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E N V I R O N M E N T A L  S T U D I E S

Two centuries of settlement and urban development 
in the United States
Stefan Leyk1,2,3*, Johannes H. Uhl1,2, Dylan S. Connor4, Anna E. Braswell3,5, Nathan Mietkiewicz3,5, 
Jennifer K. Balch1,3,5, Myron Gutmann2,6

Over the past 200 years, the population of the United States grew more than 40-fold. The resulting development 
of the built environment has had a profound impact on the regional economic, demographic, and environmental 
structure of North America. Unfortunately, constraints on data availability limit opportunities to study long-term 
development patterns and how population growth relates to land-use change. Using hundreds of millions of 
property records, we undertake the finest-resolution analysis to date, in space and time, of urbanization patterns 
from 1810 to 2015. Temporally consistent metrics reveal distinct long-term urban development patterns characteriz-
ing processes such as settlement expansion and densification at fine granularity. Furthermore, we demonstrate 
that these settlement measures are robust proxies for population throughout the record and thus potential sur-
rogates for estimating population changes at fine scales. These new insights and data vastly expand opportuni-
ties to study land use, population change, and urbanization over the past two centuries.

INTRODUCTION
The population of the United States grew from an estimated 5.3 million 
in 1800 to 309 million people in 2010 (1). On the basis of the defi-
nitions from the Census Bureau, the share of the U.S. population living 
in urban areas grew from 6 to 81% over this period. Urbanization oc-
curred through population growth and the transformation of physical 
landscapes and ecological systems into developed land. Thus, researchers 
typically measure these changes through either population- or land-
based methods [e.g., (2–6)]. While these two perspectives paint differ-
ent but complementary pictures of urbanization, they are also sensitive 
to the scale of measurement. Thus, because of the absence of consistent 
and detailed, historical information on local land use and local popula-
tion change, our knowledge of the historical development of the United 
States is far from complete. Advancing such knowledge would greatly 
improve our understanding of the broad impacts of urbanization and 
allow for refined projections of demographics and the built environment.

The absence of detailed historical population data before the 
mid-20th century severely constrains any population-based assess-
ment of urban processes. Although the U.S. Census records are made 
publicly available after a period of 72 years, spatially registering and 
encoding these data are resource-intensive. While researchers have 
begun to transcribe and extract these data for fine-scale analysis 
[e.g., (7–9)], publicly available historical population data are acces-
sible only at coarse spatial resolution [e.g., county boundaries; (10)]. 
This coarse resolution in combination with boundary changes over 
time (fig. S1) poses a major barrier to studying historical urbaniza-
tion in the United States using census data [e.g., (11, 12)].

Studying urbanization from a land perspective typically includes 
land use or land cover data, or, more recently, settlement layers that 
provide consistent spatial data on the timing, location, and nature 

of land use. Although many historical maps contain detailed infor-
mation on land use over long time periods, their extraction at fine 
resolution is prohibitively costly because of the volume, complexity, 
and low quality of such graphical documents (13). Most prior efforts 
to characterize historical fine-grained settlement or land cover 
changes rely on remote sensing imagery, which are constrained to 
the post-1970 era of satellite technology [e.g., (14–17)]. Such historical 
satellite-derived data are usually coarsely classified, provide limited 
information on the specific characteristics of built-up land, and are 
often less accurate for rural areas (18, 19).

In this study, we present a new means of understanding the 
speed, spread, and nature of urbanization in the United States from 
1810 to 2015. We use gridded settlement layers from the Historical 
Settlement Data Compilation for the United States [HISDAC-US; 
(20)], which is derived from property records compiled in the Zillow 
Transaction and Assessment Dataset (ZTRAX). HISDAC-US de-
scribes the built environment of most of the conterminous United 
States back to 1810 at fine temporal (5 years) and spatial (250 m) 
granularity using different settlement measures. These measures in-
clude the number of built-up property records, which can refer to 
individual properties or units within built-up properties (BUILD) 
in a grid cell in a given year and the built-up intensity (BUI), or the 
sum of gross indoor area of all built-up properties. We also extracted 
for each grid cell the first built-up year (FBUY), which is the earliest 
construction year on record. For larger analytical units, such as counties, 
we derived the built-up area (BUA), or the number of grid cells over-
lapping with one or more built-up properties in a given year.

The principal goal of this analysis is to foreground the value of 
these novel data in providing insight into long-term settlement and 
urban development. Building on Leyk and Uhl (20) and other on-
going efforts (9), we leverage the HISDAC-US data to undertake an 
unprecedented multiscale analysis of the history of U.S. urban de-
velopment and settlement. These new data can be leveraged to explore 
and characterize fundamental processes of urban growth through 
measurement of changes in the built environment, potentially pro-
viding insights into the fundamental drivers of development pat-
terns. We anticipate that these measures and insights will provide 
vast new opportunities to study and understand the history of U.S. 
urbanization from a land-based perspective.
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In addition to new land-based assessments of urban change and 
development, these novel data also unlock new opportunities to 
model the spatial distribution of population in the past. Our moti-
vation in this regard is rooted in recent research. First, while recent 
work shows relationships between historical population counts and 
built-up property attributes, this analysis is confined to the national 
scale and lacks the spatial detail necessary for understanding varia-
tion and change (21). Second, data on developed or built-up land 
are often used as the main ancillary variable in population modeling 
using dasymetric refinement approaches. This refinement method 
is a form of areal interpolation that makes use of relationships be-
tween the target variable (population) and the ancillary variables used 
for subunit estimation [e.g., (22–25)]. Third, parcel data combined 
with population and road network data were used in recent efforts 
to study long-term urbanization processes within U.S. cities (26), 
but such data have not been available for the entire nation to date. 
Last, researchers applied similar principles of land availability and 
suitability to disaggregated historical census summary statistics and 
created fine-resolution population distributions (27). However, these 
approaches lack robust testing and validation for the years before 
2000. Given this body of research, we argue that data products such 
as the HISDAC-US provide unique opportunities to model not only 
changes in the built environment but also, potentially, fine-grained 
historical population estimates. Progress in this area could unlock new 
possibilities for the spatiotemporal analysis of urbanization in the United 
States, combining both land- and population-based perspectives.

While our main findings confirm well-known broad diffusion 
patterns of urbanization, HISDAC-US settlement layers enable us 
to identify detailed building trajectories as well as expansion and 
densification patterns at various spatial scales. The fine granularity 
of the data is depicted by maps of the FBUY (Fig. 1) and the number 
of built-up property records (BUILD; Fig. 2, B to F) from 1810 to 
2010. Finer-scale data break down broader national and regional 
development trends and describe, for example, local processes of 
expanding urban and suburban areas or infilling in built-up places 
during different time periods. We also demonstrate relationships 

between settlement measures and population growth. We estimate 
that, on average, each additional built-up property at the county-
level is associated with around 2 to 2.25 additional people with 
some regional variation. This finding is notable as there are, at pres-
ent, no reliable estimates of long-term, fine-resolution population 
growth for the United States. Thus, we argue and demonstrate that 
the novel HISDAC-US data provide an unprecedented opportunity 
to study and understand long-term urbanization and settlement 
processes at fine spatial and temporal granularity from the begin-
ning of the 19th century to today.

RESULTS
Taking a land perspective on urbanization: Where, when, 
and how much land was built-up?
Using the fine temporal and spatial granularity as well as different 
built characteristics, we elucidate new spatiotemporal settlement 
patterns. With these patterns, we draw a detailed picture of the evo-
lution of built-up land use in the conterminous United States from 
1810 to 2015.

Mapping the earliest recorded built-up properties (FBUY) within 
boundaries of varying spatial scale, we find that urban development 
trends are strongly dependent on the size of the spatial unit used (broad 
national to local; Fig. 1). By using the contemporary county bound-
aries of the 2010 decennial census as consistent mapping units, we 
observe two primary, well-known national trends (Fig. 1, A and B). 
First, we find trends of urban development diffusing westward from 
Northeastern and coastal Southern states into the interior of the 
United States, including the eastern parts of Texas, Kansas, and 
Arkansas. These trends unfold later in the Appalachian Mountains 
and parts of Florida, likely because of the rough topography and lim-
ited habitability of these areas. Second, while buildings in counties in 
the central and western states of the United States tend to be newer 
than their Eastern counterparts, there are isolated counties across the 
western seaboard and interior regions (e.g., Denver and Wichita 
Falls; Fig. 1, D and E) that experienced particularly early waves of 

Fig. 1. Maps of the FBUY at different levels of granularity. The maps depict national-, regional-, and local-scale processes of human development: (A) county-level 
FBUY within contemporary (Census 2010) boundaries used as constant units of analysis over time (counties where no built-up year is available are shown in gray); more 
detailed distributions of FBUY for the states of Colorado, Kansas, and Ohio within (B) county boundaries, (C) 2500-m grid cells, and (D) 250-m grid cells, respectively. (E) A 
detailed depiction of the 250-m resolution data for the cities of Denver, CO; Wichita Falls, KS; and Columbus, OH.
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development relative to the rest of their respective states. In many 
instances, these nodes of early development predate the demarcation 
of these regions as U.S. states.

By assigning FBUY values to smaller spatial units such as indi-
vidual grid cells of specific size (e.g., 2,500-m resolution, Fig. 1C; or 
250-m resolution, Figs. 1D and 2A), we are able to assess local settle-
ment trends within consistent spatial units that break down the 
county-level patterns. For example, early settlement and growth 
along Colorado’s Front Range emanates from a number of isolated 
centers, with Denver being the largest (Fig. 1, D and E, left). Also, 
earliest records of development in more rural settings of the state 
(in mountainous areas or in the plains) appear spatially related to 
streams and topographic conditions that facilitated development, 
livelihood, access to water, and transportation. In contrast, new de-
velopment in Kansas spreads as a broader national pattern of west-
ward expansion, rather than as sprawl from discrete larger urban 
hubs (Fig.  1,  D  and  E, middle). In Ohio, urban centers begin to 
overlap over time as they expand into one another (Fig. 1, D and E, 
right). These patterns illustrate the opportunities provided by such 
multiresolution data for detecting local-to-regional scale settlement 
and land development trends over long time periods.

We used the built year of each property in combination with build-
ing attributes to compute time series of various settlement variables at 

different resolutions to more holistically measure local and regional 
development trends. As discussed above, these settlement measures 
include the total number of built-up properties (BUILD), the BUI of 
land derived from the sum of indoor floor area of existing built-up 
properties, and the number of grid cells built-up within a chosen unit 
or BUA (see Materials and Methods for details). We extracted these 
variables within consistent spatial units across time periods to gener-
ate long-term trajectories (e.g., fig. S2 at the state-level) and multitem-
poral spatial distributions (e.g., fig. S3 at the county-level) to characterize 
variation in settlement patterns over time. We illustrate county-level 
estimates of BUILD and its change every 5 years between 1810 and 
2015 and spatial clusters for each point in time (movie S1). However, 
the full details of local settlement processes can only be uncovered at 
the finest granularity.

Taking Rockingham County, NH and the areas surrounding 
New Hampshire and Massachusetts as an example region, we trace 
spatial distributions of BUILD at the finest spatial resolution of 
250 m over five points in time (1810, 1860, 1910, 1960, and 2010; 
Fig. 2, B to F). This analysis allows us to track the number of built-
up property records at the grid cell-level and better understand local 
urban growth processes. In this particular case, the cities of Manchester, 
NH; Newburyport, MA; Amesbury, MA; and Portsmouth, NH grew 
as separate small urban hubs until 1860. Fewer built-up properties 

Fig. 2. HISDAC-US settlement layers derived from the ZTRAX data at fine granularity for different points in time. The layers are shown at 250-m spatial resolution 
for different points in time, 1810–2010, for Rockingham County, NH and surroundings, including: (A) FBUY layer in which raster cells are assigned the earliest built year 
recorded, and a time series of the number of built-up property records (BUILD) located within a raster cell in (B) 1810, (C) 1860, (D) 1910, (E) 1960, and (F) 2010. County 
boundaries of the 2010 census are shown in black.
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were established in rural parts of the area along roads during the 
early and mid-1800s. By 1910, Manchester grew substantially, in area 
and density, while the port cities developed at slower rates. This 
trend continued, and by 1960, low-density settlement in rural areas 
had expanded along roads to increasingly connect higher-density 
urban hubs. Furthermore, during this time period, development 
increased rapidly along the coastline. Last, by 2010, the area had expe-
rienced intensified sprawl in its southern and coastal regions, a con-
tinued expansion of urban hubs, and increasing densification in the 
South, which grew into a larger urban and suburban conglomerate. 
Such subcounty, temporal settlement patterns have the potential to 
yield vast new insight into the geographical unfolding and intensity 
of local urban development processes.

Land-based measures of change characterize types of urban 
development at varying scales
Fine-scale settlement layers provide unique opportunities to distinguish 
between land-based processes of urbanization such as expansion and den-
sification. Expansion refers to the amount (or proportion) of new devel-
oped area over time, and densification is the ratio of the change in BUI 
to the change in BUA over time (see details in Materials and Methods).

Coarser-scale, county-level maps of expansion and densification 
reveal notable regional variation (see fig. S4 and movie S1 for a 
complete sequence of those maps and their spatial cluster maps). 
These results complement the observed regional settlement pat-
terns but provide more details about the underlying processes of 
urban growth, often a function of time, infrastructure, and access to 
technology. Maps of peak timing of densification and expansion 
(fig. S5) reveal that both processes are temporally associated and 
vary regionally. For example, along the coastlines of the Southeast 
and the Southwest of the United States, the vast majority of counties 
have expansion peaks earlier than densification, indicative of land 
expansion maxima followed by maximum infilling in already built-up 
areas. We found the opposite process in the noncoastal Northeast, 
the Midwest, and parts of the Mountain West. In these areas, devel-
opment and peak densification occurred over the early to mid-
1900s, and expansion—often in the form of sprawl—subsequently 
unfolded and peaked during the second half of the 20th century.

We assessed city-level measures of expansion and densification 
for San Francisco, CA; Atlanta, GA; and Boston, MA (Fig. 3A). With 
the exception of the time period from 1920 to 1950, which was a period 
of rapid rise and decline in terms of expansion and densification, in 
Boston, both measures trended gradually upward over time but took 
opposite trends after 2000 (expansion declining and densification rising). 
Atlanta and San Francisco exhibit more notable variation. In the 
sprawling city of Atlanta, densification has remained modest (with 
some recent increases), but expansion has markedly increased since 
the mid-20th century. Over the past decade, Atlanta had decreasing 
expansion and increasing densification. For San Francisco, in contrast, 
we find the opposite pattern: Expansion remained relatively low 
over time, but densification continued to rise sharply. These trends are 
consistent with the widely held view of Atlanta as a sprawling metropol-
itan region and the greater compactness of San Francisco.

From these trajectories, we can track the development of a city at 
fine temporal resolution over 200 years and visualize accompanying 
spatial change patterns at the grid cell-level. By assessing the change 
in BUA (∆BUA; i.e., locations that were developed during a given 
time period) and the change in BUI (∆BUI; i.e., interior area added 
per grid cell during a given time period) in detailed maps (Fig. 3, 

B and C, respectively), we gain insight into the development mech-
anisms generating differences across cities. The spatial patterns sug-
gest that San Francisco (Fig. 3B, left) developed under topographic 
constraints allowing limited new development and creating notable 
changes in density over the past 100 years. Atlanta (Figs. 3B, middle), 
in contrast, had a massive increase in developed area since the 1960s 
and developed into one of the most sprawling cities in the United 
States with low building density. Last, the spatial patterns for Boston 
(Fig. 3B, right) are illustrative of a city with an early-developing and 
high-density urban core. Continued new development and increases 
in density were more balanced in Boston over the past century than 
in the other two cities. Thus, these novel data products provide vast 

Fig. 3. Settlement trends and multitemporal distributions for San Francisco, 
Atlanta, and Boston. (A) Time series of densification and expansion, calculated 
over 15-year time increments computed within metropolitan statistical area bound-
aries of 2010. (B) New built-up grid cells (indicated by black grid cells) during the 
given time periods. (C) Change in BUI (i.e., the sum of building indoor area per grid 
cell) during the given time periods, with warmer colors indicating greater change.
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new opportunities for measuring and testing proximate patterns 
and determinants of urban spatial development (e.g., topographical 
influences on land use). To further illustrate the dynamism of these 
data products, we developed fine-grained distributions of BUI with 
a temporal resolution of 5 years for these three cities, as well as Los 
Angeles, CA; Dallas–Fort Worth, TX; and Philadelphia, PA between 
1810 and 2015 (movie S2).

Dissecting and measuring forms of growth at fine scale 
in urban and rural areas
Across the conterminous United States, we find that land-based ex-
pansion and densification show converging and diverging trends 
over recent decades, particularly in more developed counties. We 
created trends of densification (Fig. 4A) and absolute expansion 
(Fig. 4B) for counties in two strata, which we refer to as rural and 
urban, over time. The rural stratum is composed of counties that have 
less than the 66th percentile of BUI across all counties (using the 2010 
census boundaries), calculated individually for each year. The urban 

stratum is defined by counties with BUI values greater than the 66th 
percentile. This stratification allows us to assess how settlement in 
relatively more and less developed places changed over time.

The two strata have different trajectories for both measures with 
significantly higher values in the urban stratum. For urban counties, 
both measures have an increasing trend up to the 1930s (Fig. 4, A 
and B). After 1940, expansion increases markedly until the early 2000s 
but decreases notably during the past decade (Fig. 4B). Densification 
has varying trends since 1930: It levels off for a short time, increases 
between 1940 and 1960, then decreases until the 1980s, and since then, 
increases sharply until 2010 (Fig.  4A). The rural stratum shows 
continuous increases in both measures, steepest for densification 
between 1910 and 1960 and for expansion between the 1940s and 
1980s, somewhat temporally offset to densification. Both measures 
remained relatively constant between 1980 and 2010. Counties in the 
urban stratum have significant variability indicating wide ranges of 
expansion and densification values, likely found in different regions. 
In general, we find compelling differences in comparing the two 

Fig. 4. Settlement trends describing different types of growth in rural and urban strata. Boxplots of semi-decadal distributions of (A) densification and (B) absolute 
expansion in rural and urban counties. (C) Graphic display of relative locations of newly and previously built-up grid cells to calculate midrange expansion, internal, and 
peripheral growth within the Greater Washington, DC area including Arlington, Bethesda, and Georgetown. (D) Trends of building indoor area (BIA) in urban and rural 
strata (counties), each broken down into whether the increase happened in newly built-up cells (midrange expansion), in previously built-up cells at the edge of larger 
BUAs (peripheral growth), or in previously built-up cells in inner parts of BUAs (internal growth). (E) Proportion of internal, peripheral, and internal-peripheral combined 
growth (i.e., growth in previously built-up cells) in relation to overall change for the two strata (rural and urban).
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strata that appear to characterize the rural-urban divide in the de-
velopment of the conterminous United States.

To better understand the observed growth patterns, we spatially 
decomposed the trends of built-up interior area (BIA), which is the 
BUI aggregated across the whole United States, within both rural and 
urban counties into different types of growth. The different growth 
categories include midrange expansion (i.e., the appearance of newly 
built-up cells), peripheral growth (i.e., in previously built-up cells at 
the edge of larger BUAs), and internal growth (i.e., in previously 
built-up cells in inner parts of BUAs; Fig. 4C). The resulting trends 
illustrate the magnitudes of BIA across and within strata (Fig. 4D). By 
2010, BIA in the urban stratum is roughly 10 times greater than in 
the rural counties. Within the urban stratum, the dominant type of 
growth has been peripheral growth followed by midrange expansion. 
These two types of growth are very similar in the rural stratum. Inter-
nal growth has the lowest values of BIA, but its proportion has been 
notably higher in the urban stratum in the past.

To examine the relationships and changes between different types 
of growth across each stratum, we computed ratios of changes of BIA 
in previously built-up cells (i.e., peripheral and internal growth) to all 
changes in BIA (in previously and newly built-up cells; Fig. 4E). For 
urban counties, we see a steep increase of the proportion of previously 
built-up land to overall growth until a peak in the early 1930s, when 
approximately 85% of new growth happened as either peripheral or 
internal growth. This percentage declined to approximately 62% in 
2010, likely as a result of increased expansion (newly built-up land, 
often in the form of sprawl). Peripheral growth, which is higher than 
that of internal growth, has a peak around 1900 at 55% and since 
declined to 42%. In contrast, internal growth increased steeply until 
it reached a peak in the early 1930s at 40% and declined until 2000 to 
25%. During the past decade, internal growth shows a slight uptick, 
which corresponds to increasing densification, seen in urban coun-
ties. In rural counties, the proportion of internal and peripheral growth 
combined increases steeply to approximately 60% in the 1950s and 
since then shows varying trends between 55 and 65%. As internal 
growth never exceeded 20%, most of these trends are driven by pe-
ripheral growth.

The main trends in rural and urban counties converge over time, 
indicating that by 2010, the proportion of growth in previously 
built-up cells to growth in newly built-up cells is very similar in both 
strata (between 60 and 62%). This convergence also indicates that 
during the past seven decades, the proportion of growth due to ex-
pansion has been increasing in urban counties and slightly decreasing 
in rural counties. We expect to find significant regional variability 
in these patterns if evaluated for different geographic units (e.g., states 
or counties), describing deviating trajectories for different criteria 
used for defining urban and rural strata.

Supporting a population perspective of urban development: 
Settlement as a reliable predictor of historical 
and contemporary population
We conclude our results by using a panel analysis approach to illus-
trate that built characteristics can meaningfully capture human set-
tlement and urbanization patterns (28). This method serves as a test 
for whether the settlement layers can support population modeling 
for the study of urban development. In this analysis, we predicted 
population counts from the decennial censuses of 1860, 1910, 1960, 
and 2010 by the number of built-up property records (BUILD) ob-
served in the HISDAC-US data; we tested all land-use types together 

and residential land use only. We relied on BUILD because it has 
the highest overall correlation with population counts over time in 
comparison to other settlement measures (Fig. 5). Through this anal-
ysis, we attempted to accomplish two objectives. First, we examined 
how much of the temporal variation in population can be explained 
using BUILD. Second, we estimated the number of people associated 
with each additional built-up property in a county.

On the basis of the R2 values for a pooled ordinary least squares 
(OLS) regression model of all counties from 1860 (Table 1), BUILD 
based on all land-use types explains almost 93% of the variation in 
population across counties over time (column 1; R2 = 0.926). This 
result holds even when we restrict the sample to counties with con-
sistent boundaries through time (<10% change in area measures; col-
umn 2; R2 = 0.898; see Materials and Methods for details). As these 
models include no other control variables, we conclude that BUILD 
appears to be highly effective in characterizing county-level changes 
in population over time. We suspect that much of the variation across 
these models is a function of changes in household size and the distri-
bution of dwelling units by size over time and space. The estimates 
from the standard OLS models suggest that, on average, one unit in-
crease in BUILD is associated with an increase of around 2.6 to 
2.7 people. There are, however, many difficult-to-observe reasons for 
why counties with more or less built-up properties differ in popula-
tion (e.g., many coastal cities have both economic opportunity and 
high-density building stock due to land constraints).

 We also ensure the robustness of our results to omitted variables 
by presenting more conservative estimates when regressing changes 
in population on changes in BUILD (columns 3 to 5 of Table 1). We 
ran a least squares dummy variable (LSDV) model with county-level 
fixed effects (column 3) in which the model variation comes from 
population changes within counties over time [within estimator; (29)], 
revealing a consistent and significant relationship of around 2.2 people 
for each additional built-up property within a county. We ran a gener-
alized least squares (GLS) estimator (column 4) and controlled for 
potential decadal trends in population and BUILD (column 5), pro-
ducing generally consistent estimates. Thus, our analyses suggest that, 
on average, an additional built-up property in each county is roughly 
associated with a 2.2- to 2.25-person increase in the total population. 
Although the quality of HISDAC-US data is considerably poorer be-
fore 1860, our analyses using earlier starting points yield very similar 
results (table S1). Results were very similar for BUILD based on all 
land-use types ( = 2.246, R2 = 0.873), as well as residential land-use 
types only ( = 2.246, R2 = 0.875). We examined the effect of regional 
variation by running the same GLS estimator shown in column 5 of 
Table 1 for the four regions Northeast, South, Midwest, and West 
(table S2). Coefficients vary between 2.029 and 2.537, indicating low 
levels of regional variation in the statistical relationship at the county-
level. While these results are robust and provide strong indication 
of predictive power of BUILD for population at the county-level, the 
observed effects of spatial and temporal variability have to be fur-
ther investigated, particularly at finer spatial scales.

DISCUSSION
Fine-scale spatial and temporal data improve our 
understanding of long-term settlement patterns
Settlement patterns can only be fully understood from a multiscale 
perspective (30) that characterizes local, regional, and national patterns 
of urban development and land-use change. Through our unique 
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Fig. 5. Correlation measures between county-level population counts and settlement variables. The different plots show correlations over the time period from 
1810 to 2010 between population and (A) the number of built-up property records (BUILD), (B) BUI, and (C) BUA. avg. corr., average correlation. In (D), correlation 
measures between county-level population change and absolute expansion (Abs. expansion) are shown for the same time period. Population counts are enumerated 
within historical county boundaries, while settlement measures (all land use classes) are calculated within contemporary county boundaries. Correlation measures are 
shown for various levels of temporal county boundary stability (e.g., the blue lines represent only counties whose area did not change more than 10% over time) to 
demonstrate the importance of compatible spatial units in spatiotemporal analysis. Average correlation coefficients are shown over all years in parentheses.

Table 1. Panel analysis results using different points in time, 1860–2010. SEs are given in parentheses. Statistical significance is provided (*P < 0.05,  
**P < 0.01, and ***P < 0.001). The different models tested are OLS, least squares dummy variables (LSDVs), and generalized least squares (GLS). LSDV and GLS are 
“within” estimators. BUILD is based on all land-use types; results for residential land-use types only are very similar. 

OLS OLS LSDV GLS GLS

(1) (2) (3) (4) (5)

Total population Total population Total population Total population Total population

Number of built-up 
property records 
(BUILD)

2.680*** 2.668*** 2.190*** 2.190*** 2.246***

SE (0.007) (0.012) (0.058) (0.013) (0.014)

Constant 10503.8*** 13767.2*** 22513.3*** 22513.3*** 16123.0***

SE (550.069) (815.994) (1068.970) (701.136) (1274.106)

N 10996 5900 5900 5900 5900

R2 0.926 0.898 0.946 0.864 0.873

Adjusted R2 0.926 0.898 0.929 0.819 0.831

County sample All Consistent Consistent Consistent Consistent

Fixed effects – – County County County, decade

Clustered SE No No Yes Yes Yes
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data products with unprecedented temporal coverage and fine spa-
tial and temporal resolution, we are able to provide new multiscale 
depictions of historical settlement. From these depictions, we iden-
tify time periods of slow or fast growth and characterize different 
urban processes that are only discoverable at very fine scales. Our 
results document and analytically evaluate regional and local pat-
terns depicting rural-urban transformations, urban expansion and 
peripheral growth, as well as densification and infilling processes.

We envision that our new measures on when structures were 
built (FBUY), the number of built-up property records (BUILD), the 
BUI, and the BUA at a given point in time as well as derived process 
measures such as expansion or densification will enable new oppor-
tunities to answer scientifically and theoretically grounded questions 
in urban research. For example, in ongoing projects, we have started 
to deploy these data to better understand the changes in the built 
environment that unfolded in U.S. cities related to residential segre-
gation, postwar suburbanization, and the more recent resurgence of 
central city areas (9). Thus, we see enormous potential in these data 
for examining landscape evolution, fragmentation, and the role of 
technology, economic, and social forces in shifting the contours of 
urban development.

Methodologically, the use of gridded settlement time series allows 
researchers to conduct their analyses consistently with studies that 
apply remote sensing images [e.g., (31, 32)] and extract urban or 
developed land within any spatial unit. However, the HISDAC-US 
data are less limited temporally than remote sensing products that 
cover time periods of no more than three to four decades. Further-
more, the HISDAC-US layers are more accurate (20), richer in attri-
bution related to the built environment, and cover a time period of 
more than 150 years for most of the conterminous United States. By 
tackling critical process questions in urbanization, we use the new 
HISDAC-US data-derived measures of development to connect data-
scientific analysis of large spatiotemporal data and substantive in-
quiry in urban geography, demography, and land use science.

Detailed built environment attributes enable holistic 
examination of settlement and urban development
Temporal trajectories of different settlement measures within spatial 
units of interest, such as counties, cities, or tracts, provide a detailed 
picture of the complexity of long-term development in the United 
States. This knowledge of development fuels our understanding of 
when, where, and how quickly humans have urbanized the country. 
Evaluating the interrelationship between different settlement measures 
is essential to understanding how the nature of urban development 
has differed across time and space. We demonstrate that settlement is 
difficult to describe in either univariate or linear terms, and different 
development attributes follow timelines that vary across urban strata 
and regions, which are likely dictated by existing infrastructure, tech-
nology, and the developability of land (such as in coastal ecosystems). 
Complementing other findings [e.g., (33)], we also demonstrate that 
processes such as densification and expansion are interrelated tem-
porally. However, we found that the synchrony between the peaks of 
those processes varies greatly across regions and cities, pointing to 
different forms of historical settlement and urban development. 
These types of development vary markedly between coastal and in-
terior areas, northern and southern regions, and with topographic 
constraints and environmental conditions. With these insights, re-
searchers can draw an unprecedented picture of the nature and tim-
ing of rural, suburban, and urban development in the United States 

at varying scales. The advances in our understanding of settlement 
processes have the potential to inform ongoing discussions about 
the spread and compactness of urban areas (2, 34, 35).

Following the paradigm of “people are where people build,” 
this study demonstrates an effective way to estimate 
historical population at fine spatiotemporal granularity
There is a common understanding in the fields of rural studies, urban 
geography, and demography that the built environment is related to 
population and other demographic attributes (21, 27). These insights 
provide the basis for a population-based perspective on urban devel-
opment assessments. Our panel analysis results demonstrate that 
historical settlement layers in HISDAC-US (20) are associated with 
population at relatively fine spatial granularity (i.e., counties). Such 
results are important in two distinct but related ways.

First, the predictive power of the population models indicates 
that the settlement-population relationship is highly robust. These 
models enable us to build county-level population data over more 
than 150 years at fine temporal resolution. These data help over-
come the dependence on traditional decadal census surveys [e.g., 
(36)] and may support the creation of future population assessments 
to improve population projections. Such model outcomes can be 
used to create time series of consistent population estimates (e.g., 
within contemporary county boundaries from the 2010 census) to 
perform unprecedented temporal analysis. Using these analytical in-
novations, demographers and urban modelers can study demographic 
processes related to rural-urban transitions over long time periods at 
meaningful spatial scales and inform population projections.

Second, the robust settlement-population linkages indicate the 
potential for reproducing such population models within different 
spatial units including census units of finer spatial granularity (e.g., 
census tract boundaries of 2010) or alternative geographic units. For 
example, researchers might need to estimate population and its changes 
within certain land cover classes or zones of high vulnerability to 
natural or industrial hazards. The fine resolution of the settlement 
layers makes it possible to model population at fine scales using at-
tributes such as the number of built-up property records or BUI 
allocated to such alternative analytical units. Such advances will 
greatly benefit research on coupled socio-environmental systems 
and improve our understanding of existing interrelationships and 
processes. However, variance in the relationship between population 
and built environment attributes across time and space requires further 
investigation. While our comparison of county-level relationships 
by region produces quite consistent results, we have yet to investigate 
the stationarity of these relationships at finer spatial scales. We suspect 
that land-use type will play a particularly crucial role in inferring 
small-area population quantities from built-environment data.

Novel and extensive spatial information necessitates serious 
investigation into uncertainty and potential data limitations
While the use of such novel data layers opens unprecedented research 
opportunities, it is important to instruct and educate the data user on 
existing uncertainties. In Leyk and Uhl (20), some of these temporal, 
positional, and thematic uncertainties are reported, assessed, and mea-
sured in detail. For our analysis, the settlement layers were systemat-
ically corrected on the basis of focal raster operations and adjusted 
using census data (see Materials and Methods). However, while these 
adjustments reduce some of the inherent bias and result in population 
models with high predictive power, the reported missingness in the 
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original ZTRAX data will still potentially cause underestimation of 
settlement and has to be considered for critical use of the data products 
in subsequent analyses. We expect these issues to further improve as 
Zillow continues to update their database, but certain data gaps will 
always remain. Furthermore, it is important to note that temporal 
information, such as the FBUY, does not necessarily indicate the year 
of the first settlement but represents the earliest built years on 
record in the ZTRAX database of currently existing buildings. Thus, 
we may not know about earlier built units that have been demolished 
and rebuilt (or not rebuilt) or still exist but miss built-year records 
(Fig. 1B). This uncertainty varies across regions and can be addressed 
by sensitivity analysis and detailed case studies where high-quality 
data are available.

Future opportunities
Future steps to leverage these new opportunities will explore the cre-
ation of settlement estimates at finer spatial and temporal resolution 
as well as the inclusion of demographic variables and ancillary data 
for alternative geographies to fully use the potential of these data layers 
for improved fine-scale urban and population modeling. Of particular 
interest is the estimation of alternative demographic and housing-
related attributes to create a more insightful picture of the human-
built environment and its population. These fundamental components 
will enable the research community to advance research and theory 
on urban studies, land use science, natural hazards, landscape ecology, 
and other interdisciplinary pursuits (9, 37, 38). Using the attribute 
richness of the settlement data, researchers can explore questions of 
great societal importance at spatial and temporal scales relevant to 
the operational scale of urban and human-environmental processes 
including local rural-urban transitions, changes in ecological ser-
vices, and trends in land fragmentation.

MATERIALS AND METHODS
Settlement and census data
We use the ZTRAX to derive data products that can be used for the 
extraction of settlement measures at different points in time. ZTRAX 
is a geocoded housing and property-level database based on existing 
cadastral data sources that contains more than 374 million data re-
cords for approximately 200 million parcels in over 3100 counties 
in the United States (https://zillow.com/ztrax). Zillow Group is an 
online real estate database company that was founded in 2006. We 
extracted attributes such as the land-use class, the construction year 
of the structure on a parcel, and geolocation information (e.g., an 
approximate location for an address point) to create time series of 
raster layers. The workflow for creating the spatiotemporal database 
model, an SQLite database with spatial query extension, and the data 
products used in this study are described in full detail in Leyk and 
Uhl (20). The data layers are collected in the HISDAC-US, which is 
organized as a collection of datasets at the Harvard Dataverse repos-
itory (https://dataverse.harvard.edu/dataverse/hisdacus). First, we 
produced a series of semi-decadal raster layers representing the BUI, 
the sum of gross indoor area of all built-up properties in a grid cell 
(250 m by 250 m) in a given year between 1810 and 2010. Second, 
for the same time period, we also produced a series of semi-decadal 
raster layers representing the number of built-up property records 
(BUILD) in a cell in a given year. Third, we built a composite raster 
layer that indicates for each raster cell the first year a built unit was 
established (FBUY). Last, we derived the BUA as the number of grid 

cells in a spatial unit of interest (e.g., counties) with at least one built 
unit in a given year. The spatial resolution of all raster layers is 250 m, 
and the temporal resolution available in HISDAC-US is 5 years.

HISDAC-US also contains uncertainty layers at the pixel and 
county levels (20) that the data user is urged to use for the assessment 
of positional, temporal, and thematic uncertainty. First, there are pro-
portions of records without a construction year in some counties. Also, 
in some instances, the year refers to the most recently built unit, and 
it remains unknown whether there has been a structure before; in other 
cases, there are several built years given, indicating the very first year 
and the most recent one, for example. Second, the land-use class attri-
butes vary across counties and states but have been generalized and 
consolidated to some degree, making them more comparable across 
the nation. Third, the latitude/longitude records are missing for a por-
tion of the records prohibiting fine-scale localization of the records 
but indicate the county. The geolocation records represent approxi-
mations for the corresponding address, and thus, there is inherent 
positional uncertainty that needs to be addressed.

Census data and boundary files at the county-level were collected 
from the National Historical Geographical Information System 
[NHGIS; (10)]. We used the contemporary county boundaries (2010 
census) to extract ZTRAX measures at different points in time. To 
build our population models at the county-level, we used nominal popu-
lation statistics (persons count) in 1810, 1860, 1910, 1960, and 2010 
and the corresponding time-specific county boundaries from the 
NHGIS website (fig. S1) as well as the number of housing units in 2010 
for our correction procedure, as described below.

Data correction and geoprocessing
We extracted the settlement measures (BUILD, BUI, and BUA) from 
the raster time series within contemporary county boundaries (2010 
census) using zonal statistics geoprocessing functions to create settle-
ment measures for different points in time within consistent spatial 
units. To mitigate some of the data quality issues, particularly the 
missingness of built-year records as described above, we applied a 
spatiotemporal correction procedure to improve county-level settle-
ment measures at different points in time as follows. We carried out 
this procedure for all variables using built-up properties of all land-
use types together and for the BUILD variable based on residential 
land-use type only to test both corrected data versions in the popula-
tion model.

We assumed that records in the database without a built year 
exist at present if they indicate the presence of a built-up property 
(i.e., in 2015, which is the most recent year in the currently available 
ZTRAX database) and the likelihood of the actual built year is the 
same across all years.

For each county, we computed the proportion of missing built-
year records (TMiss) in 2015

	​ TMiss = SumBYMiss / (SumBuilt2015 + SumBYMiss)​	 (1)

where SumBYMiss is the sum of missing built-year records and 
SumBuilt2015 is the sum of built-up properties in 2015 with built-
year records. Depending on the magnitude of TMiss (i.e., TMiss < 
50%, TMiss > 50%, TMiss = 100%; these thresholds can vary as needed), 
we corrected the contemporary and earlier county-level settlement 
measures. Of the 3108 counties in 2010, 1636 counties had less than 
25% TMiss; 2201 counties had less than 50% TMiss. The spatial and 
statistical distributions of county-level TMiss are shown in fig. S6.
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First, for counties with TMiss < 50% (or another user-defined 
threshold), relative changes in BUILD, BUI, and BUA were consid-
ered reliable. Thus, assuming that records without built-year infor-
mation existed in 2015, a corrected BUILD2015,corr per county was 
calculated as

	​​ BUILD​ 2015,corr​​ = ​BUILD​ 2015,uncorr​​ + SumBYMiss​	 (2)

A correction factor was calculated as

	​​ c​ BUILD​​ = ​BUILD​ 2015,corr​​ / ​BUILD​ 2015,uncorr​​​	 (3)

Then, each value of the county-level BUILD time series was mul-
tiplied with cBUILD, resulting in a corrected BUILD time series while 
preserving relative changes between years as observed in the uncor-
rected data.

To correct BUI, for each county, the average BUI per built-up prop-
erty in 2015 was calculated as

	​​ BUI​ AVG​​ = ​BUI​ 2015,uncorr​​ / ​BUILD​ 2015,uncorr​​​	 (4)

and then multiplied with the corrected BUILD value in 2015 result-
ing in the adjusted county-level BUI in 2015

	​​ BUI​ 2015,corr​​ = ​BUILD​ 2015,corr​​ × ​BUI​ AVG​​​	 (5)

In analogy to Eq. 3, a correction factor cBUI was calculated and then 
applied to the whole BUI time series for each county. The BUA time 
series layers (with value 1 for grid cells with one or more records 
that had a built year and value 0 for all other cells) were corrected 
slightly differently. For each county in 2015, we created another binary 
layer, BUA0, with value 1 for those grid cells that contained at least one 
record without a built year and value 0 for all other cells. We then 
calculated the area of the spatial union of BUA2015 and BUA0, which 
results in the corrected 2015 BUA

	​​ BUA​ 2015,corr​​ = ​BUA​ 2015,uncorr​​ ∨ ​BUA​ 0​​​	 (6)

Earlier BUA layers were then corrected using a correction factor 
cBUA, calculated in analogy to cBUILD and cBUI. Second, for counties 
where TMiss > 50%, changes in BUILD, BUI, and BUA were not 
considered reliable. As before, BUILD in 2015 was corrected by 
SumBYMiss. We then derived relative change estimates in BUILD 
between different points in time based on the five nearest counties 
where TMiss < 50%. These average regional gradients of BUILD 
were used to retrospectively extrapolate BUILD to earlier points in 
time. To correct BUI in these unreliable counties, we interpolated 
the average BUI values per built-up property found in the five nearest 
counties where TMiss < 50%, multiplied them with the corrected 
BUILD values, and extrapolated the resulting BUI values to earlier 
data layers in the time series while preserving the average relative 
changes in the five reliable neighboring counties. Similar to the re-
liable counties above, the BUA in 2015 was corrected by the spatial 
union of BUA in 2015 and BUA0. These corrected values were then 
extrapolated retrospectively while preserving the relative change be-
tween years derived from BUA gradients within neighboring counties 
where TMiss < 50%.

Once the above correction steps were finalized, BUILD, BUI, 
and BUA values were estimated for those counties where there was 

no information at all. Using the corrected time series resulting from 
the steps above, BUILD, BUI, and BUA for each year were inter-
polated using the corresponding values from the nearest five counties 
where TMiss < 50%.

Last, we further adjusted the corrected and extrapolated settle-
ment measures BUILD and BUI using the number of housing units 
published by the U.S. Census in 2010 as follows. First, for each county 
in 2010, we used the difference between census housing unit counts 
and BUILD to adjust BUILD in 2010. Then, we adjusted BUILD for 
the whole time series while preserving the relative changes between 
years. Using these adjusted values of BUILD in each year, we adjusted 
the BUI time series proportionally. The BUA time series could not 
be corrected using census data, because there is no reference infor-
mation on the spatial distribution of census housing unit counts 
within counties and thus no BUA-compatible measure.

Expansion and densification calculation
We used the extracted settlement measures to derive variables that 
indicate more implicitly the process of change. We calculated rela-
tive and absolute expansion as the proportion and absolute value of 
new developed area, respectively

	​​ ​Expansion​ rel​​ = (​BUA​ t1​​ − ​BUA​ t0​​ ) / ​BUA​ t0​​​)​​​​	 (7)

	​​ Expansion​ abs​​ = (​BUA​ t1​​ − ​BUA​ t0​​)​	 (8)

where BUAt0 and BUAt1 are the BUA estimates for the beginning 
and ending year, respectively. This measure was used to evaluate the 
amount of change in developed area over a given number of years, 
reflecting how much development has been added, absolutely and 
proportionally to the initial condition, respectively.We also calculated 
densification, which is the change in BUI over the change in BUA

	​ Densification = (​BUI​ t1​​ − ​BUI​ t0​​ ) / (​BUA​ t1​​ − ​BUA​ t0​​)​	 (9)

where BUIt1 and BUIt0 are the built-up intensities for the beginning 
and ending year of the considered time period, respectively. This 
measure quantifies the increase in BUI in proportion to newly de-
veloped areas over a given number of years.

Statistical analysis
We created the maps of the local indicators of spatial association 
[LISA; (39)] to identify statistically significant spatial clusters in the 
county-level distribution of the target variable (e.g., change in BUILD; 
999 permutations; P < 0.05). A hot spot is a statistically significant 
high-high (HH) cluster, i.e., a high value that is surrounded by other 
places with high values to constitute a statistically significant group 
of counties of higher values. Accordingly, a cold spot [low-low (LL) 
cluster] indicates a low value surrounded by other low values. Counties 
labeled with HL and LH represent statistically significant outliers 
from the spatial distribution.

Panel analysis allows us to control for individual-unit heteroge-
neity and thus variables that may explain differences across counties 
(e.g., cultural or architectural differences) unmeasured or variables 
that change over time but not across counties (time-invariant char-
acteristics such as policies, technological advancement, or regulations). 
This way, panel analysis makes it possible to detect and measure effects 
that cannot be observed in either the modeling of cross-sectional 
data or purely descriptive time series analysis (28). To examine the 
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relationship between the number of built-up property records (resi-
dential and all land use, corrected) as predictor, and population 
(person counts) as the outcome variable within an entity (county), 
we used two-way fixed-effects panel models to account for such 
forms of heterogeneity. Thus, we include county and time period 
fixed effects to help account for this bias, and assess the net effect of 
the predictors on the outcome variable by allowing the model inter-
cept to vary across the spatial units as well as over time. The equa-
tion for the (time and entity) fixed-effects regression model is

	​​
​Y​ it​​ = ​β​ 0​​ + ​β​ 1​​ ​X​ 1,it​​ + … + ​β​ k​​ ​X​ k,it​​ + ​γ​ 2​​ ​E​ 2​​+

​   
… + ​γ​ n​​ ​E​ n​​ + ​δ​ 2​​ ​T​ 2​​ + … + ​δ​ t​​ ​T​ t​​ + ​u​ it​​

 ​​	  (10)

where Yit is the dependent variable with i = entity and t = time, Xk,it 
are the independent variables with coefficients k, uit is the error 
term, En is the county n [n – 1 entities included as binary (dummies) 
in the model] with the coefficient n for the binary regressors (enti-
ties), and Tt is the binary variable (dummy) for time (there are t – 1 
time periods) with coefficient t for the binary time regressors.

We compared OLS-based balanced panels with LSDV- and GLS 
fixed-effects models to better understand the impact of fixed effects 
on the estimators’ predictive power. We included all counties in the 
balanced panel that remained sufficiently compatible over time, i.e., 
counties whose areas do not change more than 10% compared to 
the contemporary county boundaries over the entire time period. 
All settlement variables were tested but because of multicollinearity 
issues, only individual ones could be used at a time. Data extraction, 
analysis, and statistical modeling have been carried out in Python 
and STATA; geoprocessing steps have been done using Feature 
Manipulation Engine (FME) and the ArcGIS 10.6 Arcpy Python 
package as well as NumPy, Pandas, and Matplotlib.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/23/eaba2937/DC1
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