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Abstract—Graphs are pervasive in different fields unveiling
complex relationships between data. Two major graph-based
learning tasks are topology identification and inference of signals
over graphs. Among the possible models to explain data interde-
pendencies, structural equation models (SEMs) accommodate a
gamut of applications involving topology identification. Obtaining
conventional SEMs though requires measurements across nodes.
On the other hand, typical signal inference approaches ‘blindly
trust’ a given nominal topology. In practice however, signal or
topology perturbations may be present in both tasks, due to
model mismatch, outliers, outages or adversarial behavior. To
cope with such perturbations, this work introduces a regularized
total least-squares (TLS) approach and iterative algorithms
with convergence guarantees to solve both tasks. Further gen-
eralizations are also considered relying on structured and/or
weighted TLS when extra prior information on the perturbation
is available. Analyses with simulated and real data corroborate
the effectiveness of the novel TLS-based approaches.

Index Terms— Graph and signal perturbations, total least-
squares, structural equation models, topology identification, graph
signal reconstruction.

I. INTRODUCTION

Graphs play a pivotal role in the analysis of complex sys-
tems. In applications such as in biological, financial or social
sciences, data-driven graphs are adopted to model (un)directed
data dependencies. In physical multiagent systems, graphs are
introduced to represent physical or engineered links between
vertices of e.g. vehicular, power or communication networks,
and they are crucial in tasks such as devising resource alloca-
tion strategies or imputing missing data. However, perturba-
tions on links or vertices can be present in both data-induced
and physical networks and may compromise the performance
of graph-based learning tasks. In a gene regulatory network,
for instance, the inferred topology may be imprecise due
to e.g., model mismatch or noise in the data; while in a
communication network, graph perturbations may arise due
to link or node outages.

Recently, the vulnerability of networked systems to failures,
anomalies, or model mismatch has received increasing interest
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[6], [15], [37], [30], [12], [13], [20]. In the context of statis-
tical analysis of network data, error propagation in network
characteristics (e.g. count of subgraphs) has been studied in
[6] and [15]. In order to account for topological perturbation,
probabilistic or uncertain graphs have been considered for
clustering [37], graph filtering [30], and consensus [57]. Other
works developed tools based on small perturbation analysis of
the Laplacian matrix [56] to handle graph perturbations for
robust resource allocation [12], graph signal inference [13],
and tracking of time-varying graph signals [20]. Signal and
graph perturbations via total least squares were first analyzed
in our previous work [14], where only preliminary results
on synthetic data were studied. Differently from [14], we
develop in addition an alternative algorithm for the topology
identification and theoretical result for the case of signal
recovery.

The present work deals with signal and graph perturbations
for the tasks of topology identification and graph signal
inference based on total least-squares (TLS). TLS is the
generalization of least-squares (LS) tailored to account for
error mismatch (a.k.a. noise) present in both the input and
the output matrices [54]. TLS and its regularized variants
emerge in several applications including system identification
[51], information retrieval [31], forecasting of financial data
and reconstruction of medical images [41]. Building upon
TLS, weighted TLS [4], structured TLS [17], and sparse
TLS [58] have also been introduced to incorporate different
prior information.

Structural equation models (SEMs) [35] have been widely
adopted in diverse fields for network topology identification
[5], [11], [24], [25], [43], [45], mostly relying on measure-
ments available across nodes. Topology identification (ID)
with partially observed nodal processes has also been studied
recently [29], [48]. Leveraging piecewise stationarity, SEMs-
based topology inference was pursued in [48] when only
(partial) statistics of nodal measurements are given, while a
joint inference algorithm was developed in [29] to identify
the topology as well as interpolate graph signals based on
partial observations of the nodal signals. However, neither
of them accounts for signal perturbations. Topology identi-
fication approaches that rely on Graphical LASSO and its
generalizations have also been developed [23], [34], along with
graphical model selection based methods for stationary [33],
and non-stationary processes [36], [47]; see also [24], [42].
Different from these approaches, the methods here do not
rely on any probabilistic assumptions for the network model,
further account for perturbations in the topology or the nodal
observations. In contrast, approaches identifying dynamic net-
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work topologies based on vector autoregressive models [10],
[50], do not take into account signal perturbations, but only
consider additive noise.

Whether adopting parametric [3], [19], [44] or non-
parametric approaches [27], [28], [49], most existing works on
graph signal reconstruction assume that the graph topologies
are known exactly. However, they do not consider that the
nominal graph topologies may be inaccurate. Expectation-
maximization approaches [18] are used in graphical models
to infer iteratively the graph parameters and the missing
signals [32], [39], but rely on probabilistic assumptions for
nodal signals, which is not the case in the present approach.

The present work relies on TLS and SEMs to cope with
two intertwined graph learning tasks, namely:
T1. Topology identification (ID) based on perturbed nodal
signal observations; and,
T2. Graph signal inference given partial nodal observations
and perturbed topologies.

An example of (T1) would be topology identification of a
gene regulatory network from inaccurate data, due to possible
errors occurring during the data collection process. As for task
(T2), possible deviations from the nominal topology due to
break down links need to be taken into account while inferring
unknown nodal signals in wireless networks.

The novelties here can be summarized in two directions.
C1. The task of graph topology identification in the presence
of signal perturbations is formulated for the first time as a total
least-squares problem. Two algorithms with complementary
strengths are developed: the first algorithm attains an ε-optimal
solution, while the second one can afford a sub-optimal yet
computationally efficient solution.
C2. Different from existing methods which deal with signal
recovery over a known graph, a novel signal recovery approach
is introduced here for graphs with perturbed topologies. Effi-
cient algorithms are then developed to infer the signals, and
identifiability of the model is analyzed.

The rest of the paper is organized as follows: Sec. II
introduces the context and the TLS formulation with its
weighted and structured variants. The topology ID problem
(T1) is investigated in Sec. III, while the graph signal inference
task (T2) is addressed in Section IV. In Sec. V, synthetic and
real data tests are carried out to illustrate the merits of the
proposed TLS-based approaches. Finally, concluding remarks
and future directions are outlined in Sec. VI.
Notation. Bold lower (upper) case fonts denote column vec-
tors, e.g., a (matrix A), while operators (·)>, vec(·), and
⊗ stand for transposition, column-wise matrix vectorization,
and Kronecker product, respectively. The K × K identity
matrix is denoted by IK , and si stands for the i-th canonical
vector; while diag(·), and bdiag(·) correspondingly represent a
diagonal matrix and a block diagonal matrix of its arguments.
Finally, the `1, `2, and Frobenius norms will be denoted by
‖·‖1, ‖·‖2, and ‖·‖F , respectively.

II. PRELIMINARIES

The present section reviews linear SEMs and TLS, along
with structured and weighted TLS variants.

A. Structural Equation Models

Consider a directed network of N nodes, whose topology
is captured by the adjacency matrix A ∈ RN×N with entries
aij := [A]ij , and aij 6= 0 if a directed edge from node j to
node i is present. Suppose the network represents a complex
system, where yit is the measurement at node i at instant t.
The output measurement yit in SEMs depends on its single-
hop neighbor measurements, and an exogenous input signal
xit, that is

yit =
∑
j 6=i

aijyjt + biixit, t = 1, . . . , T (1)

where bii > 0 weighs the exogenous input. Concatenat-
ing nodal measurements in vectors yt:=[y1t, . . . , yNt]

>, and
xt:=[x1t, . . . , xNt]

> per slot t, the matrix-vector version of (1)
can be compactly written as yt = Ayt + Bxt, t = 1, . . . , T ,
where aii = 0 and B := diag(b11, . . . , bNN ).

Collecting inputs and outputs1 across T slots, N × T
matrices X := [x1, . . . ,xT ] and Y := [y1, . . . ,yT ] can be
formed, to obtain the linear matrix model

Y = AY + BX . (2)

Existing works treat perturbations as additive observation noise
to arrive at the SEM, Y = AY+BX+V, where V ∈ RN×T
is the error matrix. Generally, these works aim to estimate A
(and possibly B), when measurements Y and X are given,
using least-squares (LS) or regularized LS [7], [11]. On the
other hand, when A, BX (e.g. obtained by historical data)
and a subset of entries of Y are given, it is also possible to
interpolate the unobserved nodal signals [29]. Since existing
approaches do not consider possible errors in A or Y, we are
motivated to adopt TLS methods to cope with graph signal and
topology perturbations that can be possibly present in SEMs.
In particular, if Y is corrupted by noise, the observed data
can be written as Z = Y + E, and the model is then given
by Z− E = A(Z− E) + BX. Using TLS, we wish to infer
A. On the other hand, given a perturbed A and partial noisy
nodal observations (subset of noise-corrupted Y), we aim
at recovering the graph signal using a TLS-based approach.
Before introducing the formulation of these two tasks, we
outline basic TLS notions, and its weighed and structured
variants in the following subsection.

B. Weighted and structured TLS

TLS considers the perturbed linear system of equations F =
(H+P )Θ−Σ, where F ∈ RM×T denotes the output matrix
with M < T , H ∈ RM×N the input (or regression) matrix,
Θ ∈ RN×T an unknown matrix of parameters, while Σ ∈
RM×T and P ∈ RM×N capture the error matrices. Different
from classical LS where P = 0, TLS treats symmetrically the
input and the output in the sense that both H and F may have

1Causes-effect per node do not have to happen instantaneously, since causes
{yjt, xit} can occur at the beginning and effect yit at the end of slot t.
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errors due to model mismatch, noise, or outliers. Hence, TLS
solves the following problem

min
Θ,P ,Σ

‖[P ,Σ]‖2F (3a)

s. to F = (H + P )Θ−Σ. (3b)

The structured variants of TLS rely on exploiting the structure
of input and output matrices, as well as noise statistics, to
achieve improved estimation performance. The structure of a
matrix in the TLS context is defined as follows [41], [58].
Definition 1. Given a parameter vector ω ∈ Rnω , the
M × (N + T ) data matrix [H ,F ](ω) has a structure SSS (ω)
characterized by ω, if and only if there is a mapping such that
ω ∈ Rnω → [H ,F ](ω) := SSS (ω) ∈ RM×(N+T ).

Note that Definition 1 reduces to the trivial case when ω :=
vec([H ,F ]) with dimension M(N+T ), which corresponds to
the unstructured case. However, when ω provides a parsimo-
nious representation of the data matrix with nω �M(N+T ),
we can take advantage of the matrices’ structure [41]. By intro-
ducing the parameter vector ω and the noise parameter vector
ν ∈ Rnω , such that SSS (ω + ν) := [H + P,F + Σ](ω + ν),
the Frobenius norm ‖[P ,Σ]‖2F becomes ‖ν‖22. The weighted
TLS is obtained if prior knowledge about the ν is incorporated
by weighting the norm ‖ν‖22 through the nω × nω positive
definite matrix W. Hence, the structured and weighted TLS
(SWTLS) cost is expressed as ν>Wν. Clearly, when W = I,
the SWTLS boils down to a structured-only form. Here, we
will adapt the SWTLS approach to recover the graph signal of
interest. Specifically, Definition 1 will be used to capture the
nonzero patterns of A in (1) and (2), when we know a priori
that the perturbations occur only on nominal edges. The weight
matrix on the other hand, will be employed to incorporate
possible prior information about link failure probabilities and
the variance of observation error variances (see Sec. IV-A).

III. TOPOLOGY ID WITH SIGNAL PERTURBATIONS

Outliers and defects in the measuring process lead to
perturbed nodal signals. Such perturbation may affect the
topology ID performance. Let us rewrite the observation
matrix Y in (2) as Z− E, where E is a perturbation matrix.
Given Z and BX, the aim is to find the adjacency matrix A
from the “measurement-perturbed” SEM

Z−E = A(Z−E) + BX. (4)

The presence of the perturbation that appears in both sides
justifies a formulation inspired by TLS method recalled in (3),
with the difference that in our model the perturbation of the
input and output matrix is exactly the same, i.e. E ∈ RN×T . In
most real-world networks, such as social, transportation, and
biological networks, the nodes exhibit a few interconnections
and the corresponding adjacency matrix is sparse [5], [26].
Thus, accounting for the latter through a sparsity-promoting
regularization term, we formulate a regularized TLS-based

approach for “measurement-perturbed” SEM (4) (TLS-SEM)
given by

{Â, Ê} = arg min
A,E
‖E‖2F + λ ‖A‖1 (5a)

s.to Z =A(Z−E) + BX + E (5b)
aii =0, i = 1, . . . , N (5c)

where λ > 0 is the regularization parameter, and constraint
(5c) enforces the absence of self-loops in A. Clearly, the opti-
mization problem in (5) is nonconvex. The ensuing subsections
will develop two solvers with complementary merits.

A. Bisection-based ε-optimal algorithm

In this subsection, we will first recast (5) into a fractional
form that can be solved using a bisection-based (BB) iteration,
which is convergent to an ε-optimal solution in a finite number
of iterations, even though (5) is nonconvex [8]. The following
lemma shows how to reformulate (5) in a fractional form.

Lemma 1. With Φ := Z−BX, and ϕ>i denoting its i-th row,
the TLS problem in (5) is equivalent to the fractional problem

Â = arg min
{a−i}Ni=1

N∑
i=1

[∥∥ϕi − (Z−i)
>a−i

∥∥2

2

1 +N ‖a−i‖22
+ λ ‖a−i‖1

]
(6)

where a>−i is the i-th row of A without the i-th entry, and Z−i
the (N − 1)× T submatrix of Z after removing its i-th row.

Proof. Clearly, (5) can be rewritten as

arg min
{ai,εi}Ni=1

N∑
i=1

( 1

N

∥∥∥[E>,
√
Nεi]

∥∥∥2

F
+ λ ‖ai‖1

)
(7a)

s. to zi = (Z> −E>)ai + biixi + εi , ∀i (7b)
aii = 0, ∀i (7c)

where a>i , z>i , x>i , ε>i are the i-th rows of A, Z, X, E,
respectively, and bii is the i-th diagonal entry of B. Thus, the
constraint (7b) becomes

ϕi = (Z> −E>)ai + εi . (8)

Next, with vi := vec([E>,
√
Nεi]), we have

∥∥∥[E>,
√
Nεi]

∥∥∥2

F

= ‖vi‖22; and upon defining G(ai) := ([−a>i ,
1√
N

] ⊗ IT ),
constraint (7b) is re-expressed as

ϕi − Z>ai = G(ai)vi, ∀i. (9)

Note that, with A fixed, (7) becomes minvi ‖vi‖
2
2 subject to

(9), which admits a closed-form solution

vi = G>(ai)[G(ai)G
>(ai)]

−1(ϕi − Z>ai)

= (‖ai‖22 +
1

N
)−1G>(ai)(ϕi − Z>ai) (10)

where the second equality holds because G(ai)G
>(ai) =

([−a>i ,
1√
N

] ⊗ IT )([−a>i ,
1√
N

]> ⊗ IT ) = (‖ai‖22 + 1
N )IT .

Substituting (10) into (7a), and incorporating the constraint
(7c), yields (6).
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The fractional problem (6) is separable across rows of A as

â−i = arg min
a−i

∥∥ϕi − (Z−i)
>a−i

∥∥2

2

1 +N ‖a−i‖22
+ λ ‖a−i‖1 (11)

which can be viewed as a Lagrangian function. Considering
the solution â−i for a given multiplier λ > 0 and letting µ :=
‖â−i‖1, (11) is equivalent to

â−i = arg min
a−i∈χ(µ)

f(a−i)

f(a−i) :=

∥∥ϕi − (Z−i)
>a−i

∥∥2

2

1 +N ‖a−i‖22
(12)

where χ(µ) := {a−i ∈ R(N−1) : ‖a−i‖1 ≤ µ}, and the
relationship between µ and λ is data dependent.

The fractional problem (6) remains nonconvex, and will
be solved using an iterative solver. The solver consists of an
outer loop based on bisection [21], and an inner loop using
the branch-and-bound method [2]. In the i-th iteration, the
outer loop confines the minimum cost in (12) between a lower
and an upper bound. These bounds are obtained through the
inner iteration, where a surrogate quadratic function is min-
imized. The surrogate quadratic function has non-fractional
form, whose optimization is more convenient than directly
optimizing f(a−i). Specifically, with q denoting a given upper
bound of the cost in (12), we have

0 ≤ q∗ := min
a−i∈χ(µ)

f(a−i) ≤ q. (13)

Then, we define

g∗(q) := min
a−i∈χ(µ)

g(a−i, q) (14)

with g(a−i, q) := ‖ϕi − (Z−i)
>a−i‖22 − q

(
1 + N ‖a−i‖22

)
.

Due to (13) and (14), it holds that

g∗(q) ≤ 0. (15)

Let q∗ belong to a known interval Ii := [li, ui] after the i-
th outer iteration. Such an interval decreases at every step
of the outer loop, and li, ui are chosen depending on the
sign of g(a−i, q) (cf. Alg. 1). In particular, suppose that g∗(q)
is obtained at the middle point of Ii, namely qm = (ui +
li)/2. The sign of g(qm) indicates whether (13) holds or not.
If g(qm) > 0, then we deduce from (13) that q∗ > qm > li,
and q∗ ∈ Ii+1 := [qm, ui]. On the other hand, g(qm) < 0
implies q∗ ∈ Ii+1 := [li, qm]. In both cases, the interval at
iteration i+ 1 shrinks through bisection.

Note that, the Hessian of g(a−i, q) is H := 2(Z−i(Z−i)
>−

qNI), and since qN is positive, H is not guaranteed to be
positive or negative definite. Thus, g(a−i, q) is an indefinite
quadratic.

The inner loop employs a branch-and-bound algorithm to
find a feasible and δ-optimal solution a∗δ,i of (14), such that
g∗(q) ≤ g(a∗δ,i, q) ≤ g∗(q) + δ, where δ denotes a specified
margin. The branch-and-bound scheme, summarized in Alg.
2, searches for the upper and lower bounds of the function

gbox(a−i) = min
a−i∈χ(µ),aL≤a−i≤aU

g(a−i, q) (16)

Algorithm 1 Bisection-based (BB) scheme

Input : Φ, Z, ε, and δ
Output: A∗ε,i (ε-optimal solution)

1 for i = 1, . . . , N do
2 Set l0 = 0, u0 = ‖ϕi‖

2
2, iteration index j = 0,

achievable cost fm = u0, and (a∗ε,i)
> = 0 be the

i-th row of A∗ε,i
while uj − lj > ε do

3 Let q =
uj+lj

2
Call Algorithm 2 and obtain a∗δ,i
fg = f(a∗δ,i) and j = j + 1
fm = fg and a∗ε,i = a∗δ,i if fg < fm
Upper and lower bounds updates:
uj = q, lj = lj−1 if g(a∗δ,i, q) ≤ 0
lj = q, uj = uj−1 if g(a∗δ,i, q)l ≥ δ
lj = q − δ, uj = uj−1 if 0 < g(a∗δ,i, q) < δ
Set uj = min(uj , fg)

4 end
5 end

where the constraint aL ≤ a−i ≤ aU represents a box that
shrinks as iterations progress. The upper bound U of gbox(a−i)
can be obtained by a sub-optimal yet efficient solver for (16),
see e.g., [9], [55]. While the lower bound L of gbox(a−i) can
be found by minimizing its convex approximation

gL(a−i, q) = g(a−i, q) + (a−i − aL)>D(a−i − aU ) (17)

where D is a diagonal positive semi-definite matrix chosen
to ensure the convexity of gL(a−i, q), as the solution of the
following semi-definite program

min
D

(aU − aL)>D(aU − aL) (18a)

s. to H + 2D � 0 (18b)

where (18b) assures (18) to be convex. At each iteration of the
inner loop, the initial box constraint of (16) is split depending
on how U − L compares with the preselected δ. This splitting
process leads to a smaller U and a tighter L. The detailed
inner loop is listed in Alg. 2.

In summary, Alg. 2 is called by Alg. 1 to find the δ-optimal
solution and evaluate the sign of g∗(q). However, since a∗δ,i is
δ-optimal, meaning g∗(q) > g(a∗δ,i, q)−δ, if g(a∗δ,i, q) > δ, we
set the lower bound li+1 to qm; otherwise, if 0 < g(a∗δ,i, q) < δ
we set li+1 = qm−δ. As far as convergence is concerned, the
following can be established.

Proposition 1. After at most
⌈
ln(
‖ϕi‖

2
2

ε−2δ )/ ln(2)
⌉

iterations,
with ε > 2δ, an ε-optimal solution a∗ε,i to (13) is reached,
satisfying

a∗ε,i ∈ χ(µ), and q∗ ≤ f(a∗ε,i) ≤ q∗+ε, i = 1, . . . , N. (19)

Proof. See [58].

This proposition quantifies the number of outer iterations
needed by Algorithm 1 to achieve the ε-optimal solution.
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Algorithm 2 Branch-and-Bound scheme

Input : ψi, Zi, q, and δ.
Output: a∗δ,i (δ-optimal solution)

1 Initialize aL,aU , U=∞, L=−∞, and K = {aL,aU , L}
while K 6= ∅ do

2 Solve (16) to obtain â∗−i
if g(â∗−i, q) < U then

3 U = g(â∗−i, q) and a∗δ,i = â∗−i
4 end
5 Find D via (18), and find ǎ∗−i and L = gL(ǎ∗−i)

minimizing (17).
if U − L > δ {split} then

6 Find k = maxn([aU ]n − [aL]n)
Set aL,1 = aL(aU,1 = aU ) and aL,2 = aL(aU,2 =
aU ) except the k-th entry:
[aL,1]k = [aL]k and [aU,1]k = [aU ]k+[aL]k

2

[aU,2]k = [aU ]k and [aL,2]k = [aU ]k+[aL]k
2 .

Compute D1, D2 and L1, L2 for each new boxes
and K = (aL,1,aU,1, L1) ∪ (aL,2,aU,2, L2)
Compare L1 and L2 with U :
K = K \ (aL,1,aU,1, L1), if L1 > U
K = K \ (aL,2,aU,2, L2) , if L2 > U
K = K\ (aL,m,aU,m, Lm), m = arg min(Lm), o.w.

7 else
8 K = K \ (aL,aU , L)
9 end

10 end

B. Alternating descent algorithm

The bisection-based solver developed in the previous sub-
section can approach the global optimum of the fractional
TLS, but it is computationally demanding. This prompts
the efficient alternative we introduce next with guaranteed
convergence at least to a stationary point. We reformulate
(5), substituting (5b) into (5a), and we add ‖E‖2F to the cost
function to constraint the error norm to be small, obtaining

{Â, Ê} = arg min
A,E
‖E‖2F + ‖Z−A(Z−E)−BX‖2F

+ λ ‖A‖1 (20a)
s. to aii = 0, i = 1, . . . , N. (20b)

Note that the minimization of (20) does not guarantee that
(5b) is still satisfied. Problem (20) is convex with respect to
(wrt) each block (matrix) variable A and E. This motivates an
alternating descent iteration to find a sub-optimal yet efficient
solution. At iteration k + 1, given Â[k], the error matrix can
be estimated as

Ê[k+1] = arg min
E
‖Z−Â[k](Z−E)−BX‖2F +‖E‖2F (21)

which admits the closed-form solution

Ê[k + 1] = (Â>[k]Â[k] + IN )−1Â>[k](Â[k]Z + BX− Z).
(22)

Likewise, given Ê[k + 1], the adjacency matrix is updated as

Â[k+1] = arg min
A
‖Z−A(Z− Ê[k+1])−BX‖2F +λ ‖A‖1

(23)
which is strongly convex and can be solved via proximal
gradient iterations reaching the global optimum. The derivation
of the algorithm is omitted here, see [5] for details.

As far as computations, the operation in (22) incurs com-
plexity O(N2T ), when N ≤ T , while in the worst case
the minimum of (23) can be reached in O(1/ε) iterations;
or, O(1/

√
ε) using fast iterative shrinkage-thresholding algo-

rithms, where ε is the precision of the solution, and each row of
A can be updated in parallel; see [5]. Specifically, the proximal
gradient algorithms entail matrix-vector multiplication and
soft thresholding operations per row of A. If the number
of iterations needed for the proximal gradient algorithm to
converge is relatively smaller than N (as we observed in
our numerical tests), these operations are negligible when
compared to O(N2T ) of (22).

In addition, if B is also unknown, it can be treated as
a variable and estimated along with the rest. In this case,
problem (20) is still per-block convex, and B can be readily
found as in [5]. Under regularity conditions the alternating
minimization method is guaranteed to converge at least to a
stationary point, as asserted in the following proposition.

Proposition 2. The iterates in (22) and (23) converge mono-
tonically at least to a stationary point of problem (20).

Proof. See [53].

C. Topology ID with sparse signal perturbations

So far we have seen perturbations affecting all nodal mea-
surements. In a number of settings, however, only a small
subset of nodes can be influenced. For instance, in a heteroge-
neous network, some devices, e.g. sensors, may be less reliable
than others. In this case, sparsity of the signal perturbations
is well motivated. Introducing a sparse regularizer yields the
sparse TLS (sparseTLS) SEM

{Â, Ê} = arg min
A,E
‖Z−A(Z−E)−BX‖2F

+ λE ‖E‖1 + λA ‖A‖1 (24a)
s. to aii = 0, i = 1, . . . , N (24b)

where λA > 0 and λE > 0 are sparsity promoting scalars.
In certain applications such as sensor networks, we may

even know which nodes are the more sensitive or vulnerable,
which prompts us to leverage additional structure, namely the
nonzero pattern of the error matrix. Hence, we write E as

E =

NE∑
e=1

υe(ne · t>e ) (25)

where υ := [υ1, . . . ,υNE
]> is the collection of the nonzero

values of vec(E>); the N × 1 vector ne has all zero entries
except one that equals unity in the node affected by the e-th
error value; and, te is the T ×1 vector of all zeros except one
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that equals unity in the observation instant of the e-th error
value. The structured error (s)TLS-SEM is then formulated as

{Â, υ̂} = arg min
A,υ
‖Z−A(Z−

NE∑
e=1

υe(ne · t>e ))−BX‖2F

+ λE ‖υ‖22 + λA ‖A‖1
s. to aii = 0, ∀i (26)

where λE > 0 and λA > 0. The sTLS-SEM problem
is still per-block convex, but can be solved by alternating
minimization, as in the previous subsection.

IV. SIGNAL INFERENCE WITH TOPOLOGY PERTURBATIONS

Besides topology ID, another problem that oftentimes arises
in graph-related applications is graph signal inference. In
many cases, signals over all the nodes may not be available,
due to, e.g., energy-saving or privacy reasons. Hence, it is
necessary to reconstruct the signal over the unobserved nodes,
given the graph topologies. However, such topologies may
be perturbed, due to, e.g., link outages, in communication or
power networks. This motivates the goal of this section to
recover Y, given a possibly perturbed adjacency matrix and
the signal observed over a subset of nodes, indexed by St at
each instant t. The observation model can then be written as

ψt = DSt(yt + εt) , t = 1, . . . , T (27)

where DSt := diag(d
(t)
11 , . . . , d

(t)
NN ), and d

(t)
ii = 1 if i ∈ St,

and zero otherwise; εt ∈ RN denotes the observation error;
and, ψt ∈ RN represents the observation at time t, with
|St| := M < N nonzero entries. For simplicity in exposition,
M is considered fixed over time, but it can be generalized as
time-varying.

With A0 denoting the given nominal adjacency matrix, and
∆ ∈ RN×N the topology perturbation matrix, the linear SEM
in (2) becomes

Y = (A0 −∆)Y + BX (28)

where A0 −∆ is the perturbed adjacency matrix. As in the
previous section, we consider BX given, e.g. acquired from
historical data or BX = 0 when X is not present, since the
focus of the present section is to identify ∆ and {yt}Tt=1.
Resorting to TLS to account for topology perturbations, the
topology perturbation aware TLS-SEM can be written as (cf.
(27) and (28))

{∆̂, Ŷ} = arg min
∆,Y

λ1‖∆‖1 + λ2

T∑
t=1

‖ψt −DStyt‖22

+ ‖Y − (A0 −∆)Y −BX‖2F (29a)
s.to [∆]ii = 0, i = 1, . . . , N (29b)

where the `1-norm promotes sparsity of the perturbed links.
In addition to sparsity, it has been shown that the elastic
net regularizer [59] leads to improved recovery when the
network weights are highly correlated [52]. Motivated by this,

the elastic norm regularized TLS (elTLS) approach to signal
recovery yields

{∆̂, Ŷ} = arg min
∆,Y

T∑
t=1

‖ψt −DStyt‖
2
2 + λ1∆ ‖∆‖1

+ λ2∆ ‖∆‖2F + λY ‖Y − (A0 −∆)Y −BX‖2F
s. to [∆]ii = 0, i = 1, . . . , N (30)

where λ1∆ > 0, λ2∆ > 0, and λY > 0.
The costs in (29) and (30) are both per-block convex, and

can be solved iteratively via alternating minimization with
guaranteed convergence to at least a stationary point, as argued
in Proposition 2.

A. Structured and weighted TLS under topology perturbations

In this subsection, we exploit the structure of the nominal
adjacency matrix along with prior information on the perturba-
tions. The goal here is to formulate a structured and weighted
TLS problem (cf. Sec. II-B) for the signal inference task under
topology perturbations. Denoting with L the number of links
of the nominal graph and ω := [ω1, . . . , ωL]> the vector
collecting the nonzero edge weights, the nominal adjacency
matrix can be represented as (cf. Definition 1)

A0 = SSS (ω) :=
L∑
l=1

ωl(sul
s>vl) (31)

where (ul, vl) are the incident nodes of link l, and si the N×1
i-th canonical vector. The structure SSS (ω) accounts for the L
nonzero entries of A0. Assuming that perturbations occur only
on the existing links, it will also allow us to reduce the number
of unknown perturbations from N2 to L.

According to Sec. II-B and (31), we will parameterize A0

using ω, and correspondingly ∆ via ν := [ν1, . . . , νL]>,
whose nonzero entries represent a failure or error in the edge
weight. Thus, the perturbed adjacency matrix is given by

A0 −∆ = SSS (ω − ν) :=
L∑
l=1

(ωl − νl)(sul
s>vl). (32)

In some cases, extra information such as the link failure prob-
abilities {πl}Ll=1 and the observation noise variance {σ2

i }Ni=1

can be available across nodes. Such prior information can be
collected after observing the network over time and recording
the occurrence of failures, as well as the statistics of the
measurement errors.

Let WA := diag(r(π1) . . . r(πL)) denote the topology reli-
ability weight matrix, where r(πl) is a known function of πl,
e.g. r(πl) = π−1

l , and likewise WΨ := [diag(σ2
1 . . . σ

2
N )]−1

for the measurement errors. In order to use an SWTLS cost
(cf. Sec. II-B), we replace the first two terms in (29a) with
the weighted `1-norm of the topology error vector ‖WAν‖1,
and the sum of the weighted `2-norm of the observation
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errors
∑T
t=1 ‖ψt −DStyt‖

2
WΨ

. Combining with (32), the
regularized SWTLS-based SEMs can be written as

{ν̂, Ŷ} = arg min
ν,Y

λ1 ‖WAν‖1 + λ2

T∑
t=1

‖ψt −DStyt‖
2
WΨ

+ ‖Y −
L∑
l=1

(ωl − νl)(sul
s>vl)Y −BX‖2F (33)

which can be solved via alternating minimization. Given ν̂[k]
from iteration k, and exploiting the separability across columns
of Y, the graph signal at k + 1 is reconstructed per slot t as

ŷt[k + 1] = arg min
yt

λ2 ‖ψt −DStyt‖
2
WΨ

(34)

+ ‖yt −
L∑
l=1

(ωl − ν̂l[k])yvl,tsul
−Bxt‖22

where s>vlyt = yvl,t because svl is a canonical vector.
The minimization in (34) leads to the closed-form update

ŷt[k + 1] =(C>[k]C[k] + λ2D
>
StWΨDSt)

−1(C>[k]Bxt

+ λ2D
>
StWΨψt) , t = 1, . . . , T (35)

with C[k] := (IN −
∑L
l=1(ωl − ν̂l[k])sul

s>vl).
Given Ŷ[k+1] = [ŷ1[k+1], . . . , ŷT [k+1]], we can exploit

in (33) the separability across rows of Y. Let Ln denote the
number of neighbors of node n, and ωn := [ω

(n)
1 , . . . , ω

(n)
Ln

]>

and νn := [ν
(n)
1 , . . . , ν

(n)
Ln

]> the vectors collecting edge and
error weights in the neighborhood of n. Similarly, let the
diagonal matrix Wn

A be the n-th block of the block diagonal
matrix WA. With γ>n and x>n representing the n-th row of Y
and X, respectively, ν̂n[k + 1] can be updated as

ν̂n[k + 1] = arg min
νn

λ1 ‖Wn
Aνn‖1 (36)

+ ‖γ̂n[k + 1]− (Ŷn[k + 1])>(ωn − νn)− bnnxn‖22

where Yn is a submatrix of Y formed by the rows correspond-
ing to the neighboring nodes of n in the nominal topology.
Sub-problem (36) is again convex, but not differentiable,
which suggests an iterative proximal gradient solver.

The complexity of (35) is O(N3), and estimation can be
parallelized across yt for t = 1, . . . , T . In the worst case,
the minimum of (36) can be reached in O(1/ε) iterations,
or O(1/

√
ε) using fast iterative shrinkage-thresholding algo-

rithms [5], where ε is the precision of the solution. In addition,
all {νn} can be computed in parallel. Such proximal gradient
solvers entail matrix-vector multiplication and soft threshold-
ing operations, the complexity of which can be negligible
relative to O(N3), when {Ln} are much smaller than N .

B. Identifiability of topology perturbations

In this subsection, we investigate conditions that ensure
uniqueness in identifying the perturbation vector ν in the
noise-free2 structured topology perturbation model in Sec.

2Absence of noise (εt ≡ 0 ∀t) is typically assumed in identifiability
studies, in order to isolate (non) uniqueness issues from estimation errors.

IV-A (cf. (28) and (32)). To this end, consider the n-th row
of the N × T matrix Y in (28), which can be expressed as

y>n = (a>n − δ
>
n )Y + bnnx>n (37)

with a>n and δ>n likewise denoting the nth rows of A0 and ∆,
respectively. With Ln being the number of neighbors of node
n, we define the 1 × Ln vector ω>n formed after removing
the zero entries of a>n per node n; and similarly the 1 × Ln
vector ν>n after removing the corresponding entries of δ>n .
Using these definitions, (37) can be simplified to

y>n = (ω>n − ν>n )Yn + bnnx>n (38)

where Yn is an Ln × T submatrix obtained after removing
the rows of Y corresponding to the zero entries of a>n .

To take into account the number of samples Tn per node n,
we further introduce the Tn × T matrix Dn obtained after
removing the all-zero rows of the T × T diagonal matrix
diag{d(1)

nn . . . d
(T )
nn }, where d(t)

nn = 1 if node is sampled at slot
t, and d(t)

nn = 0 otherwise. Multiplying Dn from the right with
a matrix, selects Tn (out of T ) rows corresponding to the time-
slot indices that node n is sampled. We rely on Dn to form
the Tn × 1 vector φn := Dnyn, which after employing the
transposed version of (38) can be expressed as

φn = Dn[Y>n (ωn − νn) + bnnxn] . (39)

Motivated by the fact that e.g., adversaries can compromise
only a few links per node n, it is reasonable to explore
identifiability conditions when the sought perturbation vector
νn is sparse with pn (< Ln) nonzero entries.

Arguing by contradiction to establish that νn can be
uniquely identified from (39), we will suppose that there exists
another Ln × 1 vector ξn 6= νn with pn nonzero entries
satisfying φn = Dn[Y>n (ωn− ξn) + bnnxn]. Subtracting the
latter from (39), yields

0 = DnY>n (νn − ξn) . (40)

Clearly, the difference νn − ξn of the two pn-sparse vectors
νn and ξn, has at most 2pn nonzero entries; and with pmax :=
maxn=1,...,N pn, we have that the differences {νn−ξn} across
all nodes can have at most 2pmax nonzero entries.

To proceed with specifying identifiability conditions of our
sparse vector differences, we will need the following definition
of the Kruskal rank of a matrix.
Definition 2 [38]. The Kruskal rank of a matrix M, denoted
as kr(M), is defined as the maximum number ρ such that
any combination of ρ columns of M constitutes a full-rank
submatrix.

Since the 2pmax nonzero entries of νn − ξn can occur in
any subset of this vector difference, we deduce that having
kr(DnY>n ) ≥ 2pmax, guarantees that any 2pmax columns of
DnY>n submatrix will be full rank. Under this condition, we
find from (40) that νn = ξn, which leads to contradiction.
Summarizing, we have established the following result.

Proposition 3. If kr(DnY>n ) ≥ 2maxnpn, the pn-sparse per-
turbation vector νn is identifiable from (39), for n = 1, . . . , N .

Intuitively, Proposition 3 asserts that sparsity in the pertur-
bation renders the bound on the Kruskal rank easier to satisfy,
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and thus ensure identifiability. As a word of caution, it is
worth mentioning that finding the Kruskal rank of a matrix is
combinatorially complex in its dimensions [38]. In addition,
this condition may be impossible to check because matrix
DnY>n is not always observed in practice.

V. NUMERICAL TESTS

In this section, we present several synthetic and real data
tests for the novel TLS-based algorithms, both for topology
ID under signal perturbations, and graph signal inference un-
der topology perturbations. The regularization parameters are
selected by grid search cross-validation for all the algorithms.

A. Synthetic tests for topology ID under signal perturbations

1) Bisection-based versus alternating descent iterations:
For this test, the adjacency matrix A(0) is simulated as a
6 × 6 matrix of binary 0 -1 entries with 2 nonzero entries
per row, and Z = Y + E, with [E]ij ∼ N (0, 10−2), while
the observation Y = (IN −A(0))−1BX, with B = IN and
[X]ij ∼ U [0, 1.5]. Alg. 1 is tested with µ = 5, aL = 0, and
aU = 1.

Fig. 1 shows the performance reached by the alternating de-
scent (AD) iterations in (22) and (23), the conventional least-
squares (LS) SEM [5], [11], and the BB iterations (Subsection
III-A), all in terms of MSEA =

∑
ij(âij − aij)

2/N2, for
different values of ε. The ε-optimal BB solver improves as ε
decreases, while the solutions of the AD and LS-SEM schemes
do not depend on ε, and hence are constant ∀ε. For ε <
10−2, both perturbation-aware methods outperform the LS-
SEM method. Note that the BB method slightly outperforms
the AD one. However, the BB algorithm is computationally
demanding.

Fig. 2 depicts the runtime of the three competing algorithms
in seconds,3 when ε = 10−3, and for N = 4, 6, and 9. The
figure demonstrates that the AD method is computationally
more efficient than the BB scheme. For this reason, the
following tests will include only the AD iteration, which will
be henceforth abbreviated as TLS-SEM.

2) Topology ID under signal perturbations: Here, we test
the performance of the AD solver (20) for simulated data,
and compare it with LS-SEM. We generated a Kronecker
graph with N = 64 as in [40], and B = IN was as-
sumed given. We generated random matrices with uniformly
distributed entries [X]it ∼ U [0, 1.5], and Gaussian dis-
tributed entries [E]it ∼ N (0, σ2

E). Matrices Y and Z were
then constructed according to (2) and (4), with T = 120,
while λ was selected via cross-validation. Fig. 3 shows the
MSEA performance of LS-SEM and TLS-SEM for different
SNR(dB):= 10 log10(‖ȳ‖22 /(Nσ2

E)) and ȳ = 1
T

∑T
t=1 yt. It

can be observed that TLS-SEM outperforms LS-SEM. Fig.
4 shows the performance versus different number of samples
T , with fixed σE = 0.2. Evidently, TLS-SEM outperforms
LS-SEM even when the number of observations is small.

3This experiment was run on a machine with i5-6200U @2.30 GHz CPU,
and 8GB of RAM.

10−410−310−210−1100

10−2

10−1

ε

M
SE

A

LS-SEM AD alg. BB alg.

Figure 1: MSEA across ε, obtained by the ε-optimal algorithm. This
result is compared with the LS-SEM, and with the AD
(TLS-SEM) iteration.
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Figure 2: Runtime in seconds.

3) Sparse signal perturbation: In this experiment, we tested
the performance of sparse TLS in (24) and (26). We generated
an adjacency matrix as a Kronecker graph of size 64 × 64
with binary entries. Entries of X were generated as uniform
i.i.d. random variables, that is [X]ij ∼ U [0, 1.5], and B = IN .
Furthermore, we set Z = Y−E, where Y = (IN−A)−1BX,
and the sparse E was generated such that E has zero entries
on N0 = N −8 selected rows, while the nonzero entries were
drawn from a uniform distribution over [0, 0.3].

Fig. 5 shows the performance of LS-SEM, TLS-SEM in
(20), sparseTLS in (24) and sTLS-SEM in (26), in terms of
MSEA for different T . The TLS-SEM methods outperform
LS-SEM, and the performance gain increases as more data
samples are collected. Results of this subsection were averaged
over 100 realizations of X and E.

B. Real data tests for topology ID with signal perturbations

In this subsection, we present experiments on gene expres-
sion data to identify the underlying gene regulatory network.
The data were collected from RNA sequencing of cell sam-
ples derived from 69 unrelated Nigerian individuals, exten-
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Figure 3: MSEA versus SNR.
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sively genotyped by the International HapMap project [22].
From the 929 identified genes, expression levels and the
genotypes of the expression quantitative trait loci (eQTLs)
of 39 immune-related genes were selected and normalized;
see [11] and [46] for further details. Genotypes of eQTLs were
adopted as known exogenous inputs X, and gene expression
levels were treated as the endogenous variables Y. The
underlying network as well as the matrix B, were inferred
by adopting TLS-SEM, sparseTLS, and LS-SEM methods.

Fig. 6 depicts the fitting loss divided by the norm of
the data Z, as ‖Z−AZ−BX‖2F /‖Z‖2F for LS-SEM, and
‖Z−A(Z−E)−BX‖2F /‖Z‖2F for TLS-SEM. For all val-
ues of λA, i.e. the regularization parameter promoting the ad-
jacency sparsity, TLS-SEM and sparseTLS-SEM outperform
the LS-SEM, which implies that the inferred matrix A fits
the model better when the signal perturbations are taken into

80 90 100 110 120
0.5

1

1.5

2

2.5
·10−3

T

M
SE

A

LS-SEM sparseTLS-SEM
TLS-SEM sTLS-SEM

Figure 5: MSEA as a function of T .
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Figure 6: Loss function vs. λA for Gene regulatory network.

account. When λA reaches very large values, all approaches
perform similarly since the regularization term λA ‖A‖1 pre-
vails on all the other terms of the cost functions and Â
becomes an all zero matrix. Furthermore, Fig. 7 illustrates the
performance in terms of fitting error ‖Y−AY−BX‖2F , with
Y =Z−E for TLS-SEM and sparseTLS, and Y =Z for LS-
SEM across values of λA. Again, TLS-SEM and sparseTLS-
SEM outperform LS-SEM.

C. Signal inference under topology perturbations

We further tested the performance of the TLS algorithms
in Sec. IV, and compared them with the conventional LS-
SEM based signal recovery algorithm that does not account
for topology perturbations. In this setting, the topology is per-
turbed and the goal is to identify Y from a subset of observa-
tions. A Kronecker graph with N=27 is generated as before.
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Figure 7: Fitting norm vs. λA for Gene regulatory network.

With T = 50 and B = IN , the entries are again randomly
drawn as [X]ij ∼ U [0, 3] and εit ∼ N (0, σ2

i ). Furthermore,
we model the perturbation ∆ as Bernoulli(πl) × [A]ij , with
l := (vi, vj), which means that perturbations occur when one
or more weighted links fail. In particular, π1 = π2 = 0.9, and
πl ∈ [0.001, 0.02], l = 3, . . . , L, and we choose r(πl) = 1

πl
.

Matrices Y and Ψ are then constructed according to (28) and
(27), while λ1 and λ2 are selected via cross validation. Fig.
8 depicts the performance of LS-SEM, TLS-SEM, structured
TLS under topology perturbations (STLS-SEM), and SWTLS-
SEM in terms of normalized mean-square error

NMSE =
‖Ŷ −Y‖2F
‖Y‖2F

. (41)

The results are obtained by averaging over 1000 Monte
Carlo realizations of X,E,∆, and DS . Fig. 8 shows the
performance as a function of the number of sampled nodes
M . Clearly, estimation performance improves as extra prior
information is accounted for.

Figure 9 depicts the runtime (in seconds) of the topology
perturbation aware TLS-SEM and SWTLS-SEM versus N ,
with M = d(2/3)Ne. Each A is generated as Kronecker
graph adjacency matrix of size N . As expected, the runtime
increases with the number of nodes. However, the proposed
TLS-SEM and SWTLS-SEM solvers are amenable to parallel
implementation that would considerably reduce the runtime.

D. Real tests for signal inference with topology perturbations

Finally, we test the proposed elTLS-based method in (30)
to infer the signal given a subset of noisy observations and a
perturbed graph topology.

The real data consists of path delay measurements on the
Internet2 backbone [1]. The network has 9 nodes and 26
directed links. The delays are available for N = 70 paths per
minute. Set {ynt} contains a subset of delays in milliseconds
per path n and minute slot t. The known topologies are
obtained based on the following three possible models.
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Figure 8: NMSE versus M .
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Figure 9: Runtime in seconds versus N .

M1. Here the paths connect origin-destination nodes by a
series of links described by the path-link routing matrix
Π ∈ {0, 1}N×26, whose (n, l) entry is Πn,l = 1 if path n
traverses link l, and 0 otherwise. A graph is constructed with
each vertex corresponding to one of these paths, and with the
time-invariant adjacency matrix A ∈ RN×N given by

An,n′ =

∑26
l=1 Πn,lΠn′,l∑26

l=1 Πn,l +
∑26
l=1 Πn′,l −

∑26
l=1 Πn,lΠn′,l

(42)

for n, n′ = 1, . . . , N and n 6= n′. The edge weight model
in (42) assigns greater weights to edges connecting vertices
whose associated paths share more links. This is reasonable
because paths with common links usually experience similar
delays [16].
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Figure 10: NMSE versus M , with A obtained via M1 and T = 100.
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Figure 11: NMSE versus T , with A obtained via M2, SNR= 30 dB.
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Figure 12: NMSE versus T , with A obtained M3 and M = 50.

M2. For the second topology, a training phase is introduced
based on a subset of the signal observations, collected in the
matrix Ytrain, to estimate the adjacency as the solution of

min
A
‖Ytrain −AYtrain‖2F (43)

s. to aii = 0, i = 1, . . . , N

where Ytrain ∈ RN×Ttrain , with Ttrain = 20.
M3. The third topology is found as in (43), but the signals
used for training are contaminated by noise, that is, Ȳtrain :=
Ytrain + Ξ, with [Ξ]ij ∼ N (0, σ2

ξ ); while σ2
ξ is chosen such

that 10 log10(‖ȳtrain‖2F /(Nσ2
ξ )) = −8 dB, where ȳtrain ∈

RN is the average of the columns of Ytrain. Solving problem
(43) with Ȳtrain instead of Ytrain gives rise to an alternative
topology with an inherent model mismatch. The observation
error in (27) is generated using εt ∼ N (0, σ2

εI), ∀t.
Fig. 10 illustrates the NMSE versus the number of sampled

nodes M when the topology is obtained from M1. It shows that
the novel perturbation-aware elTLS-SEM outperforms the LS-
SEM signal recovery approach by accounting for the possible
model mismatch.

Figs. 11 and 12 illustrate the NMSE versus number of
observations T with adjacency matrices obtained via M2 and
M3, respectively. Once again, perturbation-aware elTLS-SEM
outperforms LS-SEM signal recovery method. The perfor-
mance gain of elTLS-SEM in Fig. 11 is less evident than that
in Figures 10 and 12 because the adjacency matrix is obtained
exactly following the SEM. Results are averaged over 100
realizations.

VI. CONCLUSIONS AND RESEARCH OUTLOOK

This contribution dealt with two challenging tasks over
graphs, namely topology ID under signal perturbations, and
signal inference under topology perturbation. To address the
associated challenges, a spectrum of approaches based on total
least-squares and structural equation models were developed.
In addition, structured and weighted variants of TLS-SEM
were introduced to flexibly account for extra prior information.
Numerical tests on both synthetic and real data demonstrated
the efficacy of the proposed algorithms.

Future research directions include distributed implementa-
tion of TLS-SEM to accommodate large-scale graphs, as well
as generalizations of perturbed SEMs to account for nonlinear
and dynamic inter-dependencies.
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