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Abstract—Joint analysis of data from multiple information repositories facilitates uncovering the underlying structure in heterogeneous

datasets. Single and coupled matrix-tensor factorization (CMTF) has been widely used in this context for imputation-based

recommendation from ratings, social network, and other user-item data. When this side information is in the form of item-item

correlation matrices or graphs, existing CMTF algorithms may fall short. Alleviating current limitations, we introduce a novel model

coined coupled graph-tensor factorization (CGTF) that judiciously accounts for graph-related side information. The CGTF model has

the potential to overcome practical challenges, such as missing slabs from the tensor and/or missing rows/columns from the correlation

matrices. A novel alternating direction method of multipliers (ADMM) is also developed that recovers the nonnegative factors of CGTF.

Our algorithm enjoys closed-form updates that result in reduced computational complexity and allow for convergence claims. A novel

direction is further explored by employing the interpretable factors to detect graph communities having the tensor as side information.

The resulting community detection approach is successful even when some links in the graphs are missing. Results with real data sets

corroborate the merits of the proposed methods relative to state-of-the-art competing factorization techniques in providing

recommendations and detecting communities.

Index Terms—Tensor-matrix factorization, tensor-graph imputation, graph data, recommender systems, community detection
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1 INTRODUCTION

MULTI-RELATIONAL data emerge in applications as
diverse as social networks, recommender systems,

biomedical imaging, computer vision and communica-
tion networks, and are typically modeled using high-
order tensors [3]. However, in many real settings only a
subset of the data is observed due to application-specific
restrictions. For example, in recommender systems rat-
ings of new users are missing; in social applications indi-
viduals may be reluctant to share personal information
due to privacy concerns; and brain data may contain
misses due to inadequate spatial resolution. In this con-
text, a task of paramount importance is to infer unavail-
able entries given the available data.

Inference of unavailable tensor data can certainly benefit
from side information that can be available in the form of
correlations, social interactions, or, biological relations, all
of which can be captured by a graph [4]. In recommender
systems for instance, one may benefit from available user-

user interactions over a social network to impute the miss-
ing ratings, and also extrapolate (that is predict) profitable
recommendations to new costumers.

In addition to graph-aided inference of tensor data, bene-
fits can be effected in the opposite direction through tensor
data employed to improve graph inference tasks, such as
community detection (CD). CD amounts to finding clusters
of vertices densely connectedwithin each cluster and scarcely
connected across clusters [5]. A major challenges emerges
herewhen some links in the graph aremissing due to privacy
or observation constraints. In a social network for example,
not all users will provide their social network connections.
Additional data organized in a tensor can be utilized to
improve CD performance and cope with the missing lnks of
the graph.

The present paper develops a novel approach to infer-
ence with incomplete data by jointly leveraging tensor fac-
torization and associated graphs.

1.1 Related Work

Matrix factorization (MF) techniques have been employed
for matrix completion with documented success in user-item
recommender systems [6]. MF-based techniques assume that
the ratings matrix is of low rank, and hence can be modeled
by a reduced number of factors. Although the two-relation
recommendation model has wide applicability, multi-rela-
tion data motivate the use of high-dimensional tensor mod-
els. Scalable algorithms for nonnegative tensor factorization
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(TF) have been pursued [7], but do not consider further struc-
ture on tensormodes or any other form of side information.

Side information in the formofmatrices sharing factorswith
a data tensor has been investigated in the so-termed coupled
matrix-tensor factorization (CMTF) [8], [9], [10]. Typically,
CMTF adopts a low-rank model for the tensor to recover the
missing entries. Misses in both the side information and the
tensor were handled in [8], [9], but not with the use of graph
adjacencymatrices. Using a Bayesian approach, inference rely-
ing on tensor factorization with low-rank covariance regulari-
zation, was reported in [11]. Albeit interesting, this approach
assumes that the similaritymatrices are fully observable,which
is not the case in several applications e.g., social networks.

1.2 Our Contributions

Alleviating the limitations of existing approaches, this paper
introduces a novel factorization model coined coupled graph
and tensor factorization (CGTF) to account for the graph
structure of side information. The CGTF factors are estimated
via a novel algorithm based on the alternating method of
multipliers (ADMM) to infer missing entries in both the
matrices and the tensor. The CGTF is subsequently explored
to detect communities in the partially observed coupled
graphs. Specifically, the contribution of this paper is fourfold.

C1. A novel model is introduced to link multiple reposi-
tories of information bearing data and their correla-
tions in the form of high-order tensors and graphs.
The proposed approach can overcome practical chal-
lenges, such as missing slabs from the tensor and/or
missing rows/columns from the correlation matrices
(graph links), known as the cold start problem.

C2. A novel ADMM algorithm is developed that features
convergence guarantees and low computational
complexity by using closed-form updates. Our accel-
erated ADMM solver leverages data sparsity [9] and
can easily incorporate other types of constraints on
the latent factors.

C3. The proposed approach is applied to recommender
systems andmarkedly improves the rating prediction
performance. The results in two real datasets corrobo-
rate that the novel method is successful in providing
accurate recommendations aswell as recoveringmiss-
ing links in graphs.

C4. Finally, the proposed coupled factorization approach
enables detection of communities on graphs by using
the recovered factors. Experiments testify to the abil-
ity of CGTF to exploit the tensor data for CD even
when graph links aremissing; e.g., cold start problem.

The novel contribution of this work concerning CD is in
the coupling between tensor and graph data. Nodes in the
recovered communities have similar graph connections and
tensor data. Different than traditional CD methods [12],
[13], [14], [15], [16], [17], [18] that find communities given
only the graph, our CGTF finds communities from the cou-
pled tensor and graph data and hence can be even applied
when graph links are missing.

The rest of this paper is organized as follows. Section 2
describes the model and the problem formulation. Section 3
introduces the novel algorithm, and Section 4 deals with the
application of CGTF to community detection. Section 5

demonstrates the effectiveness of the proposed approach in
real and synthetic data. Finally, Section 6 summarizes some
closing remarks.

Throughout, lower and upper boldface letters are used to
denote vectors and matrices, respectively. The tensors are
denoted by underlined upper case boldface symbols. For
any general matrix X, XT , X�1, TrðXÞ, and diagðXÞ denote
respectively the transpose, inverse, trace, and diagonal of
X. The Khatri-Rao and Hadamard products of two matrices
X and Y are denoted by X�Y and X �Y, respectively.
The operator vecð�Þ denotes the vectorization of ð�Þ.

2 COUPLED FACTORIZATION MODEL

Consider a tensor X of order N and size I1 � I2 � � � � � IN .
An entry of X is denoted by ½X�ði1;i2;...;iN Þ, where index in

refers to the nth mode of the tensor. The focus of this paper
is on tensors with positive entries that appear in diverse
applications such as recommender systems, finance, or biol-
ogy. The mode-kmatricization of X is denoted by the matrix
Xk, which arranges the mode-k one-dimensional fibers as
columns of the resulting matrix; see [3] for details.

Without loss of generality, consider 3-way tensors X 2
R

I1�I2�I3þ . In many real settings, tensors have low rank and
hence can be expressed via the well-known parallel factor
(PARAFAC) decomposition [3] thatmodels a rank-R tensor as

½X�ði1;i2;i3Þ ¼
XR
r¼1

½A1�ði1;rÞ½A2�ði2;rÞ½A3�ði3;rÞ þ ½E�ði1;i2;i3Þ;

where fAn 2 RIn�R
þ g3n¼1 represent the low-rank factor matri-

ces corresponding to the three modes of the tensor, and
E 2 RI1�I2�I3 captures model mismatch. The PARAFAC
model is written in tensor-matrix form as

X ¼ �½A1;A2;A3�
�þ E; (1)

where
�½A1;A2;A3�

�
is the outer product of these matrices

resulting in a tensor. Oftentimes, only a subset of entries of
X is observable due to application-specific constraints such
as privacy in social network applications; experimental

error in the data collection process; or missing ratings in rec-

ommender systems. Hence, we write X ¼ XA þ XM , where

XA contains the available tensor entries and otherwise is

zero and XM holds the missing values and zeros elsewhere.
The tensor entries are also related through a set of

per-mode graph adjacency or similarity matrices fGn 2
RIn�Inþ g3n¼1. The ði; i0Þth entry of Gn reflects the similarity
between the ith and i0th data items of the nth tensor mode
and thus, Gn captures the connectivity of the corresponding
mode-n graph. This prior information for the tensor entries
is well-motivated since network data are available across
numerous disciplines including sociology, biology, neurosci-
ence and engineering. In these domains, subsets of entries
(here graph nodes) form communities in the sense that they
exhibit dense intra-connections and sparse inter-connections,
which are captured by Gn. Such connections are common in
e.g., social networks [19], where friends tend to form dense
clusters. We will model this graph-induced side information
on tensor data using a symmetric nonnegative matrix
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factorization (SNMF)model [16],which can efficiently provide
identifiable factors and recover graph clusters. Specifically,
we advocate the following diagonally-scaled SNMF model

Gn ¼ An diag ðdnÞA>
n þVn; n ¼ 1; 2; 3; (2)

where fVn 2 RIn�Ingn capture modeling errors; fdn 2
RR�1

þ gn weight the factor matrices; and fAn 2 RIn�Rgn
denote factor matrices of rank R < In that readily reveal
communities in the graphs corresponding to fGngn [16],
[20]. Recovering the community of the ith node in the nth
graph is straightforward, by selecting the largest entry in the
ith row of An [16], [20]; see Fig. 1. Unfortunately, the topolo-
gies of fGng may contain missing entries, which can be
attributed to privacy concerns in social networks, or down-
sampling massive networks. Hence, the graph matrices are
modeled asGn ¼ GA

n þGM
n , whereGA

n contains the available
links andGM

n holds the unavailable ones.
The factors fAngn are shared among the tensor and the

graph of each corresponding item, which justifies the name
of the proposedmodel as coupled graph tensor factorization.
Whereas classical CMTF approachesmodel the side informa-
tion as AnB

>
n , the novel CGTF captures the graph structure

by employing An diag ðdnÞA>
n . Adding the diagonal loading

matrices endows themodel with the ability to adjust the rela-
tive weight between the tensor and the side information
matrices. The novel CGTFmodel is depicted in Fig. 2.

Problem Statement. Given XA and fGA
n g3n¼1, our goal is to

estimate XM and fAn;dn;G
M
n g3n¼1 by employing the CGTF

model in (1) and (2). As a byproduct, the recovered fAn;
dng3n¼1 will be utilized to detect communities.

3 COUPLED GRAPH TENSOR FACTORIZATION

Given (1) and (2), this section develops a novel algorithm to
infer the latent factor matrices and hence estimate XM and
fGM

n g3n¼1. To this end, consider the optimization task

minimize
XM;fAn;dn;GM

n g3n¼1

kX� �½A1;A2;A3�
�k2F

þ m
X3
n¼1

kGn �An diag ðdnÞA>
n k2F

s. t. An 	 0; dn 	 0;

X ¼ XA þ XM; Gn ¼ GA
n þGM

n ;

PVðXMÞ ¼ 0; PVnðGM
n Þ ¼ 0; n ¼ 1; 2; 3;

(3)

where m > 0 tunes the relative importance of the fit
between the tensor and the graph-induced side information.
The first term accounts for the LS fitting error of the PAR-
AFAC model (1), and the second sum of LS costs accounts
for the SNMF model (2). The positivity constraints stem
from prior knowledge related to the factor and diagonal
matrices. The equality conditions constrain X and fGng3n¼1

to be equal to XA and fGA
n g3n¼1 at the observed entries and

to the optimization variables XM and fGM
n g3n¼1 otherwise.

The operators PV and PVn force the optimization variables
to be zero at the observed entries.

The optimization problem in (3) is non-convex due to the
trilinear terms

�½A1;A2;A3�
�
and An diag ðdnÞA>

n . The next
section develops an efficient solver for (3) based on the
ADMM [7].

Remark 1. In some applications, a graph Gn may not be
available for one or more modes n of the tensor. Hence,
before solving (3) one may remove the corresponding fit-
ting term kGn �An diag ðdnÞA>

n k2F and related graph con-
straints. As a byproduct, our novel framework may
utilize the recovered factor An and obtain a similarity
matrixGn (2).

3.1 ADMM for CGTF

First notice that the optimization problem (3) is even non-con-
vex for eachAn separately due to the product of factor matri-
ces in the SMNFmodel. This poses an additional challenge to
anyADMMalgorithm that iteratively pursues per blockmini-
mizers of the augmented Lagrangian. Hence, we introduce
f�Angn auxiliary variables and rewrite the SMNF cost as

kGn �An diag ðdnÞ�A>
n k2F : (4)

Furthermore, to handle the positivity constraints we introduce

gðMÞ ¼ 0; if M 	 0
1; otherwise

�
; (5)

and the auxiliary variables f~An; ~dngn. Next, we rewrite (3) to
an equivalent form as

Fig. 1. Illustration of the SNMF model (2) for G1 with d1 ¼ 1. White cells
correspond to small-value entries. The rows and columns ofG1 have been
reorganized to place nodes in the same community one after the other.

Fig. 2. Illustration of the tensor and graphs that partake in the CGTF
model. The heat maps suggest that fGng3n¼1 exhibit community structure.
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minimize
XM;fAn;�An;~An;

dn;~dn;GM
n g3

n¼1

kX� �½A1;A2;A3�
�k2F þ

X3
f¼1

gð~AnÞ

þ m
X3
n¼1

kGn �An diag ðdnÞ�A>
n k2F þ

X3
f¼1

gð~dnÞ

s. t. An ¼ �An; An ¼ ~An; dn ¼ ~dn;

X ¼ XA þ XM; Gn ¼ GA
n þGM

n ;

PVðXMÞ ¼ 0; PVnðGM
n Þ ¼ 0; n ¼ 1; 2; 3:

(6)

Even though (6) is still non-convex in all the variables, it is
convex with respect to each block variable separately.
Towards deriving an ADMM solver, we introduce the dual
variables fY�An

2 RIn�R;Y~An
2 RIn�R; y~dn

2 RR�1gn and the
penalty parameters fr�An

> 0; r~An
> 0; r~dn

> 0gn.
The augmented Lagrangian is given in (7), at the bottom

of the next page, where fð�Þ represents the cost function in
(6) and we collect all factor variables in FF :¼ ðfAn; �An; ~An;
dn; ~dng3n¼1Þ. For ease of notation no ADMM superscripts
will be used in the following equations. For brevity, only
the ADMM updates for n ¼ 1will be presented.

The update forA1 can be obtained by taking the derivative
of L in (7) with respect to (w.r.t.) A1 and equating it to zero
that yields

Â1ðM>
1 M1 þ mD1

�A>
1
�A1D1 þ ðr~A1

þ r�A1
ÞIRÞ

¼ X>
1 M1 þ mG1

�A1D1 þ r�A1
�A1 þr~A1

~A1 �Y~A1
�Y�A1

;

(8a)

where M1 :¼ A3 �A2, and D1 :¼ diag ðd1Þ. The update for
d1 can be obtained likewise as

ðð�A1 �A1Þ>ðm�A1 �A1Þ þ r~d1
IRÞd̂1

¼ mð�A1 �A1Þ>g1 þ r~d1
~d1 � y~d1

:
(8b)

where gn :¼ vecðGnÞ. Accordingly, the update for the �A1 is
given by

�̂A1ðmD1A
>
1 A1D1 þ r�A1

IRÞ
¼ mG>

1 A1D1 þ r�A1
A1 þY�A1

:
(8c)

The auxiliary variables ~A1; ~d1 are updated by projecting to
the nonnegative orthant as follows

~̂A1 ¼
�
A1 þ 1

r~A1

Y~A1

�
þ
;

~̂d1 ¼
�
d1 þ 1

r~d1

y~d1

�
þ
:

(8d)

Using the estimated factors fÂngn the updates for the miss-
ing tensor elements are given by

X̂M ¼ PVð
�½Â1; Â2; Â3�

�Þ: (8e)

Similarly, the missing entries inG1 can be obtained by

ĜM
1 ¼ PV1

ðÂ1 diag ðd̂1Þ �̂A>
1 Þ: (8f)

Finally, the updates for the Lagrange multipliers are

Y�A1
¼ Y�A1

þ r�A1
ðA1 � �A1Þ

Y~A1
¼ Y~A1

þ r~A1
ðA1 � ~A1Þ

y~d1
¼ y~d1

þ r~d1
ðd1 � ~d1Þ:

(8g)

The steps of our CGTF algorithm are listed in Algorithm 1.
Since (6) is a non-convex problem, a judicious initialization of
fAngn is required. Towards that end, we adopt an efficient
algorithm for SNMF, see [21], to initialize the factor matrices
using only the available elements in the corresponding
graphs fGA

n g, while fdng are initialized as all-ones vec-
tors. Since SNMF is unique under certain conditions, the
initialization is likely to be a good one [21]. The ADMMalgo-
rithm stops when the primal residuals and the dual feasi-
bility residuals are sufficiently small. Even though f~An; ~dngn
are by construction non-negative, fAn; �An;dngn are not
necessarily non-negative, but they become so upon
convergence.

The advantage of introducing the auxiliary variables is
threefold. First, by employing �An, we bypass solving the
non-convex SNMF that would require a costly iterative algo-
rithm per factor update. Second, by introducing f~An; ~dng, we
avoid the solution to a constrained optimization problem,
resulting in a more computationally affordable update com-
pared to constrained least-squares based algorithms. In a
nutshell, our novel reformulation allows for closed-form
updates per step of the ADMM solver. Lastly, the closed-
form updates allow us to make convergence claims to a sta-
tionary point of (6) in Section 3.2.

Remark 2. The era of data science brings opportunities for
adversaries that aim to corrupt the data, e.g., recommenda-
tion data may be corrupted bymalicious users that provide
fake ratings, or social networks may contain spamming
users. The CGTF model can be extended to account for
anomalies in the graph links and the tensor data. Specifi-
cally, consider the robust CGTF (R-CGTF) as X ¼ �½A1;
A2;A3�

�þOþ E and Gn ¼ An diag ðdnÞA>
n þOn þVn for

the tensor and the graph matrices respectively. The varia-
blesO 2 RI1�I2�I3 and fOn 2 RIn�Rgn model the anomalies
in the tensor and graphs that should occur infrequently,
and hencemost entries ofO and fOngn are zero. Hence, the
optimization (3) and the ADMM solver can be readilymod-
ified to obtain sparse estimates ofO and fOngn as well; see
e.g., [22] and [20].

L
�
XM;FF; fGM

n ;Y�An
;Y~An

; y~dn
g3n¼1

�
:¼f

�
XM;FF; fGM

n g3n¼1

�þX3
f¼1

	
TrðY>

�An
ðAn � �AnÞ þ

r�An

2
kAn � �Ank2F

þ TrðY>
~An
ðAn � ~AnÞÞþ

r~An

2
kAn � ~Ank2F þ y>~dnðdn � ~dnÞ þ

r~dn

2
kdn � ~dnk2F



:

(7)
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3.2 Convergence

Here, convergence of Algorithm 1 is examined when all the
measurements are available fGA

n ¼ Gngn, and XA ¼ X, the
extension for the case with misses is straightforward [23].

A point FF :¼ ðfAn; �An; ~An;dn; ~dng3n¼1Þ satisfies the
Karush-Kuhn-Tucker (KKT) conditions for problem (6) if
there exist dual variablesCC :¼ ðfY�An

;Y~An
; y~dn

g3n¼1Þ such that

ðXn �AnM
>
n ÞMn þ mðGn �AnDn

�A>
n Þ�AnDn

�Y~An
�Y�An

¼ 0

mð�An �AnÞ>ðgn � �An �AndnÞ � y~dn
¼ 0

mðGn � �AnDnA
>
n ÞAnDn �Y�An

¼ 0

An � �An ¼ 0; An � ~An ¼ 0; dn � ~dn ¼ 0

Y~An

 0 	 ~An; y~dn


 0 	 ~dn

Y~An
� ~An ¼ 0; y~dn

� ~dn ¼ 0; n ¼ 1; 2; 3:

(9)

Proposition 1. Let fFFl;CClgl be a sequence generated by Algo-
rithm 1. If the sequence of dual variables fCClgl is bounded and
satisfies

X1
l¼0

kCClþ1 �CClk2F < 1; (10)

then any accumulation point of fFFlgl satisfies the KKT condi-
tions of (6). Hence, any accumulation point of ffAl

n;d
l
ng3n¼1gl

satisfies the KKT conditions for problem (3).

Proof. See Section 7. tu
Proposition 1 suggests that upon convergence of the dual

variables fCClgl, the sequence fFFlgl reaches a KKT point.
Note that the closed-form updates of Algorithm 1 are instru-
mental in establishing the convergence claim. Empirical con-
vergencewith numerical tests is provided in Section 5.

Algorithm 1. ADMM for CGTF

Input: XA and fGA
n g3n¼1

1: Initialization: SNMF for fAngn using [21].
2: while iterates not converge do
3: Update Ân using (8a).

4: Update d̂n using (8b).

5: Update �̂An using (8c).

6: Update f ~̂An; ~̂dng using (8d).

7: Update X̂M using (8e).

8: Update ĜM
n using (8f).

9: Update Lagrange multipliers using (8g).
10: end while

Output: X̂M; fÂn; d̂n; Ĝ
M
n gn

4 COMMUNITY DETECTION VIA CGTF

A task of major practical importance in network science is
the identification of groups of vertices or communities that
are more densely connected to each other than to the rest of
the nodes in the network. Community detection unveils the
structure of the network and facilitates a number of applica-
tions. For example, clustering web clients improves the per-
formance of web services, identifying communities among

customers leads to accurate recommendations, or grouping
proteins based on their dependencies enables the develop-
ment of targeted drugs [5]. This section exemplifies how the
novel CGTF can recover the communities in graphs even
when some links are missing; what is known as the cold
start problem.

Community detection methods aim to learn for each
node i 2 f1; . . . ; Ing ofGn a mapping to a cluster assignment
an;i 2 f1; . . . ; Cng, where Cn is the number of communities
in the nth graph. Collecting all the nodal assignments, one
seeks an In � 1 vector aan :¼ ½an;1; . . . ;an;In �>.

If Cn is not known a priori, the recovered factor An can be
directly utilized to provide a community assignment. First,
we scale An to account for the weighting vector Cn :¼ An

diagð ffiffiffiffiffiffi
dn

p Þ. The largest entry in each row of Cn indicates
clustering assignments [16]. Specifically, we estimate the
community assignment of a node i as

ân;i ¼ argmax
r¼1;...;R

½Cn�ði;rÞ; (11)

and âan :¼ ½ân;1; . . . ; ân;In �> is the estimated assignment vec-
tor. Hence, in lieu of prior information about Cn we implic-
itly assume that Cn ¼ R for n ¼ 1; 2; 3.

Oftentimes, in CD problems Cn is available. If Cn 6¼ R
one cannot apply directly (11) to recover the communities.
In such a case, we regard Cn as a representation of Gn in a
latent space of lower dimension. Hence, we apply the cele-
brated k-means algorithm [24] obtain

âan ¼ k-meansðCn; CnÞ: (12)

The community assignment procedure is summarized inAlgo-
rithm 2. Note that the discussed method amounts to a hard
community assignment in the sense that each node is assigned
to exactly one community. Nonetheless, the factors can be uti-
lized to perform soft community assignment, where one node
may belong to more than one communities. If the rows of Cn

are normalized to sum to 1, ½Cn�ði;rÞ can be interpreted as the
probability of the ith node belonging to the rth community.

Algorithm 2. Community Detection via CGTF

Input: XA, fGA
n g3n¼1, and fCng3n¼1

1: Initialization: Algorithm 1 for fAn;dng3n¼1.

2: for n ¼ 1; 2; 3
3: Cn :¼ An diag ð

ffiffiffiffiffiffi
dn

p Þ
4: if Cn ¼ R do
5: Compute âan using (11)
6: else
7: Compute âan using (12)
Output: fâangn

4.1 Community Detection Evaluation

For a graph of I nodes and graph adjacency matrix G,

we define the cover set S :¼ fCcgCc¼1 where Cc contains all
the nodes that belong to community c as captured by the
assignment vector aa, i.e., Cc :¼ fijs.t. ai ¼ cg. The estimated
cover set is defined as Ŝ that uses âa fromAlgorithm 2.

For networks with ground truth communities, we
employ the normalized mutual information (NMI) metric
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[25] to evaluate the recovered communities, âa. The NMI
takes values between 0 and 1 and is defined as

NMI :¼ 2IðS; ŜÞ
HðSÞ þHðŜÞ ; (13)

where H denotes the entropy (jCj is the cardinality of C)

HðSÞ :¼ �
XC
c¼1

jCcj
I

log
jCcj
I

; (14)

and IðS; ŜÞ stands for the mutual information (MI) between
S and Ŝ defined as

IðS; ŜÞ :¼
XC
c¼1

XĈ
c0¼1

jĈc0 \ Ccj
I

log
jĈc0 \ CcjI
jĈc0 jjCcj

: (15)

Whereas MI encodes how similar two community cover sets
are, the entropy measures the level of uncertainty in each
cover set individually; see e.g., [5]. For successful clustering
algorithms, the resulting NMI is close to 1, and otherwise 0.

On the other hand, to evaluate the quality of a recovered
community Ĉ even without ground-truth community labels,
the conductance pðĈÞ is traditionally employed [26]

pðĈÞ :¼
P

i2Ĉ
P

i0 =2 Ĉ½G�ði;i0Þ
minðvolðĈÞ; volðĈcÞÞ (16)

where

volðĈÞ :¼
X
i2Ĉ

XI
i0¼1

½G�ði;i0Þ; (17)

and the set Ĉc contains all nodes in the graph not in Ĉ. For
successful CD, the connections among nodes in Ĉ are dense
and otherwise sparse that leads to small scores of pðĈÞ.

A metric that summarizes the conductance across com-
munities fĈcgc 2 Ŝ is the so-termed coverage

xðŜ;aÞ :¼ 1

I

�� [
pðĈcÞ<a

Ĉc
��; fĈcgc 2 Ŝ (18)

where a 2 ½0; 1� is a suitable threshold. The coverage gives
the portion of nodes that belong to communities with con-
ductance less than a and since low conductance scores cor-
respond to more cohesive communities, large values of
coverage for small thresholds are desirable.

5 EXPERIMENTAL EVALUATION

This section evaluates the performance of the proposed CGTF
on synthetic and real data. The approaches compared include
the CANDECOMP/PARAFAC Weighted OPTimization
(PARAFAC) algorithm [10]; the nonnegative tensor factori-
zation (NTF) implemented as in [27]; and the CMTF [8]. The
algorithms were initialized using the proposed SNMF
scheme, which enhances the performance of all methods.
Unless stated otherwise, the following parameters were
selected for CGTF: fr�An

¼ 100; r~An
¼ 100; r~dn

¼ 100gn;m ¼ 1.1

5.1 Tensor Imputation

Synthetic tensor data X 2 R350�350�30 with R ¼ 4 was gener-
ated according to the PARAFAC model (1), where the true
factors fAng3n¼1 are drawn from a uniform distribution.

Matrices fGng3n¼1 were generated using the SMNF (2).
To evaluate the performance of the various factorization

algorithms, the entries of Xwere corrupted with i.i.d. Gauss-
ian noise. Fig. 3 depicts the normalized mean squared error

NMSE :¼ PI3
i3¼1 kX̂ð:; :; i3Þ � Xð:; :; i3Þk2F =

PI3
i3¼1 kXð:; :; i3Þk2F

against the signal-to-noise ratio (SNR) of the tensor data. The
novel CGTF exploits the graph adjacency matrices and
achieves superior performance relative to the competing
methods.

Furthermore, the convergence of the proposed approach
is evaluated. Fig. 4 testifies to the theoretical convergence
results established in Prop. 1.

5.2 Community Detection

To evaluate the performance of the CGTF in detecting
communities, we employed the Lancicchinetti-Fortunato-
Radicci (LFR) benchmark [28] that generates graphs with
ground truth communities. LFR graphs capture properties
of real-world networks such as heterogeneity in the distri-
butions of node degrees and also in the community sizes.

First, we generated 3 LFR networks fGng3n¼1 with I1 ¼ 100,
I2 ¼ 300, and I3 ¼ 500 nodes, correspondingly comprising
C1 ¼ 5, C2 ¼ 3 , C3 ¼ 4 communities; see Fig. 5. We recover
the factors fAngn of fGngn using SNMF, and construct X
using (1). Next, we observe noisy versions of the tensor data
and the corresponding graph adjacency matrices; for G1 we
observe only 10 percent of its entries andR ¼ 5.

Fig. 3. Tensor imputation performance based on NMSE.

Fig. 4. Convergence of ADMM iterates fkFFl �FFl�1k2F ; kCCl �CCl�1k2Fgl,
and kfAl

n � ~Al
nk2F ; kAl

n � �Al
nk2F ; kdl

n � ~dl
nk2Fgl.

1. The ADMM implementation of the proposed CGTF method can
be found in https://github.com/bioannidis/Coupled_tensors_graphs
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Fig. 6a shows the NMI performance of CGTF and
SNMF [16], as we increase the SNR for G2 and G3. The pro-
posed approach recovers successfully robust community
assignments.

Furthermore, Fig. 6b depicts the NMI performance of the
algorithmswith 90percent entries ofG1 missing. As expected,
SNMF cannot recover the community assignments of the
nodes in this partially observed G1. On the other hand, the
novel CGTF exploits the tensor data, copeswithmissing links,
and provides reliable estimates of aa1.

5.3 Activities of Users at Different Locations

To assess the potential of our approach in providing accurate
recommendations, we further tested a real recommendation
dataset that comprises a three-way tensor indicating the fre-
quency of a user performing an activity at a certain loca-
tion [29]. It contains information about 164 users, 168
locations and 5 activities. A binary tensor X is constructed to
represent the links between users, their locations and corre-
sponding activities. In other words, Xði1; i2; i3Þ equals 1 if
user i1 visited location i2 and performed activity i3; other-
wise, it is 0. Additionally, similarity matrices between the
users and the activities are provided. The similarity value
between two locations is defined by the inner product of the

corresponding feature vectors. The dataset is missing social
network information for 28 users, and feature vectors for 32
locations. The parameters of CGTF were fr�An

¼ 100; r~An
¼

100; r~dn
¼ 100gn;m ¼ 10�4, and for all approachesR ¼ 5.

Table 1 lists the NMSE for variable percentages of miss-
ing tensor data. The CGTF model exploits judiciously the
structure of the available graph information, which enables
our efficient ADMM solver to outperform competing alter-
natives, and lead to improved recommendations.

In order to assess the recommendation quality of the pro-
posed approach, we changed the thereshold for detecting an
activity (edge) on the tensor (graphs). Per threshold value, we
then obtained the probabilities of detection and false alarm.

Fig. 8 depicts the receiver operating characteristic
(ROC) for the tensor entries, and as expected the novel
CGTF outperforms the alternative. Moreover, Fig. 7 shows
the ROC for discovering concealed links in the user-graph
with only 10 percent of observed graph entries when the
factors are initialized either using the SNMF or randomly.
In both cases, CGTF performs successful edge identifica-
tion and yields accurate link predictions. The performance
gap among CGTF and CMTF, becomes more pronounced
when the factors are initialized randomly, which suggests
that initialization is crucial in achieving a good stationary
point.

5.3.1 Community Detection

Furthermore, CD is pursued for the user and location graphs
with 70 percent entries missing in the tensor and no misses
in the graphs. We compare our CD performance against the

Fig. 5. LFR clustered graphs;G1 left,G2 middle, andG3 right.

Fig. 6. Community detection performance based on NMI.

TABLE 1
NMSE for Different Ratios of Missing Data

Missing NTF PARAFAC CMTF CGTF

40% 0.995 1.016 0.98 0:460:46
50% 0.99 0.96 0.99 0:680:68
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following baselines: Potts [13], NewmanF [12], SP [14],
AFG [15] and SNMF [16].2 In lieu of ground-truth communi-
ties, we evaluate the CD performance by the maximum con-
ductance-coverage curve. This curve is plotted by varying a

from 0 to 1 (cf. (18)) and reporting the corresponding cover-
age value on the x-axis and maximum conductunce the
y-axis. Low values of conductance for large values of cover-
age correspond to more cohesive communities. Hence, a
smaller area under curve (AUC) implies better performance;
see Section 4.1. Fig. 9 reports the coverage scores relative to
the maximum conductance (a) for the users graph (left) and
the locations graph (right). The proposed CGTF achieves
higher coverage scores for smaller conductance and outper-
forms competing approaches. CGTF achieves the smallest
AUC value in the user graph and one of the smallest in the
location graph. Hence, the factors obtained by our coupled
approach indeed improve CD performance.

5.4 Posts of Users in a Social Network

We also tested the performance of CGTF on the Digg data-
set. Digg is a social network that allows users to submit,
Digg, and comment on news stories. In [30], the data was
collected from a large subset of users and stories. The data-
set includes stories, and users along with their time-
stamped actions with respect to stories, as well as the social
network of users. In addition, a set of keywords is assigned
to each story.

After discretizing the time into 20 time intervals over 3
days, we construct a tensor comprising the number of

comments that user i wrote on story j during the kth time
interval stored in the ði; j; kÞ item. Also, a story-story graph
is constructed where any two stories are connected only if
they share more than two keywords. The original tensor
containing all users and stories includes a large number of
inactive users and unpopular stories. In order to assess per-
formance of the proposed method, the data is subsampled
so that the 175 most active users and the 800 most popular
stories are kept. Hence, the size of the tensor in this experi-
ment is I1 ¼ 175 users, I2 ¼ 800 stories and I2 ¼ 20 time
intervals. In addition, the side information comprises two
graphs that represent the users’ social network and the simi-
larities of the stories.

The tensor and the two graphs are fused jointly as in (3)
with R ¼ 10. Then, the proposed ADMM-based algorithm
is employed to obtain the latent factors of the CGTF model.
As there is no graph on the third mode (time intervals),
the term kG3 �A3 diag ðd3ÞA>

3 k2F is not included in (3).
We assume that 40 percent of the tensor entries, as well as
30 percent of the links in the user-user and story-story
graphs are missing.

In Figs. 10 and 11, the ROC is presented for the tensor and
the graphs. The proposed approach outperforms competing
approaches in completing the missing tensor entries as well as
predicting themissing links in the graph, and leads to accurate
recommendations for previously unseen data.

5.4.1 Community Detection under Missing Links

In this experiment we assume that 40 percent of the tensor
entries and 50 percent of the graph links are missing. The

Fig. 8. ROC for 40 percent (left); and 50 percent (right) tensor missing entries.

Fig. 7. ROC curve forG1 using the SNMF for initialization of A1(left), random initialization (right) with 40 percent misses in X and 90 percent misses in
G1 andG2.

2. We use the Matlab implementations provided by the authors.
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goal here is to examine whether CGTF recovers the commu-
nities in the graphs even with hidden graph links. Fig. 12
reports the coverage scores relative to themaximum conduc-
tance for the users graph (left) and the stories graph (right).3

Competing approaches that only utilize the partially
observed graphs can not recover crisp graph communities.
On the other hand, our novel CGTF utilizes judiciously the
partially observed graphs and tensors and reports superior
performance. The advantage of the proposed framework in
community detection is more evident in this experiment
(compare Figs. 9 and 12).

5.5 Runtime Comparisons

The scalabilty of CGTF is reflected on the relative runtime
comparisons listed in Fig. 13, for recovering the tensor
entries for the Activities and Digg datasets in Figs. 8 and 10
respectively. All experiments were run on amachine with i7-
4790 @3.60 Ghz CPU, and 32 GB of RAM. We used the Mat-
lab implementations provided by the authors of the com-
pared algorithms. The bars in Fig. 13 indicate the runtime of
the algorithms relative to CGTF’s runtime. Evidently, our
efficient yet effective CGTF implementation is almost as fast
as the PARAFAC, while achieving superior tensor imputa-
tion performance (see Figs. 8 and 10).

6 CONCLUSIONS AND FUTURE WORK

This paper investigates the inference of unavailable entries in
tensors and graphs based on a novel CGTF model. An effi-
cient algorithm is developed to identify the factor matrices
and recover the missing entries. The ADMM solver features
closed-form updates and is amenable to parallel and acceler-
ated implementation. In addition, the proposed method can
overcome the so-called cold-start problem, where the tensor
has missing slabs or the similarity matrices are not complete.
The novel algorithm makes accurate prediction of the miss-
ing values and can be used inmany real world settings, espe-
cially in recommender systems. A novel direction is further
explored by employing the interpretable factors of CGTF to
detect communities of nodes in the graphs having the tensor
as side information. Through numerical tests with synthetic
as well as real-data, the novel algorithmwas observed to per-
form markedly better than existing alternatives and further

yield accurate recommendations, as well as effective identifi-
cation of communities.

Our future research agenda will focus in two direction.
Todays era of data deluge has grown the interest for robust
methods that can handle anomalies in collections of high-
dimensional data. Towards this end, we aim at a robust
CGTF to handle anomalies in the tensor and graph data. Fur-
thermore, in many scenarios prior information on the tensor
and graph data can be accounted for to improve imputation
performance. CGTF may incorporate such knowledge by
introducing a probabilistic prior for certain graphs e.g., sto-
chastic blockmodels [31].

7 PROOF OF PROPOSITION 1

In what follows, we omit the terms XM; fGM
n g3n¼1, although

the proof can be easily modified to accommodate misses in
the graphs and in the tensor. First, we claim

FFlþ1 �FFl ! 0;

CClþ1 �CCl ! 0:
(19)

Observe that the Lagragian LðFF;CCÞ is bounded from below
which follows because

L
�
FF;CC

�
:¼ f

�
FF
�þX3

f¼1

(
r�An

2
kAn � �An þ

Y�An

r�An

k2F

Fig. 10. ROC for 40 percent tensor missing entries.

Fig. 9. Community detection performance based on coverage for the user graph (left); and the location graph (right).

3. AFG did not provide meaningful results and was not included.
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� 1

2r�An

kY�An
k2F þ r~An

2
kAn � ~An þ

Y~An

r~An

k2F

� 1

2r~An

kY~An
k2F þ r~dn

2
kdn � ~dn þ

y~dn

r~dn

k22 �
1

2r~dn

ky~dn
k22
)
;

and CC is bounded. Owing to the appropriate reformulation
(6), Lð�Þ is strongly convex w.r.t. each matrix variable
V 2 fAn; �An; ~An;dn; ~dng3n¼1 separately. As a result, it holds
for V that

LðVþ dVÞ � LðVÞ 	 @VLðVÞ>dVþ rkdVk2F ; (20)

where r is a properly selected parameter, while the varia-
bles except V are kept the same. Moreover, if V� :¼
argminVLðVÞ it follows that @VLðV�Þ>dV 	 0. Hence, for
dV ¼ Vl �Vlþ1 and since Vlþ1 :¼ argmaxVLðVÞ at the lth
iteration, it follows from (20) that

LðVlÞ � LðVlþ1Þ 	 rkVl �Vlþ1k2F : (21)

Specifying (21) to each variable in FF, yields for n ¼ 1; 2; 3

LðAl
nÞ � LðAlþ1

n Þ 	 r�An
þ r~An

2
kAl

n �Alþ1
n k2F (22a)

Lð�Al
nÞ � Lð�Alþ1

n Þ 	 r�An

2
k�Al

n � �Alþ1
n k2F (22b)

Lð~Al
nÞ � Lð~Alþ1

n Þ 	 r~An

2
k~Al

n � ~Alþ1
n k2F (22c)

Lðdl
nÞ � Lðdlþ1

n Þ 	 r~dn

2
kdl

n � dlþ1
n k2F (22d)

Lð~dl
nÞ � Lð~dlþ1

n Þ 	 r~dn

2
k~dl

n � ~dlþ1
n k2F : (22e)

It follows then for R :¼ minfr�An
; r~An

; r~dn
gn that

LðFFl;CClÞ � LðFFlþ1;CClÞ 	 RkFFl �FFlþ1k2F : (23)

On the other hand, it holds for the dual variables that

L


Yl

�An

�
� L



Ylþ1

�An

�
¼ Tr



Yl

�An
� Ylþ1

�An

�>

�Al
n � �Alþ1

n

�
¼ � 1

r�An

kYl
�An

� Ylþ1
�An

k2F ;
(24a)

where the last equality follows from (8g), and similarly

L


Yl

~An

�
� L



Ylþ1

~An

�
¼ � 1

r~An

kYl
~An

� Ylþ1
~An

k2F (24b)

Fig. 11. ROC for the prediction in the users’ social networkG1 (left); and the story graph adjacencyG2 (right).

Fig. 12. Community detection performance based on coverage for the user graph (left); and the story graph (right).

Fig. 13. Runtime comparisons relative to CGTF.
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L


yl~dn

�
� L



ylþ1
~dn

�
¼ � 1

r~dn

kyl~dn � ylþ1
~dn

k2F : (24c)

Hence, we find that

LðFFlþ1;CClÞ � LðFFlþ1;CClþ1Þ 	 � 1

R
kCCl �CClþ1k2F ; (25)

and upon combining (25) and (23), we arrive at

LðFFl;CClÞ � LðFFlþ1;CClþ1Þ 	
RkFFl �FFlþ1k2F � 1

R
kCCl �CClþ1k2F :

(26)

Since Lð�Þ is bounded, we have

X1
l¼0

RkFFl �FFlþ1k2F � 1

R
kCCl �CClþ1k2F < 1; (27)

and after applying (10) we establish that FFlþ1 �FFl ! 0 and

CClþ1 �CCl ! 0.
Next, we rewrite the ADMM updates in (8) as

½Alþ1
n �Al

nÞðM>
nMn þ mDl

n
�Al
n
> �Al

nD
l
n þ ðr~An

þ r�An
ÞI�

¼ ðXn �Al
nM

>
n ÞMn þ mðGn �Al

nD
l
n
�Al
n
>Þ�Al

nD
l
n

þ r~An
ðAl

n � ~Al
nÞ þ r�An

ðAl
n � �Al

nÞ �Yl
~An

�Yl
�An

(28a)

ðdlþ1
n � dl

nÞðð�Al
n �Al

nÞ>ðm�Al
n �Al

nÞ þ r~dn
IÞ

¼ mð�Al
n �Al

nÞ>ðgn � �Al
n �Al

n
~dl
nÞ þ ry~dn

ðdl
n � ~dl

nÞ � yl~dn

(28b)

ð�Alþ1
n � �Al

nÞðmDl
nA

l
n

>
Al

nD
l
n þ r�An

IÞ
¼mðGn � �Al

nD
l
nA

l
n

>ÞAl
nD

l
n þ r�An

ðAl
n � �Al

nÞ �Yl
�An

(28c)

~Alþ1
n � ~Al

n ¼
�
Al

n þ
1

r~An

Yl
~An

�
þ
� ~Al

n (28d)

~dlþ1
n � ~dl

n ¼
�
dl
n þ

1

r~dn

yl~dn

�
þ
� ~dl

n; (28e)

and for the dual updates

Ylþ1
�An

� Yl
�An

¼ r�An
ðAl

n � �Al
nÞ

Ylþ1
~An

� Yl
~An

¼ r~An
ðAl

n � ~Al
nÞ

ylþ1
~dn

� yl~dn
¼ r~dn

ðdl
n � ~dl

nÞ:
(28f)

Next, we leverage (19) and establish that the left hand side
of the equations in (28) is equal to 0. Hence, from (28f) we

deduce that Al
n � �Al

n ! 0, Al
n � �Al

n ! 0, and Al
n� �Al

n ! 0.
So far we have proved that the KKT conditions (9) relating to
the primal variablesFF, are satisfied. The variables ~An and ~dn

are nonnegative by construction. For the dual variables,
notice from (28f) that if ½Al

n�ðin;rÞ ¼ ½~Al
n�ðin;rÞ ¼ 0 then�½Yl

~An
�ðin;rÞ

�
þ ¼ 0, which implies that ½Yl

~An
�ðin;rÞ 
 0, else if

½Al
n�ðin;rÞ ¼ ½~Al

n�ðin;rÞ 	 0 then ½Yl
~An
�ðin;rÞ ¼ 0. The same argu-

ment applies for yl~dn
and hence we have established satisfac-

tion of the last KKT conditions concerningYl
~An

and yl~dn
.
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