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The formation of the fungal mycelial network is facilitated by somatic cell fusion
of germinating asexual spores (or germlings). Neurospora crassa germlings in close
proximity display chemotropic growth that is dependent upon an intracellular network
of mitogen-activated protein kinase (MAPK) signaling cascades. Approximately 80
genes involved in intercellular communication and fusion have been identified, including
three mutants with similar morphological phenotypes: Awhi-2, Acsp-6, and Aamph-1.
Here we show that WHI-2 localizes to the cell periphery and regulates endocytosis,
mitochondrial organization, sporulation, and cell fusion. WHI-2 was required to transduce
signals through a conserved MAPK pathway (NRC-1/MEK-2/MAK-2) and target
transcription factors (PP-1/ADV-1). The amph-1 locus encodes a Bin/Amphiphysin/Rvs
domain-containing protein and mis-expression of whi-2 compensated for the cell
fusion and endocytosis deficiencies of a Aamph-1 mutant. The csp-6 locus encodes
a haloacid dehalogenase phosphatase whose activity was essential for cell fusion.
Although fusion-deficient with themselves, cells that lacked whi-2, csp-6, or amph-1
showed a low frequency of chemotropic interactions with wild type cells. We hypothesize
that WHI-2 could be important for signal perception during chemotropic interactions via
a role in endocytosis.

Keywords: cell fusion, WHI-2, CSP-6, AMPH-1, endocytosis, MAPK

INTRODUCTION

Fungi can sense their surroundings, receive environmental cues, interpret them, and respond
accordingly. During asexual growth, germinated asexual spores (germlings) and hyphae of the
ascomycete fungus Neurospora crassa display social behaviors that trigger the process of cell-cell
communication and somatic cell fusion. Cell fusion creates a mycelial network that allows the
circulation of nutrients, water and cellular elements including genetic material throughout an
interconnected colony (Leeder et al., 2011; Fischer and Glass, 2019). Somatic cell fusion in N. crassa
operates in an analogous way to somatic cell fusion events in mammalian systems, including during
muscle, placenta, and bone tissue development (Hernédndez and Podbilewicz, 2017).

In N. crassa, somatic cell fusion of germlings is initiated when two cells (which can be genetically
identical) undergo chemotropic interactions via the exchange of yet-to-be discovered signals by
forming polarized cellular protrusions called conidial anastomosis tubes (CATs) (Gabriela Roca
et al.,, 2005). After CATs from germlings come into contact, a switch from cell growth to cell
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wall dissolution is initiated (Gongalves et al., 2019), followed by
plasma membrane merger and cytoplasmic continuity; nuclear
fusion is not a consequence of somatic cell fusion (Leeder et al.,
2011). The combination of polar growth, hyphal branching, and
cell fusion events is vital for the formation of the interconnected
multicellular hyphal network that is the hallmark growth habit of
filamentous fungi (Glass et al., 2004).

The availability of a well-annotated genome (Galagan et al,,
2003; Borkovich et al.,, 2004) and a near full genome deletion
strain collection (Colot et al., 2006) have enabled screening of
deletion mutants for cell fusion phenotypes in N. crassa (Fu
et al,, 2011). Deletion strains affected in cell communication and
fusion often show a reduction in aerial hyphae extension and
flat-like growth and approximately 80 genes have been found
to play a role in these processes in N. crassa. The functions of
these genes have been partially characterized and range from
intracellular signaling, calcium modulation, membrane merger,
production of reactive oxygen species, actin regulation, vesicle
trafficking and transcriptional control (Glass et al., 2004; Leeder
et al., 2011; Fischer and Glass, 2019). Two conserved mitogen-
activated protein kinase (MAPK) modules form the core of the
intracellular signal transduction network that is activated during
cell fusion: the SOFT (SO)/MIK-1/MEK-1/MAK-1 cascade—that
is part of the cell wall integrity pathway—and the STE-50/STE-
20/HAM-5/NRC-1/MEK-2/MAK-2 module (Fischer and Glass,
2019). During chemotropic growth that precedes cell fusion,
components of both of these pathways are recruited to the tip of
germling CATs and to the tips of fusion hyphae (Fleissner et al.,
2009b; Dettmann et al., 2012, 2014; Jonkers et al., 2014). The tip
recruitment and displacement of the MAK-2 signaling module
to a single fusion tip occurs every ~8-10min and alternates at
CAT and fusion tips of chemotropic partners in a perfectly out
of phase manner with localization of SO, resembling a ping-
pong mechanism of signal sending and receiving (Fleissner et al.,
2009b; Leeder et al., 2011; Serrano et al., 2018). These two
pathways are required for the activation of the transcription
factors PP-1 and ADV-1 that function as master regulators of cell
fusion genes (Fischer et al., 2018).

Despite recent advances, the function of many cell fusion
genes remains unclear. In particular, whi-2, the N. crassa ortholog
of the Saccharomyces cerevisiae gene WHISKEY2 (WHI2), has
been shown to be required for cell fusion (Fu et al., 2014). The
S. cerevisiae Whi2 was initially identified as a central player in the
coordination between cell proliferation and nutrient availability.
Loss-of-function mutations in WHI2 result in cells that cannot
properly sense the extracellular nutritional status and fail to shift
from exponential to stationary growth (Saul and Sudbery, 1985),
leading to cells that are smaller than normal due to cell division
without sustained cell growth. Yeast whi2 mutants also show
actin cytoskeleton disorganization, increased cell death, aberrant
mitochondrial morphology and defects in executing endocytosis
(Binley et al., 1999; Care et al., 2004; Leadsham et al., 2009).
Additionally, whi2 mutants show an increase in the activity
of the Ras/cAMP/PKA pathway, permitting the downstream
general stress response transcription factor Msn2/4 to remain
phosphorylated and outside of the nucleus, where it is unable to
activate the expression of cell cycle arrest genes (Radcliffe et al.,

1997a; Leadsham et al., 2009; Sadeh et al., 2011). Overexpression
of WHI2 results in filamentous growth that is dependent on Stell
and partially dependent on Ste7, Ste20 and Stel2 (Radcliffe et al.,
1997b). These proteins are orthologs of N. crassa NRC-1 (Stell),
MEK-2 (Ste7), STE-20 (Ste20), and PP-1 (Ste12), components of a
MAPK signaling complex and its target transcription factor that
are required for somatic cell fusion in a number of filamentous
fungi (Fischer and Glass, 2019). The S. cerevisiae WHI2 gene
also seems to be a hot spot for adaptive mutations, indicating
a central role for the respective protein in fungal development
and environmental responses (Cheng et al., 2008; Gresham et al.,
2008; Kvitek and Sherlock, 2013; Lang et al., 2013; Teng et al.,
2013; Szamecz et al., 2014; Treusch et al., 2015; Payen et al., 2016;
Comyn et al., 2017).

In this study, we examined the role of the N. crassa
WHI-2 during fungal development. Our findings indicate that
WHI-2 localized to the cell periphery, affected endocytosis
and mitochondrial morphology, and functioned upstream of
the NRC-1/MEK-2/MAK-2/PP-1/ADV-1 signaling pathway to
activate cell-cell communication. Additionally, we discuss two
other cell fusion proteins, CSP-6 and AMPH-1, whose functions
are related to WHI-2. CSP-6 showed a localization pattern similar
to WHI-2 and its deletion phenocopied the morphological
and cell fusion defects of a Awhi-2 strain. AMPH-1 is an
endocytosis regulator whose absence was compensated for by
the mis-expression of WHI-2. This work provides new details
on genes/proteins that function upstream of a key MAPK
signaling module.

MATERIALS AND METHODS

Strains and Culture Media

Standard procedures for the handling of N. crassa cells were
employed. Cells were grown in Vogel’s minimal medium (VMM)
plus 2% (w/v) sucrose and 1.5% (w/v) agar (Vogel, 1956). Crosses
were performed on synthetic cross medium (Westergaard and
Mitchell, 1947). Wild type and deletion strains are available
from the Fungal Genetics Stock Center (FGSC) (McCluskey
et al., 2010) and were constructed as part of the Neurospora
Genome Project (Colot et al., 2006). Strains used in this study are
listed in Table S1. For all the experiments, the indicated strains
were grown for ~7 days in VMM-containing slant tubes and a
conidial suspension was obtained by adding sterile 3gH,O into
tubes, vortexing and passing the mixture through cheesecloth
to remove hyphal fragments. Hygromycin B (Thermo Fisher
Scientific, Waltham, MA, USA) was used at a final concentration
of 200 pg/ml.

Strain Construction

The whi-2, csp-6, and amph-1 genes were amplified from
genomic DNA of the FGSC2489 wild type strain using primers
ACCTCTAGAATGGCTGCCGCGGGAGGAG and CAG
TTAATTAAACGCAGTCCAATCACACTCATCTCC for whi-2
(creating Xbal/Pacl restriction sites), primers TTTTACTAGT
ATGAGCAACTCGAACCCG and TTTTTTAATTAAAAGA
GTGACGTCCAGAACCAG for csp-6 (creating Spel/Pacl
restriction sites) and primers TTTTTTAATTAAAAGAGTGA
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CGTCCAGAACCAG and CGGTTAATTAAAACAGTTCC
GCTGATACTC for amph-1 (creating Xbal/Pacl restriction
sites). The resulting PCR products were cloned into pCR-Blunt
II-TOPO, excised using the respective combination of restriction
enzymes and inserted into pMF272 (GenBank accession number:
AY598428.1) (Freitag et al., 2004). In pMF272, whi-2, csp-6 and
amph-1 were placed downstream of a ccg-1 promoter and
upstream of sgfp and a ccg-1 terminator. For construction of
the CSP-6P284A strain, site-directed mutagenesis using primers
ccttgttctaGCTttggatgaaa and tttcatccaaAGCtagaacaagg were
used. These primers were used in a Pfu-based PCR using the
PME272 vector carrying the wild type csp-6 (described above)
as the DNA template that was followed by treatment with the
Dpnl restriction enzyme. The resulting vectors were transformed
into Awhi-2; his-3, Acsp-6; his-3 and Aamph-1; his-3 conidia,
respectively, using a Gene Pulser electroporator (Bio-Rad,
Hercules, CA, USA) at 1.5 kV, 25 uE 600 £2. Homokaryotic
strains expressing the indicated gfp-tagged genes were obtained
by backcrosses. Sanger sequencing to confirm that there were no
irregularities in the constructs was performed at the UC Berkeley
DNA Sequencing Facility.

Microscopy

Conidia were diluted to a concentration of 1.5 x 107 cells/ml.
For the evaluation of conidial morphology, 10 pl were pipetted
onto a glass slide and covered with a coverslip. To examine
communication frequency, 80 pl of conidial suspension was
spread onto 5cm VMM agar plates. In co-culture experiments
two strains were mixed in a 1:1 proportion before plating.
Staining with FM4-64 (N-(3-triethylammoniumpropyl)-4-(4-
diethylaminophenylhexatrienyl) pyridinium dibromide; Thermo
Fisher Scientific, Waltham, MA, USA) was carried out by
incubating 2puM FM4-64 in a 1.5 x 107 cells/ml conidial
suspension in a total volume of 500 .l for 15 min in the dark;
the cells were then washed twice with 4¢H,O and resuspended in
500 pl to reestablish the initial spore concentration. The plates
were briefly dried in a fume hood and incubated at 30°C, in
the dark for 3.5-4h or 16-20h to analyze cells at the germling
or hyphal stage, respectively. Squares of ~1cm were excised
and observed. For the analysis of the accumulation of endocytic
intermediates, 15 pl of 4 M FM4-64 was added to the agar
slice immediately before imaging. Conidial morphology and cell
communication were assessed using a Zeiss Axioskop 2 using a
40x Plan-Neofluor oil immersion objective lens. The percentage
of cell communication was determined by counting the relative
frequency of cell pairs that displayed a chemotropic behavior
when germinated conidia were within ~15um of each other.
For the FM4-64 microscopy assay, as well as WHI-2, CSP-6,
AMPH-1, ARG-4, MAK-2 and SO localization studies, a Leica
SD6000 confocal microscope equipped with a Yokogawa CSU-
X1 spinning disk head, 488 nm and 561 nm lasers and a 100 x
1.4 N.A. oil-immersion objective lens controlled by Metamorph
(Molecular Devices, LLC, San Jose, CA, USA) was used. Images
were analyzed using Image] (Schneider et al., 2012). Multiple
cells were analyzed per experiment and representative examples
are shown.

Flow Cytometry

In order to examine if plasma membrane material was being
appropriately guided to the vacuoles by endocytosis, we adapted
a previously published method (Zheng et al., 1998). Conidia
at a concentration of 10®/ml were inoculated into glass tubes
containing 1.5ml VMM without agar and grown at 30°C, 200
rpm, for a total duration of 4 hrs; 2puM FM4-64 and 10 uM
7-amino-4-chloromethylcoumarin (CMAC Blue; Thermo Fisher
Scientific, Waltham, MA, USA) were added to the cultures for
the last 45 and 15 min, respectively. The conidia were harvested
by centrifugation (5,000 rpm, 5min, 4°C) and washed twice
with cold 1x PBS before being resuspended in cold 1x PBS
and at least 10,000 events acquired on a BD LSRFortessa X-20
flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). The
fluorescence of FM4-64 was recorded using a 488 nm laser and
685LP (710/50 nm) filter; the fluorescence of CMAC Blue was
recorded using a 355nm laser and (515/30 nm) filter. FlowJo
(FlowJo, LLC, Ashland, OR, USA) was used for analyses.

Bioinformatics and Statistical Analysis

The presence of conserved domains was assessed using
InterProScan 5 (Jones et al, 2014). The WHI-2/Whi2p
amino acid alignment was edited using BoxShade (https://
embnet.vital-it.ch/software/BOX_form.html). The percentage of
identity and similarity was calculated using the Sequence
Manipulation Suite (http://www.bioinformatics.org/sms2/ident_
sim.html). Statistical significance was tested by ANOVA followed
by a Tukey post-hoc test using Prism (GraphPad Software, San
Diego, CA, USA). At least three independent experiments were
performed for all data shown in this paper. The schematic model
of the function of WHI-2, CSP-6, and AMPH-1 was built using
BioRender (app.biorender.com).

RESULTS

WHI-2 Is Epistatic to the

NRC-1/MEK-2/MAK-2 Signaling Pathway

The N. crassa WHI-2 (NCU10518) is a 297 amino acid
protein that harbors two BTB (Broad-complex, Tramtrack,
and Bric-a-brac)/POZ (POx virus and Zinc finger) conserved
domains (Figure S1). These domains have been shown to be
involved in protein-protein interactions during multiple cellular
processes ranging from ion channel assembly and gating, actin
dynamics, transcriptional regulation to chromatin remodeling
(Perez-Torrado et al, 2006). A recent report suggested that
whi-2 homologs might be distant relatives of members of
the human disease-related potassium channel tetramerization
domain (KCTD) protein family (Teng et al., 2018). N. crassa
WHI-2 shows 24% identity and 33.5% similarity to S. cerevisiae
Whi2p, but is substantially shorter (297 aa compared to 486
aa) (Figure S1). Previous deletion strain screenings in N. crassa
identified multiple genes, including whi-2, as being required
for germling fusion (Chinnici et al., 2014; Fu et al,, 2014). In
addition to the germling fusion defect (Figures 1A,B), the Awhi-
2 deletion strain displayed additional morphological defects
(Fu et al,, 2014), such as an impairment in the formation of
aerial hyphae (Figure S2), production of unseparated proconidial

Frontiers in Microbiology | www.frontiersin.org

January 2020 | Volume 10 | Article 3162


https://embnet.vital-it.ch/software/BOX_form.html
https://embnet.vital-it.ch/software/BOX_form.html
http://www.bioinformatics.org/sms2/ident_sim.html
http://www.bioinformatics.org/sms2/ident_sim.html
https://www.app.biorender.com
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Goncalves et al.

WHI-2 Function in Cell Fusion

wild Awhi-2; Awhi-2;
type Awhi-2

nre-1P4518 whi-2-gfp

B
wild type
Awhi-29 *
nrc_1P451S *
Awhi-2; nrc-1P451S * #
Awhi-2; whi-2-gf - *#
0 20 40 60 80
% communication
[
Awhi-2; Awhi-2;
wild type Awhi-2 nrc-1P4518  whij-2-gfp

D
wild Awhi-2;
type Awhi-2 whi-2-gfp
E F
wild type  Awhi-2

FIGURE 1 | Cell fusion and conidiogenesis defects observed in a Awhi-2
mutant can be partially rescued by the introduction of a constitutively active
allele of nre-1. (A,B) Cell-cell communication was analyzed by observing

brightfield microscopy (A) of closely positioned germlings 4 h post-inoculation.

Red and blue arrows indicate conidial anastomosis tubes (CATs) and cell
communication/fusion events, respectively. The relative frequency of cell-cell
communication is shown in (B). Error bars represent the standard deviation.
*p-value < 0.0001 vs. wild type; #p-value < 0.001 vs. Awhi-2. (C) Conidial
morphology was assessed in WT and whi-2 strains using brightfield
microscopy. Note the presence of proconidial chains in the Awhi-2 strain. (D)
Hyphal fusion was evaluated 16 h post-inoculation. Blue arrows point to
hyphal fusion events. (E,F) Radial growth (E) and sporulation (F) were
analyzed in wild type and Awhi-2 colonies 24 h or 7 days after inoculation on
Petri dishes, respectively.

chains (Figure 1C) and lack of hyphal fusion (Figure 1D). The
introduction of an epitope-tagged whi-2 allele (whi-2-gfp) in
the Awhi-2 mutant complemented the germling and hyphal
fusion (Figures 1A,B,D), conidial separation (Figure 1C) and
aerial hyphae (Figure S2) developmental defects. The Awhi-
2 mutant grew slower than the wild type strain (Figure 1E)
and produced profuse spores across a Petri plate, as compared
to the wild type strain that sporulated mainly around the
perimeter of the plate (Figure 1F). The Awhi-2 strain also did
not produce protoperithecia when grown on synthetic cross
medium, as shown in a previous deletion collection screening
(Fu et al,, 2014). Fertility was restored in Awhi-2; whi-2-gfp cells
and this strain was used as a female in crosses in subsequent
experiments (Table S1).

Existing data suggests that Awhi-2 cells can communicate
with wild type partner cells at a low frequency (Fu et al., 2014), a
phenotype that we confirmed in Awhi-2/wild type germling pairs
(Figure 2A). When MAK-2-GFP or SO-GFP were expressed in
the Awhi-2 mutant, recruitment of both proteins to the CATs
of Awhi-2 cells undergoing chemotropic interactions with the
wild type cells was observed (Figure 2B). Thus, the absence of
WHI-2 did not directly affect the ability to form CATs nor the
recruitment of MAK-2 and SO to communicating cell tips in wild
type + Awhi-2 pairings.

Phosphorylation of the MAP kinases MAK-1 and MAK-
2 is reduced in Awhi-2 germlings (Fu et al, 2014). To
further explore the relationship between the MAK-2 pathway
and WHI-2, we utilized a gain-of-function mutation nrc-
1 allele (proline to serine mutation at position 451 of
NRC-1). Strains containing this allele show a ~12-fold
increase in MAK-2 phosphorylation (Dettmann et al., 2012).
When the nrc-174°1S allele was introduced into the Awhi-2
mutant, the formation of proconidial chains was suppressed
and cell fusion-associated chemotropism was restored to
levels similar to an nrc-17%41S strain (Figures 1A-C). At
the macroscopic level, aerial hyphae development was also
partially restored in the Awhi-2 mutant expressing nrc-174215
(Figure S2). These data place WHI-2 upstream of the STE-
50/STE-20/HAM-5/NRC-1/MEK-2/MAK-2/PP-1/ADV-1 signal
transduction pathway.

Deletion of whi-2 Results in Cells That
Accumulate Endocytic Intermediates and
Possess a Defective Mitochondrial

Network

In S. cerevisiae, the deletion of WHI2 causes a defect
in endocytosis (Care et al., 2004). Here we employed the
lipophilic styryl dye FM4-64 to track the accumulation of
endocytic intermediates in N. crassa germlings. FM4-64 is
unable to freely cross membranes; instead it is anchored
on the outer leaflet of the plasma membrane bilayer. When
endocytic membranous structures are formed, the dye becomes
incorporated intracellularly into the endosomes and Golgi, and
subsequently into the vacuoles (Fischer-Parton et al., 2000);
it has been shown that endocytosis mutants show delayed or
fragmented staining of intracellular vesicles (Gachet and Hyams,
2005; Martin et al., 2005). N. crassa wild type germlings readily
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A Wild type
(CytoGFP)

Wild type  + Awhi-2

Brightfield  (CytoGFP) (FM4-64)

B Awhi-2;
Brightfield mak-2-gfp

Wild type;
so-dsRed

Awhi-2; Wild type;
Brightfield so-gfp mak-2-mCherry
Sam

FIGURE 2 | Cells lacking whi-2 are capable of establishing chemotropic
interactions with the wild type cells and show recruitment of MAK-2 and SO to
CATs. (A) Cytoplasmic GFP-expressing wild type cells were mixed with
FM4-64-stained Awhi-2 cells and observed by microscopy after germination.
(B) MAK-2-GFP-expressing (upper panel) or SO-GFP-expressing (lower panel)
Awhi-2 cells were mixed, respectively, with SO-dsRed-expressing or
MAK-2-mCherry-expressing wild type cells and observed by microscopy after
germination. Note the formation of CATs (red arrows).

showed plasma membrane and intracellular staining and round
membranous structures were observed in the cytoplasm as early
as at ~9.5min after the addition of FM4-64 (Video1 and
Figure 3A). After 30 min of incubation with FM4-64, wild type
cells displayed large FM4-64-positive membranous structures
(Figure 3B). In contrast, the intracellular accumulation of FM4-
64 in Awhi-2 cells was delayed and appeared as small elements,
typical of fungal mutants with endocytosis defects (Gachet and
Hyams, 2005; Martin et al., 2005) (Video 1 and Figures 3A,B).

S. cerevisiae whi2 mutants show highly fragmented
mitochondria or agglomeration of mitochondria in ball-
like structures, depending on the growth phase (Leadsham

et al., 2009; Mendl et al., 2011). We used a strain harboring a
gfp-tagged arg-4 (encoding the mitochondrial acetylornithine-
glutamate acetyltransferase) (Bowman et al., 2009) to image
the mitochondrial network in N. crassa germlings. In wild type
germlings, mitochondria were abundant and formed a tubular-
shaped network (Figure3C). During cell communication
and germling fusion, the shape of the mitochondrial network
remained unchanged, although organelles were excluded from
the tip of CATs until fusion and cytoplasmic continuity
were attained (Figure3D and Video2). In contrast to
the mitochondrial organization in wild type cells, Awhi-2
germlings displayed aberrant mitochondria that appeared
to be fragmented and clustered into “masses” (Figure 3C).
These observations indicated that WHI-2 was required
for normal endocytosis and mitochondrial morphology in
N. crassa.

CSP-6 and AMPH-1 Are Two Fusion
Proteins Whose Function Is Related to
WHI-2

In a previous deletion strain screening, csp-6 and amph-1 were
also found to be required for cell fusion in N. crassa (Fu
et al,, 2011, 2014; Chinnici et al, 2014). In addition, Acsp-6
and Aamph-1 cells also have a defect in conidial separation
(Figure 4A and Figure S2), phenotypically similar to proconidial
chains in Awhi-2 mutants (Figure 1C) (Fu et al., 2014; Ghosh
et al., 2014). CSP-6 (NCU08380) is a Haloacid Dehalogenase
(HAD) family Ser/Thr phosphatase and the ortholog of Psr1/2
from S. cerevisiae. In yeast and in N. crassa, WHI-2 and
CSP-6 have been shown to directly interact (Kaida et al,
2002; Zhou et al.,, 2018). AMPH-1 (NCU01069) harbors an
Arfaptin Homology/Bin-Amphiphysin-Rvs (AH/BAR) domain;
AMPH-1 homologs in S. cerevisiae (Rvsl61p and Rvs167p)
regulate the actin cytoskeleton, endocytosis and mating,
while in neurons AMPH-1 plays a role in clathrin-mediated
endocytosis (Takei et al., 1999; Friesen et al., 2006). Although
phenotypically similar, the growth of the Aamph-1 mutant was
more affected than growth of the Awhi-2 or Acsp-6 mutants
(Figure S2).

We confirmed that cell communication in populations of
Acsp-6 germlings was absent, while a low frequency of CAT
formation was observed in self-pairings of Aamph-1 germlings
(Figures 4B,C). The introduction of a gfp-tagged csp-6 or
amph-1 allele partially compensated for the developmental
defects observed in Acsp-6 and Aamph-1 mutants, respectively
(Figures 4A-C and Figure S2). Since the complementation
of amph-1 with the gfp-tagged amph-1 allele was modest
(Figure 4C), we conducted a co-segregation analysis by crossing
the wild type and Aamph-1 deletion strains and analyzing the
resistance of the progeny to hygromycin B; all strains that
displayed wild type-like growth were sensitive to hygromycin
B whereas all strains with flat-like growth were resistant to it
(Figure S3). The Acsp-6 and Aamph-1 mutants communicated
with wild type germlings, although at low frequency (Figure 4D);
this observation had been previously suggested for Aamph-1 (Fu
etal., 2014).
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A B
Wild / J
type COH
5 um \
Awhi-2
(o] D
Wild type Awhi-2
5mins before contact Contact 5mins after contact

FIGURE 3 | Strains lacking whi-2 are defective in the accumulation of FM4-64-positive membranous structures and show defects in mitochondrial dynamics. (A,B)
The uptake of FM4-64 via plasma membrane-derived structures was followed over time in wild type and Awhi-2 germlings. A time course experiment is shown in (A).
Note the formation of large FM4-64-positive membranous structures in the wild type strain (arrows). Representative images after 30 min of incubation are shown in
(B). These panels are complemented by Video 1. (C) The organization of the mitochondrial network was examined using an ARG-4-GFP construct (Bowman et al.,
2009). Note the appearance of fragmented (“frag”) and clusters (“cluster”) of mitochondria in Awhi-2 cells. (D) Mitochondrial dynamics during cell fusion were
evaluated by producing time-lapse videos of interacting wild type germlings. Note the absence of mitochondria at the fusion spot during the first minutes after contact

(arrow). This panel is complemented by Video 2.

To explore how the predicted phosphatase activity of CSP-6
plays a role during cell fusion and asexual development in N.
crassa, we constructed a mutated allele of CSP-6 predicted to
abolish activity. In S. cerevisiae, a point mutation in the predicted
catalytic aspartic acid residue of the hhhDxDx(T/V) motif—
where “h” is a hydrophobic residue and “x” is any residue—
abolished phosphatase activity (Rebay, 2015). This aspartic
acid residue belongs to the HAD domain and is conserved
in N. crassa. A Acsp-6 mutant that carried a phosphatase-
dead, Pccg-1-driven csp-6P284A allele showed the same defects
as the Acsp-6 deletion strain, namely the lack of aerial hyphae
(Figure S2) and inability to form CATs and undergo cell
fusion (Figures 4B,C).

To assess the relationship between whi-2, amph-1, and
csp-6, we placed an extra copy of whi-2 under the control
of a constitutive promoter (Pccg-1) in the Aamph-1 and
Acsp-6 strains. The Aamph-1;Pccg-1-whi-2 strain  showed
suppression of the conidial separation defect of the Aamph-
I mutant (Figure4A), restoration of CAT formation and
chemotropic interactions (Figures 4B,C), and normal aerial
hyphae development (Figure 4E). In contrast, over-expression
of whi-2 did not complement the morphological (Figure S2) or
communication defects of the Acsp-6 mutant (Figures 4A-C).
These data showed that the deletion of whi-2, csp-6, and amph-
I leads to similar cellular phenotypes and that the mis-expression

of whi-2 compensated for the absence of amph-1, indicating that
AMPH-1 functions upstream of WHI-2.

In order to examine if the deletion of amph-1 results in
an endocytic defect, as predicted from S. cerevisiae literature
(Munn et al., 1995; Kaksonen et al., 2005), and whether the
mis-expression of whi-2 also compensated for an endocytosis
defect, we employed a flow cytometry-based methodology. The
combined labeling of endocytic intermediates and vacuolar
lumens (with FM4-64 and carboxydichlorofluorescein diacetate
(CDCFDA), respectively) has been previously used to isolate
S. cerevisiae mutants unable to properly execute endocytosis
and transport plasma membrane material to the vacuole (Zheng
et al., 1998). Such mutants display a shift in FM4-64/CDCFDA
fluorescence as compared to wild type cells. We adopted a similar
strategy, but utilized CMAC Blue to stain the lumen of the
vacuoles instead of CDCFDA. The deletion of whi-2 or amph-
I resulted in a shift in FM4-64/CMAC Blue fluorescence profile
as compared to wild type cells (Figure 5). However, the Awhi-2
and Aamph-1 strains carrying Pccg-1-whi-2-gfp showed a profile
more similar to wild type cells (Figure 5). These data suggest
that endocytosis defect was at least partially compensated for by
the mis-expression of whi-2-gfp in Aamph-1 cells. Additionally,
the FM4-64/CMAC Blue fluorescence shift in Awhi-2 cells was
also partially recovered by the mis-expression of nrc-1P4515
(Figure 5), consistent with suppression of cell fusion defects in
Awhi-2 cells (Figure 1).
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FIGURE 4 | The mis-expression of whi-2 in cells lacking amph-1 but not csp-6 compensates for germling communication and asexual defects. (A) Conidial
morphology of indicated strains was analyzed by brightfield microscopy. (B) Cell-cell communication between cells from single strains (genetically identical) were
evaluated between closely positioned germlings (B, 4 h post-inoculation). In (B), red and blue arrows indicate conidial anastomosis tubes (CATs) and
communication/fusion events, respectively. Note the presence of CATs in the Aamph-1 strain (lower micrograph, red arrows). The relative frequency of cell-cell
communication of strains shown in (B) is shown in (C). Error bars represent the standard deviation.*p-value < 0.0001 vs. wild type; #p-value < 0.0001 vs. Acsp-6;
and, p-value < 0.0001 vs. Aamph-1. (D) Cytoplasmic GFP-expressing wild type cells were mixed with FM4-64-stained Acsp-6 or Aamph-1 cells and observed by
microscopy after germination. Note the formation of CATs (red arrows). (E) The production of aerial hyphae and sporulation was evaluated after 7 days of growth for

the indicated strains.

WHI-2 and CSP-6 Localize Mainly to the
Cell Periphery While AMPH-1 Is Present in

Cortical Patches and Puncta

Previous reports showed that WHI-2 localized by
immunofluorescence to the cytoplasm, small vesicles or
vacuoles and by subcellular fractionation to the cytoplasmic and
nuclear fractions; AMPH-1 immunolocalization studies showed
a punctate pattern suggestive of small vesicles and by subcellular
fractionation CSP-6 was present in the cytoplasmic and nuclear
fractions (Fu et al., 2014; Zhou et al., 2018). However, the AMPH-
1-RFP construct only marginally complemented the fusion
defect of Aamph-1 (Fu et al., 2014), the immunofluorescence
for WHI-2 was not very resolved (Fu et al, 2014) and the
subcellular fractionation for WHI-2 and CSP-6 showed that
both proteins were in all fractions tested (Zhou et al., 2018).

Therefore, we sought to determine the localization of these
proteins using confocal microscopy by tagging them with
GFP, under the control of the constitutive Pccg-1 promoter,
and introducing them into their respective deletion strains
(Figures 1, 4). In dormant conidia, WHI-2-GFP was distributed
across the cytoplasm while CSP-6-GFP was predominantly
present in the cell periphery (Figure 6A). AMPH-1 was mainly
localized in cortical patches although some cytoplasmic staining
was observed (Figure 6A). In germlings, WHI-2 and CSP-6
were present mainly in the cell periphery and occasionally
in intracellular puncta (Figure 6A); AMPH-1 was present in
cytoplasmic puncta. In mature hyphae, the localization of
WHI-2 and CSP-6 was mainly at the cell periphery and at
septa (Figure 6A). For WHI-2, we also observed cytoplasmic
localization and in the membrane of round intracellular vesicles
(Figure 6A). In hyphae, AMPH-1 was present in puncta or small
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FIGURE 5 | The mis-expression of nrc-17451S and whi-2-gfo compensates for the endocytosis defect of Awhi-2 and Aamph-1 cells, respectively. The wild type (red)
and other indicated strains (blue) were stained with FM4-64 and CMAC Blue to label endocytic intermediates and vacuolar lumens, respectively. Note that while the
wild type shows an overlap of FM4-64 and CMAC Blue, indicating that plasma membrane-derived endocytic intermediates are guided to the vacuoles, cells lacking
whi-2 and amph-1 displayed a shift in red/blue fluorescence. n=4. Shown is a representative set of experiments.

intracellular vesicles that tended to accumulate at the hyphal
tip (Figure 6C).

A Aamph-1;whi-2-gfp strain was able to communicate and
fuse (Figures4B,C), but a Acsp-6;whi-2-gfp strain displayed
the same morphological defects as its parental deletion mutant
(Figures 4B,C). We therefore assessed whether localization of
WHI-2-GFP was affected in the Aamph-1 mutant relative to the
Acsp-6 mutant and wild type cells. In the Aamph-1 mutant,
WHI-2 displayed a cell periphery localization, consistent with
what was observed in a Awhi-2;whi-2-gfp strain (Figure 6A).
However, in the Acsp-6 mutant, WHI-2-GFP was no longer
present in the cell periphery, but accumulated in cytoplasmic
patches and puncta (Figure 6B). These data suggest that CSP-
6 is required for localization of WHI-2, consistent with reports
of physical interaction of these two proteins in N. crassa and S.
cerevisiae (Kaida et al., 2002; Zhou et al., 2018).

DISCUSSION

Germinated asexual spores of N. crassa cooperate during the
formation of the somatic mycelial network by undergoing

regulated cell fusion. Our study highlights the importance of
WHI-2, an ortholog of the S. cerevisiae Whi2p, which binds to
Psrlp (HAD family of protein phosphatases; CSP-6 ortholog)
and regulates the response to nutritional stress by affecting
both TORC1 and the Ras-cAMP-PKA pathway (Sudbery et al.,
1980; Kaida et al., 2002; Miller and Reichert, 2011; Chen
et al., 2018). The deletion of whi-2 in N. crassa resulted
in a panoply of morphological phenotypes, including defects
in conidial separation, an inability to undergo chemotropic
interactions and cell fusion, aerial hyphae formation, growth
rate and female fertility. Our data showed that the lack of whi-
2 also caused an accumulation of FM4-64-positive membranous
structures that likely correspond to endocytic intermediates and
the destabilization of the mitochondrial organization. Using a
constitutive nrc-1 allele, we showed that WHI-2 plays an active
role during cell-cell communication in N. crassa by transducing
signals to the NRC-1/MEK-2/MAK-2 pathway. In support of
this conclusion, the deletion of whi-2, csp-6 or amph-1 abolishes
activation of prm-1 (Fischer et al., 2019), which encodes a
protein involved in plasma membrane merger during cell fusion
(Fleissner et al., 2009a). The prm-1 gene is directly regulated by
the transcription factors PP-1 and ADV-1, which sit downstream
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WHI-2, CSP-6, and AMPH-1 in signal reception during cell-cell communication of N. crassa germlings. Sensing of a gradient of the chemotropic signal(s) may occur
via endocytosis of the chemotropic signal or via internalization of a receptor. WHI-2 and CSP-6 interact and sit at the cell periphery. AMPH-1 could be involved in
vesicle scission during endocytosis and is epistatic to WHI-2. WHI-2 may also play a role in one or more steps of endocytosis, potentially via AMPH-1. WHI-2
functions upstream of the NRC-1/MEK-2/MAK-2 signaling pathway. Previous western blot data (Fu et al., 2014) indicated that WHI-2 could also affect signaling
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through another MAPK pathway composed of a MIK-1/MEK-1/MAK-1 module. These two MAPK cascades are involved in the activation of the transcription factors
PP-1 and ADV-1, which directly regulate the expression of genes involved in cell communication and fusion. WHI-2 also controls the organization of the intracellular
mitochondrial network. For simplicity, a number of signaling components and phosphorylation events have been left out (Please see Fischer and Glass, 2019, for an

extended review).

of the NRC-1/MEK-2/MAK-2 pathway (Fischer et al., 2018).
These data suggest that WHI-2 functions upstream in the
sequence of signal transduction events that lead to chemotropism
and cell fusion (Figure 6C). In yeast, Whi2p is a nutrient sensor
(Miller and Reichert, 2011; Chen et al., 2018), and in mammalian
models a specific form of endocytosis is regulated by nutrient
availability (Pang et al., 2014). In N. crassa, the Awhi-2 mutant
was phenotypically similar when grown under various carbon
and nitrogen sources, indicating further biochemical and genetic
analyses are required to assess whether WHI-2 affects nutrient
sensing. It will be also interesting to examine the range of
phenotypes controlled by the WHI-2/MAPK axis by taking the
advantage of the Awhi-2; nrc-174°1S strain.

Although endocytosis is required for proper morphogenesis
and apical growth in filamentous fungi (Riquelme et al., 2018),
it has been suggested that these organisms might not undergo
clathrin-dependent endocytosis (Schultzhaus et al.,, 2017). An
alternative form of endocytosis termed fluid-phase endocytosis
or pinocytosis, cells internalize small molecules present in
the extracellular fluid through invaginations of the plasma
membrane, forming intracellular vesicles (Epp et al., 2013)

and a role for Whi2p during pinocytosis has been suggested
as a way to sense cell density in yeast (Care et al., 2004).
Additionally, this form of endocytosis has been proposed
to mediate cell-cell communication between animal alveolar
macrophages (Schneider et al., 2017). Pinocytosis could function
as a mechanism to survey the extracellular space for gradients of
certain peptides or metabolites and whenever the concentration
is above a defined threshold, as when cells that produce a
communication signal are in close proximity, the activation of
the cell-cell fusion machinery would ensue.

Evidence from various organisms support the hypothesis
that endocytosis could play a role in cell-cell communication in
N. crassa (Figure 6C). In animals, fusogens are internalized via
RAB-5 and DYNAMIN-1 GTPases-dependent clathrin-mediated
endocytosis (Shin et al., 2014; Smurova and Podbilewicz, 2016).
In the filamentous fungus Ustilago maydis, the pheromone
receptor Pral cycles between the early endosomes and
the plasma membrane in endocytic vesicles, triggering cell
communication-associated MAPK signaling pathways when
the mating pheromone is perceived. Mutations that impair
endocytosis cause Pral to be depleted from the plasma
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membrane and abolish cell fusion (Fuchs et al., 2006). During
mating in S. cerevisiae, the pheromone receptors and pheromone
transporter are subject to regulation by endocytosis (Davis et al.,
1993; Berkower et al., 1994).

Our observations that AMPH-1 is epistatic to WHI-2 adds
strength to the hypothesis that endocytosis could be important
for cell-cell communication in N. crassa. The yeast ortholog
of AMPH-1, Rvs161p (previously termed Fus7p and Endép) is
involved in endocytosis (Munn et al., 1995; Kaksonen et al., 2005)
and forms a heterodimer with another BAR domain-containing
protein, Rvs167p, to bind to phospholipid membranes (Friesen
et al.,, 2006). BAR domains modulate membrane curvature by
promoting vesicle scission at the neck of plasma membrane
invaginations during endocytosis (Takei et al., 1999; McMahon
and Gallop, 2005). Rvs161p also plays a role in yeast mating cell
fusion by binding and shuttling Fus2p from the nucleus to the
shmoo tip and by recruiting Cdc42p to the cell-cell contact spot
(Smith et al., 2017); orthologs of Fus2p are absent in N. crassa.
Despite the role of Rvsl61p during mating cell fusion, some
mutations in RVSI6I cause a defect in endocytosis but not in
mating (Brizzio et al., 1998). Further investigations are required
to ascertain if the situation in N. crassa is analogous. In addition
to AMPH-1, mutations in other components of the endocytosis
machinery in N. crassa, namely MYO-5 (Dettmann et al., 2014;
Ramirez-Del Villar et al., 2019) and the ARP-2/ARP-3 complex
proteins (Roca et al., 2010), also result in cell-cell communication
defects (Figure 6C).

A strain containing a deletion of c¢sp-6 phenocopied a
Awhi-2 mutant. WHI-2 physically interacts with CSP-6 to
dephosphorylate the circadian clock regulator WC-1, which in
turn results in loss of activation of ADV-1 (Zhou et al., 2018);
ADV-1 directly regulates cell communication and fusion genes
in N. crassa (Fischer et al, 2018). Our localization studies
showed that WHI-2 and CSP-6 share the same subcellular
distribution at the cell periphery. This observation supports
our results that put WHI-2 and CSP-6 upstream of a signaling
cascade that activates ADV-1. Importantly, a CSP-6 allele
that lacks phosphatase activity was unable to complement
the defects of a strain lacking csp-6, indicating that the
phosphatase function of this protein is essential for CSP-
6 function.

Although a receptor-mediated system where an extracellular
receptor binds a chemotropic ligand has been suggested to
underlie cell-cell communication in N. crassa, we speculate
that endocytosis could be an important mechanism of signal
sensing (Figure 6C). The peripheral localization of WHI-2, in
line with previous results in S. cerevisiae (Huh et al., 2003),
fits our proposed role in endocytosis, since this is where the
endocytic machinery is recruited to initiate vesicle budding.
WHI-2 and CSP-6 may be regulators of this machinery, act as
sensors, or both; AMPH-1 is potentially involved in endocytosis
vesicle scission (McMahon and Gallop, 2005). The fact that a
Awhi-2 mutant is capable of a low level of communication
with the wild type strain, including the recruitment of MAK-
2 and SO to the fusion tips, suggests that the absence of

whi-2 does not hinder the production of pro-fusion cues,
attracting the wild type partner, but may obstruct proper sensing.
Signal receiving may be desensitized in the Awhi-2, Acsp-6,
and Aamph-1 mutants and perhaps can only occur when the
levels of chemotropic ligand(s) that are much higher than the
levels required for communication in wild type cells. Only
a single additional mutant previously identified in N. crassa,
ham-11, shows a defect in self-fusion, but can undergo robust
chemotropic interactions and fusion with wild type cells (Leeder
et al., 2013; Fischer et al., 2019). Recent evidence suggests that
HAM-11 also functions upstream of the NRC-1/MEK-2/MAK-
2 signal transduction pathway (Fischer et al., 2019). HAM-
11 is predicted to encode a hypothetical plasma membrane
protein enriched in plasma membrane fractions. These data and
data presented here suggest the AMPH-1, CSP-6-WHI-2, and
HAM-11 function upstream of the MAK-2 signaling complex
and play a role in sensitizing cells for signal reception during
chemotropic interactions.
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