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Abstract—Prior information can be incorporated in matrix
completion to improve estimation accuracy and extrapolate the
missing entries. Reproducing kernel Hilbert spaces provide tools
to leverage the said prior information, and derive more reliable
algorithms. This paper analyzes the generalization error of
such approaches, and presents numerical tests confirming the
theoretical results.

I. INTRODUCTION

Matrix completion (MC) deals with the recovery of missing
entries in a matrix – a task emerging in several applications
such as image restoration [1], collaborative filtering [2] or
positioning [3]. MC relies on the low rank of data matrices to
enable reliable, even exact [4], recovery of the full unknown
matrix. Exploiting this property, mainstream approaches to
MC involve the minimization of the nuclear norm [5], [6]
or a surrogate involving the data matrix factorization into a
product of two low-rank matrices [7], [8].

One main assumption in the aforementioned approaches
to MC is that the unknown matrix is incoherent, meaning
the entries of its singular vectors are uniformly distributed,
which implies that matrices with structured form are not
allowed. Such structures may be induced by prior information
embedded in, e.g., graphs [9], dictionaries [10], or heuristic
assumptions [11]. Main approaches to MC leverage prior infor-
mation with proper regularization [12]–[15], or by restricting
the solution space [16]–[19]; most can be unified using a re-
producing kernel Hilbert space (RKHS) framework [17], [18],
which presents theoretical tools to exploit prior information.

When analyzing the performance of MC algorithms, several
works, e.g. [2], [5], [16], [20], provide sample complexity
bounds; that is, the evolution of the distance to the optimum
across the number of samples and iterations. Other analyses
are based on the generalization error (GE) [21]–[23], a metric
that measures the difference between the loss function applied
to a training dataset, and its expected value [24]. When the
probability distribution of the data is unknown, the expected
value is replaced by the average loss on a testing dataset [25].
Due to the potentially large matrix sizes and the small size of
the training dataset, it is important that the estimated matrix
exhibits low GE in order to prevent overfitting.

In [18], we introduced a novel Kronecker kernel matrix
completion and extrapolation (KKMCEX) algorithm. This
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algorithm relies on kernel ridge regression with equal number
of coefficients and observations, thus being attractive for
imputing matrices with a minimal number of observations.
The present paper deals with GE analysis in MC with prior
information, and derives GE bounds based on the transductive
Rademacher complexity [25]. Moreover, it presents numerical
tests demonstrating that the GE of KKMCEX is less dependent
on matrix size, thus making it more reliable when dealing with
large matrices with a few observations.

The rest of the paper is organized as follows. Section II
introduces the MC algorithms with and without prior infor-
mation, while Section III presents their GE analyses. Then,
Section IV describes the numerical tests, and Section V offers
conclusions and possible extensions.

II. MC WITH PRIOR INFORMATION

Consider a matrix M = F +E, where F ∈ RN×L denotes
an unknown rank r matrix, and E is a noise matrix. We can
only observe a subset of the entries in M whose indices are
given by the sampling set Sm ⊆ {1, . . . , N} × {1, . . . , L}
of cardinality m = |Sm|. Factorizing the unknown matrix as
F = WHT , where W ∈ RN×p, H ∈ RL×p and p ≥ r, the
unknown entries can be recovered by estimating

{Ŵ,Ĥ}=arg min
W∈RN×p

H∈RL×p

∣∣∣∣PSm(M−WHT )
∣∣∣∣2

F +µ
(
||W ||2F +||H ||2F

)
(1)

where || · ||F denotes the Frobenius norm, PSm(·) sets to
zero the entries with index (i, j) /∈ Sm and leaves the rest
unchanged, while µ is a regularization scalar. Hereafter we
refer to (1) as the base MC formulation, which can also be
written with the nuclear norm as a regularizer through the
property ||F ||∗ = minF=WHT

1
2

(
||W ||2F + ||H ||2F

)
[22].

While the base MC formulation makes no use of prior
information, kernel MC (KMC) incorporates such knowledge
by means of kernel functions that measure similarities between
points in their input spaces. Let X := {x1, . . . , xN} and
Y := {y1, . . . , yL} be spaces of entities with one-to-one
correspondence with the rows and columns of F , respectively.
Given the input spaces X and Y , KMC defines the pair of
RKHSs Hw :=

{
w : w(x) =

∑N
n=1 bnκw(x, xn), bn ∈ R

}
and Hh :=

{
h : h(y) =

∑L
l=1 clκh(y, yl), cl ∈ R

}
, where

κw : X × X → R and κh : Y × Y → R are kernel
functions. Then, KMC postulates that the columns of the
factor matrices in (1) are functions in Hw and Hh. Thus, we
write W = KwB and H = KhC, where B and C are
coefficient matrices, while Kw ∈ RN×N and Kh ∈ RL×L
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are the kernel matrices with entries (Kw)i,j = κw(xi, xj)
and (Kh)i,j = κh(yi, yj). The KMC formulations proposed
in [14], [17], recover the factor matrices as

{Ŵ,Ĥ}=arg min
W∈RN×p

H∈RL×p

∣∣∣∣PSm(M−WHT )
∣∣∣∣2

F (2)

+ µ
(
Tr(W TK−1

w W )+Tr(HTK−1
h H)

)
.

The coefficient matrices are obtained as B̂ = K−1
w Ŵ and

Ĉ=K−1
h Ĥ , although this step is usually omitted [14], [17].

Algorithms solving (1) and (2) rely on alternating minimiza-
tion schemes that do not converge to the optimum in a finite
number of iterations [26]. To overcome this limitation and
obtain a closed-form solution, we introduced the KKMCEX
method [18]. Associated with entries of F , consider the two-
dimensional f : X × Y → R with f(xi, yj) = Fi,j , and

Hf :=

{
f : f(x, y)=

N∑
n=1

L∑
l=1

dn,lκf ((x, xn), (y, yl)), dn,l∈ R

}
.

Upon vectorizing F , we obtain f = vec(F ) = Kfd, where
Kf has entries κf and d := [d1,1, . . . , dN,1, . . . , dN,L]T .
Accordingly, the data matrix is vectorized as m = S vec(M),
where S is an m × NL binary sampling matrix with a
single nonzero entry per row, and ē = S vec(E). With these
definitions, the signal model for the observed entries becomes

m = Sf + ē = SKfd+ ē. (3)

Recovery of the vectorized matrix is then performed using the
kernel ridge regression estimate of d given by

d̂ = arg min
d∈RNL

||m− SKfd||22 + µdTKfd. (4)

The closed-form solution to (4) satisfies d̂ = ST ˆ̄d, where

ˆ̄d = (SKfS
T + µI)−1m. (5)

Since (5) only depends on the observations in Sm, KKMCEX
can be equivalently rewritten as

ˆ̄d = arg min
d̄∈Rn

∣∣∣∣m− K̄f d̄
∣∣∣∣2

2
+ µd̄T K̄f d̄ (6)

where K̄f = SKfS
T . Given κw and κh, hereafter we assume

κf ((x, xn), (y, yl)) = κw(x, xn)κh(y, yl) as a kernel, which
corresponds to a kernel matrix Kf = Kh ⊗Kw. We refer
the interested reader to [18] for a more detailed explanation
of KKMCEX and its implementation.

While this work focuses on MC, the KMC formulation
in (2) is similar to tensor completion [27], which has a
regularization term per dimension. Similarly, KKMCEX can
be formulated with tensors in mind by forming Kf as the
Kronecker product of three or more matrices, and the analysis
of the ensuing section carries over readily to tensors as well.

III. GENERALIZATION ERROR IN MC

In this section, we derive bounds for the GE of base MC
in (1), KMC in (2) and KKMCEX in (4) algorithms. Consider
rewriting MC in the general form

F̂ = argmin
F∈F

1

m

∑
(i,j)∈Sm

l(Mi,j ,Fi,j) (7)

where l : R×R→ R denotes the loss, and F is the hypothesis
class. For instance, choosing the square loss and setting the

class to the set of matrices with a nuclear norm smaller than
a constant t results in the base MC formulation (1). In order
to come up with distribution-free claims for MC, one may
resort to the transductive GE analysis [25]. In this scenario,
we are given Sn = Sm ∪ Su of n data comprising the union
of the training set Sm and the testing set Su, where |Su| = u.
These data are taken without repetition, and the objective is
to minimize the loss on the testing set. Thus, the GE is the
difference between the testing and training loss functions

1

u

∑
(i,j)∈Su

l(Mi,j , F̂i,j)−
1

m

∑
(i,j)∈Sm

l(Mi,j , F̂i,j). (8)

By making this difference small, we ensure that F̂ has good
generalization properties, meaning we expect to obtain a sim-
ilar empirical loss on a different testing set of samples. Since
MC algorithms find their solution among a class of matrices
under different restrictions or hypotheses, we are interested
in bounding (8) for any matrix in the solution space. Before
we present such bounds, we need to introduce the notion of
transductive Rademacher complexity (TRC) as follows.

Definition 1. Transductive Rademacher complexity [25]
Given a set Sn = Sm ∪ Su with q := 1

u + 1
m , the TRC of

a matrix class F is

Rn(F) = qEσ
{

sup
F∈F

∑
(i,j)∈Sn

σi,jFi,j

}
(9)

where σi,j is a Rademacher random variable that takes
values [−1, 1] with probability 0.5. We may also write (9)
in vectorized form as Rn(F) = qEσ

{
supF∈F σ

T vec(F )
}

,
where σ = vec(Σ), and Σ ∈ RN×L has entries Σi,j = σi,j
if (i, j) ∈ Sn, and Σi,j = 0 otherwise.

TRC measures the expected maximum correlation between
any function in the class and the random vector σ. Intuitively,
the greater this correlation is, the larger is the chance of
finding a solution in the hypothesis class that will fit any
observation draw, that is, F̂i,j 'Mi,j∀ (i, j) ∈ Sn. Although
TRC measures the ability to fit both the testing and training
data at once, a model for F is learnt using only the training
data. While having a small loss across all entries in Sn is
desirable, making it too small can lead to overfitting, and an
increased error when predicting entries outside Sn. Using the
TRC, the GE is bounded as follows.

Theorem 1. [25] Let F be a matrix hypothesis class. For a
loss function l with Lipschitz constant γ, and any F ∈ F , it
holds with probability 1− δ that

1

u

∑
(i,j)∈Su

l(Mi,j ,Fi,j)−
1

m

∑
(i,j)∈Sm

l(Mi,j ,Fi,j)

≤ Rn(l ◦ F) + 5.05q
√

min(m,u) +
√

2q ln (1/δ) . (10)

Thm. 1 asserts that in order to bound the GE, it only suffices
to bound the TRC. Moreover, using the contraction property,
which states that Rn(l ◦F) ≤ 1

γRn(F) [25], we only need to
calculate the TRC of F . Given that the same loss function is
used in MC, KMC and KKMCEX, in order to assess the GE
upper bound of the three methods we will pursue the TRC for
the hypothesis class of each algorithm.
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A. Generalization error for base MC

In the base MC formulation (1), the hypothesis class is
FMC := {F : ||F ||∗ ≤ t, t ∈ R}, where the value of t
is regulated by µ. As derived in [21], the TRC for this class
of matrices is bounded as

Rn(FMC)≤qEσ
{

sup
F∈FMC

||Σ||2||F ||∗

}
≤Gqt(

√
N+
√
L) (11)

where G is a universal constant. Since q = 1
m + 1

u , the bound
in (11) decays as O( 1

m + 1
u ) ⊆ O (1/min(m,u)) for fixed

t, N and L. However, the GE does not since the sum of the
second and third terms on the right-hand side of (10) decays as
O(1/

√
min (m,u) ). Thus, the size of the training and testing

datasets should be equal for the GE bound to diminish with
the number of samples as O(1/

√
m).

For non-fixed N and L, the TRC bound also scales with
the matrix dimensions. Moreover, note that the nuclear norm
is O(

√
NL) since ||F ||F ≤ ||F ||∗ ≤

√
r ||F ||F. Therefore, t

should also grow with N and L in order to match the hypothe-
sis class, and obtain a good estimate of F . Hence, for varying
N , L and n with m = u, the GE is O( 1√

m
+ N

√
L+L

√
N

m ).
This implies that increasing N or L results in a larger GE
bound regardless of the value of n, whereas increasing m and
u by the same amount results in a smaller GE bound.

B. Generalization error for KMC

Unlike base MC that minimizes the nuclear norm of the data
matrix, KMC does not directly employ the rank in its objective
function. Instead, it imposes constraints on the maximum norm
of the factor matrices in their respective RKHSs. Hence, the
TRC for KMC is bounded as follows.

Theorem 2. If the KMC hypothesis class is FK := {F :
F =KwBC

TKh,Tr(BTKwB)+Tr(CTKhC)<tB
}

, then

Rn(FK) ≤ λmaxGqtB(
√
N +

√
L) (12)

where λmax is the largest eigenvalue of Kw and Kh.

Proof. Rewrite the nuclear norm in (11) as

||F ||∗=
1

2
(||W ||2F +||H ||2F)=

1

2
(Tr(BTK2

wB)+Tr(CTK2
hC))

≤ λmax

2
[Tr(BTKwB) + Tr(CTKhC)] ≤ λmaxtB

2
(13)

where we used that Tr(BTK2
wB) =

∑N
i=1 b

T
i K

2
wbi with

bi denoting the ith column of B, and bTi K
1
2
wKwK

1
2
wbi ≤

λmaxb
T
i Kwbi.

Thm. 2 establishes that the TRC bound expressions of KMC
and base MC are identical within a scale. With tB = t, λmax

controls whether KMC has a larger or smaller TRC bound
than base MC. Thus, according to Thm. 2, the GE bound for
KMC shrinks with n and grows with N, L and λmax. Next,
we derive an alternative bound in order to gain further insights
about the factors affecting the GE.

Consider the factorizations Kw = ΦwΦ
T
w and Kh =

ΦhΦ
T
h , where Φw ∈ RN×dw and Φh ∈ RL×dh . Plugging

these into (2) and setting W = KwB and H = KhC, yields

∣∣∣∣PSm(M −ΦwΦ
T
wBC

TΦhΦ
T
h )
∣∣∣∣2

F + µ
(
Tr(BTΦwΦ

T
wB)

+Tr(CTΦhΦ
T
hC)

)
(14)

=
∣∣∣∣PSm(M−ΦwAwA

T
hΦ

T
h )
∣∣∣∣2

F +µ
(
||Aw||2F +||Ah||2F

)
(15)

where Aw = ΦT
wB and Ah = ΦT

hC are coefficient matrices
of size dw × p and dh × p, respectively. Optimizing for
{B,C} in (14) or for {Aw,Ah} in (15) yields the same
F̂ provided that {ΦT

w,Φ
T
h } have full column rank. Under

this assumption, we consider the hypothesis class FI :={
F : F = ΦwAwA

T
hΦ

T
h , ||Aw||2F ≤ tw, ||Ah||2F < th

}
,

which satisfies FI = FK . Clearly, (15) is the objective used
by the inductive MC [16] method; and therefore, we have
shown that inductive MC is a special case of KMC. This
leads to the following result.

Theorem 3. If K = (Φh ⊗ Φw)(Φh ⊗ Φw)T , and Sn is a
binary sampling matrix that selects the entries in Sn, then

Rn(FI) ≤ q
√
twthTr(

√
SnKSTn ). (16)

Proof. With σ := vec(Σ), bw := ||Aw||2F, and bh := ||Ah||2F,
we have that

Rn(FI) = qEσ

{
sup

bw≤tw,bh≤th
σT vec(ΦwAwA

T
hΦ

T
h )

}

= qEσ

{
sup

bw≤tw,bh≤th
σT (Φh ⊗Φw)vec(AwA

T
h )

}

≤ qEσ

{
sup

bw≤tw,bh≤th

∣∣∣∣σT (Φh ⊗Φw)
∣∣∣∣

2

∣∣∣∣vec(AwA
T
h )
∣∣∣∣

2

}

= qEσ

{
sup

bw≤tw,bh≤th

√
σTKσ

∣∣∣∣AwA
T
h

∣∣∣∣
F

}

≤ qEσ

{
sup

bw≤tw,bh≤th

√
σTKσ ||Aw||F

∣∣∣∣AT
h

∣∣∣∣
F

}
≤ q
√
twth

√
Eσ {σTKσ} = q

√
twth

√
Tr(SnKSTn )

where we have used the Cauchy-Schwarz inequality, the sub-
multiplicative property of the Frobenius norm, and Jensen’s
inequality in the first, second and third inequalities.

Theorem 3 shows through Sn how the choice of sampling
and testing datasets impacts the TRC bound, which can be
leveraged to develop optimal sampling strategies [28]. More-
over, it reveals the conditions under which the GE bound does
not grow with N and L, which are as follows.

If c denotes the maximum value of the sampled entries in
the diagonal of K, and m = u, then Theorem 3 provides
a bound that decays as O(

√
twthc
m ). The definition of FI

implies that tw and th are determined by the Frobenius norms
of {Aw,Ah}. Since ||Aw||2F and ||Ah||2F are O(dwp) and
O(dhp), respectively, the TRC bound is limited by the rank
of the kernel matrices, given by dw and dh. Therefore, the

GE bound for KMC in (10) scales as O(
√

dwdhp2c
m ), which is

maintained through different N and L so long as the kernel
matrices have constant rank, and c does not change.
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Figure 1: Training loss, testing loss, and generalization error vs. matrix size for: (a) synthetic data, and (b) temperature data.

C. Generalization error for KKMCEX

Although KMC and KKMCEX provide an estimate within
the same RKHS since Kf = Kh ⊗Kw, the complexity of
the hypothesis spaces differs. This results in a TRC bound for
KKMCEX that is given by the theorem next.

Theorem 4. If FR := {F :F = unvec(KfS
T d̄), d̄T K̄f d̄ ≤

b2, b ∈ R} is the hypothesis class for KKMCEX, it holds that

Rn(FR) ≤ qb
√

Tr(SnKfST K̄
−1
f SKfSTn ). (17)

Proof.
Rn(FR) = qEσ

{
sup

d̄TKf d̄≤b
σTKfS

T d̄

}

= qEσ

{
sup

d̄T K̄f d̄≤b
σTKfS

T K̄
− 1

2

f K̄
1
2

f d̄

}

≤ qEσ

{
sup

d̄T K̄f d̄≤b

∣∣∣∣∣∣σTKfS
T K̄

−1
2

f

∣∣∣∣∣∣
2

∣∣∣∣∣∣K̄ 1
2

f d̄
∣∣∣∣∣∣

2

}
≤ qbEσ

{∣∣∣∣∣∣σTKfS
T K̄

− 1
2

f

∣∣∣∣∣∣
2

}
= qb

√
Tr(SnKfSK̄

−1
f STKfSTn ). (18)

Supposing that the entries of Kf have maximum value c,
the bound in (17) decays as O(

√
nc/min(m,u)). For m = u,

this yields a rate O(
√

c
m ). Thus, the GE bound induced by

(17) only scales with the number of samples provided that
c is constant for different N and L. Interestingly, although
the degrees of freedom of KKMCEX (and hence the risk of
overfitting) grow with m, the GE does not increase because
the number of samples increases proportionally. Thus, different
from baseline MC and KMC, similar performance is expected
on the testing dataset regardless of the data matrix size.

IV. NUMERICAL TESTS

This section compares the GE of base MC and KMC, solved
via alternating least-squares (ALS) [26], with the KKMCEX
solved with (5). Besides comparing the GE of these algo-
rithms, we also assess how the matrix size impacts the GE.
To this end, we first use a fixed-rank synthetic data matrix
with N = L generated as F = KwBC

TKh. The kernel
matrices are Kw = Kh = abs(RDRT ), where R ∈ CN×N
is the DFT basis and D ∈ RN×N is a diagonal matrix with
decreasing values on its diagonal. The coefficient matrices
{B,C} have p = 30 columns, with entries drawn from a
zero-mean Gaussian distribution with variance 1. The tests are
run over 1,000 realizations. A new matrix F is generated per

realization with m=1, 000 entries drawn uniformly at random,
and the remaining u = N2 −m forming the testing dataset.
The parameter µ is chosen by cross-validation for each size.

Fig. 1a shows the training, testing, and GEs for the synthetic
matrices. We observe for base MC that the training loss is
small, whereas it is much larger on the testing dataset, and
also it grows with N . Moreover, since the training loss is
minimal, the GE coincides with the testing loss. Clearly, the
base MC solution (1) is not able to predict the unobserved
entries due to the lack of prior information that would allow
for extrapolation. In addition, the GE approaches saturation for
large matrix sizes since most entries in the estimated matrix are
0, and the testing loss tends to the average 1

u

∑
(i,j)∈Su M

2
i,j .

Regarding KMC and KKMCEX, we observe that both algo-
rithms achieve a constant training loss. Although not visible
on the plot, the training loss of KKMCEX is one order of
magnitude smaller than that of KMC. On the other hand, the
testing and GE of KKMCEX are constant unlike in KMC for
which both are higher and grow with N . These results confirm
what was asserted by the GE bounds in Section III.

Fig. 1b shows the numerical tests with an 150×L matrix of
temperature measurements [18] taken in 2002 by 150 weather
stations in the US. The kernel matrices are the row and column
covariances of the same data from 2001, and m = 500 with
u = 150L − m. We observe that for KMC and KKMCEX
both training and testing errors grow with L. However, KMC
is unstable both in training and testing, whereas KKMCEX is
smooth. Thus, although the GE grows slightly for KKMCEX,
it is more reliable when the number of samples is very small.

V. CONCLUSIONS

This work analyzed the GE for MC with prior information
following a procedure that can be utilized to additional data
imputation methods after properly defining a loss function
and corresponding hypothesis class. Bounds on the TRC
have established that baseline MC and KMC become less
reliable as the size of the matrix increases when the number
of samples remains constant. On the other hand, KKMCEX
offers improved analytical guarantees with a GE that scales
only with the number of samples. Moreover, numerical tests
have corroborated the theoretical findings for synthetic data
with known kernel matrices, and have demonstrated improved
performance for KKMCEX with real data. Finally, since the
RKHS framework generalizes several MC settings with prior
information, the analysis herein applies also to these settings.
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