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Abstract.

Many papers in the early part of Brown’s career focused on the

admissibility or otherwise of estimators of a vector parameter. He established
that inadmissibility of invariant estimators in three and higher dimensions is a
general phenomenon, and found deep and beautiful connections between ad-
missibility and other areas of mathematics. This review touches on several of
his major contributions, with a focus on his celebrated 1971 paper connecting
admissibility, recurrence and elliptic partial differential equations.
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Larry Brown was the grandmaster of admissibility.
If one includes the work on complete classes, he wrote
well over 30 papers, at least, starting with his Ph.D.
thesis in 1964. The majority, and the best known, were
in the early part of his career, but he continued to write
from time to time on topics related to admissibility un-
til recently. He developed the most general rigorous
theory, he had powerful heuristics, he used, and elabo-
rated and extended all the methods. He knew concrete
cases in detail, including weird and wonderful coun-
terexamples.

Two decades into the next century, admissibility is
not on everyone’s tongue, even within statistical the-
ory, but Brown’s work is part of our enduring heritage,
with important and ongoing influence on methodology.
For a first example, he showed that there is a general
distinction between estimation in lower and higher di-
mensions, and that it is what we now call a universal
phenomenon—not an artifact of which distribution or
which loss function is used. As a second example, in
concrete special cases, he found beautiful and precise
mathematical connections, as in his most famous single
admissibility work, the 1971 paper. The sharp results
of the 1971 paper are a touchstone for modern work on
shrinkage via Bayesian hierarchical models.
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This article will attempt a sampling of Brown’s com-
prehensive contributions to admissibility, aiming to il-
lustrate the two points just made (especially the 1971
paper) and to give a taste of some of the other major pa-
pers. In addition, an attempt has been made to at least
mention most of the published papers on admissibility
and to include them in the bibliography. Berger (1985),
Chapter 8, contains an extensive review of complete
class theorems and admissibility with substantial cov-
erage of Brown’s work up to that time. The panoramic
survey by Berger and DasGupta (2019) in this volume
contains additional discussion and perspective on many
of the papers discussed here, and much more.

1. ADMISSIBILITY AND BEST INVARIANT
ESTIMATORS

Brown’s work on admissibility began with his Ph.D.
thesis, written at Cornell under what he describes—in
the informative conversation DasGupta (2005)—as the
“perceptive but nondirective” guidance of Jack Kiefer.
He goes on to say,

He [Kiefer] told me that Stein was doing
some really interesting work on admissibil-
ity and I should take a look at that. Statistics
was lovely in those days; I essentially had
to read five papers to know all the necessary
background.

Those five papers are Blackwell (1951), Hodges and
Lehmann (1951), Stein (1956, 1959) and James and
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Stein (1961), and they set a remarkable standard for
interest, originality and concision.

Background. A significant focus of these papers is on
the location parameter estimation problem. The setup
assumes 7 independent observations X1, ..., X, € R?
from a location family with density f(x — 0). It is
desired to estimate 6 using a loss function L(6,d) =
W (d — ). The problem is conventionally transformed
to X = X and the ancillary statistics ¥; = X; — X1,
with Y = (Y», ..., Y,). After a further (harmless) trans-
formation X — X + g(Y) for suitable g, it can be
assumed that the best invariant estimator is given by
So(x, y) = x.

Stein had shown that for squared error loss, the best
invariant estimator was admissible for p = 1 (Stein,
1959) and for p =2 (James and Stein, 1961), in both
cases by variants of Blyth’s method. After fruitless at-
tempts to extend the result to p > 3, he shocked the
statistical world by proving that, on the contrary, at
least for X; from the multivariate normal N, (60, I') and
with squared error loss, that X was inadmissible. He
showed that a dominating estimator could be found of
the form 8(X) = (1 — b/(a + |X|?))X for b small and
a large. In James and Stein (1961), explicit calcula-
tions were done for the celebrated James—Stein estima-
tor §(X) = (1 — (p — 2)/|X|*)X which showed that
very substantial gains in mean squared error could be
obtained.

Against this background, Brown set out to develop
an encompassing theory. As he told DasGupta,

My overall goal was to show that what Stein
did was not a particular feature of squared
error loss or normal distributions, and that
indeed there was a very general dichotomy,
with something happening in one and two
dimensions and the contrary in three or
more dimensions.

The results appear in the major paper Brown (1966).
In dimension one, Brown extends the approach of
Blackwell (1951) for discrete problems to show that
the best invariant estimator is admissible in great gen-
erality. The result is proven under mild moment-like
conditions on p(x,y), the conditional density of X
given Y, under growth and regularity conditions on
the loss function W, and under a condition guaran-
teeing uniqueness of the best invariant estimator [to
rule out counterexamples such as the one given by
Blackwell (1951)]. He even considers sequential prob-
lems, in which the loss function can include the cost of
observation, for example, W(¢,n) = Wi (t) + Wa(n).

As one illustration of the results, in the Gaussian
case with standard normal density ¢ (x — ), the sam-
ple mean X is admissible if W (¢) is nondecreasing as ¢
moves away from 0 in either direction and satisfies the
growth condition

/mwmmmnm<w,

with the only exceptions being the loss functions
W(O0)=a<b=W(t) fort #0.
As another example, for squared error loss W(¢) =
and general location densities, Brown’s method
yields admissibility of do(x) = x under the condition
EX3 < oo, which is only slightly weaker than the re-
sult of Stein (1959) obtained by a different technique
(building on the method of Blyth (1951)), and specifi-
cally focused on the quadratic loss case.

On the inadmissibility side, for p > 3, the main re-
sult of Brown (1966) is Theorem 3.1.1, which con-
siders the fixed sample size problem with convex loss
functions W. In addition to moment conditions, the
main assumption is that the p x p matrix

0 =Eo[xVW(X)T /2]

12

is nonsingular. This will hold true for pth power losses
such as W(r) = Y|t |P or (X |t;|P)V/? for p > 1, in-
cluding max; |¢;|, but will fail, say, for W(r) = t12 or
(X" 1;)2. Brown shows that for p > 3,
b Q_1>X

a+|X|?
dominates 89(X) = X for some positive functions a =
a(Y) sufficiently large and b = b(Y) sufficiently small.

The estimator is written here in the form (1) to em-
phasize that it generalizes that used by Stein (1956),
where X is N(0,1) and W(r) = |¢|* so that Q = I,.
Indeed, Brown shows that the Stein’s Taylor series ar-
gument can be pushed to work in this much more gen-
eral setting, and that the resulting risk difference bound
has the form

(1) 5(X) = (1 -

R(6,80) — R(9,96) > (p —2—2pkb)

a+ 02

1
+ ,
0(a+weﬁ)

with constant k£ an explicit function of p, O, and W.
This is exactly the form obtained by Stein (with 1/2 in
place of 2pk in his (22)), and it follows that § domi-
nates 8o for small b and large a.

The proof that the best invariant estimator is gener-
ically admissible in dimension p = 2 was deferred to
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a paper with Martin Fox (Brown and Fox, 1974a). An
indication that p = 2 is harder appears already in the
Gaussian case with squared error, in which the first
proof of admissibility of §o(x) = x appears in Section 4
of Stein (1956).

A second paper with Fox, Brown and Fox (1974b),
shows how the formulation of Brown (1966) can be ex-
tended to show admissibility of the best invariant deci-
sion procedure in a variety of problems, including test-
ing and confidence sets, that involve an unknown loca-
tion or scale parameter.

Much later, with Linda Zhao, Brown returned to the
heuristic geometrical argument given by Stein (1956)
to suggest why the usual estimator should be inad-
missible if the dimension is sufficiently large. Brown
and Zhao (2012) develops the argument further—by
exploiting the spherical symmetry they conceptualize
the multidimensional setting into a two-dimensional
framework that can be geometrically analyzed.

When L(0,d) is not of the form p(d — 0), the
clear distinction between p <2 and p > 3 can van-
ish. Stimulated by an example of Berger (1980), Brown
(1980a) considered, in the usual X ~ N, (6, I) setting,
weighted coordinate loss functions of the form

p -1 p
L®.a)= [Zv(e,-)} > 066 — a)*.

i=1 i=1

Examples considered include v(z) = ¢'" and v(r) =
(1+12)"/2. For the second example, Brown shows that
do(x) = x is inadmissible for p > (2 —r)/(1 —r) and
admissible for p < (2 —r)/(1 — r). In particular, §g is
admissible for all p > 1, when r > 1.

1968 scale parameter paper. Brown (1968), another
influential work, continues the study of best invariant
estimators, this time focused on estimating (any power
of) a scale parameter when there is an unknown lo-
cation parameter. Again the inspiration comes from
a concrete result of Stein (1964): for normally dis-
tributed observations and squared error, a “pretest”
scale-invariant estimator dominates the best location-
scale invariant rule. Brown’s object is to show that a
similar phenomenon holds for a wider class of distribu-
tions and quite general invariant loss functions: rather
than the best invariant estimator, one should use the
usual estimator of o2 when |x|/s is large, and a some-
what smaller multiple when |x|/s is small.

The paper gives examples in which the best invari-
ant estimate of o2 is inadmissible in the presence of
nuisance parameters, when the corresponding estimate
of o2 with known values of the nuisance parameters

is admissible. It also provides a new justification for
Stein’s loss function L(y) =y — 1 — log y: it is essen-
tially the only loss function for which the best invariant
estimator of a scale parameter is always unbiased.

2. BROWN 1971

The celebrated paper Brown (1971) describes a
mathematical characterization of admissibility in terms
of recurrence and insoluble boundary value problems.
It begins by recalling three striking phenomena:

e in statistics, the best invariant estimator 6(x) = x
from N, (6, I) is admissible if p <2 and inadmis-
sible if p > 3 (Stein, 1956),

e in probability, Brownian motion B; on R?” is recur-
rent if p <2 and transient if p > 3 (Lévy, 1940,
Kakutani, 1944), and

e in differential equations, the classical fact that the
exterior Dirichlet problem

1 |x|=1,

Au =0,
0 |x|— o0,

x| >1, u=

has no solution if and only if p <2. [Here, A=V -
V= Zf 92/ 8xi2 is the Laplacian operator. ]

Brown shows that there is a close mathematical con-
nection between these phenomena that extends well be-
yond these invariant cases. He characterizes the admis-
sibility of a generalized Bayes estimator 6 (x) based
on a prior measure F' in terms of the recurrence of an
associated diffusion and the nonsolvability of a varia-
tional problem and its concomitant exterior Dirichlet
problem.

The story begins with the characterization of admis-
sibility in terms of Bayes rules. Every unique proper
Bayes rule is admissible, and starting with Wald, it
was shown that quite generally, every admissible rule
is a limit of proper Bayes rules in an appropriate sense.
[Rukhin (1995) gives a helpful survey of admissibility.]
The special features of the multivariate normal mean
setting under squared error loss allows these results to
take concrete form and Brown’s paper masterfully ex-
ploits the resulting rich structure.

If G(dO) is a nonnegative (prior) measure, not nec-
essarily proper, then the marginal density of X ~
N, (0, 1) is given by a convolution with the Gaussian
density ¢ (x) = (2m) P2 exp(~|x|*/2),

g*(X)=¢*G(X)=f¢(x —0)G(d0).
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The convolution smooths G so that g*(x) is typically
an analytic function and the posterior mean

[0 (x —6)G(db)

[ (x —0)G(do)

is called a generalized Bayes estimator (for squared er-
ror loss). It can be rewritten, using V¢ (x) = —x¢ (x),
in a form that is central to Brown’s analysis'

Vg*(x)

gr(x)

Bayes geometry. When squared error loss L(0,d) =
|0 — d|? is used, with risk function R(6,8) = EgL (0,
4(X)), the posterior mean (2), (3) minimizes the inte-
grated risk

2) 8 (x) =

) dg(x) =x+

B(G, ) =/R(9,8)G(d9).

The Bayes regret of § then has a concrete represen-
tation for squared error loss (James and Stein, 1961;
Brown, 1971, (1.3.2)):

B(G,$) — B(G, )

4)
= [1860) = 860 Pe" (o) dx.

Admissibility and Bayes approximation. The Bayes
regret appears in the abstract characterization of ad-
missibility of Stein (1955) and was further developed
by Farrell (1968a, 1968b). To state it, let B = {x € R? :
|x| < 1} be the unit ball. As formulated by Brown, the
characterization says that § is admissible if and only
if there exist finite measures G, with (i) compact sup-
port, and (ii) G, (B) > 1, so that

(5) B(G,,8) — B(Gy, 6g,) — 0.

The sufficiency part is essentially Blyth’s method, but
the restriction to a fixed set B and to priors with com-
pact support play a key role in what follows. The con-
dition that G, (B) > 1 ensures that the prior mass does
not escape; note that the normalization of G,, does not
affect 8¢, , compare (2). Thus admissibility requires an
approximation by Bayes rules in a sense that is suffi-
ciently strong that even with G,,(B) > 1, the integrated
risk difference (5) approaches zero.

A first consequence of this characterization is that in
the present setting, any admissible rule § is necessarily

I'Written as 3G (x) =x + V(log g*™)(x), it is credited by Robbins
(1956), in a form applying to general exponential families, to
Tweedie (1947). Efron (2011) dubs this “Tweedie’s formula” and
explores its use for correcting selection bias.

generalized Bayes: there exists a measure F(d6) such
that
Vf*
f *

for all x. Brown establishes a continuity theorem for
multivariate Laplace transforms and applies it to mea-
sures derived from G, to show the existence of F, ex-
tending a univariate result of Sacks (1963). The result
was extended to exponential families by Berger and
Srinivasan (1978).

Brown’s identity. The question now is which estima-
tors §  are admissible. Substituting the Tweedie repre-

sentations (6) and (3)Aint0 regret formula (4) and defin-
ing h* = g*/f* and j = +/h*, we obtain

6) S(x)=0r(x)=x+

(x)

B(G.8F) — B(G. 8g) = f 15F — 86 2g*

|Vh*)?
p— h*

=4fIVf|2f*-

This is the fundamental identity: it relates approxima-
tion of a fixed estimator § in Bayes regret to the mini-
mization of an “energy integral” over suitable functions
f , with the weight function f* remaining fixed. >

For an admissible estimator § = 8, let fn denote the
functions derived in this way from a sequence of pri-
ors G, satisfying (5). Certain properties of fn can be
deduced from those of the priors G,,. For convenience
here, assume that supp(F) = R”. Since G, has com-
pact support, it follows from the smoothing effect of
convolution that

(7)

f*

2 gn Gpxop
Jnx) = (x) ="
f* Fx¢
as |x| — 0o. We write joo = lim|yx|— o0 j (x) below. The
condition G,(B) > 1 entails, perhaps after a one-time
renormalization of F(d0), that

(x) =0,

) >1, |x|<1.

Thus each ]An belongs to the class of functions
J:={j):jlag = 1, jo =0}.

Brown’s identity and these remarks show that

§r admissible = inf/lelzf*=0.
jeg

ZBickel (1981) is an example of the later use of this identity, in
this case to the bounded normal mean problem.
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Euler—Lagrange equation. The previous variational
problem is linked to a partial differential equation by a
standard result in the calculus of variations. Let D be a
bounded open set with boundary d D. If kp minimizes

/ |Vk|> f*  s.t.k=koon dD,
D

then kp is the unique solution to the boundary value
problem

(8) Lk=0, xeD; k=ky ondD,

where the (elliptic, second-order) operator
Vf*

9) Lk = Ak + - Vk.

*

Of particular interest are the annuli D, = {1 < |x| <
n} with boundary conditions kg = 1 and O for |x| =1
and n, respectively. We write &, (x) for the solution to
(8) in this case. For example, if f* = 1, corresponding
to 6F(x) = x, then

1
|- ;)glxl p=2.
. ogn
(10)  ka(x) = TR
———— p=3

1 —n2-p
Brownian diffusion. The connection with recurrence
is made by defining a continuous path process {Z;, t >

0} built from Brownian motion B; via a stochastic dif-
ferential equation:

Vf*

*

dZ, =~2dB, + ——(Z)dt, Zy=x.
This process has local covariance 21, and local mean
(Vf*/f*(x) = 8r(x) — x. Thus, the Brownian mo-
tion is locally modified by a drift corresponding to
the departure from the MLE. Johnstone and Lalley
(1984) called this a Brownian diffusion in honor of both
Browns. The elliptic operator (8), (9) appears as the in-
finitesimal generator
X

lim w = Lk(x).

t—0 t
If the process starts at x ¢ B, it returns at some
time® to B = {|x| < 1} with return probability K(x) =
P*{inf,>0 |Z;| = 1}. The diffusion is called recurrent if
K(x) =1 and transient otherwise.

Characterizing recurrence. Dynkin’s formula is a

stochastic process analog of the fundamental theorem

31f the process “explodes” in finite time 7oy < 00, it is declared
to stay at oo thereafter: this (unusual) case is discussed in the cor-
rection note Brown (1973).

of calculus: for a smooth function k and stopping time
T with E¥1 < o0, it reads

E*k(Z;) =k(x) + E* /(;t Lk(Zs)ds.

Consider again the annulus D,,, and the first exit time
T, the first hitting time of the boundary dD,,. Recall
that k, minimizes [p, |Vk|? £* with boundary condi-
tions k, = 1 for |[x| =1 and k, = 0 for |x| = n. Since
k, also satisfies (8), Dynkin’s formula shows that k;, (x)
increases as n — 00 to the recurrence probability:

ky (x) :Exkn(zr,,)
=P*{Z, hits |x| = 1 before |x| = n}

/'Px[tigg|zt|=]}:lC(x).

See Figure 1. This suggests the main result proved in
Brown (1971), Section 4: that

{Z;} is recurrent if and only if
inf / Vjil*f*=0.
Jnf IVil*f

This general notion of a probabilistic solution of partial
differential equations didn’t originate with Brown, but
he saw that it applied in the statistically derived setting,
and needed to prove that it worked for his case, and
that it provided an exact characterization of recurrence
in terms of the variational problem.

Proving admissibility. To close the circle, it remains
to show that recurrence of {Z;} implies admissibility.
In this case, as just seen, [ |an|2f* — 0. Thus, it is
natural to propose the priors

(11) Gn(df) = k2(0)F(d9),

|z|=n

Fi1G. 1. Dirichlet problem for an annulus D: k,(x) gives the
probability that diffusion Z; started at x exits D for the first time
at the inner boundary.
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and to set

Gnx¢
F

*

JHOES (x) =Er [k 0)1x] ~ kj (x)

at least heuristically, since Eg[0|x] = x + (Vf*/
™) (x). Recalling the criterion (5) and fundamental
equation (7), to prove admissibility it would suffice,
for example, to show that for some constant C,

B(g,,d0r) — B(é¢g, . 6c,)
=4f|an|2f* SC/IanIZf*—>0-

In his Stat. Sci. interview (DasGupta, 2005), Brown re-
calls that he was stuck at this point until a conversation
with his Cornell applied mathematics colleague Jim
Bramble. The Gauss mean value property for harmonic
functions says that on any ball B(x,r) ={y: |y — x| <
r} interior to where Aj(y) = 0, it holds that j(x) =
fB(x’r) Jj(y)dy/vol(B). Bramble’s (unpublished) ex-
tension of this result was just what Brown needed. Un-
der the assumption that |V f*/f*(x)| < B, it showed
that there exist probability densities r,(y) < Cj p sup-
ported in B(x, %) so that

Lix)=0 = j(x)=/j<y>rx<y>dy.

The key part of this result is that the density ry(y)
satisfies a uniform bound. With it, and extra work,
Brown arrived at the main technical result, Brown
(1971), Theorem 5.1.1: if |V f*/f*(x)| < B, then

Z; recurrent

= inf / Vilkf*=0
of [ IVils
%
f*

The final Section 6 of Brown (1971) explores a num-
ber of interesting and influential consequences for ad-
missibility. In the one-dimensional case, the Euler—
Lagrange equation can be explicitly solved and the

general Theorem 5.1.1 can be reduced to an integral
test. Thus for § = &, if either

/;Ool/f*(x)dx<oo or /ll/f*(x)dx<oo,

—0o0

= dSr(x)=x+ (x) is admissible.

then J4r is inadmissible. Conversely, if also
(d/dx)(log f*) is bounded, then divergence of both
integrals above implies admissibility. Brown (1979a)
gave a (necessarily) weird counterexample, using a dis-
crete prior with an infinite number of widely spaced

atoms, to show that the boundedness condition could
not be entirely removed.

Turning to higher dimensions, the results of Sec-
tion 6 have provided the basis for a key heuristic guid-
ing modern shrinkage methodology using hierarchical
Bayes priors:

e Proper priors yield admissible estimators.

e Too diffuse improper priors yield inadmissible esti-
mators.

e Priors ‘on the boundary of admissibility’ are typi-
cally exactly balanced between being too vague and
too concentrated.

To illustrate: given a general prior F(df) on R™,
which might come from an hierarchical model, use the
marginal density f*(x) to construct scalar averages

Fr) = / FE e (dx),

f) = / (0] e (d)

over the surface of the sphere of radius r in R”. Com-
bining Theorem 6.4.3 and (a special case of) Theo-
rem 6.4.4, we can say that (a) §r is admissible if
3F (x) — x is uniformly bounded and

/loorl_m[f(r)]_1 dr = 00,

and (b) § is inadmissible if

/Oorl_mf(r)dr < 00.
| S

These criteria have been used in at least Berger and
Strawderman (1996) and Berger, Strawderman and
Tang (2005) to give concrete illustrations of the heuris-
tic.

Brown’s paper of course inspired some subsequent
work on this and related problems. Srinivasan (1981)
worked with Brown’s boundary value problem char-
acterization and showed that it held under notably
weaker conditions on the risk function of 8z, while
Srinivasan (1982) used related ideas to pass between
admissibility in estimating a natural parameter in ex-
ponential families and the multinormal mean prob-
lem. Johnstone (1984, 1986) considered analogs of
the characterization in the discrete setting of Pois-
son observations. Eaton (1992) obtained a relation-
ship between admissibility and recurrence of associ-
ated Markov chains in the context of “quadratically
regular” decision problems. Hartigan (2012) evalu-
ated priors using a Kullback—Leibler loss function and
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found an asymptotic characterization of admissibility
in terms of solvability of associated elliptic differential
equations.

Finally, we give an example of a later statistical re-
sult whose proof relied entirely on the recurrence char-
acterization. Let (x) be an admissible estimator for
X ~ Np (0, I). We can say, following Gutmann (1984),
that § is immune to the Stein effect if for any admis-
sible estimator &'(y) based on an independent obser-
vation Y ~ Ny (6',I), the combined estimator (8, 8")
is admissible in the combined problem of estimating
(0,60") under added squared error loss. Clearly, the
MLE in dimensions 1 or 2 is not immune. Brown
(1971), Section 6.5, showed that any proper Bayes es-
timator was immune, and gave two proofs, one sta-
tistical, and one based on recurrence. He left open
the question of whether there existed any §r which is
not proper Bayes and which is immune. The question
was answered in the negative by Johnstone and Lalley
(1984), and Brown’s recurrence characterization was
the foundation for the proof.

We note here also that Brown and Hwang (1986)
showed that Stein’s phenomenon could not occur (co-
ordinatewise admissible estimators are immune) if,
along with further regularity conditions on the decision
problem, the parameter space is compact. The proof is
direct, in that it does not use the recurrence characteri-
zation.

3. CLASSES OF LOSS FUNCTIONS

In a couple of papers, Brown considered admissi-
bility relative to a class of loss functions. Suppose
that X; ~ N(/Ll-,al-z), i =1,..., p are independent,
with the variances al.z known. A rule is weakly ad-
missible, or £-admissible with respect to a class £ if
Ry (w,8) < Rp(u,8) for all u € R? and L € £ im-
plies Ry (u,8) = Rp(u,8’) for all u € R, L € L.
Brown (1975) considers

p
L(C)={L(u,8) =Y ci(ui — 8)°,

i=1

forc=(cy,...,cp) €Cy,

aiming to model a situation in which the relative val-
ues of ¢; linking the independent problems cannot be
specified with certainty. He gives a new proof of Stein’s
inadmissibility result for §p(x) = x (in the case C is a
single point) using a notion of “tail domination” which
is extended here to obtain the main result—namely

necessary and sufficient conditions on C for &g to be
L(C) admissible. Some important examples: if C is
the whole nonnegative quadrant (“total incompatibil-
ity”), then &y is admissible, while if ¢;/c; < K for all
i, j and finite K (“partial incompatibility”), then &y is
inadmissible.

Much later, Brown and Hwang (1989) considered the
rather different class

L={L(—0)0©—0)):
L(-) any nondecreasing function}

for a now fixed positive definite matrix Q, and aiz =1.
The surprise here is that §y is L-admissible for any p
when Q = I, but for Q # I, it is inadmissible for p
sufficiently large.

4. A UNIFIED ADMISSIBILITY CRITERION

Brown and Hwang (1982) gives a unified and re-
markably simple yet general criterion for admissibility
of generalized Bayes estimators for the mean vector in
exponential families under a quadratic form loss. We
will state the special case that applies to the multivari-
ate normal mean setting with X ~ N, (6, I) in order
to draw the connection with Brown (1971). Berger and
DasGupta (2019), Section 5, in this volume has further
discussion. Suppose that the prior F(d6) = f(0)d6
satisfies the growth condition

f©)
(12) '/|9>1 |9|210g2(|0|\/2) do < oo,

where a V b = max(a, b), and a flatness condition

ViOPF
)
If the generalized Bayes estimator §r also has bounded
risk on compact sets, then it is admissible for squared

error loss.

The proof is built upon Blyth’s method. The choice
of priors can be seen to be inspired by Brown (1971).
Indeed, here G,,(d9) = k,%(Q)F (d0) is inspired by the
choice (11), but instead of using the solutions of (8),
we now use the simpler solution (10) to the two-
dimensional Laplace equation:

log |6
logn ’
andequalto 1 orOas |8 <1 or >n.

This simpler choice turns out to work perfectly well
under the integrability conditions (12)—(13). It yields
the quickest proof of admissibility of §(x) = x for p =
2, and also for priors with g(0) < |#|>~? in dimensions
p > 3 under reasonable extra conditions.

(13) df < oo

k(@) =1—

1<|fl<n
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5. DIFFERENTIAL INEQUALITIES
Brown (1979b) is a major paper that starts with

Two interesting general features stand out
in results so far obtained. One is that the ad-
missibility of a generalized Bayes estimator
seems to depend on the general structure of
the problem (the general type of problem-
location, scale, etc.—and the dimension of
the parameter space) and on the general-
ized Bayes prior, but not on other more spe-
cific features of the problem such as the loss
function used or the exact shape of the den-
sities (normal, exponential, etc.). A similar
comment holds for best invariant estimators
in problems where they exist. A more strik-
ing feature is that certain estimators which
have in the past seemed intuitively reason-
able have turned out to be inadmissible.

Brown shows that the admissibility problem is re-
lated to a differential inequality. The qualitative rela-
tions among the coefficients appear to capture the gen-
eral features determining admissibility, and are not af-
fected by the more specific features.

The discussion proceeds at a heuristic level, with
many of the (necessary) approximations rendered rea-
sonable by detailed experience in earlier papers, and
also with a number of particular applications described
later in the paper: namely estimation of:

e several location parameters, with and without nui-
sance parameters,

e several Poisson means,

o the largest of several ordered translation paramters,

e anormal variance when the mean is unknown.

To give a flavor, suppose that the scalar random vari-
able X has density pg(x) and an estimator §(x) = x +
y (x) of & is evaluated using loss function W (6 (x) —§).
[Brown also considers vector observations and param-
eters, and allows for presence of nuisance parameters.
Taylor expansions show that the risk difference

A=E[Wx+y—8)—Wx+y+r—§)]

1 2
= Qi — —ni2,
Q 7"

where the (linear) differential operator
Qi =—(mi +Y)r —madr/d§

is .deﬁned in terms of the moments m; = Eg¢(x —
YW — &) while ¢ = Eey (x)W"(x — &), and

n=E:W”’(x — &). [When nuisance parameters are
present, Q also includes second-order derivatives.] To
show that § is inadmissible, one may look first for a so-
lution to the inequality QA — nA?/2 > 0 as a prelude to
a rigorous verification.

A second, related method is introduced in cases
where § is generalized Bayes for a prior, say with den-
sity g. It involves the adjoint operator

Q'g=—(mi+y)g+ j_g(ng)'

An important tool is a admissibility alternative for-
mally proved in Brown (1980b), to the effect that if the
risk difference A between &y and &8’ is asymptotically
positive in the sense that H(§)A(§) > ¢ > 0 for [£]
large, then either §g is inadmissible, or it is generalized
Bayes for a prior G(d§) satisfying [ H™'(&)Gd¢) <
oo. The strategy for proving inadmissibility for a gen-
eralized Bayes rule is then to show that the second case
cannot occur.

Stein’s Unbiased Estimate of Risk says that the mean
squared error of an estimator 6(x) = x + y(x) when
X ~ N,(0,1) is given by

R(©,8) = p+E{Roy (X},

Roy (x) =2V - y (x) + |y (o).

Withy(x) =—(p —2)|x |_2, a short calculation yields
Roy < 0 and so an immediate proof of the inadmissi-
bility of §p(x) = x.

Although published in the then Eastern bloc in Stein
(1974), the identity was better known in the West
through Stein (1981); indeed there is no mention of
the result in Brown (1979b). Brown’s Purdue IV pa-
per Brown (1988a), however, responds with a detailed
study of the unbiased risk estimator technique, and the
relation between differential inequalities and admissi-
bility.

Brown considers an initial estimator §,, = x + y(x)
and a candidate improvement 8, ) = x + ¥ (x) +A(x).
The unbiased estimator for the difference in risks

R(9,8,4:) — R0, 68,) =E{R,L(X)}
leads to consideration of the operator
RyA=2V-A+2y A+ A%

Certainly, if a solution A of the inequality R, A < 0 ex-
ists, then 6, 1, is at least as good as §, and so, via a
convexity argument, §, is inadmissible. Brown’s paper
is concerned with the converse: he shows that if there
is no A making R, A <0, then admissibility of §, is a
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reasonable conjecture, which might then be rigorously
verified by other techniques.

Differential operators such as Rpy are treated as
if they were actually the risk of an estimator corre-
sponding to y. Theorems 5.1 and 5.3 provide neces-
sary and sufficient conditions for admissibility in this
sense. The former shows that admissible rules are gen-
eralized Bayes with an analytic representation such as
(6). The latter has the flavor of the variational charac-
terization of admissibility in Brown (1971), now in the
differential inequality setting.

One sample consequence (Example 9) is that no esti-
mator improving on the James—Stein positive part rule
Sy(x)=U—-(p— 2)|x|*2)+x can be found by the un-
biased risk estimator technique. Another (Example 10)
considers a Brownian motion W (¢) with mean ut and
variance t. The uniform prior Bayes estimator W (¢)/¢
for u under squared error loss is admissible using a
fixed sample size t+ = m say, but surprisingly is inad-
missible if one stops at the first crossing of the SPRT
boundaries or at t = m, whichever is earlier. This result
is striking to objective Bayesians who would routinely
use the uniform Bayes prior in this problem. It adds to
the list of Brown’s inadmissibility examples that con-
tinue to pose foundational challenges; see Berger and
DasGupta (2019) in this volume for this, and further
perspective on Brown (1979b) and Brown (1988a).

6. COMPLETE CLASS THEOREMS AND
SEQUENTIAL PROBLEMS

Complete class theorems for a given statistical de-
cision problem aim to give concrete descriptions of
classes of decision rules within which all admissible
procedures must lie. One example is the generalized
Bayes representation for all admissible rules in the
multivariate normal mean setting of Brown (1971); cf.
(6) above. Brown published more than ten papers on
complete class theorems; only the briefest categoriza-
tion is attempted here (see also Berger and DasGupta,
2019):

e decision problems for density families with mono-
tone likelihood ratio, Brown, Cohen and Strawder-
man (1976), Brown and Cohen (1995),

e estimation problems with finite sample spaces. The
influential paper (Brown, 1981) gave a stepwise rep-
resentation for admissible estimators in terms of
proper Bayes rules. Brown, Chow and Fong (1992)
considered the particular case of estimating a bino-
mial variance, while Ighodaro, Santner and Brown
(1982) studied multinomial estimation under two
natural loss functions,

e estimation problems with countable discrete sample
spaces. Brown and Farrell (1985a) and Brown and
Farrell (1988) gave a stepwise representation for ad-
missible estimators, this time in terms of generalized
Bayes rules. A related paper (Brown and Farrell,
1985b) determines which affine estimators Mx + y
are limits of Bayes estimators and which are admis-
sible,

e hypothesis testing problems with simple null hy-
pothesis, Brown and Marden (1989) and Brown and
Marden (1992),

e sequential testing problems, to which we now turn.

Brown wrote a number of papers on sequential prob-
lems; the summary here is again brief. Brown (1977)
is concerned with the general decision theory of prob-
lems in which the observations are taken sequentially.
The other papers in this group consider sequential tests,
where typically the risk function is either a linear com-
bination of the probability of error, or a bivariate vector
with these two terms as separate components. Brown,
Cohen and Strawderman (1979a) shows that admissi-
bility of fixed sample size tests, when considered in a
sequential setting, depends on which of the risk func-
tions is used.

Complete class theorems are given in Brown, Cohen
and Strawderman (1980) and Berk, Brown and Cohen
(1981). Monotonicity properties of sequential tests are
studied for one-sided hypotheses in Brown, Cohen and
Strawderman (1979b), and for a two-sided hypothesis
in Brown and Greenshtein (1992). For the sequential
one-sided testing problem, Brown and Cohen (1981)
shows inadmissibility of tests with unbounded contin-
uation region, while Brown, Cohen and Samuel-Cahn
(1983) characterizes which sequential probability ratio
tests (SPRTSs) are admissible.

7. CONCLUDING REMARKS

We mention here briefly some other papers by
Brown relating to admissibility.

Brown and Cohen (1974) considered the problem of
estimating the common mean of two independent nor-
mal distributions, each with unknown variances, on the
basis of samples of size m and n. They showed that
the sample mean of the first population could be im-
proved on (with an unbiased estimator having smaller
variance), provided m > 2 and n > 3, but not if n = 2.
The then popular problem of “recovery of interblock
information” in balanced incomplete block designs can
be viewed as an example of the common mean prob-
lem.
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Brown (1988b) is one of the first papers to consider
admissibility in the context of finite sample size in-
variant nonparametric estimation of a distribution func-
tion and of its median. Many questions are resolved
for Cramér—von Mises and Kolmogorov—Smirnov loss
functions, while others are left open.

Brown’s important Wald Lectures article (Brown,
1990) on the inadmissibility of the least squares esti-
mate of the intercept in random design regression is
discussed in Berger and DasGupta (2019), Section 5.

Brown et al. (2006) presents two expectation identi-
ties, one of which uses the heat equation and is equiv-
alent to Stein’s identity, Stein (1981). A cornucopia
of applications are given, including inadmissibility re-
sults and a Stein inequality for spherically symmetric
t-distributions.

Brown, George and Xu (2008) studies admissibility
of predictive density estimators: given independent p-
dimensional normal vectors X and Y with common
unknown mean, one seeks to estimate the predictive
density of Y given X using Kullback-Leibler loss. The
substantial parallels between this problem and the mul-
tivariate normal mean problem for squared error loss
(first noted in George, Liang and Xu (2006)) are ex-
tended by establishing complete class theorems, and a
remarkable analog of the sufficient conditions for ad-
missibility of Brown and Hwang (1982).

Among the topics not covered here [see Berger and
DasGupta, 2019 for the first two]:

e discussions of admissibility and complete classes
contained in Brown’s monograph on exponential
families and unpublished notes on decision theory,

e Brown’s papers on minimax estimation that don’t di-
rectly address admissibility,

e Brown’s more recent work on SURE estimates for
heteroscedastic models, Brown 2008; Xie—Kou—
Brown 2012, 2016; Weinstein—-Ma—Brown—Zhang
2017.
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