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Abstract—A plethora of network-science related applications
call for inference of spatio-temporal graph processes. Such an
inference task can be aided by the underlying graph topology that
might jump over discrete modes. For example, the connectivity
in dynamic brain networks, switches among candidate topologies,
each corresponding to a different emotional state, also known as
the networkmode. Taking advantage of limited nodal observations,
the present contribution deals with semi-supervised tracking of dy-
namic processes over a given candidate set of graphs with unknown
switches. Towards this end, a dynamical model is introduced to
capture the per-slot spatial correlation using the active topology,
as well as the temporal variation across slots through a state-space
model. A scalable graph-adaptive Bayesian approach is developed,
based on what is termed interacting multi-graph model (IMGM),
to track the dynamic nodal processes and the active graph topology
on-the-fly. Besides switching topologies, the proposed IMGM algo-
rithm can accommodate various generalizations, including multi-
ple dynamic functions, multiple kernels, and adaptive observation
noise covariances. IMGM learns the dynamical model that best
fits the data from a pool of available models. Thus, the resul-
tant adaptive algorithm does not require offline model training.
Numerical tests with synthetic and real datasets demonstrate the
superior tracking performance of the novel approach compared to
the mode-clairvoyant existing alternatives.

Index Terms—Dynamic graph processes, switching network
modes, online scalable Bayesian inference, multi-kernel learning.

I. INTRODUCTION

GRAPHS capture relations among entities (nodes), and
have found widespread application in various fields, in-

cluding sociology, biology, neuroscience and economics [15],
[30]. Attributes collected in interdependent feature vectors per
node represent processes over the graph. Given such vectors
from a subset of nodes, various applications call for semi-
supervised learning (SSL) of processes across all network nodes.
The scarcity of nodal observations can be due to e.g., cost, and
computational or privacy constraints. For example, individuals
in social networks may be reluctant to share personal infor-
mation, while acquiring nodal samples in brain networks may
require invasive procedures such as electrocorticography.

Manuscript received June 1, 2019; revised January 31, 2020 and March 16,
2020; accepted March 23, 2020. Date of publication April 3, 2020; date of
current version May 1, 2020. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Pierre Borgnat. This
work was supported by NSF under Grants 1508993, 1711471, and 1901134.
(Corresponding author: Qin Lu.)

The authors are with the Department of ECE and Digital Technology
Center, University of Minnesota, Minneapolis, MN 55414 USA (e-mail:
luqinrosy@gmail.com; ioann006@umn.edu; georgios@umn.edu).

Digital Object Identifier 10.1109/TSP.2020.2984889

SSL tasks over networks can leverage the prior information
of the underlying graph topology that captures nodal inter-
dependencies [12]. Existing approaches to reconstructing time-
invariant (TI) graph processes often rely on the smoothness of
graph processes [16], [31], which asserts that connected vertices
have similar features. In social networks where nodes and edges
represent users and their friendships, one can infer the age of a
specific user from her or his friends’ age. Other than smoothness
inference from limited nodal observations can rely on e.g.,
‘graph bandlimitedness’ [10], [29], sparsity and overcomplete
dictionaries [11]. Most of these approaches can be unified under
the framework of learning using graph kernels; see e.g., [26].
The aforementioned SSL task becomes more challenging

when nodal processes are nonstationary, and the graph topology
is also time-varying. In a brain network for instance,where nodes
correspond to brain regions and edges capture dependencies
among them, one may be interested in predicting the dynamic
processes as well as the varying interconnections. An interesting
time-varying topology model switches over a set of connectivity
patterns, also known as “network modes” [5]. For example, the
connectivity among human brain regions varies as the humans’
emotional, mental or physical activities change [36]. Coupled
with the topology, the dynamics of nodal processes can also
switch among different modes. Switching dynamical models
have been typically employed to characterize the multi-modal
behavior of control systems [27], as well as kinematics of ma-
neuvering targets such as drones [6]. Nevertheless, graph-based
switching dynamical models have not been considered so far.
Several attempts have been made to reconstruct dynamic

graph processes in the presence of possibly time-varying topolo-
gies. Inference of slow-varying processes over graphs has been
pursued using the so-termed graph bandlimited model in [10],
[35].On the other hand, graph kernel-based estimators have been
leveraged in [25], [14] to reconstruct general dynamic processes.
All these contemporary approaches rely on a known graph topol-
ogy and fixed dynamic models. However, the dynamic graph
can change or switch in an unknown fashion among a set of
possibly known topologies, which may reflect sudden changes
in the partially observed signals. Furthermore, even when no
topology switches occur, the graph process can evolve over
multiple dynamical models across time, and thus a fixed model
may be inadequate.
The present paper puts forth an approach for semi-supervised

tracking and extrapolation of dynamic nodal processes over
switching graphs. Our contribution is threefold.
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C1. The evolution of dynamic processes over switching
graphs is captured by a first-order vector autoregres-
sive model, where the transition matrix and the process
noise covariance matrix depend on the active mode-
conditioned topology. The resulting graph-adaptive dy-
namical model accounts for both spatial correlation
within one slot and temporal variations across slots.

C2. Given a candidate set of the aforementioned mode-
conditioned dynamical models and measurements on a
subset of nodes, we put forth a scalable graph-aware
Bayesian tracker, termed interacting multi-graph model
(IMGM), to jointly estimate the graph processes and
active network modes on-the-fly.

C3. Further, the proposed IMGM framework accommodates
various modeling extensions, including switching non-
linear dynamical functions, multiple kernels, and adap-
tive observation covariances. By accounting for these
dynamical models, IMGM adapts on the observed data
and selects the pertinent model per time slot without
requiring offline training.

If observations were available at all nodes, it would have been
possible to identify the active topology per slotwithout explicitly
modeling the nodal process dynamics [5]. Relative to [5], this
work leverages the dynamics to reconstruct unavailable nodal
data, while at the same time identifying the active mode and
tracking the nodal processes. Not necessarily graph related yet
similar to that of [5] is the goal of subspace clustering [32], but
different from the work here mode dynamics are not exploited
to reconstruct unavailable nodal processes.
The rest of the paper is organized as follows. Section II starts

with preliminaries to formulate the problem that is solved in
Section III. Section IV deals with modeling generalizations of
the IMGM approach. Numerical results and conclusions are
presented in Sections V and VI, respectively. Part of this paper
is published in our conference precursors [20], [21].
Notation: Scalars are denoted by lowercase, column vectors

by bold lowercase, and matrices by bold uppercase fonts. Su-
perscripts �, −1 and † denote transpose, inverse and pseudo-
inverse, respectively; while 1N stands for the N × 1 all-ones
vector; and N (x;μ,K) for the probability density function
(pdf) of a Gaussian random vector x with mean μ, and co-
variance matrix K. Finally, if A is a matrix and x a vector,
then ||x||2A := x�A−1x, ||x||22 := x�x, ‖A‖1 represents the
L1-norm of the vectorized matrix, and ‖A‖2F is the Frobenius
norm ofA.

II. PROBLEM FORMULATION

Consider a time-varying graph Gt with N nodes indexed by
the vertex set V := {1, . . . , N}. Per slot t, the relationship be-
tween nodes is captured by anN ×N adjacencymatrixAt with
At(n, n

′) representing the weight of the edge connecting nodes
n and n′. The focus will be on graphs whose topology jumps
among a known set of S candidate adjacency matrices; that is,
At = Aσt

t ∈ {A1
t , . . . ,A

S
t }, where the per-slot active topology

index σt ∈ S := {1, . . . , S} describes the so-called “network
mode.” The active mode-conditioned Laplacian matrix is then

TABLE I
EXAMPLES OF LAPLACIAN KERNELS

given by Lσt
t = Dσt

t −Aσt
t , where Dσt

t = diag{Aσt
t 1N} de-

notes the graph degree matrix. Switching topologies emerge
in several networked systems. Besides brain networks [36],
network topologies from information cascades exhibit switching
patterns [5].
A dynamic graph process is defined as the mapping x : V ×

T �→ R, where T := {1, 2, . . .} is the set of slot indices. Thus,
xt(n) represents the attribute of node n at slot t. For instance,
it may represent the value of a stock n at day t. The values
over all the nodes at slot t are collected in the vector xt :=
[xt(1), . . . , xt(N)]�.
In several applications, processes over only a subset ofM <

N vertices are observed, which yields the observation model

zt = Htxt + et (1)

where Ht ∈ {0, 1}M×N is the time-varying observation (or
sampling) matrix, whose rows sum up to 1, and et is the
observation noise that accounts for unmodeled uncertainties,
assumed to be white and Gaussian distributed with mean zero
and covariance Rt.

A. Kernel-Based Inference of TI Graph Processes

Towards learning dynamic graph processes, it is instructive
to first outline the kernel-based inference of TI graph processes.
Consider a TI adjacency matrix A and observation model z =
Hx+ e, which are given by dropping slot index t in the time-
varying scenario. To uniquely reconstruct x, one may rely on
the regularized least-squares formulation

x̂ = arg min
x

‖z−Hx‖22 + μΩ(x) (2)

where Ω(·) is a chosen monotonic regularizing function along
with the scalar μ ≥ 0 that controls the importance of the regu-
larization term vis-a-vis the fitting error.
For undirected graphs with symmetric adjacency matrix A,

the so-called Laplacian regularizer is given by

ΩLR(x) := x�Lx =
1

2

N∑

n=1

N∑

n′=1

A(n, n′)(x(n)−x(n′))2 (3)

whereL is the TI Laplacianmatrix. The regularizer (3) promotes
smoothness of the estimated signal on the graph as vertices
connected by strong links (large A(n, n′)) will have similar
signal estimates to minimize (3). To facilitate other properties
such as diffusion or graph bandlimitedness, the Laplacianmatrix
in (3) is replaced by r(L), where the scalar energy mapping
r : R �→ R+ is applied on the eigenvalues of L to promote
desired properties, see e.g., Table I. The pseudo-inverse of r(L)
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yields the graph Laplacian kernel [26]

K := r†(L). (4)

By considering Ω(x) := ‖x‖2K, we recover the family of ker-
nel ridge regression (KRR) estimators, which enjoys well-
documented reconstruction performance [14], [31].
For directed graphs, one can not directly apply the KRR

framework since A is not symmetric. Nevertheless, attempts
have also been made towards KRR by redefining a positive
semidefinite Laplacian matrix [3], [4], [8], [9]. In [9], such
a valid matrix is constructed as L := U− (UĀ+ Ā�U)/2,
where Ā := D−1A andU := diag(u) with u denoting the left
eigenvector of Ā. Based on this definition, kernel matrices can
be constructed, allowing the KRR framework to accommodate
directed graphs as well. The methods in this paper apply to both
directed and undirected graphs.
So far, we outlined SSL on graphs using a deterministic

kernel-based framework. It is however instructive to present a
Bayesian generative model for KRR estimation. First, consider
that the prior pdf of x is p(x) = N (x;0,K) and the likelihood
of x based on observation z is given by p(z|x) = N (z;Hx,R)
withR = μIM . Under theseGaussian densities, themaximum a
posteriori (MAP) estimator ofx given z is equivalent to theKRR
estimator, which amounts to the linear minimum mean-square
error (LMMSE) estimator

x̂ = arg max
x

p(x|z) = arg max
x

p(z|x)p(x)

= arg min
x

‖z−Hx‖2R + ‖x‖2K. (5)

Graph processes with arbitrary dynamics render the inference
task in (5) intractable, in general. Fortunately, structured dynam-
ical models, such as the one dealt with in the ensuing section,
can lead to tractable estimators.

B. Modeling Dynamic Processes Over Switching Graphs

One possible approach is to pursue an instantaneous per-slot
KRR estimator based on zt in (1). This estimator however, does
not account for the xt−1 to xt transition that can benefit the
estimator ofxt fromobservations other thanzt, and thus improve
estimation performance [14], [25].
Exploitation of graph process dynamics calls for modeling

the evolution from xt−1 to xt, which arguably depends on the
underlying topology [14], [25]. To capture the dynamics of
processes over switching graphs, we model the evolution from
xt−1 to xt as the first-order Markov process

xt = Fσt
t xt−1 + ησt

t (6)

where the state transition matrix is a known function f of the
active adjacency matrix given by

Fσt
t := f (Aσt

t ) . (7)

The mode-conditioned process noise ησt
t is assumed uncorre-

lated with the state, white, and Gaussian distributed with zero
mean and covariance Kσt

t , which is the Laplacian kernel (4).
Themodel in (6) accounts for the spatio-temporal dependence

of graph processes in the following two aspects.

i) The temporal dynamics across two consecutive slots are
captured by the state transition matrix of the so-termed
“transition graph.” WithFσt

t = Aσt
t , the transition model

(6) amounts to a graph diffusion process [29].
ii) The spatial correlations across nodeswithin t are captured

by the Laplacian kernel Kσt
t of the process noise covari-

ance. By setting Fσt
t xt−1 = 0, the dynamical model (6)

reduces to xt = ησt
t , which together with (1), constitutes

the generative model for TI graph processes, leading to
the MAP estimate given by (5). Incidentally, such a co-
variance model implies that xt is “graph stationary” [24].
A related noise model was also adopted in [14] to promote
smoothness of the estimates.

The dynamical model in (6) describes what is also known as a
switching linear dynamical system (SLDS) [23], and it is widely
employed in the tracking community to capture the kinematic
state evolution of maneuvering targets [6].
Problem statement: Given T observations ZT := [z1 . . . zT ]

as in (1), and candidate models {{Fs
t ,K

s
t}Ss=1}Tt=1 as in (6),

the goal is to jointly track the dynamic graph processes XT :=
[x1 . . .xT ], and the discrete modes {σt}Tt=1.

III. SCALABLE GRAPH-AWARE BAYESIAN TRACKER

In this section, we develop a Bayesian approach to track
dynamic graph processes over switching graphs. First, given
the Markovian state transition model in (6), the prior joint pdf
of the nodal processes inXT can be expressed as

p(XT ) = p(xT |xT−1;σT )p(XT−1) = · · ·=
T∏

t=1

p(xt|xt−1;σt)

=
T∏

t=1

(
S∑

s=1

ws
t p(xt|xt−1;σt = s)

)

where we explicitly incorporate σt in p(xt|xt−1) to stress the
active topology present, and ws

t encodes the existence of the
mode σt = s with ws

t ∈ {0, 1} and
∑S

s=1 w
s
t = 1.

Furthermore, since et in (1) is temporally white, the condi-
tional data pdf also factorizes as

p(ZT |XT ) =
T∏

t=1

p(zt|xt).

Hence, Bayes’ rule yields the posterior joint state pdf as

p(XT |ZT ) ∝ p(ZT |XT )p(XT )

=

T∏

t=1

p(zt|xt)

(
S∑

s=1

ws
t p(xt|xt−1;σt = s)

)
.

(8)

Since, et and ησt
t are Gaussian, the conditional likelihood

p(zt|xt) and the transition pdf p(xt|xt−1;σt = s) are alsoGaus-
sian, that is

p(zt|xt) = N (zt;Htxt,Rt)

p(xt|xt−1;σt = s) = N (xt;F
s
txt−1,K

s
t ).
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Thus, the MAP state estimates in batch form are (cf. (8))

arg min
{xt}Tt=1

{{ws
t }Ss=1}Tt=1

1

2

T∑

t=1

[
‖zt −Htxt‖2Rt

+
S∑

s=1

ws
t ‖xt − Fs

txt−1‖2Ks
t

]

s.to ws
t ∈ {0, 1},

S∑

s=1

ws
t = 1. (9)

Unfortunately, (9) is a mixed integer program whose optimal
solution is given by enumerating all the ST combinations of
discrete network modes across T slots, and then applying a
Kalman smoother for each mode combination, thus incurring
computational complexity O(TSTN3).
Targeting a computationally efficient solver with xt and σt

estimates obtained on-the-fly, we will build on the interacting
multi-model (IMM) algorithm [7] that has been applied to target
tracking [22] and air traffic control [19], but without graph-
related information. Taking into account dynamically switching
graph topologies, we will naturally term the resultant algo-
rithm interacting multi-graph model (IMGM). Given partially
observed nodal samples zt and a candidate set of switching
graphs, IMGM is a graph-adaptive Bayesian tracker that es-
timates the active network mode σt together with the N scalar
nodal processes in xt.

Our IMGM replaces the hard constraint ws
t ∈ {0, 1} with the

soft one ws
t ∈ [0, 1]. To further stress that the weight is based

on observations up to t, ws
t is replaced with w

s
t|t. Thus, one can

interpret ws
t|t as the posterior probability mass function (pmf)

of mode s being active at slot t, namely ws
t|t = Pr(σt = s|Zt).

Different from (9) where σt was viewed as deterministic, we
will next model it as a first-order Markov chain parameterized
by the S × S mode transition matrixΠ, whose (i, j)th entry

πij = Pr(σt = i|σt−1 = j) (10)

denotes the transition probability from mode j at slot t− 1 to
mode i at slot t. Theparameters ofΠ are pre-selected.Apractical
choice for Π is to set its diagonal entries to π0 ∈ [0.9, 1), and
the rest to (1− π0)/(S − 1) [6].
IMGM leverages the current observation zt to propagate the

posterior marginal state pdf p(xt−1|Zt−1) to p(xt|Zt). Towards
this end, we start by approximating the mode-conditional pos-
terior of xt with a Gaussian pdf

p(xt|σt = s,Zt) ≈ N (xt; x̂
s
t|t,P

s
t|t) (11)

where x̂s
t|t and Ps

t|t are the mean and the covariance matrix
associated with mode s. Bayes’ rule and the total probability
theorem (TPT) yields the marginal posterior

p(xt|Zt) =

S∑

s=1

Pr(σt=s|Zt) p(xt|σt=s,Zt)

≈
S∑

s=1

ws
t|t N (xt; x̂

s
t|t,P

s
t|t) (12)

approximated by a Gaussian mixture (GM) pdf, which is param-
eterized by the set

Pt := {ws
t|t, x̂

s
t|t,P

s
t|t, s = 1, . . . , S}. (13)

ThisGMmodel facilitates the propagation fromp(xt−1|Zt−1)
to p(xt|Zt) through updates of the elements in Pt−1 to those in
Pt. These updates will be implemented using the prediction and
correction of the mode pmf and the mode-conditional state pdf
as detailed next.

A. Prediction

At the end of slot t− 1, the posterior marginal state pdf is
characterized by Pt−1. Before the arrival of a new observation
zt, IMGM leverages the mode and state evolution models (cf.
(10) and (6)) to make predictions about the mode pmf and the
mode-conditional state pdf, respectively.
1) Predicted Mode Pmf: Based on the Markov transition

model (10), the predicted mode pmf is readily obtained via TPT
and Bayes’ rule as

ws
t|t−1 :=Pr(σt = s|Zt−1)=

S∑

s′=1

Pr(σt = s,σt−1 = s′|Zt−1)

=

S∑

s′=1

Pr(σt = s|σt−1 = s,′ Zt−1)Pr(σt−1 = s′|Zt−1)

=

S∑

s′=1

πss′w
s′

t−1|t−1 . (14)

2) Predicted State Pdf: Since p(xt−1|σt−1 = s,′ Zt−1) is
Gaussian (cf. (11)), the linear-Gaussian state transition model
(6) conditioned on σt = s allows one to deduce that

p(xt|σt = s, σt−1 = s,′ Zt−1) = N (xt; x̂
s,s′

t|t−1,P
s,s′

t|t−1) (15)

where the subscript (s, s′) refers to the conditioning on modes
(s, s′) at slots t and t− 1 respectively.

The first two moments of the pdf in (15) are given by

x̂s,s′

t|t−1 = Fs
t x̂

s′

t−1|t−1 (16a)

Ps,s′

t|t−1 = Fs
tP

s′

t−1|t−1 (F
s
t )

� +Ks
t . (16b)

Next, using the TPT andBayes’ rule, we express the predicted
mode-conditional state pdf at t as

p(xt|σt = s,Zt−1)

=

S∑

s′=1

Pr(σt−1=s′|σt =s,Zt−1)p(xt|σt = s, σt−1 =s,′ Zt−1)

(17)

wherePr(σt−1 = s′|σt = s,Zt−1) := w
s′ |s
t−1|t can be interpreted

as the backward mode transition probability, which upon
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Algorithm 1: One Recursion of the IMGM Algorithm.

1: Input: Pt−1, zt, {Fs
t ,K

s
t}Ss=1,Rt,Ht,Π

2: for s = 1 to S do
3: S1 Prediction
4: S1.1 of mode pmf via (14)
5: S1.2 of mode-conditional state pdf via (16), (18),

and (20)
6: S2 Correction
7: S2.1 of mode-conditional state pdf via (23)
8: S2.2 of mode pmf via (24)
9: S3 Fusion of mode-conditional state pdfs via (27)
10: end for
11: Output: Pt, x̂t|t, Pt|t

appealing to Bayes’ rule and the TPT, boils down to

w
s′|s
t−1|t =

Pr(σt−1 = s′|Zt−1)Pr(σt = s|σt−1 = s,′ Zt−1)∑S
s′=1Pr(σt−1 = s′|Zt−1)Pr(σt = s|σt−1 = s,′ Zt−1)

=
ws′

t−1|t−1πss′

∑S
s′=1 w

s′
t−1|t−1πss′

. (18)

So far, the predicted mode-conditional state pdf (17) is a
GM pdf. A GM prior however, does not evolve to a Gaussian
posterior pdf with Gaussian likelihood. Tomaintain Gaussianity
of the posterior mode-conditional state pdf as in (11), we will
approximate (17) by the following Gaussian pdf

p(xt|σt = s,Zt−1) ≈ N (xt; x̂
s
t|t−1,P

s
t|t−1) (19)

where x̂s
t|t−1 and Ps

t|t−1 are chosen to match the first two
moments of the GM pdf (17) as

x̂s
t|t−1 =

S∑

s′=1

w
s′ |s
t−1|tx̂

s,s′

t|t−1 (20a)

Ps
t|t−1 =

S∑

s′=1

w
s′ |s
t−1|t

(
Ps,s′

t|t−1

+ (x̂s,s′

t|t−1 − x̂s
t|t−1)(x̂

s,s′

t|t−1 − x̂s
t|t−1)

�
)

. (20b)

Approximating non-Gaussian pdfs with Gaussian ones is a
well-documented approach to effect scalability in approximate
(Bayesian) inference, including variational inference and ex-
pectation propagation; see [23] and the references therein. With
moments of the approximating Gaussian pdf matched to that of
the non-Gaussian one (cf. (20)), the KL divergence between the
two pdfs is minimized.
Up to now, we have obtained the predicted mode pmf and the

mode-conditional state pdf, which will be propagated to their
posterior counterparts after a new zt is observed.

B. Correction

1) Posterior Mode-Conditional State Pdf: Given the
new observation zt, the approximate predicted mode-
conditional state pdf (19) is propagated to its posterior via

Bayes’ rule as

p(xt|σt = s,Zt) = p(xt|σt = s, zt,Zt−1)

=
p(xt|σt = s,Zt−1)p(zt|xt, σt = s,Zt−1)

p(zt|σt = s,Zt−1)
(21)

where p(zt|xt, σt = s,Zt−1) = N (zt;Htxt,Rt), since zt is
independent of Zt−1 and σt. Hence, with the likelihood and
the prior (cf. (19)) being Gaussian, it holds that

p(xt|σt = s,Zt) = N (xt; x̂
s
t|t,P

s
t|t) (22)

where the first two moments x̂s
t|t and Ps

t|t are obtained via the
Kalman update as (see e.g., [6])

ẑst|t−1 = Htx̂
s
t|t−1 (23a)

Φs
t|t−1 = HtP

s
t|t−1 (Ht)

� +Rt (23b)

Gs
t = Ps

t|t−1 (Ht)
� (Φs

t )
−1 (23c)

x̂s
t|t = x̂s

t|t−1 +Gs
t (zt − ẑst|t−1) (23d)

Ps
t|t = Ps

t|t−1 −Gs
tΦ

s
t|t−1 (G

s
t )

� . (23e)

2) Posterior Mode Pmf: Upon applying Bayes’ rule, the
posterior mode pmf is

ws
t|t = Pr(σt = s|zt,Zt−1)

=
p(zt|σt = s,Zt−1)Pr(σt = s|Zt−1)∑S
s=1 p(zt|σt = s,Zt−1)Pr(σt = s|Zt−1)

(24)

where the first factor p(zt|σt = s,Zt−1) is computable via (14),
and the second factor is the normalizing pdf in (21)

p(zt|σt = s,Zt−1) =

∫
p(zt,xt|σt = s,Zt−1)dxt

=

∫
p(zt|xt)p(xt|σt = s,Zt−1)dxt

(25)

that can be shown to be the GaussianN (zt; ẑ
s
t|t−1,Φ

s
t|t−1) with

ẑst|t−1 and Φs
t|t−1 given by (23a) and (23b), respectively.

C. Fusion

Finally, the marginal posterior state pdf is given by fusing the
individual mode-conditional posteriors to obtain the GM

p(xt|Zt) =

S∑

s=1

ws
t|tN (xt; x̂

s
t|t,P

s
t|t) (26)

whose first two moments are

x̂t|t =
S∑

s=1

ws
t|tx̂

s
t|t (27a)

Pt|t =
S∑

s=1

ws
t|t

(
Ps

t|t + (x̂s
t|t − x̂t|t)(x̂

s
t|t − x̂t|t)

�
)
. (27b)
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Fig. 1. Flowchart of IMGM with S = 2 modes for one recursion, where yellow is used for mode 1, and blue for mode 2. Each mode predicts the first two
moments of the state pdf at slot t assuming the active mode is 1, or 2, respectively. Then the predictive state pdf conditioned on mode s ∈ {1, 2} at slot t is obtained
by fusing the contributions from modes 1 and 2 at slot t− 1 (denoted by the green lines in the figure). After receiving new observation zt, each mode updates the
first two moments of the state pdf. Aided by lst = N (zt; ẑ

s
t|t−1

,Φs
t|t−1), each mode obtains the posterior weight, based on which the fused state moments in the

green box are acquired.

Thus, the posterior mean (27a) is the minimum mean-square
error (MMSE) estimator of xt, whose uncertainty is character-
ized by the covariance matrix (27b). On the other hand, upon
approximating the GM in (26) with a single Gaussian pdf having
matched moments, (27a) can also be interpreted as the MAP
estimator of xt.
The implementation steps of the IMGM algorithm for one

recursion are summarized in Alg.1, and the flowchart of IMGM
forS = 2modes is presented in Fig. 1. Note that at initialization,
the mode probabilities and mode-conditional state pdfs are set
to be identical across modes; that is,

ws
0|0 =

1

S
, x̂s

0|0 = x̂0, Ps
0|0 = P0, s = 1, . . . , S (28)

where x̂0 and P0 encode our prior information about the initial
state distribution.
IMGM incurs low computational complexity of order

O(STN3) over T slots, which is clearly more affordable than
the exponential complexity of the optimal solution of (9). To fur-
ther maintain scalability forN �, the graph can be divided into
Ng subgraphs, each with at most �N/Ng
 nodes. Upon leverag-
ing distributed solvers along the lines of [28], the computational
complexity per subgraph is O(S�N/Ng
3), yielding an overall
complexity of order O(SNg�N/Ng
3). Hence, scalability for
large graphs can be effected by adjusting Ng . However, how to

optimally chooseNg and divide the graph based on the topology,
is an interesting future direction.
A few remarks are now in order.
Remark 1: IMGM is a memoryless online algorithm that

requires no storage of past observations. All information about
the past is summarized by the parameter set Pt−1 that defines
the GM pdf for the marginal state distribution.

Remark 2: Different from our IMGM, the classical IMM [6]
first approximates a GM by a single Gaussian for each mode
that corresponds to an updated mode-conditional state posterior,
which is the input to one of S parallel mode-dependent Kalman
filters with prediction and correction. Adhering to bothGaussian
predicted (19) and posterior (22) mode-conditional state pdfs,
IMGM predicts a GM per mode (17) that is then approximated
by a single mode-conditional Gaussian (19), before running S
parallel Kalman correction steps. The order of approximation
and prediction makes no difference for linear state transition
models.

IV. MULTI-KERNEL, TRANSITION, AND NOISE ADAPTIVITY

This section shows that IMGM can also be utilized to track
dynamic processes and adapt the graph kernel(s), transition
function, and noise variance per slot even for a fixed graph.
To start with, the linear state transition model in (6) may not

be able to fully capture the dynamics of the graph processes,
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necessitating a general nonlinear transition model, which is
given by a nonlinear function f(Aσt ,xt−1). Moreover, the state
in several applications may adhere to a different dynamic model
per slot. For example, the stocks in an economic network abide
by different evolution patterns, e.g. in a period of economic
recession. Hence, the transition function f (7) may jump among
a candidate set ofL transition functions {f1, . . . , fL} for a given
topology at slot t.
Besides f , the noise model in (6) can be sensitive to the

selection of the appropriate kernel (4). To deal with this, a
dictionary of candidate ‘basis kernels’ (4) can be constructed
with energy mappings in the set {r1(·) . . . rK(·)}. Hence, the
extended dynamical model of graph processes that further ac-
counts for multiple kernels and switching nonlinear dynamic
functions is given by

xt = f lt(Aσt
t ,xt−1) + ηkt,σt

t (29)

where lt ∈ L := {1, . . . , L} is the active dynamic function in-
dex, and σt ∈ S denotes the active topology index; while the
zero-mean Gaussian process noise ηkt,σt

t has covariance matrix
Kkt,σt

t with active kernel function indexkt ∈ K := {1, . . . ,K}.
On the other hand, the observation noise covariance in (1)

is selected as Rt = μIM . The scale μ is typically tuned via
cross-validation offline among a candidate set of grid points
{μ1, . . . , μR}. However, μ remains fixed for all t, and does not
adapt to the data across slots t. To avoid cross-validation and
effect a data-driven choice of μ, we can recast the observation
model in (1) as

zt = Htxt + ertt (30)

where the covariance matrix of ertt is Rrt
t = μrtIM with rt ∈

R := {1, . . . , R}.
To incorporate switching topologies, dynamic functions, ker-

nels, and observation noise covariances, we construct S̄ = S ×
L×K ×R candidate dynamical models with the active model
{f lt(Aσt , ·),Kkt,σt

t ,Rrt
t } indicated by the extended network

mode σt := (lt, σt, kt, rt) ∈ S̄, where the extended network
mode set is S̄ := L × S × K ×R. Before invoking the IMGM
algorithm, one has to rescale the cost function in (9) by re-
placing Rrt

t with IM , and subsequently absorbing Rrt
t into the

process noise covariance as K̃kt,σt,rt
t = Kkt,σt

t /μrt , such that
the fitting error in (9) will have no scaling factor. The expanded
candidate list of dynamical models at slot t is then constructed
as {f l(Aσ, ·), K̃k,σ,r

t ,σ ∈ S̄}. Subsequently, by changing Rt

to IM in (23b), the IMGM algorithm is readily applied with
only one revision in (15) for nonlinear dynamical models. As
alluded to in the previous discussion, IMGM strives to maintain
a Gaussian mode-conditional state pdf. Thus, to approximate
the nonlinear transformation of a Gaussian state pdf by another
Gaussian, we can leverage the unscented transformation as in
unscented KF [34], or, just linearize the nonlinear transition
functions, as in extended KF [6].
Three more remarks are in order.
Remark 3: For dynamicalmodelswith unknown parameters,

candidate dynamical models can be constructed and IMGM
can learn the model parameters that best fit the data on-the-fly,

thus circumventing extra offline model training. Such a joint
system identification and state estimation problem has been
considered in the KF literature along three prevailing lines.
The first leverages the expectation-maximization algorithm to
iterate between state estimation and system identification, but
the online characteristic is compromised; see e.g., [33]. The
second approach chooses the model parameters from a known
dictionary, and applies the classical IMM approach to select the
appropriate parameters online [18]. Recently, for models with
unknown process, and observation noise covariance matrices,
a variational Bayesian approach is employed to obtain pdf
estimates [13].

Remark 4: With only one graph and Flt,σt
t = 0, IMGM of-

fers an online probabilistic multi-kernel based alternative to re-
construct TI graph processes, which complements rather nicely
the deterministic multi-kernel KRR framework in [26]. For a
fixed set of nodes, the complexity of IMGM for time-invariant
graphs is the same as that for the time-varying case.

V. NUMERICAL TESTS

In this section, we evaluate the performance of the pro-
posed IMGM approach using synthetic and real data, and com-
pare it with existing algorithms, including the kernel Kalman
filter (KKF) [25]; the adaptive least mean-square (LMS) al-
gorithm [10] with bandwidth BLMS ∈ {2, 4, 6, . . . , 20} and
step size μLMS ∈ {0.5, 0.6, 0.7, . . . , 2}; as well as the dis-
tributed least-squares reconstruction (DLSR) [35] with band-
width BDLSR ∈ {2, 4, 6, . . . , 20} and step sizes μDLSR ∈
{0.2, 0.4, 0.6, . . . , 2} and βDLSR ∈ {0.1, 0.2, . . . , 0.9}. Both
LMS and DLSR can track slowly time-varying B-bandlimited
graph processes. Unless stated otherwise, the reported perfor-
mances of LMS and DLSR are best-performing in terms of
NMSE with hyperparameters selected from the candidate sets.
Also, we consider the oracle of IMGM (abbreviated as “IMGM-
O”),which relies on the dynamicalmodel (6), butwith knownσt.
To compare on equal footingwithLMSandDLSR,which cannot
deal with time-varying observationmatrices, we setHt = H for
all t ∈ {1, . . . , T}. For experiments with switching graphs, the
competing algorithms know the active graph topology per slot
t, whereas our mode-agnostic IMGM estimates σt on-the-fly.
The performance metric is the normalized mean-square error
(NMSE) over unobserved nodes, which is given by

NMSE(t) := ‖Hc
t

(
x̂t|t − xt

)
‖22/‖Hc

txt‖22 (31)

whereHc
t is the sampling matrix for the unobserved nodes. Due

to the random sampling scheme, the performance is averaged
over 100 random sampling realizations.

A. Synthetic Data

We consider a synthetic dynamic process over a network
with N = 60 nodes, and S = 2 modes. The graph topologies
associated with the two modes at slot 1 are generated by two
symmetric Erdős-Rényi random graphs with edge existence
probabilities 0.1 and 0.2, respectively. In the following slots, we
randomly choose two pairs of nodes, and the edge between each
pair is flipped relative to the previous slot permode. The network
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Fig. 2. Posterior mode pmfs of IMGM for synthetic data.

Fig. 3. NMSE for synthetic data.

switches from mode 1 to mode 2 at slot 6, and back to mode 1 at
slot 11 over a total T = 15 slots. The dynamic graph process
xt is generated according to (6) with Fσt

t = 0.2(Aσt
t + IN )

and ησt
t ∼ N (ησt

t ;0,Kσt
t ), where Kσt

t is a diffusion kernel
with a = 0.1 (see ). The observations are generated based on
(1) withM = 30 andR = 4IM . Only IMGM-O was compared
with IMGM because the rest of the approaches have no infor-
mation about the generative model. The average mode posterior
probabilities produced by IMGM over 100 Monte-Carlo runs
are shown Fig. 2, which demonstrates that the IMGM is capable
of keeping track of the active network mode in the presence of
unknownswitches. Further, Fig. 3 plots theNMSEover time, and
illustrates that IMGM achieves the same NMSE as IMGM-O,
which relies on extra information. Fig. 4 depicts the estimated
processes along with the corresponding true values over an
unobserved node. The perfect tracking of the true signal further
validates IMGM’s nearly optimal reconstruction performance.

Fig. 4. True and estimated processes over an unobserved node for synthetic
data.

B. Brain ECoG Dataset

Next, we experiment with the brain ECoG data obtained from
an epilepsy study [17]. The ECoG time series were obtained
from N = 76 electrodes implanted in a patient’s brain before
and after a seizure, where the onset of the seizure was identified
by a neurophysiologist. Therefore, there are S = 2 modes, the
pre-ictal and ictal mode that correspond to before and after the
seizure. We extract 250 samples from the dataset for each of
the two modes, which are preprocessed by subtracting the sam-
plemean and normalizing by the sample standard deviation. The
preprocessed samples are then concatenated so that σt = 1 for
t = 1, . . . , 250, and σt = 2 for t = 251, . . . , 500. We construct
a time-invariant symmetric correlation graph for each of the two
modes, which is a special case of the problem statement at the
end of Section II. The ECoG signals aremodeled to evolve based
on (6),where the state transitionmatrixFσt

t = 0.15(Aσt + IN ),
and process noise covariance Kσt

t is a diffusion kernel with
parameter a = 2. Here, the value 0.15 and a = 2 are selected to
yield the lowest NMSE from the sets {0.1, 0.11, 0.12, . . . , 0.3}
and {1, 1.2, 1.4, . . . , 3}. The observations are generated as in
(1) withM = 53, and R = 10−2IM .
Fig. 5 shows the posterior mode probabilities {ws

t|t}2s=1 pro-
duced by IMGM over 100 random sampling schemes. Here,
IMGM plays the role of a “neurophysiologist” who detects the
onset of an epileptic seizure. In addition, the NMSE of IMGM
is comparable to that of the mode-clairvoyant IMGM-O, while
markedly outperformingKKF, LMS andDLSR, as confirmed by
Fig. 6. TheNMSEs for allmethods undergo a peak at the onset of
the ictal, while for LMS and KKF the NMSEs are considerably
larger during the ictal period. As in Fig. 7, the estimated brain
signals from IMGM and IMGM-O over an unobserved node
agree quite well with the corresponding true values, which is
however not the case for the rest of the approaches. Further, Fig. 8
demonstrates that IMGM enjoys lower NMSE as the numberM
of sampled nodes grows.
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Fig. 5. Posterior mode pmfs of IMGM for ECoG data.

Fig. 6. NMSE for ECoG data (μLMS = 0.6, BLMS = 2, μDLSR = 1.2,
BDLSR = 6, βDLSR = 0.5).

C. Temperature Prediction

The next dataset comprises hourly temperaturemeasurements
at N = 109 measuring stations across the continental United
States in 2010 by the National Climatic Data Center [1]. A time-
invariant graphwas constructed based on geographical distances
as in [25]. Even though only one graph is available, IMGM can
still be applied to track the dynamic processes and simultane-
ously learn the model parameters that best fit the data as in
Section IV, which would otherwise need an offline training
process. The value xt(n) represents the tth temperature sam-
ple recorded at the nth station. The sampling interval in our
experiment is chosen to be one day. The number of observed
nodes is M = 44, and observation noise covariance is selected
from the candidate set as Rrt = μrtIM , where μrt ∈ 10−4 ×
{1, 2, . . . , 5}. The transition matrix is taken as Flt

t = clt(A+

Fig. 7. True and estimated brain signals over an unobserved node for ECoG
data (μLMS = 0.6,BLMS = 2, μDLSR = 1.2,BDLSR = 6, βDLSR = 0.5).

Fig. 8. Overall NMSE of IMGM versusM for ECoG data.

IN ), where clt takes value from 0.05 to 0.15 with uniform grid
0.02. The process noise is given by a diffusion kernelwith a = 2.
Thus, IMGM is equipped with 30 candidate dynamical models,
among which the best performing one is assigned to IMGM-O
with Ft = 0.05(A+ IN ) and R = 10−4IM .

As shown in Fig. 9, the mode-agnostic IMGM demonstrates
superior tracking performance compared to the KKF, LMS and
DLSR, while it also showcases performance comparable to
IMGM-O. Hence, IMGM is capable of selecting the dynamical
model that best fits the data on-the-fly. Fig. 10 further corrobo-
rates this assertion by displaying the true and estimated network
delays from the candidate approaches over an unobserved node.
The probability of existence of each model is reported by the
posterior mode pmf ws

t|t as w
1
t|t ≈ 1, and ws

t|t ≈ 0 for s other-
wise.
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Fig. 9. NMSE for temperature data (μLMS = 1.5, BLMS = 10, μDLSR =
1.2, BDLSR = 4, βDLSR = 0.5).

Fig. 10. True and estimated temperature values over an unobserved location
(μLMS = 1.5, BLMS = 10, μDLSR = 1.2, BDLSR = 4, βDLSR = 0.5).

D. Network Delay Prediction

The last dataset records measurements of path delays on the
Internet2backbone [2]. The network comprises 9 end-nodes and
26 directed links. There are N = 70 paths, each connecting
two origin-destination nodes by a subset of the 26 links. The
active links for each path are described by the path-link routing
matrixB ∈ {0, 1}70×26, whose (n, l)th entryBn,l is 1, if path n
traverses link l, and 0 otherwise. With each vertex representing
one of these paths, an undirected graph is constructed with the
(n, n′)th entry (n �= n′) of the adjacency matrix as

A(n, n′) =

∑26
l=1 Bn,lBn,′l∑26

l=1 Bn,l +
∑26

l=1 Bn,′l −
∑26

l=1 Bn,lBn,′l

Fig. 11. NMSE for network delay data (μLMS = 1.5, BLMS = 12).

Fig. 12. True and estimated network delays over an unobserved path (μLMS =
1.5, BLMS = 12).

which places large weights for vertices (paths) with a large
number of common links. The graph process xt(n) represents
the delay of path n in minutes.
The number of observed nodes is selected to be M = 20.

The candidate dynamical models for IMGM are configured
as follows. The state transition matrix is selected to be Ft =
0.17(A+ IN ). Process noise covariance Kkt is chosen from a
set of K = 8 diffusion kernels (cf. ) with parameter akt taking
values from 0.6 to 2 with uniform space 0.2. Observation noise
covariance for the observation model (30) is Rrt = μrtIM ,
with μrt ∈ {10−4, 10−3, 10−2, 10−1}. The number of candi-
date models for IMGM is then S̄ = 8× 4 = 32, among which
IMGM-O is equippedwith the best performing one: a = 0.6 and

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 01:19:13 UTC from IEEE Xplore.  Restrictions apply. 



2596 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

R = 10−2IM . For this experiment, we did not employ DLSR
because it did not yield comparable performance to the rest of
the alternatives.
Adaptively choosing a model with kernel parameter akt and

noise parameter μrt from the candidate set, IMGM exhibits
superior tracking performance compared to the single-model
alternatives, as confirmed by Fig. 11. This also corroborates that
IMGM provides a probabilistic multi-kernel learning approach.
The estimated and true network delays from an unobserved node
over the entire observation interval are plotted in Fig. 12.

VI. CONCLUSION

This paper dealt with tracking dynamic graph processes that
evolve over a candidate set of graph topologies with unknown
switches. To this end, a dynamical model was introduced to cap-
ture both spatial and temporal variations of the graph processes
through the notion of active mode-conditioned topology. Sub-
sequently, given observations over a subset of nodes, a scalable
Bayesian tracker, termed IMGM, was developed to carry out
semi-supervised tracking of the dynamic graph processes jointly
with the active network mode. The novel IMGM solver lends
itself to several important generalizations, including dynamic
function switches, multiple kernels, and adaptive observation
noise covariances. Accounting for all these models, IMGM
offers an online approach to select the one that best fits the data
adaptively, while at the same time tracks the graph processes.
Numerical tests on synthetic and real data corroborated the
performance gain of the novel IMGM approach.
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