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Viruses that infect microorganisms dominate marine micro-
bial communities numerically, with impacts ranging from host 
evolution to global biogeochemical cycles1,2. However, virus 
community dynamics, necessary for conceptual and mecha-
nistic model development, remains difficult to assess. Here, 
we describe the long-term stability of a viral community by 
analysing the metagenomes of near-surface 0.02–0.2 μm 
samples from the San Pedro Ocean Time-series3 that were 
sampled monthly over 5 years. Of 19,907 assembled viral 
contigs (>5 kb, mean 15 kb), 97% were found in each sample 
(by >98% ID metagenomic read recruitment) to have relative 
abundances that ranged over seven orders of magnitude, with 
limited temporal reordering of rank abundances along with lit-
tle change in richness. Seasonal variations in viral community 
composition were superimposed on the overall stability; max-
imum community similarity occurred at 12-month intervals. 
Despite the stability of viral genotypic clusters that had 98% 
sequence identity, viral sequences showed transient varia-
tions in single-nucleotide polymorphisms (SNPs) and constant 
turnover of minor population variants, each rising and fall-
ing over a few months, reminiscent of Red Queen dynamics4. 
The rise and fall of variants within populations, interpreted 
through the perspective of known virus–host interactions5, is 
consistent with the hypothesis that fluctuating selection acts 
on a microdiverse cloud of strains, and this succession is asso-
ciated with ever-shifting virus–host defences and counterde-
fences. This results in long-term virus–host coexistence that 
is facilitated by perpetually changing minor variants.

Naturally occurring microbial and viral communities are char-
acterized by high levels of genomic, genetic, metabolic and pheno-
typic diversity1,6. In the oceans, viruses are numerically dominant, 
and the vast majority of these viruses infect prokaryotes and pro-
tists1,2,6. Viruses are central to marine food webs and represent one 
of the largest reservoirs of genetic novelty2,6. The mechanisms that 
generate and maintain biological diversity are fundamental topics of 
ecological inquiry; in complex communities, species–species inter-
actions are thought to play a central role5. Virus–host interactions 
are one such mechanism, and marine viruses are thought to have 
a considerable influence on microbial diversity and food-web pro-
cesses2. Although recent research from ocean transects has revealed 
much about global-scale distributions and the metagenomic diver-
sity of marine viruses1, time-series studies are needed to under-
stand the stability, resilience, seasonality and long-term changes 
of such communities. Viral dynamics can also inform models of  
host dynamics.

To investigate the long-term dynamics of marine viruses, we 
examined the double-stranded-DNA viral community by sequenc-
ing total genomic DNA from the 0.02–0.2 μm viral size fraction, 

which was collected monthly between June 2009 and September 
2014 (n = 53) at the San Pedro Ocean Time-series (SPOT) off the 
coast of California3,7. Metagenome assembly (cross-assembled from 
individual sample assemblies) generated 99,722 (median = 12.5 kb) 
non-redundant contigs larger than 5 kb, of which 19,907 were classi-
fied bioinformatically as viral with high confidence (using VirSorter 
and VirFinder). We studied the 19,907 putative viral contigs to 
investigate their long-term dynamics. The abundances of each viral 
contig were estimated by competitive recruitment, at 98% sequence 
identity, of all metagenomic reads to all contigs, normalized to 
sequencing depth and contig length1. Although some contigs rep-
resent different portions of one genome, the 15 kb average contig 
size comprises a substantial portion of a typical viral genome, and 
our interpretations are unaffected by multiple contigs that represent 
one genome. We refer to these contigs operationally as populations 
(see Methods), in accordance with usage in recent work in marine 
viral ecology8,9 and recognizing that they are a consensus of very 
close relatives.

Three main outcomes emerged: (1) the taxonomic composition 
(presence) hardly changed throughout the 5 years of sampling. Viral 
communities at SPOT were remarkably stable, with no notable gains 
or losses in populations. Any given metagenome (by read recruit-
ment at 98% identity) contained up to 97% of the cumulative viral 
contig richness (Fig. 1a), and even increasing the threshold for pres-
ence by 10- to 100-fold hardly changed the pattern (Supplementary 
Discussion). Furthermore, 95% of contigs were always detected, 
and 89% of contigs were always detected even after increasing the 
number of hits required to record presence by 10-fold. This pat-
tern of persistence contrasts sharply with the considerable amount 
of spatial variation over the global ocean1. Similar multi-year sta-
bility has been reported for the North Pacific Subtropical Gyre, 
which the authors pointed out is oceanographically very stable over 
time10, much more so than SPOT3. Many of the detected phages 
putatively infect the most abundant marine bacteria, cyanobacteria 
and Pelagibacter, with some rare phages that are nearly identical to 
sequenced isolates8,11 (Extended Data Fig. 1, Supplementary Tables). 
(2) Relative abundances were generally stable, that is, there was 
limited rank reordering (z = −8.9; P < 0.00001). A bird’s-eye view 
of community composition revealed striking stability, that is, most 
viral contigs had similar ranks on all of the sampled dates (Fig. 1b). 
Cumulative abundance of each contig varied proportionally to its 
median abundance, showing low variation over time, particularly 
for abundant contigs (Fig. 1c). Note that Fig. 1b,c uses log scales, 
and individual contig abundances vary many-fold (Extended Data 
Fig. 2; linear graphs better visualize smaller variations), but our 
point is that the abundances of contigs generally stay within a simi-
lar percentile range. Rank reordering that did occur was dominated 
by medium- and low-rank contigs (Fig.1c–e), such that some of the 
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Fig. 1 | Persistence and stability of community patterns. a, An accumulation curve showing the presence of viral contigs over 53 monthly surface 
ocean viral (0.02–0.2 μm) metagenomes, showing that almost all contigs were present almost all of the time; a similar plot in which the threshold for 
presence is ramped up 10,000-fold is provided in the Supplementary Discussion. b, A heatmap showing relative abundance, determined by competitive 
metagenomic read recruitment, of the 19,907 viral contigs (note 7-decade log scale), one contig per row, during monthly sampling. Contigs are ordered 
by average abundance over all months, with the highest at the top. The white columns represent months with missing data (all data are provided in the 
Supplementary Tables). Note that the colours remain similar through time for the large majority of contigs. Versions of this heatmap with data plotted 
linearly are provided in Extended Data Fig 2. c, Median versus cumulative abundance of contigs across all of the samples, indicating that most contigs 
retained similar ranks across the 5 years. d, Viral contig population abundances (as in b) were converted to percentiles and plotted as mean versus the 
range for all of the samples. Note how the more abundant contigs (top right) changed very little in percentile. e, Collective-abundance histogram of contigs 
within each individual percentile (not a cumulative sum across) plotted against the same percentile axis scale as in d. Note the substantial contribution of 
the middle ranks to the total abundance, even though each is orders of magnitude less abundant than the higher ranked contigs as shown in b.
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viruses had widely varying abundances (Fig. 1b–d, Extended Data 
Fig. 2, Supplementary Tables); these could include viruses respond-
ing to stochastic queues, or responding to more predictable, but 
episodic, events such as phytoplankton blooms. (3) Moderate- and 
low-abundance members of the community produced a seasonal 
pattern that was superimposed over a general stability. The Bray–
Curtis similarities of the virus community for all of the pairwise 
combinations plotted against the temporal gap between samples 
showed clear seasonal patterns, with peaks of maximum average 
similarity at intervals of around 12, 24, 36 and 48 months, repre-
senting the same season, and local minimum average similarity 
at intervals of 6, 18, 30 and 42 months, representing opposite sea-
sons (Fig. 2). This pattern for the entire viral community is simi-
lar to data that we previously reported for free-living bacteria3 and 
T4-like phages12, indicated by marker genes. Although the sinusoid-
like pattern is striking, the overall long-term average similarity of  
the entire community was steady, declining only slightly over time  
(Fig. 2, dashed line). If there had been substantial migration, extinc-
tion or changes in relative proportions, the average similarity would 
decline considerably with increasing time lags; however, similarity 
declined only slightly. Even though any given pair of samples was 
about 40% similar, we interpret the steady average similarity over 
medium-to-long time lags as suggesting that the entire viral com-
munity fluctuated mathematically around the same average com-
munity throughout the entire study period. However, we recognize 
that data from few, if any, sampling dates showed close to the aver-
age composition. Dividing the community into different abundance 
ranges showed reduced seasonality in the most abundant contigs, 
with most of the seasonality in the middle and tail of the rank-abun-
dance distribution (Extended Data Fig. 3).

We observed what seems to be a largely resilient, and also regu-
lated (such as seasonal), viral community comprising thousands of 
members. However, such long-term coexistence of viruses and their 
putative hosts is challenged by some theoretical expectations13 and 
laboratory-based model-systems14,15, in which limited improvement 
of infection mechanisms5 generally leads to viral extinction. Although 
we know that viruses must coexist with hosts—and models16,17  
can predict stable coexistence under certain conditions18,19—the 
underlying mechanisms for coexistence in a large semi-open system 
such as our time-series site are not immediately clear. Furthermore, 
our long-term stability contrasts with the transient nature of viral 
populations over 12 months in an Irish lake20, but it is reminiscent 
of shorter-term observations of stability in enclosed human-con-
trolled aquatic environments21.

We investigated the mechanisms that might explain this multi-
year stable coexistence by leveraging our metagenomic dataset to 
track temporal changes in underlying diversity. We called single-
nucleotide polymorphisms (SNPs)22 from all contigs and focused 
on those with more than 10× coverage (n = 3.2 million SNPs dis-
tributed within 4,002 contigs), recovered by at least 4 reads and 
present at a minimum frequency of 1% (ref. 22). First, we observed 
that contig intrapopulation genetic diversity (quantified as SNP 
density) increased as a function of overall population abundance  
(Fig. 3a). Second, smaller contigs tended to have greater intra-contig  
variability (Fig. 3b)—consistent with the idea that population het-
erogeneity hinders long metagenomic assemblies of common and 
abundant types—of which high coverage and associated microvari-
ation break the De Brujn assembly paths23; our observations suggest 
that this is common.

Although we know that environmental populations have much 
more genetic heterogeneity than laboratory clonal strains8,11,24, few 
studies have tracked natural microvariation over years22,25. Our data-
set reveals that a large majority of contig populations maintained 
a dynamic cloud8 of genetic microdiversity throughout our 5-year 
study (Fig. 3c,d, Extended Data Fig 4). Thus, in contrast to reports 
of long-term maintenance of nearly clonal freshwater microbial 
populations24, stable clonality was not observed. This observed 
microvariation could correspond to multiple closely related viral 
populations exploiting multiple niches or to a single coherent popu-
lation with access to a common variable gene pool. Unfortunately, 
with metagenomics (read lengths of ~150 bp) we cannot link most 
single-nucleotide variants in a given genome, but we can determine 
SNP frequencies within populations. Regardless of the underly-
ing genetic structure, we sought to compare different population 
variants (albeit from averages) at different time points. We did this 
by recovering the natural variation from all of the reads in a sam-
ple that mapped to a contig within 98% identity (well within the 
reported operational definition of marine-viral-species-like units8,9) 
and compared it with the variation from all of the other samples (see 
Methods). We observed that contig population similarity (the per-
centage of shared SNPs between members of the same contig popu-
lation on different dates) decreases sharply as a function of the time 
lag between dates, irrespective of the reference point (Fig. 3c,d),  
with time scales of months. Therefore, although each viral con-
tig population stayed within its own cloud of approximately 98% 
sequence identity8,11, fluctuating about a fairly steady average abun-
dance over 5 years, there was an ever-changing intrapopulation 
microdiversity. This pattern strongly resembles Red Queen dynam-
ics, which are rapid changes of genotypes within a population from 
ecological and evolutionary mechanisms, and may include fluctu-
ating Red Queen, in which fluctuating selection drives genotypic 
frequency oscillations4.

The observed continual changes in virus genotypes are not con-
sistent with dispersal (by ocean current advection) of variants as 
the sole cause, because individual SNP profiles persist for months 
(Fig. 3c,d), whereas the water in the San Pedro Basin has a physical  
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Fig. 2 | Recurrent seasonality superimposed on a stable average viral 
community. Normalized abundances of viral contigs (n = 19,907) were 
calculated from competitive per-sample read recruitment. The Bray–
Curtis community similarity index (blue dots) was calculated among all 
of the possible sample pairs (n = 1,378 combinations) and plotted as a 
function of the number of months separating their sampling. The red dots 
correspond to the mean of all of the observations at a given separation. 
Stability is shown by the slightly declining average similarity over time, 
after accounting for the strongest similarity of samples that were separated 
by one or a few months and excluding long gaps with few data points (the 
dashed line is a linear regression of the data spanning 6 to 54 months 
gaps). Seasonality is shown by sine-wave-like similarity peaks at intervals 
of 12, 24, 36, 48 and 60 months (same calendar months in different years) 
in contrast to dips in opposite months (at intervals of 6, 18, 30, 42 and 54 
months). Note that the spread of the data shows that any individual sample 
can deviate considerably from the mean.
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residence time of 2–3 weeks26; invoking mixing or advection of 
viruses with these continual changes also raises questions about 
the mechanisms of variation in the source locations. Although the 
accumulation of SNPs might potentially arise from genetic drift, the 
consistent rapid loss of each consecutive SNP profile resembles a 
series of selective purges24. We suggest that the most parsimonious 
explanation for these genetic changes is coevolutionary interactions 
of viruses and hosts, reflected by changes (including oscillations) in 
genotypes or allele frequencies on ecological to evolutionary tim-
escales, for example, fluctuating selection dynamics4. Specifically, 
we posit that the polymorphic variants that we observe are either 
directly responsible or linked to variants with infection-related phe-
notypic differences, such as allowing phage evasion of restriction 
enzymes and CRISPR-like defence systems, or altering host range27. 
As our SNP profiles are a population statistical composite and do 
not necessarily distinguish between multiple strains within a given 
SNP profile, recurrence over time of particular mutations in a given 
strain would contribute to the similarity between months but could 
be masked by other changing strains. Although a comprehensive  

analysis of the 3.2 million SNPs is far beyond the scope of this report, 
we performed a preliminary analysis of the locations of SNPs to see 
whether they occurred relatively uniformly across genomes or in 
distinct patches, and in particular kinds of genes. As the majority 
of marine viral genes are unannotated, we examined the relatively 
well-known T4-like myoviral contigs, and we found no clear SNP 
patterns (both uniform and patchy distributions, structural and non-
structural genes), and very different distributions even among the 
few that we examined (Extended Data Fig. 4, Supplementary Tables 
Supplementary Information). The vast majority (96%; χ2 P < 0.01) of 
observed polymorphic variants encode no changes in amino acids 
(within bioinformatically determined coding regions), suggesting 
that their purifying selection occurs mostly at the nucleotide level. 
This suggests that the changes were mostly involved in protection 
against restriction enzymes or other nucleotide-level host defences, 
but it is possible that some neutral changes are linked with success-
ful non-synonymous changes elsewhere on the genome. We posit 
that these variants are constantly purged (local extinction or falling 
below detection limit) from the population when enough of the host 
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show Red Queen-like succession of intrapopulation variants of three example contigs over time, with each combination of SNPs lasting only months. 
The graphs show the number of shared individual SNPs between a given date and the reference date defined by the peak of each line (the peak height 
represents the number of SNPs in that contig); for example, the red line on the top graph shows comparisons using the SNP profile from December 2009 
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contigs are marked in a with red circles, and they occupy the 3rd, 135th and 2,198th ranks, respectively (from top to bottom, that is). They also range from 
highly abundant with a high SNP density to moderately rare with lower SNP density. Note that there are two scales for the bottom right panel; the left y 
axis applies to the solid lines and the right y axis applies to the dotted lines. d, A summary of similar calculations and similar results for all of the suitable 
contigs (those with adequate coverage, n = 4,002 contigs); the values were normalized to percentage values to be shown on the same scale. The boxes 
show the median and the interquartile range, and the whiskers show the minimum and maximum values marked at 2× the interquartile range from the 
median. Data are all-versus-all population profiles at each month compared with previous (negative numbers) and subsequent (positive numbers) months. 
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relatives in our dataset, suggesting that the patterns are not assembly-related artefacts.
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population develops resistance to infection, by new mutations or 
ascension of pre-existing resistant types. New successful viral vari-
ants will then arise from rarity (that is, the bank model28), mutation 
or advection (migration). The rapidity of changes is probably too 
fast to be accounted for by de novo mutations alone, so the ascen-
sion of rare types (persistent or imported from other regions) may be 
particularly important. Thus, the community can change constantly 
at the strain level while remaining relatively stable near the species 
level. A similar inference was made previously for two controlled 
aquatic systems (aquaculture pond and saltern, both designed for 
relative stability) by Rodriguez-Brito et al.21 on the basis of a much 
smaller and shorter-time-span metagenomic dataset.

Patterns of community assembly and persistence are central 
ecological questions. We uncovered long-term quasi-steady coexis-
tence of thousands of viral contig populations, and intrapopulation 
genotypic changes revealed patterns that are consistent with coevo-
lution-driven dynamics. Despite its importance and vast theoreti-
cal work29, direct field observations of coevolutionary outcomes are 
rare or limited to model systems5,30. Our observations offer genomic 
insights into the long-term dynamics and coexistence of naturally 
occurring virus–host pairs.

Methods
Sample collection and DNA extraction. Seawater was collected monthly in a 
Niskin bottle at a depth of 5 m as part of the SPOT (https://dornsife.usc.edu/
spot/); 0.5–1 l was filtered through a 0.22 μm Sterivex cartridge (Millipore, using a 
Durapore filter) then onto a 25 mm 0.02 μm Anotop (Whatman) filter assembled 
in tandem using a peristaltic pump. DNA (operationally viral, 0.02–0.22 μm) was 
extracted from the Anotop filter membranes using the Epicentre Total DNA kit as 
described by Steward and Culley31.

Library preparation and sequencing. Aliquots of DNA were sent for library 
preparation and sequencing at the DOE Joint Genome Institute as part of the 
Community Science Program on a grant to N.A. (proposal ID, 2799). All of the 
libraries were prepared according to the manufacturer’s instructions (Swift 1S 
Plus or Nextera XT; details are provided under proposal 2799 at the JGI Genome 
Portal) from a targeted DNA quantity of 1 ng per sample, and included as many 
PCR cycles as were necessary to obtain 200 pM of DNA for sequencing, with a 
maximum of 20 cycles.

Bioinformatic analyses. Quality control of reads and assembly. Initial sample-
by-sample assembly was performed at the DOE Joint Genome Institute. In brief, 
trimmed, screened paired-end Illumina reads (see documentation for bbtools 
filtered reads) were read corrected using bfc32 (v.r181) with the options ‘−1 -s  
10g -k 21 -t 10’. Reads with no mate pair were removed. The resulting reads were 
then assembled using SPAdes33 assembler (SPAdes v.3.11.1) using a range of k-mers 
with the following options: ‘-m 2000 --only-assembler -k 33,55,77,99,127 --meta 
-t 32’ (memory limit: 2,000 GB; k-mer sizes: 33, 55, 77, 99 and 127; number of 
threads: 32; using the metagenomic flag). The original raw data, quality controlled 
data and original assemblies were deposited at the DOE JGI Genome portal under 
the proposal ID 2799.

Cross-assembly and genome de-replication. The 53 original sample-by-sample-based 
assemblies were merged using minimus2 (ref. 34) with the following settings: ‘-D 
OVERLAP = 1000 –D MINID= 95’, requiring 95% identity over 1,000 bp. This 
enabled us to bridge the regions that did not assemble in SPAdes, such as through 
microdiversity (which breaks such assemblies), and it also merges long regions that 
exceed 95% identity. The latter step means that any contigs that were merged yield 
consensus sequences, each representing a population of >95% identical sequences, 
a percentage identity that has been reported to include members of species-like 
units in marine bacteriophages8,9. We recognize that merging contigs this way could 
potentially lose some information on spatial or temporal patterns of individual 
variants (although our SNP analysis that compared individual bases from all of the 
original reads avoided this problem, because the contigs were just used for initial 
mapping; see below). The individual assemblies (each of the 53 dates performed 
independently) totalled 224,216 contigs that were larger than 5 kb with an N50 of 
10 kb, and after our merging step there were 99,722 contigs with an N50 of 12.5 kb. 
The fact that 224,000 contigs in 53 samples were reduced by cross-assembly to 
99,000 contigs means that on average each final contig was created from 2.4 original 
contigs. This relatively small amount of merging is itself an indication of similarity in 
composition among all of the samples. We further evaluate the cross-assembly below.

Bioinformatic evaluation of the cross-assembly. We used an overlap-based cross-
assembly of individual assemblies owing to the impracticalities of de novo 

assembling 5.1 billion reads. Furthermore, adding up the microvariation present 
at each month into a single cross-assembly would break the assemblies in 
regions of high coverage and high variation as discussed previously23,35. However, 
cross-assembly could generate artefacts such as chimaeras. We evaluated the 
cross-assembly using several methods (Extended Data Fig. 5, Supplementary 
Discussion). First, we investigated how much of the cross-assembly, in practice, 
was merged in regions with 95%, 96%, 97%, 98%, 99% and 100% identity. We 
observed that 92% of the alignments within the merged regions were at least 98% 
identical, and only a small percentage were 95–96% or 96–97% (Extended Data 
Fig. 5). Second, whereas cross-assembly required at least 1,000 bp overlap, the final 
assemblies had a large distribution of merged alignments that spanned into tens of 
kb, the large majority of which were 5–10 kb in length (Extended Data Fig. 5).  
When these merged lengths were normalized to the percentage of the contig 
covered, 86% of the alignments covered at least 90% of the contigs (Extended Data 
Fig. 5), meaning most of the merging was between almost completely overlapping 
(including nested) contigs, rather than bridging between long contigs with short 
overlaps. Finally, we computed the number of contigs that were merged per new 
contig (Extended Data Fig. 5), and the vast majority (73%) of cross-assembled 
contigs came from merging 2 or 3 contigs. Overall these analyses reveal a low risk 
of substantial numbers of chimeric assemblies in our dataset, and indicate that this 
merging step was, in practice, primarily a ‘dereplication’ that created consensus 
sequences in a large majority of cases between completely overlapping 98% 
identical regions.

Bioinformatic identification of viral contigs. The metagenomes used in the present 
work were operationally extracted from viral-size fractions (0.02–0.2 μm), yet we 
then used a very conservative approach to identify viral genomes (as this size of 
fraction can include cellular fragments with DNA, tiny cells, non-viral free DNA 
and gene transfer agents). We used two different computational methods that 
discover viral sequences from metagenomic assemblies—(1) VirSorter36 and  
(2) VirFinder37. VirSorter uses signature marker genes, known viral genes and 
known genomic characteristics (such as strand bias and gene density) to assign 
contigs to different categories, each with different degrees of confidence. VirFinder 
is a reference-independent method that identifies viral contigs on the basis of 
k-mer frequency distributions; this machine-learning approach uses logistic 
regression models to predict the likelihood that a sequence of is viral. For our work, 
we used categories one and two from VirSorter (that is, contigs with known viral 
marker genes and contigs with genes annotated as viral) and from category three 
(genomic characteristics shared by viral genomes) only if they had been identified 
with VirFinder with a score larger than 0.98 and P < 0.01. For both programs, 
the databases used for training the algorithms correspond to the defaults. For 
VirFinder, the database was the nucleotide viral sequences on NCBI from before  
1 January 2014 (ref. 37). For VirSorter the database was predicted proteins from 
viral sequences on NCBI in January 2014 in addition to viral sequences from 
curated metagenomes36. We added the original method of identification as viral 
for all contigs as a column in the Supplementary Tables. In total, original cross-
assembly yielded 99,722 contigs that were larger than 5 kb; we identified 19,907 of 
these as viral, and only the latter is evaluated and discussed in this manuscript.

Gene calling and annotation. Open reading frames (ORFs) were predicted using 
Prodigal38 from all contigs larger than 5 kb (cross-assembled final set, 99,722 
contigs). These ORFs were functionally annotated by top BLASTP hits against  
the non-redundant protein dataset of GenBank (accessed 28 August 2018).  
A summarized annotation of all of the putative viral contigs is provided in  
the Supplementary Data. The full annotation is available at NCBI under the 
BioProject PRJNA550983.

Taxonomy assignment. Taxonomy of each viral contig has two aspects 
(Supplementary Tables)—(1) we can potentially identify the virus itself by 
matching its sequence to known viruses using BLASTN, and (2) we may be able 
to match viruses to potential hosts using VirHostMatcher (d2* distance); each 
approach is described in brief below.

(1) Top BLASTN: a nucleotide blast database was constructed using all of the 
viral contigs in RefSeq (accessed 8 August 2018), viral genomes from the viral 
proteomic tree server39, and further expanded including fosmids40 and assemblies 
from global metagenomic projects1,6 (see the ‘In-house genome database’ section). 
We considered significant hits if the alignment was longer than 1,000 bp. All 
of the hits, percentage identities and alignment lengths are provided in the 
Supplementary Tables under the ‘Taxonomy’ tab in the ‘I. Virus ID by Best blastN 
hit’ section.

(2) VirHostMatcher: this method measures the similarity of virus and host 
k-mer word patterns by the d2* distance41 on the basis of word frequency usage 
between viral contigs and cellular genomes. For the potential hosts, we combined 
two databases. The first was a subset of the microbial genome database42 (n = 6,318) 
selecting only marine bacteria, archaea and the relatively few marine eukaryotes 
whose genomes have been fully sequenced. The second was our own curated 
collection of metagenomically assembled genomes and single-cell genomes from 
several different collections, selected because they have significant hits in  
cellular metagenomes from our study location. Their taxonomy was evaluated  
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by phylogenetic placement of marker genes using the Genome Taxonomy  
Database Tool kit (GTDB-Tk)43. These databases can be found at https://doi.
org/10.6084/m9.figshare.8968316.v1. All distances are reported in Supplementary 
Tables under the ‘Taxonomy’ tab, in the ‘II. Likely Host by d2* distance 
(VirHostMatcher)’ section.

Contig abundance calculations. Competitive read mapping was performed using 
Bowtie2 (ref. 44); only reads that mapped with a quality score larger than 1 were 
retained; importantly, Bowtie2 was run non-deterministically. Only completely 
aligned reads were considered with a minimum identity of 98%, fairly consistent 
with previous methods and within what is broadly considered to be a virus species/
population8,9. Abundance of viral contigs was then calculated (see equation below) 
as the number of reads recruited per contig (H) and normalized to sequencing 
depth (N) and contig length (L). Read abundances were then rescaled by dividing 
by the smallest number across all samples; final normalized relative abundances 
span 7 orders of magnitude; these values are provided in Supplementary Tables. 
This approach is identical to that used in other metagenomic projects1,10,40,45, albeit 
using different rescaling methods. Although we do not consider a minimum read 
count per sample per contig, our recruitments, in practice, had a minimum of 12 
reads for the lowest recovered contig; furthermore, 4,002 contigs had a coverage of 
at least 10× across 90% of the full length, and these were the contigs that were used 
for determining SNPs. We also used the FastViromeExplorer46 pipeline, because 
it further considers evenness across the contig, and its results are provided in the 
Supplementary Discussion.

Abundance ¼ H ´N�1 ´ L�1ð Þ
min H ´N�1 ´ L�1ð Þ

Bray–Curtis similarity. Bray–Curtis similarity (1 − Bray–Curtis dissimilarity), 
which compared proportions (determined from recruitment) of all contigs, was 
calculated using vegan47 for all of the possible pairwise combinations among all 
of the sampling points. Relative abundances were calculated as described above, 
and all of the community members were used. Each sampling date was assigned a 
sequential value from 1 (June 2009) to 64 (September 2014); the time lag represents 
the difference between these sequential numbers. All of the individual data points 
are shown in Fig. 2, and means were calculated for all time lags.

Sensitivity analyses. We performed a sensitivity analysis to investigate the relative 
contributions of abundant versus rare members of the community to seasonality. 
The overall abundance table was subsetted multiple times to include populations 
that would account for 5%, 10%, 25%, 50% and 75% of the data both moving from 
the most abundant to the least abundant and vice versa. Bray–Curtis similarity was 
calculated as described above for each independent subset.

SNPs. SNPs were identified using standard tools on a per-sampling-date basis,  
that is, each sampling date was treated completely independently for the purposes 
of calling SNPs. In brief, reads were mapped to the viral contigs using Bowtie2  
(ref. 44) as above (independently per sampling date, mapped to our cross-assembly), 
and the resulting alignment files were converted to a BAM format and sorted  
using samtools48 using the options ‘view -S -b | sort’. Variation among reads  
per site (reads were not compared with the underlying contig sequence) was 
calculated using samtools48 and bcftools49 as: ‘mpileup -g -f | bcftools call –  
ploidy 1 -mv’. Variants were considered to be real if they passed the following  
filter ‘filter -e ‘%QUAL<20 || DP<10’; this filter removes low quality reads and 
SNPs that occur in less than 10 reads. Finally, owing to the high coverage of some 
contigs, variants were only considered to be bona fide and used for downstream 
analysis if they had a frequency of >1%. Similar methods and thresholds have  
been used previously9,22.

Intrapopulation variation, SNPs profiles and temporal succession. SNPs were called 
on a sample-by-sample basis as described above. To compare SNPs in a contig 
between dates, we used only those in contigs with a minimum of 10× coverage22 
across at least 90% of the contig length on all dates; a total of 4,002 contigs (~20% 
of the viral contigs) met these criteria. If a polymorphism was shared between 
two dates, it was counted, then the sum of all of the shared polymorphic sites was 
determined. Intrapopulation variation was calculated as this sum of all of the 
polymorphic sites across all sampled dates, divided by the length of the contig, 
and is expressed in Fig. 3a and elsewhere, where appropriate, as SNP density. 
Analyses to estimate the date to date variation shown in Fig. 3 were performed 
using pairwise comparisons of all of the SNPs profiles (extracted as described 
above) from all 4,002 contigs. Importantly, no consensus sequence was generated, 
and alignments were used at 98% only to determine the placement of a read in a 
particular contig. The variation associated to each contig at each time point was 
then compared to all of the other time points. The specific scripts used to generate 
Fig. 3c are now stored in figshare under the following link: https://doi.org/10.6084/
m9.figshare.8872796.v1.

In-house genome database. Annotation and identification of viral contigs was 
aided by our in-house aquatic environment viral isolate genomic database; 

details and accessions numbers are part of the Supplementary Tables, under tab 
‘InHouseGenomeDatabase’.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data are available at the JGI Genome portal under the proposal ID 
2799 (to N.A. and J.A.F.). All data needed to evaluate the conclusions in the paper 
are provided in the paper or the Supplementary Information. Final cross-assembled 
sequences are deposited at NCBI under the BioProject ID PRJNA550983.

Code availability
Custom code is available at https://doi.org/10.6084/m9.figshare.8872796.v1.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Rank abundance and placement of identifiable viral populations. Rank abundance and placement of identifiable viral populations. 
From right to left: Right-most column is a rank abundance plot, where the most abundant viral contigs are at the top and the least abundant at the 
bottom. Cumulative abundances across all time points are shown, there are the product of normalization as stated in the methods. Middle columns show 
(i) In black, the positions of contigs with high (> 95% ID over 5kb) identity to previously identified virus sequences in databases, n = 746 (Details in 
Supplementary Tables). Due to constraints on visible line thickness, they appear to represent a majority of contigs, but note they are only 746 out of 19,907 
total contigs (See details on Supplementary Tables); (ii) Green lines show viral contigs identified as cyanophage n = 73 (Supplementary Tables). (iii) 
Maroon lines show viral contigs identified as Pelagibacter phages n = 68 (Supplementary Tables). (iv) Red lines show viral contigs that are nearly identical, 
> 99% ID over at least 40 kb at the nucleotide level to previously described viruses (Supplementary Tables). Left-most panel shows genomic diagrams 
from selected contigs and their identified hit in databases (>99% identity), all drawn to the same scale. Remarkably, all these illustrations represent 
Synechococcus phages isolated off the coast of California.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Letters Nature Microbiology

Extended Data Fig. 2 | Relative abundance of viral contigs on a linear scale. Heat Maps otherwise similar to Fig. 1b (which has a 7-decade log scale), 
showing relative abundance of the 19,907 viral contigs, one contig per row, during monthly sampling. Contigs are ordered by average abundance (over all 
months), highest at the top. White columns represent months with missing data (all data are in Supplementary Tables). Each panel has a different range, 
where abundances at or exceeding the maximum value appear as red. This display better allows visualization of temporal changes in contig abundance 
within orders of magnitude, compared to Fig. 1b where colors change little within each order of magnitude. Different subpanels are needed to visualize the 
ranges of all the contigs. “Zooming” the image optimizes the ability to visualize details.
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Extended Data Fig. 3 | See next page for caption.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Letters Nature Microbiology

Extended Data Fig. 3 | Seasonality is driven by medium range abundance contigs. Similar to Fig. 2, these depict the Bray-Curtis distance vs time lag 
between samples, but here divided into different fractions of the rank abundance curve. The left column of graphs starts from the bottom (rare) part of 
the curve, with an increasing fraction of the contigs included in graphs displayed from top to bottom. The right column of graphs starts with the top most 
abundant contigs, with an increasing fraction of the curve included in graphs from top to bottom. Note on the right that as more members are included 
from the long rare tail of the rank-abundance curve, consistent seasonality increases and average similarity decreases. Generally, the rarer contigs show 
stronger seasonality than the most abundant ones. Because Bray Curtis similarity is proportionately more affected by the more abundant organisms in 
general, these indicate that middle-high percentiles (top 50th-75th) may dominate the collective community seasonality. Bottom 5% n = 4587 viral 
contigs, bottom 10 % n = 7092, bottom 25 % n = 12031, bottom 50% n = 16741, bottom 75% n=19093. Top 5% n = 61, Top 10% n=168, Top 25% n= 814, 
top 50% n = 3166, top 75% n = 7876.
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Extended Data Fig. 4 | Distribution of polymorphic sites along three selected genomes. The three longest T4-like genome fragments were chosen 
(ranked 9433rd, 10382nd and 13113rd) because T4-likes are the most extensively studied group and have the best annotations. Each diagram shows all 
predicted open reading frames and their sense direction as depicted by an arrow. The y-axis on the left side (for thin black bars) shows the number of 
months that each location exhibited a SNP. The position along the x axis corresponds to their position along the genome. Y axis on the right (red line) 
shows the average number of SNPs per basepair on a 500 bp moving average. Note that only about ~5% of the sites are polymorphic although this is 
hard to visualize. For details, please refer to annotations and the per gene density of 20 representative (including the ones shown here) T4-like viruses is 
included in Supplementary Tables under the tab “SNPsAmongT4LikeViruses” Although not selected for this reason, these three show strikingly different 
patterns in SNP distributions, from relatively uniform (top panel) to very patchy with a few hotspots (bottom panel). Note y axes are scaled for each panel, 
and the top and middle ones have similar SNP densities to each other over most of their lengths.
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Extended Data Fig. 5 | Post hoc evaluation of our cross-assembly strategy. Cross assembly merged contig sequences from different months when 
overall identity of overlapping regions greater than 1000 bp in length exceeded 95%. We evaluated how often these merged overlaps occurred at 
different percent identities to assess how much variation was combined, and also examined other useful statistics. a) Distribution of percent identity of 
all alignments used to merge contigs during our cross-assembly step, dotted lines represent the percent of alignments covered to the right of the line. 
Note that 92% of merges had >98% sequence identity b). Distribution of lengths of all alignments used to merge contigs during our cross-assembly step. 
Note most merged regions were 5,000–10,000 bp in length. c) Distribution of the fractions of the contig used during our merging step (that is length of 
the alignment divided by the contig length). Note that the vast majority of merges occurred over almost the entire lengths (90–100%) of the contigs d). 
Distribution of the number of contigs that were merged into a single contig during cross- assembly. Note that the vast majority of merged contigs came 
from 2 or three individual contigs. All panels taken together show that while merging occurred, the vast majority (86%) was between almost completely 
overlapping (including nested) and >98% identical sequence contigs, rather than bridging between long contigs with short overlaps.
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Extended Data Fig. 6 | Read recruitment to fully sequenced isolates reveals identical patterns of succession. Dynamics of SNP profiles calculated from 
reads recruited (within 98% ID) to two reference genomes. These profiles were generated as those shown in Fig. 3 and as described in the methods. 
NOTE: The absolute number of polymorphic sites is bigger since a full genome is being considered.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Jed A. Fuhrman

Last updated by author(s): Nov 1, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Illumina software at sequencing facility. 

Data analysis We used only the following tools, which are all publicly available: bbtools; SPAdes version: 3.11.1; minimus2; Virsorter; Virfinder; Prodigal 
v2.6.2; BLAST v2.2.3; bowtie2 v2.2.6; VirHostMatcher-Net; Samtools v1.2; Fast-Virome Explorer; Their specific use and parameters are 
noted in the methods section. Custom code available at https://doi.org/10.6084/m9.figshare.8872796.v1. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The manuscript includes the statement: "All sequencing data is available at the JGI Genome portal under the proposal ID 2799 (to NA and JF). All data needed to 
evaluate the conclusions in the paper are present in the paper or the supplementary materials." 
The Supplemental GenBank-like file includes all contig sequences 
The Supplemental Excel spreadsheet includes raw contig length, %GC, abundance, identity information, and abundance in all samples. 
Final cross-assembled sequences are deposited at NCBI under the BioProject ID PRJNA550983.  
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Community DNA from operationally identified virus-size fraction was collected monthly for 5 years without experimental 
manipulation.

Research sample Seawater virus assemblages (as defined from being retained in between 0.02 - 0.2 um filters) were collected monthly. No 
experimental manipulation was done.

Sampling strategy Seawater virus assemblages (as defined from being retained in between 0.02 - 0.2 um filters) were collected monthly. No 
experimental manipulation was done. 

Data collection Viromes were collected monthly; Seawater was filtered through a 0.2 um filter and then to 0.02 um filter, the latter was then used 
for DNA extraction. DNA amplification and sequencing was done at JGI as described in the methods section.

Timing and spatial scale Viromes were collected monthly; Seawater was filtered through a 0.2 um filter and then to 0.02 um filter, the latter was then used 
for DNA extraction.

Data exclusions Not all months are represented due to weather conditions, equipment failure, and failed DNA extractions; missing dates are noted in 
the figures as blank columns.

Reproducibility Not relevant for an environmental time series.

Randomization N/A. We described an ecological time series. Continuous sampling for ~20 years.

Blinding NA

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Field conditions varied monthly, this project is the result of 53 cruises. For all environmental data associated please see: https:// 

dornsife.usc.edu/spot/datasets-summary/ . We also cited publications by Cram et al., and Chow et al., that overlapped in time 
with this study, and reported and used these environmental conditions for interpretation.

Location San Pedro Ocean Time series is located at 33°33'N and 118°24'W.

Access and import/export NA

Disturbance NA

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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