. Given the hints of a deeper relationship between supercurrent-squared de-

formations, non-linearly realized symmetries, and actions of Dirac or Born-Infeld type,

it is natural to ask whether such deformations enhance the soft behavior of scattering

amplitudes in a more general context.
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A Deriving a useful on-shell identity

This appendix is devoted to deriving the on-shell relation (5.38). We are going to prove this

holds for an action of the form (5.27). Let us start by considering the following Lagrangian

L =
1

4

∫
d2θW 2 +

1

4

∫
d2θ̄ W̄ 2 +

∫
d2θd2θ̄ W 2W̄ 2Ω

[
D2W 2, D̄2W̄ 2

]
. (A.1)

Remember that Wα and W̄α̇ satisfy the Bianchi identity DαWα = D̄α̇W̄
α̇ whose solution

is given in terms of a real but otherwise unconstrained scalar prepotential superfield V :

Wα = −1/4 D̄2DαV and W̄α̇ = −1/4D2D̄α̇V . It is a straightforward calculation to derive

the EOM by varying the action (A.1) with respect to the prepotential V . The EOM reads

0 = −DαWα +
1

2
DαD̄2

(
WαW̄

2Ω

)
+

1

2
D̄α̇D

2

(
W 2W̄ α̇Ω

)
(A.2)

+
1

2
Dα

[
WαD̄

2D2

(
W 2W̄ 2 ∂Ω

∂(D2W 2)

)]
+

1

2
D̄α̇

[
W̄ α̇

(
D2D̄2W 2W̄ 2 ∂Ω

∂(D̄2W̄ 2)

)]
.

Because of the constraint that WαWβWγ = 0 and its complex conjugate, multiplying

eq. (A.2) by W 2W̄ 2 and using the EOM gives the following condition

W 2W̄ 2(DαWα)

(
1 + f(Ω)

)
= 0 , (A.3)

where the functional f(Ω) is given by

f(Ω) := −1

2
(D̄2W̄ 2 +D2W 2)Ω

−1

2

[
(D2W 2)(D̄2W̄ 2)

∂Ω

∂(D2W 2)
+ (D2W 2)(D̄2W̄ 2)

∂Ω

∂(D̄2W̄ 2)

]
. (A.4)

This implies

W 2W̄ 2(DαWα) = 0 , (A.5)

which is precisely condition (5.38).
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[28] S.J. Gates Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric

nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
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