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ABSTRACT
Expectation propagation is a general prescription for approximation of integrals in statistical inference
problems. Its literature is mainly concerned with Bayesian inference scenarios. However, expectation prop-
agation can also be used to approximate integrals arising in frequentist statistical inference. We focus on
likelihood-based inference for binary response mixed models and show that fast and accurate quadrature-
free inference can be realized for the probit link case with multivariate random effects and higher levels of
nesting. The approach is supported by asymptotic calculations in which expectation propagation is seen
to provide consistent estimation of the exact likelihood surface. Numerical studies reveal the availability of
fast, highly accurate and scalable methodology for binary mixed model analysis. Supplementary materials
for this article are available online.
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1. Introduction

Binary response mixed model-based data analysis is ubiquitous
in many areas of application, with examples such as analy-
sis of biomedical longitudinal data (e.g., Diggle et al. 2002),
social science multilevel data (e.g., Goldstein 2010), small area
survey data (e.g., Rao and Molina 2015), and economic panel
data (e.g., Baltagi 2013). The standard approach for likelihood-
based inference in the presence of multivariate random effects is
Laplace approximation, which is well known to be inconsistent
and prone to inferential inaccuracy. Our main contribution is
to overcome this problem using expectation propagation. The
new approach possesses speed and scalability on par with that of
Laplace approximation, but is provably consistent and demon-
strably very accurate. Bayesian approaches and Monte Carlo
methods offer another route to accurate inference for binary
response mixed models (e.g., Gelman and Hill 2007). However,
speed and scalability issues aside, frequentist inference is the
dominant approach in many areas in which mixed models are
used. Henceforth, we focus on frequentist binary mixed model
analysis.

The main obstacle for likelihood-based inference for binary
mixed models is the presence of irreducible integrals. For
grouped data with one level of nesting, the dimension of the
integrals matches the number of random effects. The two
most common approaches to dealing with these integrals are
(1) quadrature and (2) Laplace approximation. For example,
in the R computing environment (R Core Team 2019) the
function glmer() in the package lme4 (Bates et al. 2015)
supports both adaptive Gauss–Hermite quadrature and Laplace
approximation for univariate random effects. For multivariate
random effects only Laplace approximation is supported by
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glmer(), presumably because of the inherent difficulties of
higher dimensional quadrature. Laplace approximation eschews
multivariate integration via quadratic approximation of the
log-integrand. However, the resultant approximate inference
is well known to be inaccurate, often to an unacceptable
degree, in binary mixed models (e.g., McCulloch et al., sec.
14.4). An embellishment of Laplace approximation, known as
integrated nested Laplace approximation (Rue, Martino, and
Chopin 2009), has been successful in various Bayesian inference
contexts.

Expectation propagation (e.g., Minka 2001) is a general pre-
scription for approximation of integrals that arise in statistical
inference problems. Most of its literature is within the realm
of Computer Science and, in particular, geared toward approx-
imate inference for Bayesian graphical models (e.g., Bishop
2006, chap. 10). A major contribution of this article is trans-
ferral of expectation propagation methodology to frequentist
statistical inference. In principle, our approach applies to any
generalized linear mixedmodel situation. However, expectation
propagation for binary responsemixedmodel analysis has some
especially attractive features and therefore we focus on this class
ofmodels. In the special case of probit mixedmodels, the expec-
tation propagation approximation to the log-likelihood is exact
regardless of the dimension of the random effects. This leads to a
new practical alternative to multivariate quadrature. Moreover,
asymptotic theory reveals that expectation propagation provides
consistent approximation of the exact likelihood surface. This
implies very good inferential accuracy of expectation propaga-
tion, and is supported by our simulation results. We are not
aware of any other quadrature-free approaches to generalized
mixed model analysis that has such a strong theoretical under-
pinning.

© 2019 American Statistical Association
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To facilitate widespread use of the new approach, a new pack-
age in the R language (R Core Team 2019) has been launched.
The package, glmmEP (Wand and Yu 2019), uses a low-level
language implementation of expectation propagation for speedy
approximate likelihood-based inference and scales well to large
sample sizes.

Binary response mixed models and their inherent compu-
tational challenges are summarized in Section 2. The expecta-
tion propagation approach to fitting and approximate inference,
with special attention given to the quadrature-free probit link
situation, is given in Section 3. Section 4 presents the results of
numerical studies for both simulated and real data, and shows
expectation propagation to be of great practical value as a fast,
high-quality approximation that scales well to big data and big
model situations. Theoretical considerations are summarized
in Section 5. Higher level and random effects extensions are
touched upon in Section 6. Lastly, we briefly discuss transferral
of our new approach to other generalized linear mixed model
settings in Section 7.

2. Binary ResponseMixedModels

Binary mixed models for grouped data with one level of nesting
and Gaussian random effects has the general form

yij|ui ind.∼ Bernoulli
(
F
(
βTxFij + uTi xRij

))
, ui

ind.∼ N(0,�),

1 ≤ i ≤ m, 1 ≤ j ≤ ni (1)

where F, the inverse link, is a prespecified cumulative distri-
bution function and yij is the jth response for the ith group,
where the number of groups is m and the number of response
measurements within the ith group is ni. Also, xFij is a dF × 1
vector of predictors corresponding to yij, modeled as having
fixed effects with coefficient vector β . Similarly, xRij is a dR × 1
vector of predictors modeled as having random effects with
coefficient vectors ui, 1 ≤ i ≤ m. Typically, xRij is a sub-vector
of xFij. It is also very common for each of xRij and xFij to have first
entry equal to 1, corresponding to fixed and random intercepts.
The random effects covariancematrix� has dimension dR×dR.

By far, the most common choices for F are

F =
{
expit for logistic mixed models
� for probit mixed models

where expit(x) ≡ 1/(1+ e−x) and� is the cumulative distribu-
tion function of the N(0, 1) distribution.

Despite the simple form of (1), likelihood-based inference
for the parameters β and � and best prediction of the random
effects ui is very numerically challenging. Assuming that F(x)+
F(−x) = 1, as is the case for the logistic and probit cases, the
log-likelihood is

�(β ,�) =
m∑
i=1

log
∫
RdR

⎧⎨⎩
ni∏
j=1

F
(
(2yij − 1)(βTxFij + uTxRij )

)⎫⎬⎭
× |2π�|−1/2 exp(− 1

2u
T�−1u) du (2)

and the best predictor of ui is

BP(ui) =

∫
RdR u

{∏ni
j=1 F

(
(2yij − 1)(βTxFij + uTxRij )

)}
× exp(− 1

2u
T�−1u) du∫

RdR

{∏ni
j=1 F

(
(2yij − 1)(βTxFij + uTxRij )

)}
× exp(− 1

2u
T�−1u) du

,

1 ≤ i ≤ m.

The dR-dimensional integrals in the �(β ,�) and BP(ui) expres-
sions cannot be reduced further and multivariate numerical
integration must be called upon for their evaluation. In addi-
tion, �(β ,�) has to be maximized over {dF + 1

2 d
R(dR + 1)}-

dimensional space to obtain maximum likelihood estimates.
Last, there is the problem of obtaining approximate confidence
intervals for the entries of β and � and approximate prediction
intervals for the entries of ui.

Starting around the early 1990s there have been several
proposals for likelihood-based estimation and inference for
binary response mixed models and their generalized linear
mixedmodel extensions. Section 14.3 ofMcCulloch, Searle, and
Neuhaus (2008) provides a summary of themain approaches up
until the mid-2000s. Some more recent contributions include
Jeon, Rijmen, and Rabe-Hesketh (2017), Lele, Nadeem, and
Schmuland (2010), Ogden (2015), and Wand and Ormerod
(2012). Section 3.3.1 of Jiang (2017) provides a more recent
historical overview. The relative strengths and weakness of
the various proposals depend on attributes such as accuracy,
ease of implementation, computational speed and theoretical
tractability and properties.

3. Expectation Propagation Likelihood
Approximation

Wewill first explain expectation propagation for approximation
of the log-likelihood �(β ,�). Approximation of BP(ui) follows
relatively quickly. First note that �(β ,�) = ∑m

i=1 �i(β ,�)

where

�i(β ,�) ≡ log
∫
RdR

⎧⎨⎩
ni∏
j=1

F
(
(2yij − 1)(βTxFij + uTxRij )

)⎫⎬⎭
× |2π�|−1/2 exp(− 1

2u
T�−1u) du.

Each of the �i(β ,�) are approximated individually and then
summed to approximate �(β ,�). The essence of the approxi-
mation of �i(β ,�) is replacement of each

F
(
(2yij − 1)(βTxFij + uTxRij )

)
, 1 ≤ j ≤ ni,

by an unnormalizedMultivariate Normal density function, cho-
sen according to an appropriate minimum Kullback–Leibler
divergence criterion. The resultant integrand is then propor-
tional to a product ofMultivariateNormal density functions and
admits an explicit form. The number of approximating density
functions is of the same order of magnitude and, together with
the properties of minimum Kullback–Leibler divergence, leads
to accurate and statistically consistent approximation of �(β,�).
In the probit case, where F = �, the minimum Kullback–
Leibler divergence steps are explicit. This leads to accurate



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

approximation of �(β ,�) without the need for any numerical
integration – just some fixed-point iteration. The expectation
propagation-approximate log-likelihood, which we denote by
∼

�(β ,�), can be evaluated quite rapidly and maximized using
established derivative-free methods such as the Nelder–Mead
algorithm (Nelder and Mead 1965) or quasi-Newton optimiza-
tion methods such as the Broyden–Fletcher–Goldfarb–Shanno
approach with numerical derivatives. The latter also facilitates
Hessian matrix approximation at the maximum, which can be
used to construct approximate confidence intervals.

We now provide the details, with subsections on Kullback–
Leibler projection onto unnormalizedMultivariateNormal den-
sity functions, message passing formulation for organizing the
required versions of these projections and quasi-Newton-based
approximate inference. The upcoming subsections require some
specialized matrix notation. If A is d × d matrix then vec(A)

is the d2 × 1 vector obtained by stacking the columns of A
underneath each other in order from left to right. Also, vech(A)

is 1
2 d(d + 1) + 1 vector defined similarly to vec(A) but only

involving entries on and below the diagonal. The duplication
matrix of order d, denoted by Dd, is the unique d2 × 1

2d(d + 1)
matrix of zeros and ones such that

Dd vech(A) = vec(A) for A = AT .

The Moore–Penrose inverse of Dd is

D+
d ≡ (DT

dDd)
−1DT

d .

3.1. Projection onto UnnormalizedMultivariate Normal
Density Functions

Let L1(Rd) denote the set of absolutely integrable functions on
R
d. For f1, f2 ∈ L1(Rd) such that f1, f2 ≥ 0, the Kullback-Leibler

divergence of f2 from f1 is

KL(f1‖f2) =
∫
Rd

[
f1(x) log{f1(x)/f2(x)}+ f2(x)− f1(x)

]
dx (3)

(e.g., Minka 2005). In the special case where f1 and f2 are
density functions the right-hand side of Equation (3) reduces
to the more common Kullback–Leibler divergence expression.
However, we require this more general form that caters for
unnormalized density functions.

Now consider the family of functions on R
d of the form

fUN(x) ≡ exp

⎧⎪⎨⎪⎩
⎡⎣ 1

x
vech(xxT)

⎤⎦T ⎡⎣ η0
η1
η2

⎤⎦
⎫⎪⎬⎪⎭ (4)

where η0 ∈ R, η1 is a d × 1 vector and η2 is a 1
2 d(d + 1) × 1

vector restricted in such away that fUN ∈ L1(Rd). Then (4) is the
family of unnormalized Multivariate Normal density functions
written in exponential family form with natural parameters η0,
η1 and η2.

Expectation propagation for generalized linear mixed mod-
els with Gaussian random effects has the following notion at its
core:

given finput ∈ L1(Rd), determine the η0, η1 and η2 that
minimizes KL(finput‖ fUN). (5)

The solution is termed the (Kullback–Leibler) projection
onto the family of Multivariate Normal density functions and
we write

proj[finput](x) ≡ exp

⎧⎪⎨⎪⎩
⎡⎣ 1

x
vech(xxT)

⎤⎦T ⎡⎣ η∗
0

η∗
1

η∗
2

⎤⎦
⎫⎪⎬⎪⎭

where

(η∗
0 , η

∗
1, η

∗
2) = argmin(η0,η1,η2)∈HKL

(
finput‖ fUN

)
,

with H denoting the set of all allowable natural parameters.
Note that the special case of Kullback-Leibler projection onto
the unnormalized Multivariate Normal family has a simple
moment-matching representation, with (η∗

0 , η∗
1, η∗

2) being
the unique vector such that zeroth-, first- and second-order
moments of fUN match those of finput.

For the binary mixed model (1), expectation propagation
requires repeated projection of the form

finput(x) = F(c0 + cT1 x) exp
{[

x
vech(xxT)

]T [
η
input
1

η
input
2

]}

onto the unnormalized Multivariate Normal family. An impor-
tant observation is that in the case of probit mixed models,
proj[finput](x) has an exact solution.

Let ζ(x) ≡ log{2�(x)}. It follows that
ζ ′(x) = φ(x)/�(x) and ζ ′′(x) = −ζ ′(x){x + ζ ′(x)},

where φ(x) ≡ (2π)−1/2 exp(− 1
2 x

2) is the N(0, 1) density
function. We are now in a position to define two algebraic
functions which are fundamental for approximate likelihood-
based inference in probit mixed models based on expectation
propagation:

Definition 1. For primary arguments a1 (d×1) and a2 ( 12 d(d+
1) × 1) such that vec−1(−D+T

d a2) is symmetric and positive
definite, and auxiliary arguments c0 ∈ R and c1 (d × 1) the
function Kprobit is given by

Kprobit

([
a1
a2

]
; c0, c1

)
≡
⎡⎣RT

5 (a1 + r3c1)

DT
d vec(R

T
5A2)

⎤⎦
with

A2 ≡ vec−1(D+T
d a2), r1 ≡

√
2(2 − cT1A

−1
2 c1),

r2 ≡ (2c0 − cT1A
−1
2 a1

)
/r1, r3 ≡ 2ζ ′(r2)/r1,

r4 ≡ −2ζ ′′(r2)/r21 and R5 ≡ (
A2 + r4c1cT1

)−1A2

and the function AN is given by

AN

([
a1
a2

])
≡ −1

4
aT1A

−1
2 a1 − 1

2
log

∣∣∣− 2A2

∣∣∣.
In addition, for primary arguments a1, b1 (each d × 1) and
a2, b2 (each 1

2 d(d + 1) × 1) such that both vec−1(−D+T
d a2)

and vec−1(−D+T
d b2) are symmetric and positive definite, and



4 P. HALL ET AL.

auxiliary arguments c0 ∈ R and c1 (d × 1), the function Cprobit
is given by

Cprobit

([
a1
a2

]
,
[

b1
b2

]
; c0, c1

)
≡ log�(r2) + 1

4
bT1B

−1
2 b1 − 1

4
aT1A

−1
2 a1

+ 1
2
log{|B2|/|A2|}

with B2 ≡ vec−1(D+T
d b2).

Inspection of Definition 1 reveals that the Kprobit and Cprobit
functions are simple functions up to evaluations of log(�) and
ζ ′ = φ/�. Even though software for� is widely available, direct
computation of log(�) and ζ ′ can be unstable and software such
as the function zeta() in the R package sn (Azzalini 2017)
is recommended. Another option is use of continued fraction
representation and Lentz’s Algorithm (e.g., Wand and Ormerod
2012).

Expectation propagation for probit mixed models relies
heavily upon:

Theorem 1. If

finput(x) = �(c0 + cT1 x) exp
{[

x
vech(xxT)

]T [
η
input
1

η
input
2

]}
then

proj[finput](x) = exp

⎧⎪⎨⎪⎩
⎡⎣ 1

x
vech(xxT)

⎤⎦T ⎡⎣ η∗
0

η∗
1

η∗
2

⎤⎦
⎫⎪⎬⎪⎭

where [
η∗
1

η∗
2

]
= Kprobit

([
η
input
1

η
input
2

]
; c0, c1

)
and

η∗
0 = Cprobit

([
η
input
1

η
input
2

]
,
[

η∗
1

η∗
2

]
; c0, c1

)
.

A proof of Theorem 1 is given in Section S.1 of the online
supplement.

3.2. Message Passing Formulation

The ith summand of �(β ,�) can be written as

�i(β ,�) = log
∫
RdR

⎧⎨⎩
ni∏
j=1

p(yij|ui;β)

⎫⎬⎭ p(ui;�) dui (6)

where, for 1 ≤ j ≤ ni,

p(yij|ui;β) ≡ F
(
(2yij − 1)(βTxFij + uTi xRij )

)
and

p(ui;�) ≡ |2π�|−1/2 exp
(− 1

2u
T
i �−1ui

)
are, respectively, the conditional density functions of each
response given its random effect and the density function of
that random effect. Note that product structure of the integrand
in Equation (6) can be represented using factor graph shown

Figure 1. Factor graph representation of the product structure of the integrand in
Equation (6). The open circle corresponds to the random effect vector ui and the
solid rectangles indicate factors. Edges indicate dependence of each factor on ui .

in Figure 1. The circle in Figure 1 corresponds to the random
vector ui and factor graph parlance is a stochastic variable node.
The solid rectangles correspond to each of the ni + 1 factors in
the Equation (6) integrand. Each of these factors depend on ui,
which is signified by an edge connecting each factor node to the
lone stochastic variable node.

Expectation propagation approximation of �i(β ,�) involves
projection onto the unnormalized Multivariate Normal family.
Suppose that:

∼
p(yij|ui;β) = exp

⎧⎪⎨⎪⎩
⎡⎣ 1

ui
vech(uiuTi )

⎤⎦T

ηij

⎫⎪⎬⎪⎭ , 1 ≤ j ≤ ni

(7)
are initialized to be unnormalized Multivariate Normal density
functions in ui. Then, for each j = 1, . . . , ni, the ηij update
involves minimization of

KL
(
p(yij|ui;β)

⎧⎨⎩
ni∏
j′ 
=j

∼
p(yij′ |ui;β)

⎫⎬⎭
× p(ui;�)

∥∥∥∥
⎧⎨⎩

ni∏
j′=1

∼
p(yij′ |ui;β)

⎫⎬⎭ p(ui;�)

)
(8)

as functions of ui. Noting that this problem has the form of
Equation (5), Theorem 1 can be used to perform the update
explicitly in the case of a probit link. This procedure is then
iterated until the ηijs converge.

A convenient way to keep track of the updates and compart-
mentalize the algebra and coding is to call upon the notion of
message passing. Minka (2005) shows how to express expecta-
tion propagation as amessage passing algorithm in the Bayesian
graphical models context, culminating in his equation (54) and
(83) update formulae. Exactly the same formulae arise here, as is
made clear in Section S.2 of the online supplement. In particular,
in keeping with (83) of Minka (2005), (8) can be expressed as

mp(yij|ui;β)→ui(ui) ←− proj
[
mui→p(yij|ui;β)(ui) p(yij|ui;β)

]
(ui)

mui→p(yij|ui;β)(ui)
,

1 ≤ j ≤ ni, (9)

where mp(yij|ui;β)→ui(ui) is the message passed from the factor
p(yij|ui;β) to the stochastic node ui andmui→p(yij|ui;β)(ui) is the
message passed from ui back to p(yij|ui;β). The message passed
from p(ui;�) to ui is

mp(ui;�)→ui(ui) ←− proj
[
mui→p(ui;�)(ui) p(ui;�)

]
(ui)

mui→p(ui;�)(ui)
.

(10)
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In keeping with Equation (54) of Minka (2005), the stochastic
node to factor messages are updated according to

mui→p(yij|ui;β)(ui) = mp(ui;�)→ui(ui)

⎧⎨⎩
ni∏
j′ 
=j

mp(yij′ |ui;β)→ui(ui)

⎫⎬⎭,
1 ≤ j ≤ ni, (11)

and

mui→p(ui;�)(ui) =
ni∏
j=1

mp(yij|ui;β)→ui(ui). (12)

As laid out at the end of Section 6 of Minka (2005), the expecta-
tion message passing protocol is:

Initialize all factor to stochastic node messages.
Cycle until all factor to stochastic node messages converge:

For each factor:

Compute the messages passed to the factor using (11)
or (12).
Compute themessages passed from the factor using (9)
or (10).

Upon convergence, the expectation propagation approxima-
tion to �i(β ,�) is

∼�i(β ,�) = log
∫
RdR

⎧⎨⎩
ni∏
j=1

mp(yij|ui;β)→ui(ui)

⎫⎬⎭
× mp(ui;�)→ui(ui) dui, (13)

where the integrand is in keeping with the general form given
by (44) of Minka and Winn (2008). The success of expectation
propagation hinges on the fact that each of the messages in
Equation (13) is an unnormalized Multivariate Normal density
function and the integral over RdR can be obtained exactly as
follows:∫

RdR

⎧⎨⎩
ni∏
j=1

mp(yij|ui;β)→ui(ui)

⎫⎬⎭mp(ui;�)→ui(ui) dui

=
∫
RdR

⎡⎢⎣ ni∏
j=1

exp

⎧⎪⎨⎪⎩
⎡⎣ 1

ui
vech(uiuTi )

⎤⎦T

ηp(yij|ui;β)→ui

⎫⎪⎬⎪⎭
⎤⎥⎦

× exp

⎧⎪⎨⎪⎩
⎡⎣ 1

ui
vech(uiuTi )

⎤⎦T

ηp(ui;�)→ui

⎫⎪⎬⎪⎭ dui

= (2π)d
R/2 exp

{(
η� + SUM{ηp(yi|ui;β)→ui}

)
0

+ AN

((
η� + SUM{ηp(yi|ui;β)→ui}

)
−0

)}
where

η� ≡
⎡⎣ − 1

2 log |2π�|
0dR

− 1
2D

T
dRvec(�

−1)

⎤⎦ ,

SUM{ηp(yi|ui;β)→ui} ≡
ni∑
j=1

ηp(yij|ui;β)→ui ,

AN is as defined in Definition 1 and, for an unnormalized
Multivariate Normal natural parameter vector η, η0 denotes
the first entry (the zero subscript is indicative of the first entry
being the coefficient of 1) and η−0 denotes the remaining
entries.

The full algorithm for expectation propagation approxima-
tion of �(β ,�) is summarized as Algorithm 1. The derivational
details are given in Section S.2. A key point is that each of
the message passing updates Equations (9)–(12) is expressed
in Algorithm 1 in terms of updates to natural parameter
vectors.

We have carried out extensive simulated data tests on
Algorithm 1 using the starting values described in Section 3.3
and found convergence to be rapid.Moreover, each of updates in
Algorithm 1 involve explicit calculations and low-level language
implementation, used in our R package glmmEP, affords very
fast evaluation of the approximate log-likelihood surface. As
explained in (3.4), quasi-Newton methods can be used for
maximization of ∼�(β ,�) and approximate likelihood-based
inference.

3.3. Recommended Starting Values for Algorithm 1

In Section S.3 of the online supplement, we use a Taylor
series argument to justify the following starting values for
ηp(yij|ui;β)→ui in Algorithm 1:

ηstart
p(yij|ui;β)→ui ≡

⎡⎣ 0
(2yij − 1)ζ ′(̂aij)xRij − ζ ′′(̂aij)xRij (xRij )T ûi

1
2ζ

′′(̂aij)DT
dRvec

(
xRij (x

R
ij )

T)
⎤⎦ , 1 ≤ j

(14)
where

âij ≡ (2yij − 1)(βTxFij + ûTi xRij )

and ûi is a prediction of ui. A convenient choice for ûi is that
based on Laplace approximation. In the R computing environ-
ment, the function glmer() in the package lme4 (Bates et al.
2015) provides fast Laplace approximation-based predictions
for the ui. In our numerical experiments, we found convergence
of the cycle loop of Algorithm 1 to be quite rapid, with conver-
gents of(

ηp(yij|ui;β)→ui

)
−0

relatively close to
(
ηstart
p(yij|ui;β)→ui

)
−0

.

Therefore, we strongly recommend the starting values (14).

3.4. Quasi-Newton Optimization and Approximate
Inference

Even though Algorithm 1 provides fast approximate evaluation
of the probit mixed model likelihood surface, we still need to
maximize over (β ,�) to obtain the expectation propagation-
approximate maximum likelihood estimators (

∼̂
β , ∼̂�). This is

also the issue of approximate inference based on Fisher infor-
mation theory.
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Algorithm 1 Expectation propagation approximation of the log-likelihood for the probit mixed model (1) with F = � via message
passing on the Figure 1 factor graph.

Inputs: yij, xFij, x
R
ij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni;

β (dF × 1), � (dR × dR, symmetric and positive definite).
Set constants: c0,ij ←− (2yij − 1)(βTxFij); c1,ij ←− (2yij − 1)xRij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni;

ηp(ui;�)→ui ←− η� ≡
⎡⎣ − 1

2 log |2π�|
0dR

− 1
2D

T
dRvec(�

−1)

⎤⎦ , 1 ≤ i ≤ m.

For i = 1, . . . ,m:

Initialize: ηp(yij|ui;β)→ui , 1 ≤ j ≤ ni (see Section 3.3 for a recommendation)
Cycle:

SUM{ηp(yi|ui;β)→ui} ←−
ni∑
j=1

ηp(yij|ui;β)→ui

For j = 1, . . . , ni:

ηui→p(yij|ui;β) ←− ηp(ui;�)→ui + SUM{ηp(yi|ui;β)→ui} − ηp(yij|ui;β)→ui(
ηp(yij|ui;β)→ui

)
−0

←− Kprobit
((

ηui→p(yij|ui;β)

)
−0; c0,ij, c1,ij

)
−(ηui→p(yij|ui;β)

)
−0

until all natural parameter vectors converge.
For j = 1, . . . , ni:

(
ηp(yij|ui;β)→ui

)
0

←− Cprobit
((

ηui→p(yij|ui;β)

)
−0,

(
ηp(yij|ui;β)→ui

)
−0

+(ηui→p(yij|ui;β)

)
−0; c0,ij, c1,ij

)
SUM{ηp(yi|ui;β)→ui} ←−

ni∑
j=1

ηp(yij|ui;β)→ui

Output: The expectation propagation approximate log-likelihood given by

∼�(β ,�) = 1
2
mdR log(2π) +

m∑
i=1

{ (
η� + SUM{ηp(yi|ui;β)→ui}

)
0

+AN
( (

η� + SUM{ηp(yi|ui;β)→ui}
)

−0

)}

Since ∼�(β ,�) is defined implicitly via an iterative scheme,
differentiation for use in derivative-based optimization tech-
niques is not straightforward. A practical workaround involves
the employment of optimization methods such as those of the
quasi-Newton variety for which derivatives are approximated
numerically. In the R computing environment, the func-
tion optim() supports several derivative-free optimization
implementations. The Matlab computing environment (The
Mathworks Incorporated 2018) has similar capabilities via
functions such asfminunc(). In theglmmEPpackage and the
examples in Section 4, we use the Broyden–Fletcher–Goldfarb–
Shanno quasi-Newton method (Broyden 1970; Fletcher 1970;

Goldfarb 1970; Shanno 1970) with Nelder-Mead starting
values. Section 2.2.2.3 of Givens and Hoetig (2005) provides
a concise summary of the Broyden–Fletcher–Goldfarb–Shanno
method.

Since� is constrained to be symmetric and positive definite,
we instead performquasi-Newton optimization over the uncon-
strained parameter vector (β , θ) where

θ ≡ vech
(
1
2
log(�)

)
and log(�) is the matrix logarithm of � (e.g., Section 2.2 of
Pinheiro and Bates 2000). Note that log(�) can be obtained
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using

log(�) = U�diag{log(λ�)}UT
� where

� = U�diag(λ�)UT
�

is the spectral decomposition of � and log(λ�) denotes
element-wise evaluation of the logarithm to the entries of λ� . If
(

∼̂
β , ∼̂θ) is the maximizer of ∼� then the expectation propagation-
approximate maximum likelihood estimate of � is

∼̂� = U
∼̂θ
diag{exp(2λ

∼̂θ
)}UT

∼̂θ
where

vech−1(̂∼θ) = U
∼̂θ
diag(λ

∼̂θ
)UT

∼̂θ

is the spectral decomposition of the vech−1(̂∼θ). Note that
vech−1(a) is the symmetric matrix A of appropriate dimension
such that vech(A) = a.

The optim() function in R and the fminunc() function
inMatlab each have the option of computing an approximation
to the Hessian matrix at the optimum, which can be used for
approximate likelihood-based inference. In particular, we can
use the approximate Hessian matrix to construct confidence
intervals for the entries of β and the standard deviation and
correlation parameters of�. The full details are given in Section
S.4 of the online supplement. Here, we sketch the idea for the
special case of dR = 2, for which

� =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
.

For confidence interval construction, it is appropriate (e.g.,
Section 2.4 of Pinheiro and Bates) to work with the parameter
vector

ω ≡
⎡⎣ log(σ1)

log(σ2)
tanh−1(ρ)

⎤⎦ .

Approximate 100(1 − α)% confidence intervals for the entries
of (β ,ω)T are[

∼̂
β

∼̂ω

]
± �−1(1 − 1

2
α)

√
−diagonal

({H∼�(∼̂
β , ∼̂ω)}−1

)
(15)

where H∼�(β ,ω) is the Hessian matrix of ∼� with respect to
the (β ,ω) parameter vector. Confidence intervals for the
entries of β , σ1, σ2 and ρ follow from standard inversion
manipulations.

Note that (β , θ) is an unconstrained parameterization whilst
(β ,ω) is a constrained parameterization. Hence, the optimiza-
tion should be performed with respect to the former parame-
terization whereas the Hessian matrix in (15) is respect to the
latter parameterization. In the examples of Section 4 and the R
package glmmEP we use the following strategy:

• Obtain (
∼̂
β , ∼̂θ) using optim() with the (β , θ) parameteri-

zation in the function being maximized and the hessian
argument set to FALSE.

• Compute (
∼̂
β , ∼̂ω) and use this as an initial value with a call to

optim() with the (β ,ω) parameterization in the function
being maximized and the hessian argument set to TRUE.

Full details of confidence interval calculations for the general
multivariate random effects situation are given in Section S.4 of
the online supplement.

In our numerical experiments, we have found Nelder-Mead
followed by Broyden-Fletcher-Goldfarb-Shanno optimization
of expectation propagation approximate log-likelihood, with
confidence intervals based on the approximate Hessian matrix,
to be very effective. In Section 4, we present simulation results
that show this strategy producing fast and accurate inference for
binary mixed models.

3.5. Expectation Propagation Approximate Best
Prediction

The best predictors of ui are

BP(ui) ≡ E(ui|y), 1 ≤ i ≤ m.

We now show that Algorithm 1 provides, as by-products,
straightforward empirical best predictions of the ui.

Let

∼̂
η
i
≡ η� + SUM{ηp(yi|ui;β)→ui} =

[
∼̂
η
i1

∼̂
η
i2

]
(16)

where η� and SUM{ηp(yi|ui;β)→ui} are as in Algorithm 1 with
(β ,�) = (

∼̂
β , ∼̂�),

∼̂
η
i1
is the subvector of

∼̂
η
i
corresponding to

the first dR entries and
∼̂
η
i2
contains the remaining entries. Then

in Section S.5 of the online supplement we show that a suitable
empirical approximation to BP(ui), based on the expectation
propagation estimate, is

∼BP(ui) = −1
2

{
vec−1

(
D+T
d ∼̂

η
i2

)}−1

∼̂
η
i1
. (17)

The corresponding covariance matrix empirical approximation
is

∼cov(ui|y) = −1
2

{
vec−1

(
D+T
d ∼̂

η
i2

)}−1
. (18)

In view of equation (13.7) of McCulloch, Searle, and Neuhaus
(2008), cov{ ∼BP(ui) − ui} is approximated by Eyi{ ∼cov(ui|yi)}.
Approximate prediction interval construction is hindered by
this expectation over the sampling distribution of the responses.
See, for example, Carlin and Gelfand (1991), for discussion
and access to some of the relevant literature concerning valid
prediction interval construction in the more general empirical
Bayes’ context.

4. Numerical Evaluation and Illustration

We now demonstrate the impressive accuracy and speed of
Algorithm 1 combined with quasi-Newtonmethods for approx-
imate likelihood-based inference for probit mixedmodels. First,
we report the results of some studies involving simulated data.
Analysis of actual data is discussed later in this section.
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Figure 2. Comparison of point estimation and 95% confidence interval coverage for the first simulation study with true parameter values given by (19). The upper row
of panels compares exact maximum likelihood with Laplace approximation. The lower row of panels compares exact maximum likelihood with expectation propagation
approximation. The horizontal lines indicate expectation propagation-based confidence intervals for 20 randomly chosen replications of the simulation study described in
the text. The points indicate the corresponding approximate maximum likelihood estimates. The vertical lines indicate true parameter values. The percentages displayed
at the top of each panel are empirical coverages over all 1000 replications for each method involved in the comparison.

4.1. Simulations

Our simulations involved (1) comparison with exact maximum
likelihood for the dR = 1 situation for which quadrature is
univariate, and (2) evaluation of inferential accuracy and speed
for a larger model involving bivariate random effects.

4.1.1. Comparison with Exact Maximum Likelihood for
Univariate Random Effects

Our first simulation study involved simulation of 1000 datasets
according to the dR = 1 version of (1) with true parameter
values:

βtrue = [0, 1]T and �true = σ 2
true = 1. (19)

The sample sizes were set to m = 100 and ni = 2. The xFij and
xRij vectors were of the form

xFij = [1, xij]T and xRij = 1 (20)

where xij was generated independently from a Uniform distri-
bution on the unit interval.

For each simulated dataset, the probit mixed model defined
by Equation (20) was fit using each of the following approaches:

1. Exact maximum likelihood with adaptive Gauss–Hermite
quadrature used for the univariate intractable integrals. This
was achieved using the functionglmer() in the R package
lme4 (Bates et al. 2015). The number of points for eval-
uation of the adaptive Gauss–Hermite approximation was
fixed at 100.

2. The Laplace approximation used by glmer().
3. Expectation propagation as described in Section 3.
4. Data cloning as used by the R package dclone, with 10

clones and inference as described in Sólymos (2010).

Of interest is comparison of quadrature-free approximations
(2)–(4) against the exact maximum likelihood benchmark. Fig-
ure 2 contrasts the point estimates and confidence intervals
produced by Laplace approximation and expectation propa-
gation against those produced by exact maximum likelihood.
The first row of Figure 2 shows that Laplace approximation
results in poor statistical inference, with the empirical coverage
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values falling well below the advertized 95% level. The gray line
segments for exact likelihood confidence intervals and black line
segments for their Laplace approximations have very notice-
able discrepancies. In the second row of Figure 2, we repeat
the empirical coverage percentages and gray line segments for
exact likelihood inference and, instead, compare these results
with those produced by expectation propagation. For the fixed
effects, β0 and β1, the empirical coverage of expectation propa-
gation is seen to be very close to 95%. For the standard deviation
parameter, σ , expectation propagation delivers slightly more
coverage than advertized (97.5% versus 95%). However, the
relatively low sample sizes in this study should be kept in mind.
The simulation study in the next subsection uses higher sample
sizes and expectation propagation is seen to be particularly
accurate in terms of confidence interval coverage. The empirical
coverage values for data cloning were 95.7%, 95.1%, and 97.4%.
These are very close to those of expectation propagation.

Figure 3 compares the approaches via estimated mean
squared error and mean squared error of prediction. The latter
comparison involved randomly selecting 5 of the one hundred
ui random intercepts and recording their predictions for each
approach. In Figure 3, we have also plotted corresponding t-
based 95% confidence intervals, which provide an indication
of the inherent variability of simulation-based mean squared
error estimation. Expectation propagation is shown to perform
well in comparison with exact maximum likelihood and best
prediction, and generally improves uponLaplace approximation
and data cloning for this particular yardstick.

Table 1 compares the computing times of the four approaches
when run on a MacBook Air laptop with 8 gigabytes of random
access memory and a 2.2 gigahertz processor. Even though such
comparison necessarily is obscured by factors such as the com-
puter language in which an approach is implemented, Table 1
provides a reasonable indication of computing times in practice.
Laplace approximation and expectation propagation take less

Table 1. Average (standard deviation) computing times in seconds for fitting and
inference for the four approaches using in the first simulation study.

Exact Laplace Expec. propag. Data cloning

16.10 (5.25) 0.158 (0.0163) 0.1960 (0.0198) 143 (4.38)

than a fifth of a second on average. Exact computation takes
about 10–20 sec, with confidence interval construction for σ

(not provided by glmer()) accounting for most of that time.
Data cloning, with an average of about 2.4 minutes, is much
slower than the three other approaches.

4.1.2. Accuracy and Speed Assessment for Bivariate Random
Effects

In this study, we simulated 1000 datasets according to a dR = 2
version of (1) with true parameter values

βtrue = [0.37, 0.93,−0.46, 0.08,−1.34, 1.09]T and

�true =
[

0.53 −0.36
−0.36 0.92

]
. (21)

The number of groups was fixed at m = 250 and each ni
value selected randomly from a discrete Uniform distribution
on {20, 21, . . . , 30}. The xFij and xRij vectors were of the form

xFij = [1, x1,ij, x2,ij, x3,ij, x4,ij, x5,ij]T and xRij = [1, x1,ij]T
where each xk,ij was generated independently from a Uniform
distribution on the unit interval. All relative tolerance values
were set to 10−5 and the maximum number of iteration values
were set to 100, which is relevant for the upcoming speed
assessment.

The points and horizontal line segments in Figure 4 are dis-
plays of estimates and corresponding 95% confidence intervals
for each of the interpretable model parameters, for 50 ran-
domly chosen replications. The numbers in the top right-hand

Figure 3. First three upper panels: Estimated mean squared errors for the parameters in dR = 1 simulation study with true parameter values given by Equation (19) for
four different approaches: exact maximum likelihood (exact), Laplace approximation (Lapl.), expectation propagation (EP) and data cloning (DC). The estimates are the
average squared error values over the 1000 replications in the simulation study. The vertical line segments indicate corresponding t-based 95% confidence intervals for
the mean squared error. Remaining panels: the same as the first three panels but with mean squared errors of prediction for 5 randomly chosen ui values.
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Figure 4. Summary of confidence interval coverage for the second simulation study with true parameter values given by Equation (21). The horizontal lines indicate
expectation propagation-based confidence intervals for 50 randomly chosen replications of the simulation study described in the text. The solid circular points indicate
the corresponding point estimates. The vertical lines indicate true parameter values. The percentage in the top right-hand corner of each panel is the empirical coverage
over all 1000 replications.

corner of each panel are the empirical coverage values based
on all 1000 replications. For all nine parameters, the empiri-
cal coverage values are in keeping with the advertized cover-
age of 95%, and is an indication of excellent accuracy for this
setting.

Despite the higher samples and complexity of the model,
we have reduced the fitting times to tens of seconds in the
glmmEP package within the R computing environment. This
has been achieved by implementation of Algorithm 1 in a low-
level language so that approximate likelihood evaluations are
very rapid. The computing speed depends upon various relative
tolerance values and upper bounds on numbers of iterations
for the various iterative schemes as well as attributes of the
computer. This simulation study was run on a MacBook Air
laptop with 8 gigabytes of random access memory and a 2.2
gigahertz processor. The convergence stopping criteria values
are given earlier in this section. Over the 1000 replications
the median computing time was 18 sec, the upper quartile
was 20 sec and the maximum was 34 sec. Such speed is
impressive given that each dataset contained tens of thousands
of observations and bivariate random effects are accurately
handled.

4.2. Application to Data from a Immunization Study

Data from a 1987 Guatemala childhood immunization study
are stored in the data frame guImmun within the R package
mlmRev (Bates, Maechler, and Bolker 2014). Rodríguez and
Goldman (1995) presented details of the study and some
multilevel analyses. Variables in the guImmun data frame
include

immun a two-level factor variable indicating whether a child
received a complete set of immunizations at the time of the
survey, with levels Y for complete set and N for incomplete
set,

pcInd81 percentage of indigenous population in the commu-
nity in which the child lived at the time of the 1981 census,

kid2p a two-level factor variable indicatingwhether or not the
child was two years or older at the time of the survey, with
levels Y for two years or older and N for younger than two
years,

momEd a three-level factor variable indicating the mother’s
level of education, with levels N for not finished primary
school, P for finished primary school and S for finished
secondary school,
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husEd a four-level factor variable indicating the husband’s
level of education, with levels N for not finished primary
school, P for finished primary school, S for finished sec-
ondary school and U for unknown,

momWork a two-level factor variable indicating whether or not
the child’s mother had ever worked outside the home, with
levels Y for worked outside of the home and N for never
worked outside of the home,

rural a two-level factor variable indicatingwhether or not the
child’s location is considered rural or urban, with levels Y for
rural and N for urban,

mom a multilevel factor variable that codes the children’s moth-
ers, out of 1,595 mothers in total.

A random intercepts and slopes probit mixed model for these
data is

I(immunij = Y)|u0i, u1i ind.∼
Bernoulli

(
�
(
β0 + u0i + (β1 + u1i)pcInd81ij

+ β2 I(kid2pij = Y) + β3 I(momEdij = S)

+ β4 I(husEdij = S) + β5 I(momWorkij = Y)
)

+ β6 I(ruralij = Y)
))

(22)

where I(P) = 1 if P is true and 0 otherwise. Also, immunij
denotes the value of immun for the jth child of the ith mother,
1 ≤ i ≤ 1, 595, with the other variables defined analogously.
The bivariate random effects vectors are assumed to satisfy[

u0i
u1i

]
ind.∼ N

([
0
0

]
,
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

])
. (23)

The variables in Equation (22) were selected using a least abso-
lute shrinkage selection operator (Tibshirani 1996) approach.

We fitted this model using our expectation propagation
approximate likelihood inference scheme. It took about 10

Table 2. Expectationpropagation approximatemaximum likelihood estimates and
corresponding 95% confidence interval (C.I.) lower and upper limits for the param-
eters in model (22) and (23).

Parameter 95% C.I. low. Estimate 95% C.I. upp.

β0 −0.6711 −0.3373 −0.0035
β1 −1.0783 −0.7663 −0.4543
β2 0.7018 0.9291 1.1565
β3 −0.4090 0.0653 0.5396
β4 −0.3388 0.0523 0.4434
β5 0.0531 0.2591 0.4650
β6 −0.7895 −0.5345 −0.2795
σ1 1.1622 1.5370 2.0328
σ2 1.5407 2.5887 4.3494
ρ −0.9486 −0.7821 −0.2766

seconds on the fourth author’s MacBook Air laptop (2.2
gigahertz processor and 8 gigabytes of random access memory)
to produce the inferential summary given in Table 2.

With the exception of those involving parental education,
each of the parameters is seen to be statistically significantly
different from zero. As examples, the 95% confidence interval
for β1 of (−1.08,−0.454) indicates a lower prevalence of immu-
nization in communities with higher percentages of indigenous
people and the 95% confidence interval for σ2 of (1.54, 4.35)
shows that there is significant heterogeneity in the indigenous
percentage effect across the 1, 595 families.

Figure 5 provides a visual display of the fixed effects esti-
mates and approximate 95% confidence intervals in Table 2.
For comparison, we also include the results obtained from the
default call to the glmer() function in the package lme4
(Bates et al. 2015), in which a Laplace approximation is used,
data cloning via the package dclone (Sólymos 2010) with 10
clones and a Markov chain Monte Carlo fitting via the function
stan() in the R language package rstan (Stan Development
Team 2018). The last of these involves a Bayesian version of
(22)with diffuse priors and therefore is close to likelihood-based

Figure 5. Visual comparison of approximate 95% confidence/credible intervals forβ0, . . . ,β6 for three approaches to fitting the probitmixedmodel (22) to the Guatemala
immunization data. The approaches are Laplace approximation, expectation propagation and Markov chain Monte Carlo (MCMC) with details given in the text.



12 P. HALL ET AL.

inference. The actual diffuse priors are independent N(0, 1010)
distributions for β0, . . . ,β6 and a member of the marginally
noninformative family of covariance matrix priors described in
Huang andWand (2013) for the 2×2 covariance matrix in (23).
In the notation of Huang andWand (2013) the hyperparameters
were set to ν = 2 and A1 = A2 = 105. A warm-up of size
200,000 was used followed by samples of size 10,000 retained
for inference. Under the important and nontrivial assumption—
perhaps plausible here—that the Markov chain Monte Carlo-
based 95% credible intervals are close to the 95% confidence
intervals based on exact maximum likelihood, Figure 5 shows
good accuracy of expectation propagation. Laplace approxima-
tion is seen to lead to fixed effect estimates with considerable
bias and reduced standard errors. Similar comments apply to
the version of data cloning used here. We note that data cloning
has quite a few tuning parameters such as the number of clones
and prior hyperparameter values. Also, data cloning is also very
slow for this example,taking about 3 hr on a contemporary lap-
top computer, making it difficult to assess sensitivity to tuning
parameter choice. On the same laptop expectation propagation
took only 12 seconds.

5. Theoretical Considerations

We now discuss the question regarding whether the excellent
inferential accuracy of the Section 3 methodology is supported
by theory. A fuller theoretical analysis is the subject of ongoing
work involving the first four authors and, upon completion, will
be reported elsewhere. In this section, we provide a heuristic
explanation for the accuracy of expectation propagation in the
binary response mixed model context.

First note that the ith log-likelihood summand is

�i(β ,�) = log
∫
RdR

⎧⎨⎩
ni∏
j=1

p(yi|ui;β)

p̃(yi|ui;β)

⎫⎬⎭
× exp

⎧⎪⎨⎪⎩
⎡⎣ 1

ui
vech(uiuTi )

⎤⎦T

∼̂
η
i

⎫⎪⎬⎪⎭ dui

where p̃(yi|ui;β) is given by expression (7) with the ηij set to the
converged ηp(yij|ui;β)→ui values. We also have

∼�i(β ,�) = log
∫
RdR

exp

⎧⎪⎨⎪⎩
⎡⎣ 1

ui
vech(uiuTi )

⎤⎦T

∼̂
η
i

⎫⎪⎬⎪⎭ dui.

Now make the change of variables

v = �−1
i {ui − ∼BP(ui)} where �i ≡ ∼cov(ui|y)1/2

involving the expectation propagation-approximate best predic-
tor quantities given by Equations (17) and (18). Straightforward
manipulations then lead to the discrepancy between �i(β ,�)

and ∼�i(β ,�) equalling

�i(β ,�) −∼�i(β ,�) = log
∫
RdR

⎧⎨⎩
ni∏
j=1

Aij(�iv)

⎫⎬⎭φI(v) dv (24)

where, for any x ∈ R
dR , φI(x) ≡ (2π)−dR/2 exp(− 1

2x
Tx) and

Aij(x) ≡ F
(
(2yij − 1)

(
βTxFij + ( ∼BP(ui) + x)TxRij

))

× exp

⎧⎪⎨⎪⎩−
⎡⎢⎣ 1

∼BP(ui) + x
vech

((
∼BP(ui) + x

)(
∼BP(ui) + x

)T)
⎤⎥⎦
T

× ηp(yij|ui;β)→ui

⎫⎪⎬⎪⎭ .

Using the same change of variables, the moment-matching con-
ditions corresponding to theKullback–Leibler projection (8) are∫

RdR
v⊗ kAij(�iv)φI(v) dv =

∫
RdR

v⊗ kφI(v) dv, k = 0, 1, 2,

(25)
where v⊗ 0 ≡ 1, v⊗ 1 ≡ v and v⊗ 2 = vvT .

To aid intuition, for the remainder of this section, we restrict
attention to dR = 1 and write δi instead of �i to signify the fact
that this quantity is scalar in this special case. Next, wemake the

working assumption: δi = Op(n−1/2
i ). (26)

This assumption is in keeping with the fact that δi is the expec-
tation propagation approximation to the empirical standard
deviation of ∼BP(ui) − ui. Then Taylor series expansion of Aij
about zero and substitution into the dR = 1 version of (25) leads
to

Aij(0) = 1 + O(δ4i ), A′
ij(0) = O(δ2i ) and A′′

ij(0) = O(δ2i ).

Plugging these into Equation (24) and using log(1 + ε) ≈ ε for
small ε we obtain

�i(β ,�) − ∼�i(β ,�) = Op(n−1/2
i ) under (26).

These heuristics suggest that expectation propagation pro-
vides consistent estimation of the log-likelihood summands as
the number of measurements in the ith group increases. The
deeper question concerning the asymptotic statistical properties
of the expectation propagation-based estimators (

∼̂
β , ∼̂�) requires

more delicate theoretical analysis. As mentioned earlier in this
section, this question is being pursued by authors of this article.

Before closing this section, we mention that there is a
small but emerging body of research concerning the large
sample behavior of expectation propagation for approximation
Bayesian inference.A recent contribution of this type isDehaene
and Barthelmé (2018) which provides Bernstein–von Mises
theory for Bayesian expectation propagation.

6. Higher Level and Crossed Random Effects
Extensions

The binary mixed model given by (1) is adequate for the com-
mon situation of there being only one grouping mechanism.
However, more elaborate models are required for situations
such as hierarchical and cross-tabulated grouping mechanisms.
Goldstein (2010), for example, provides an extensive treatment
ofmixedmodels with higher levels of nesting. Amajor reference
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Figure 6. Factor graph representation of the product structure of the integrand in
Equation (6). The open circle corresponds to the random effect vector [uL1i uL2ij ]T
and the solid rectangles indicate factors in the integrand of Equation (28). Edges
indicate dependence of each factor on [uL1i uL2ij ]T .

for crossed random effects mixed models is Baayen, Davidson,
and Bates (2008). Here, we provide advice regarding extension
our expectation propagation approach to these settings.

The two levels of nesting extension of (1) is

yijk|uL1i , uL2ij
ind.∼

Bernoulli
(
F
(
βTxFijk + (uL1i )TxR1ijk + (uL2ij )TxR2ijk

))
,

uL1i
ind.∼ N(0,�L1) independently of uL2ij

ind.∼ N(0,�L2),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij. (27)

The response yijk and predictor vectors xFijk, x
R1
ijk and xR2ijk corre-

spond to the kth set of measurements within the jth inner group
within the ith outer group. The number of outer groups is m
and the number of inner groups in the ith outer group is ni. The
sample size of the jth group in the ith outer group is oij. Also, xR1ijk
is dR1×1 and xR2ijk is d

R2×1. The log-likelihood of (β ,�L1,�L2)

may be written as

�(β ,�L1,�L2) =
m∑
i=1

log
∫
RdR

ni∏
j=1

oij∏
k=1

p
(
yijk
∣∣∣∣ [ uL1i

uL2ij

]
;β
)

× p
([

uL1i
uL2ij

]
;�L1,�L2

)
d
[

uL1i
uL2ij

]
(28)

where dR = dR1 + dR2,

p
(
yijk
∣∣∣∣ [ uL1i

uL2ij

]
;β
)

≡ F
(
(2yijk − 1)

(
βTxFijk + (uL1i )TxR1ijk

+ (uL2ij )TxR2ijk
))
, yijk = 0, 1,

and

p
([

uL1i
uL2ij

]
;�L1,�L2

)
≡ |2π�L1|−1/2|2π�L2|−1/2

× exp

{
−1
2

[
uL1i
uL2ij

]T [
�L1 0
0 �L2

]−1 [ uL1i
uL2ij

]}
.

Expectation propagation approximation of �(β ,�L1,�L2) then
proceeds by message passing on the factor graph displayed in
Figure 6. In the probit case, Theorem 1 can be called upon to

obtain closed-form updates for the message natural parameter
vectors leading to an algorithm analogous to Algorithm 1.

A crossed random effects extension of (1) is

yii′j|ui, u′
i′
ind.∼ Bernoulli

(
F
(
βTxFii′j + (ui)TxRii′j + (u′

i′)
TxR′

ii′j
))
,

ui
ind.∼ N(0,�) independently of u′

i′
ind.∼ N(0,�′),

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii′
(29)

where the data are cross-tabulated according to membership of
two groups of sizes m and m′ indexed according to the pair
(i, i′) ∈ {1, . . . ,m} × {1, . . . ,m′}, with nii′ denoting the sample
size within group (i, i′). Note that nii′ = 0 is a possibility for
some (i, i′). The response yii′j and the predictor vectors xFii′j, x

R
ii′j

and xR′
ii′j correspond to the jth set of measurements within group

(i, i′). The ui, 1 ≤ i ≤ m, are dR × 1 random effects for group-
specific departures from the fixed effects for the first group. The
u′
i, 1 ≤ i ≤ m′, are dR′ × 1 random effects for group-specific

departures from the fixed effects for the second group. The log-
likelihood of (β ,�,�′) is

�
(
β ,�,�′)
= log

∫
RmdR+m′dR′

⎧⎨⎩ ∏
(i,i′):nii′>0

nii′∏
j=1

p
(
yii′j
∣∣∣ui, u′

i′ ;β
)⎫⎬⎭

× p
(
u, u′;�,�′) d [ u

u′
]

(30)

where

p
(
yii′j
∣∣∣ui, u′

i′ ;β
)

= F
(
(2yii′j − 1)

(
βTxFii′j + (ui)TxRii′j + (u′

i′)
TxR′

ii′j
))
,

u ≡ [uT1 · · · uTm]T , u′ ≡ [u′T
1 · · · u′T

m′ ]T and

p
(
u, u′;�,�′)
is the N

([
0mdR
0m′dR′

]
,
[

Im ⊗ � O
O Im′ ⊗ �′

])
density function.

Likelihood-based inference for the (β ,�,�′) is particularly
challenging for crossed random effects since the dimensions of
the intractable integrals grow with the number of groups. See,
for example, Section 3.3 of Jiang (2017) for discussion about
some of the challenges that arise in asymptotic analysis for
generalized linear mixed models with crossed random effects.

Expectation propagation approximation of �(β ,�,�′) can
be carried out via message passing on the factor graph given in
Figure 7. Amessage passing algorithmanalogous toAlgorithm1
results.

We tested the viability of expectation propagation for a dR =
dR′ = 1 version of (29) with sample sizes m = 10, m′ = 6 and
nii′ = 3 for all (i, i′) pairs. The true parameter values were

βtrue = [−0.58, 1.07]T , �true = 0.32 and �′
true = 0.47.

with predictor data such that the first entry of the 2 × 1 vector
xFii′j was 1 and the second entry was a uniform random number
between 0 and 1. One thousand replications were simulated and
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Figure 7. Factor graph representation of the product structure of the integrand in Equation (30). The open circle corresponds to the random effect vector [uT (u′)T ]T and
the solid rectangles indicate factors in the integrand of Equation (30). Edges indicate dependence of each factor on [uT (u′)T ]T .

95% confidence intervals for the four model parameters were
obtained. The empirical coverage for the fixed effects intercept
was 92.6%, whilst that for the slope was 94.4%. The empirical
coverage for the two variance parameters � and �′ were 63.1%
and 89.2%, respectively. More research is required to assess the
general viability of expectation propagation for crossed random
effects generalized linear mixed models.

7. Transferral to Other MixedModels

Until now we have mainly focused on the special case of probit
mixed models with Gaussian random effects since the requisite
Kullback–Leibler projections have closed form solutions. How-
ever, our approach is quite general and, at least in theory, applies
to other mixed models. We now briefly describe transferral to
other mixed models.

7.1. Logistic MixedModels

As we mention in Section 2, the probit and logistic cases are
distinguished according to whether F = � or F = expit. There-
fore, transferral from probit to logistic mixed models involves
replacement of finput in Theorem 1 by

finput(x) = expit(c0 + cT1 x) exp
{[

x
vech(xxT)

]T [
η
input
1

η
input
2

]}
,

x ∈ R
d. (31)

In view of Lemma 1 of the online supplement, Kullback–Leibler
projection of finput onto the unnormalized Normal family
involves univariate integrals of the form∫ ∞

−∞
xp exp{qx − rx2 − log(1 + ex)} dx,

p = 0, 1, 2, q ∈ R, r > 0. (32)

In the Bayesian context, Gelman et al. (2014; sec. 13.8) and
Kim andWand (2018) describe quadrature-based approaches to
evaluation of Equation (32), each of which transfers to the fre-
quentist context dealt with here. However, there is a significant
speed cost compared with the probit case.

Details on the mechanics and performance of expectation
propagation for logisticmixedmodels are reported in Yu (2020).

7.2. Other Generalized LinearMixedModels

Whilst we have focused on the binary response situation in this
article, we quickly point out that the principles apply to other
generalized linear mixed models such as those based on the
Gamma and Poisson families. Note that (2) with F = expit
generalizes to

�(β ,�) =
m∑
i=1

log
∫
RdR

[ ni∏
j=1

exp
{
yij(βTxFij

+ uTxRij ) − b
(
βTxFij + uTxRij

)+ c(yij)
}]

× |2π�|−1/2 exp(− 1
2u

T�−1u) du

where the functions b and c are as given in Table 2.1 of McCul-
lagh and Nelder (1989). Setting b(x) = log(1+ex) and c(x) = 0
gives the F = expit logistic mixed model while putting b(x) =
ex and c(x) = − log(x!) gives the corresponding Poisson mixed
model. The family of integrals∫ ∞

−∞
xp exp{qx − rx2 − b(x)} dx, p = 0, 1, 2, q ∈ R, r > 0,

is required to facilitate the required Kullback-Leibler projec-
tions. Yu (2020) contains a detailed account of the practicalities
and performance of expectation propagation for this class of
models.
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