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Node Embedding with Adaptive Similarities
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Abstract—Node embedding is the task of extracting informative and descriptive features over the nodes of a graph. The importance of
node embedding for graph analytics as well as learning tasks, such as node classification, link prediction, and community detection, has
led to a growing interest and a number of recent advances. Nonetheless, node embedding faces several major challenges. Practical
embedding methods have to deal with real-world graphs that arise from different domains, with inherently diverse underlying processes
as well as similarity structures and metrics. On the other hand, similar to principal component analysis in feature vector spaces, node
embedding is an inherently unsupervised task. Lacking metadata for validation, practical schemes motivate standardization and limited
use of tunable hyperparameters. Finally, node embedding methods must be scalable in order to cope with large-scale real-world graphs
of networks with ever-increasing size. The present work puts forth an adaptive node embedding framework that adjusts the embedding
process to a given underlying graph, in a fully unsupervised manner. This is achieved by leveraging the notion of a tunable node similarity
matrix that assigns weights on multihop paths. The design of multihop similarities ensures that the resultant embeddings also inherit
interpretable spectral properties. The proposed model is thoroughly investigated, interpreted, and numerically evaluated using stochastic
block models. Moreover, an unsupervised algorithm is developed for training the model parameters effieciently. Extensive node
classification, link prediction, and clustering experiments are carried out on many real-world graphs from various domains, along with
comparisons with state-of-the-art scalable and unsupervised node embedding alternatives. The proposed method enjoys superior
performance in many cases, while also yielding interpretable information on the underlying graph structure.

Index Terms—SVD, SVM, unsupervised, multiscale, random walks, spectral
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1 INTRODUCTION

U Supervised node embedding is an exciting field, in
which a significant amount of progress has been

made in recent years [15]. The task consists of mapping
each node of a graph to a vector in a low-dimensional
Euclidean space. The main goal is to extract features that
can be utilized downstream in order to perform a variety of
unsupervised or (semi-)supervised learning tasks, such as
node classification, link prediction, or clustering [16]. Ideally,
it is desired for the embedded nodal vectors to convey at least
as much information as the original graph. Nevertheless, an
appropriate embedding can boost the performance of certain
learning tasks because they allow one to work with the more
“friendly” and intuitive Euclidean representation, and deploy
mature and widely implemented feature-based algorithms
such as (kernel) support vector machines (SVMs), logistic
regression, and K-means.

Early embedding works mostly focused on a structure-
preserving dimensionality reduction of feature vectors
(instead of nodes); see for instance [22], [23], [24], [25],
[26]. In this context, graphs are constructed from pairwise
feature vector relations and are treated as representations of
the manifold that data lie on; embedded vectors are then
generated so that they preserve the corresponding pair-wise
proximities on the manifold. More recently, nodal vector
embedding of a graph has attracted considerable attention
in different fields, and is often posed as the factorization
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of a properly defined node similarity matrix [27], [28],
[29], [30], [31], [32], [33], [34]. Efforts in this direction
mostly focus on designing meaningful similarity metrics
to factorize. While some methods (e.g. [27], [29]) maintain
scalability by factorizing similarity matrices in an implicit
manner (without explicitly forming them), others such as
[30], [31] form and/or factorize dense similarity matrices
that scale poorly to large graphs. Another line of work
opts to gradually fit pairs of embedded vectors to existing
edges using stochastic optimization tools [35], [37]. Such
approaches are naturally scalable and entail a high degree of
locality. Recently, stochastic edge-fitting has been generalized
to implicitly accommodate long-range node similarities [36].
Meanwhile, other works have approached node embeddings
using random-walk-based tools and concepts originating
from natural language processing [38], [39], [40]; see also
related works on embedding of knowledge graphs [41],
[42], [50]. Methods that rely on graph convolutional neural
networks and autoencoders have also been proposed for
node embedding [45], [46], [47]. Moreover, a gamut of related
embedding tasks are gaining traction, such as embedding
based on structural roles of nodes [43], [44], supervised
embeddings for classification [11], and inductive embedding
methods that utilize multiple graphs [6]

We identify the following challenges that need to be
addressed in order to design embedding methods that are
applicable in practice:

• Diversity. Since graphs that arise from different
domains are generally characterized by a diverse set
of properties, there may not be a “one-size-fits-all”
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node embedding approach.
• No supervision. At the same time, node embedding

may need to be performed in a fully unsupervised
manner, that is, without extra information (node at-
tributes, labels, or groundtruth communities) to guide
the parameter tuning process with cross-validation.

• Scalability. While some real-world networks are of
moderate size, others may contain massive numbers
of nodes and edges. Specifically, graphs encountered
with social networks, transportation networks, knowl-
edge graphs and others, typically scale to millions
of nodes and tens of millions of edges. Thus, strict
computational constraints must be accounted by the
design of node embedding methods.

In response to these challenges, we propose a scalable
node embedding framework that is based on factorizing
an adaptive node similarity matrix. The first challenge is
addressed by utilizing a large family of node similarity
metrics, parametrized by placing different weights on node
proximities of different orders; see also our precursor work
[20]. Experiments indicate that the proposed model for
similarity metrics is expressive enough to describe real-world
graphs from diverse domains and with different structures.
To address the second challenge (lack of supervision), we
put forth a self-supervised parameter learning scheme based
on predicting randomly removed edges. Finally, we accom-
modate scalability by constraining the parametrization of
similarity matrices such that the proximity order parameters
carry over to the embedded vectors in a smooth manner. This
allows for learning proximity order parameters directly on
the feature vectors. Consequently, dense similarity matrices
do not need to be explicitly formed and factorized, thus
endowing the proposed method with the desired level of
scalability.

The rest of the paper is organized as follows. Section 2
introduces the problem and the proposed similarity model.
Section 3 presents a numerical study on model properties,
while Section 4 deals with learning the model parameters in
an unsupervised manner. Finally, Section 5 discusses related
methods, and Section 6 contains experiments on real graphs,
comparisons with competing alternatives, and interpretation
of the results. While notation is defined wherever it is
introduced, we also summarize the most important symbols
that appear throughout the paper in Table 1.

2 PROBLEM STATEMENT AND MODELING

Given an undirected graph G := {V, E}, where V is the set
of N nodes, and E ⊆ V × V is the set of edges, the task of
node embedding boils down to determining f(·) : V → Rd,
where d � N . In other works, a function is sought to map
every node of G to a vector in the d−dimensional Euclidean
space. Typically, the embedding is low dimensional with d
much smaller than the number of nodes. Given f(·), the
low-dimensional vector representation of each node vi is

ei = f(vi) ∀vi ∈ V .

Since the number of nodes is finite, instead of finding a
general f(·) (induction), one may pose the embedding task

TABLE 1: Important Notation

V , Set of nodes
E , Set of edges
A , N ×N adjacency matrix
D , diag(1TA) diagonal degree matrix
E , N × d matrix of embeddings
ei , Embedding vector of node vi

sG(·, ·) , Node – to – node similarity
sk(·, ·) , k−hop node – to – node similarity
sE(·, ·) , Embedding – to – embedding similarity
`(·, ·) , Distance (loss) between similarities
SG , Final node similarity matrix
S , Basic sparse (single-hop) and symmetric

node similarity matrix
θk , Coefficient of k-hop paths
θ , [θ1, . . . , θK ]T vector of coefficients
SK , K−dimensional probability simplex
S+ , Set of sampled positive edges
S− , Set of all sampled negative edges
S , S+ ∪ S− all sampled edges
Ns , Number of sampled edges
θ∗S , Optimal coefficients that fit sample S
Ts , Number of different edge samples

in its most general form as a the following minimization
problem over the embedded vectors

{e∗i }Ni=1 = arg min
{ei}Ni=1

∑
vi,vj∈V

` (sG(vi, vj), sE(ei, ej)) (1)

where `(·, ·) : R × R → R is a loss function; sG(·, ·) : V ×
V → R is a similarity metric over pairs of graph nodes; and
sE(·, ·) : Rd×Rd → R a similarity metric over pairs of vectors
in the d−dimensional Euclidean space.

In par with (1), node embedding can be viewed as the
design of nodal vectors {ei}Ni=1 that successfully “encode” a
certain notion of pairwise similarities among graph nodes.

2.1 Embedding as matrix factorization
Starting from the generalized framework in (1), one may
arrive at concrete approaches by specifying choices of sG(·, ·),
sE(·, ·), and `(·, ·). To start, suppose that the node similarity
metric is symmetric; that is, sG(vi, vj) = sG(vj , vi) ∀vi, vj ∈
V . Furthermore, let the loss function be quadratic

`(x, x′) = (x− x′)2

and the nodal vector similarity be the inner product

sE(ei, ej) = e>i ej .

Using these specifications, (1) reduces to the following
symmetric matrix factorization problem

E∗ = arg min
E∈RN×d

‖SG −EE>‖2F (2)

where SG ∈ RN×N is the symmetric similarity matrix with
[SG ]i,j = [SG ]j,i = sG(vi, vj), and matrix E := [e1 . . . eN ]

>

concatenates all node embeddings as rows. A well-known
analytical solution to (2) relies on the singular value decom-
position (SVD) of the similarity matrix, that is SG = UΣVT ,
where U and V are the N ×N unitary matrices formed by
the left and right singular vectors, and Σ is diagonal with
non-negative singular values sorted in decreasing order; in
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our case, U = V since SG is symmetric. Given the SVD of
SG , the low-rank (d � N ) solver in (2) is E∗ = UdΣ

1/2
d ,

where Σd contains the d largest singular values, and Ud the
corresponding singular vectors [19]. Matrices Ud and Σd can
be obtained directly using the reduced-complexity scheme
known as truncated SVD.

If in addition SG is sparse, (2) can be solved even more
efficiently, with complexity that scales with the number of
edges. One such example with sparse similarities is when
SG = A, where A is the graph adjacency matrix. Embed-
dings generally gain scalability by avoiding the explicit
construction of a dense SG . In fact, simply storing SG in
the working memory becomes prohibitive even for graphs
of moderate sizes (say N > 105).

In the ensuing section, we will design a family of dense
similarity matrices that (among other properties) can be
decomposed implicitly, at the cost of input sparsity.

2.2 Multihop graph node similarities

Having reduced the node embedding problem to the one
in (2), it remains to specify the graph similarity metric that
gives rise to SG . Towards this end, and in order to maintain
expressibility, we will design a parametric model for SG ,
with each pairwise node similarity metric expressed as

sG(vi, vj ;θ) =
K∑
k=1

θksk(vi, vj), s.t. θ ∈ SK (3)

where SK := {θ ∈ RK : θ ≥ 0,θ>1 = 1} is the K-
dimensional probability simplex, and sk(vi, vj) is a similarity
metric that depends on all k-hop paths of possibly repeated
nodes that start from vi and end at vj (or vice-versa). Thus,
sG(·, ·;θ) contains all k-hop interactions between two nodes,
each weighted by a non-negative importance score θk with
k = 1, . . . ,K .

Let S be any similarity matrix that is characterized by the
same sparsity pattern as the adjacency matrix, that is

Si,j =

{
si,j , (i, j) ∈ E
0, (i, j) /∈ E , (4)

where {si,j}s denote the generic non-negative values of
entries that correspond to edges of G. Maintaining the
same sparsity pattern as A allows for the (i, j) entry of
Sk to be interpreted as a measure of influence between
vi and vj that depends on all k-hop paths that connect
them; that is,

[
Sk
]
i,j

= sk(vi, vj). For instance, select-
ing S = A is equivalent to using the k-step similarity
sk(vi, vj) = |{k − length paths connecting vi to vj}| [12].
Likewise, if S = AD−1 where D = diag(1TA), then
sk(vi, vj) can be interpreted as the probability that a random
walk starting from vj lands on vi after exactly k steps, e.g.,
[31]. Thus, for a properly selected S with entries as in (4),
tunable multihop similarity metrics in (3) can be collected as
entries of the power series matrix

SG(θ) =
K∑
k=1

θkS
k, s.t. θ ∈ SK . (5)

Upon substituting (5) into (2) yields the tunable embeddings
E∗(θ) that depend on the choice of parameters θ. From the

eigen-decomposition S = UΣU>, and given that U>U = I,
we readily arrive at

Sk = UΣkU> (6)

and after plugging (6) into (5), we obtain

SG(θ) = U

(
K∑
k=1

θkΣ
k

)
U>, s.t. θ ∈ SK . (7)

Furthermore, the truncated singular pairs of SG(θ) conve-
niently follow from those of S, and they have to be com-
puted once. Specifically, the truncated singular vectors and
singular values are Ud(θ) = Ud and Σd(θ) =

∑K
k=1 θkΣ

k
d ,

respectively. Thus, if S ∈ SymN the solution to (2) with SG
parametrized by θ is simply given as

E∗(θ) = Ud

√
Σd(θ) . (8)

Note that this holds only for non-negative parameters θk ≥
0 ∀ k. If θk < 0 for at least one k ∈ {1, . . . ,K}, then the
diagonal entries of Σd(θ) cannot be guaranteed to be non-
negative and sorted in decreasing order, which would cause
(Ud(θ),Σd(θ)) to not be a valid SVD pair.

Having narrowed down SG to belong to the parametrized
family in (5), we proceed to select an appropriate sparsity-
preserving S in order to obtain a solid model.

2.3 Spectral multihop embeddings
While any symmetric S that obeys (4) can be used for
constructing multihop similarities (cf. (5)), judicious designs
of S can effect certain desirable properties. Bearing this in
mind, consider the following identity

S ∈ P+
N ⇐⇒ S = UΣU> = UΛU> (9)

where P+
N denotes the space of N ×N symmetric positive

definite (SPD) matrices, and Λ is the diagonal matrix that
contains the eigenvalues of S sorted in decreasing order. For
SPD matrices as in (9), the SVD is identical to the eigenvalue
decomposition (EVD). Thus, if S ∈ P+

N , the solution to (2) is
also given as (cf. (8))

E∗(θ) = Ud

√
Λd(θ) (10)

where Ud are also the first d eigenvectors of S, and Λd(θ) =∑K
k=1 θkΛ

k
d is the Kth order polynomial of its eigenvalues

defined by θ.
Consider now specifying S as

S =
1

2

(
I + D−1/2AD−1/2

)
. (11)

Recalling that λi
(
D−1/2AD−1/2

)
∈ [−1, 1] ∀ i, and after

using the identity shifting and scaling, we deduce that
λi(S) ∈ [0, 1] ∀ i; hence, matrix S in (11) is SPD. It can also be
readily verified that the first d eigenvectors of S coincide with
the eigenvectors corresponding to the d smallest eigenvalues
of the symmetric normalized Laplacian matrix

Lsym := I−D−1/2AD−1/2. (12)

These smallest eigenvalues are known to contain useful
information on cluster structures of different resolution
levels, a key property that has been successfully employed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2931542

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (SUBMITTED JUNE 1, 2019) 4

by spectral clustering [17]. Intuitively, assigning weight θk
to k-hop paths in the node similarity of (5), is equivalent
to shrinking the d-dimensional spectral node embeddings
(rows of Ud) coordinates according to Λd(θ). Interestingly,
assigning large weights to longer paths (K � 1) is equivalent
to fast shrinking the coordinates that correspond to small
eigenvalues and capture the fine-grained structures and
local relations, what leads to a coarse, high-level cluster
description of the graph.

2.4 Relation to random walks

Apart from the spectral embedding interpretation discussed
in the last subsection, using powers of (11) to capture
multihop similarities also admits an interesting random walk
interpretation. We begin by expressing the kth power of S as

Sk =
1

2k

(
I + D−1/2AD−1/2

)k
=

k∑
τ=0

ατ (k)
(
D−1/2AD−1/2

)τ
(13)

where the sequence

ατ (k) :=

{
1
2k

(k
τ

)
, 0 ≤ τ ≤ k

0, else
(14)

can be interpreted as nonzero weights that Sk assigns to all
paths with the number of hops up to k (see Fig. 1).

Using (13) and (14), the multihop similarity in (5) becomes

SG(θ) =
K∑
τ=0

cτ (θ)
(
D−1/2AD−1/2

)τ
= D−1/2

(
K∑
τ=0

cτ (θ)P
τ

)
D1/2 (15)

where

cτ (θ) :=
K∑
k=1

θkατ (k) (16)

and P = AD−1 is the probability transition matrix of a
simple random walk defined over G; that is, Pi,j is the
probabiity that a random walker positioned on node (state)
j transitions to node i in one step. Thus, the k-hop similarity
function defined in (3) is expressed as

sG(vi, vj ,θ) =

√
dj
di

K∑
τ=0

cτ (θ) Pr{Xτ = vi|X0 = vj} (17)

where Pr{Xτ = vi|X0 = vj} := [Pτ ]ij is the probability
that a random walk starting from vj lands on vi after τ steps.

Interestingly, SG(θ) does not weigh landing probabilities
of different lengths independently. Instead, it accumulates
the latter as weighted combinations (cf. (16)) in a basis of
“wavelet”-type functions of different resolution (see Fig. 1).

Having established links to spectral clustering and ran-
dom walks, our novel SG(θ) is well motivated as a family of
node similarity matrices. Nevertheless, before devising an
algorithm for learning θ and testing it on real graphs, we
will evaluate how well the basis {Sk}Kk=1, on which SG(θ) is
built, can capture underlying node similarities.
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Fig. 1: Matrix Sk is equivalent to applying “wavelet”-type
weights ατ (k) over walks with hops ≤ k.

3 MODEL EXPRESSIVENESS

This section introduces a performance metric that quantifies
how well a node similarity matrix derived from the graph
itself matches the “true” underlying similarity structure
between nodes. The discussion is followed by numerical
evaluation of the performance of different similarity matrices
(including the one in (13)) on graphs that are generated
according to the stochastic block model [2].

To begin, suppose that for a given set of nodes, an
adjacency matrix A is generated as

A ∼ fA(A)

where fA(A) is a probability density function defined over
the space of all possible adjacency matrices. Let the “true”
underlying similarity between nodes vi and vj be

s∗(vi, vj) := Pr{(i, j) ∈ E} = EfA [Ai,j ]

which is the probability that the two nodes are connected.
The “true” similarity matrix is thus given as the expected
adjacency matrix

S∗ := EfA [A] .

We define the quality-of-match (QoM) between the under-
lying S∗ and any similarity Ŝ = F (A) estimated from the
adjacency matrix as

QoM := EfA [PC (S∗, F (A))] (18)

where

PC (X1,X2) :=
(vec (X1))

>
vec (X2)

‖X1‖F ‖X2‖F
(19)

is the Pearson correlation between two matrices X1 and
X2, with vec (X) denoting matrix vectorization. The latter
is used for appropriate rescaling of the “true” similarity
matrix in order for the comparison with SG to be meaningful.
Intuitively, (18) measures how well the estimated node
similarities in Ŝ are expected to match the pattern of true
underlying similarities in S∗, when edges are generated
according to the known fA(·).
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0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Proposed (S1)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Proposed (S6)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Proposed (S15)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Fig. 2: Depiction of groundtruth and estimated similarity matrices, as yielded from an instance of the numerical experiments
described in Section 3.1.
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Fig. 3: Quality of match between true SBM similarity and various estimates, as yielded from experiments of Section 3.1.

3.1 Numerical experiments and observations
We numerically evaluate the QoM achieved by different sim-
ilarity matrices, on a set of N nodes whose interconnections
are generated according to a stochastic block model (SBM).
For this set of experiments, we divided the nodes into three
clusters of equal size

Cl = {i : (l − 1)N/3 ≤ i ≤ lN/3}, l ∈ {1, 2, 3}
with inter- and intra-connection probabilities

Pr{(i, j) ∈ E} =


p , (i, j) in the same Cl
cq , i ∈ C1 and j ∈ C3
q else

(20)

where p is the probability of connection when two nodes
belong to the same cluster, and c < 1 introduces asymmetry
and a hierarchical clustering organization (see Fig. 2-top left),
by making two of the clusters less likely to connect; we have
related Python scripts available.1 The SBM probability matrix
[2] is given as

Wsbm =

 p q cq
q p q
cq q p

 (21)

1. https://github.com/DimBer/ASE-project/tree/master/sim tests
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and the underlying similarity can be expressed as

S∗ = E [A] = Wsbm ⊗
(
1N/31

T
N/3

)
− diag(p1N ) (22)

where ⊗ denotes the Kronecker product.
For each experiment, we set N = 150 and generated a

graph according to (20). We then compared the QoM between
(22) and the kth power of the proposed (11), the kth power
of the adjacency (Ak), as well as each of the following well
known similarity metrics:

• ŜPPR := (1 − α)(I − αAD−1)−1: the steady state
probability that a random walk restarting at vj with
probability 1 − α at every step is located at vi.
Essentially a personalized PageRank (PPR) computed
for every node of the graph, inheriting the properties
of the celebrated centrality measure [7], [8], [9].

• ŜKATZ := (1− β)(I− βA)−1A : the Katz index [12],
an exponentially weighted summation over paths of
all possible hops between two nodes.

• ŜNEIGH := A2: the number of common neighbors
that every pair of nodes shares.

• ŜAA := AD−1A: Adamic-Adar [4] is a variant of
common neighbors where each set of neighbors is
weighted inversely proportional to its cardinality.

The resulting QoM was averaged over 200 experiments.
Parameters α in ŜPPR and β in ŜKATZ were tuned to
maximize the performance of the metrics. Figure 3 depicts
QoM as a function of k, for three different scenarios.

In the first scenario (Fig. 3-a), with graphs being dense
and clustered (p = 0.3, q = 0.1), the proposed Sk improves
sharply in the first few steps, reaching maximum QoM after 4
or 5 steps, and gradually decreases as k continues to increase.
The kth order proximities that are given as entries of Ak

follow a similar trend, however their QoM peaks shortly after
2 or 3 steps and declines fast for larger k. The matrix plots of
a randomly selected experiment depicted in Fig. 2 can aid in
understanding the underlying mechanism that gives rise to
this highly step-dependent behavior. Specifically, S1 (bottom
left) that has the same sparsity pattern as the adjacency is a
poor match to the dense block-structure of S∗. On the other
side of the spectrum, S15 (bottom right) is too “flat” and also
a poor similarity metric. Meanwhile, taking k = 6 promotes
enough mixing without “dissipating.” As a result, S6 (bottom
center) visibly matches the structure of S∗. Interestingly,
for k ∈ [4, 10] the proposed Sk surpasses in QoM all
other similarity metrics that were tested. Nevertheless, the
simple 2−hop Adamic-adar, common-neighbors similarities
perform reasonably well by exploiting the relatively dense
structure of the graphs.

Results were markedly different in the second scenario
shown in Fig. 3-b. Here, graphs were generated with the
same clustering structure but significantly sparser, with edge
probability parameters p = 0.15 and q = 0.05. For sparser
graphs, Ak and Sk require more steps to reach peak QoM (4
and 9 respectively). Similarly, PPR which relies on long paths
performs much better than the short-reaching Adamic-Adar.
This behavior is intuitively reasonable because the sparser
a graph is, the longer become the paths that need to be
explored around each node, in order for the latter to “gauge”
its position on the graph.

Finally, a third scenario (Fig. 3-c) was examined, where
each graph was generated without a clustering structure
(p = q = 0.1 and c = 1); essentially an Erdos-Renyi graph.
For this degenerate case that is of no real practical interest,
all pairs of nodes are equally similar; this type of similarity
requires infinitely long paths to be described.

In a nutshell, the presented numerical study hints at
the two following facts. First, Sk can successfully model
similarities that are based on grouping nodes in arbitrary
and multilevel sets with variable degrees of homophily and
heterophily. The second fact, is that the performance of Sk

varies significantly with k. Moreover, the way that k affects
performance may also vary from graph to graph, depending
on the underlying properties – what suggests viewing this
way as a graph “signature” that is also validated by the real
graphs in Section 6. Thus, a principled means of specifying
SG(θ) by learning the parameters that match this graph
“signature” in an unsupervised mode, is highly motivated.

4 UNSUPERVISED SIMILARITY LEARNING

We have arrived at the point where for a given graph, it
is prudent to select a specific θ ∈ SK without supervision.
Following the discussion in Section 3, it would be ideal to fit
SG(θ) to a true S∗ by minimizing an expected cost

θ∗ = arg min
θ∈SK

EfA [` (S∗,SG(A; θ))] . (23)

Unfortunately, we only have one realization A of fA(·),
which means that without prior knowledge, the best ap-
proximation of S∗ that we can obtain is the adjacency matrix
itself, that is S∗ ≈ A. Using this approximation yields

min
θ∈SK

` (A,SG(A; θ)) . (24)

While straightforward, (24) yields embeddings with limited
generalization capability. Simply put, regardless of the choice
of `(·), solving (24) amounts to predicting a set of edges by
tuning a similarity metric that is generated by the same set of
edges.

To mitigate overfitting but also promote generalization
of the similarity metric and of the resulting embeddings,
we explore the following idea. Suppose we are given a pair
A1,A2 of adjacency matrices both drawn independently
from fA(·). In this case, we would be able to use one as
approximation of S∗ ≈ A1, and the other to form the
multihop similarity matrix SG(A2;θ); parameters θ can then
be learned by solving

min
θ∈SK

` (A1,SG(A2;θ)) . (25)

Since separate samples are not available, we approximate
the aforementioned process by randomly extracting part of
A and approaching (25) as

min
θ∈SK

`S (A,SG(A ∗ Sc;θ)) (26)

where S ∈ {1, . . . , N}2 is a subset of all possible pairs
of nodes with |S| = Ns, and Sc is an N × N binary
section matrix with Sci,j = 0, if {i, j} ∈ S , and Sci,j = 1,
otherwise. Furthermore, `S(·, ·) in (26) denotes cost `(·, ·)
applied selectively only to entries of the matrix variables that
belong to S . Here, such that S = S+∪S−, with S+ ∈ E being
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as subset of the edges and S− ∈ {1, . . . , N}2 \ E a subset
of node index tuples that are not connected (non-edges). To
balance the influence of existing and non-existing edges, we
use subsets of equal cardinality, that is |S+| = |S−| = Ns/2.

To arrive from the unsupervised similarity learning
framework (26) to a practical method, it remains to specify
two modular sub-systems: one responsible for sampling
edges, and one specifying `(·, ·) to find θ∗ by solving (26).

4.1 Edge sampling
The choice of the sampling scheme for S plays an important
role in the overall performance of the proposed adaptive
embedding framework. Ideally, edge sampling should take
into account the following criteria.

• Sample S+ should be representative of the graph;
• Edge removal should inflict minimal perturbation;
• Edge removal should avoid isolating nodes; and
• Sampling scheme should be simple and scalable.

Aiming at a ‘sweet spot’ of these objectives, we populate S+
by sampling edges according to the following procedure: first,
a node v1 is sampled uniformly at random from V ; then, a
second node v2 is sampled uniformly from the neighborhood
set NG(v1) of v1. The selected edge is removed only if both
adjacent nodes have degree greater than one. Non-edges
S− are obtained by uniform sampling without replacement
over {1, . . . , N}2 \ E . The overall procedure is summarized
in Algorithm 2. For Ns � N , sampling probabilities remain
approximately unchanged despite the removals, since the
probability of selecting the same node is relatively small.
Thus, one may approximate Pr{et = (i, j)} ≈ Pr{e0 =
(i, j)}, and assuming for simplicity that di > 1∀i, it follows
that

Pr{e0 = (i, j)} = Pr{v1 = i, v2 = j}+ Pr{v1 = j, v2 = i}
= Pr{v2 = i|v1 = j}Pr{v1 = j}
+ Pr{v2 = j|v1 = i}Pr{v1 = i}

=
1

dj

1

N
+

1

di

1

N
∝ di + dj

didj
, (27)

meaning that edge e = (i, j) is removed with probability
that is proportional to the harmonic mean of the degrees of
the nodes that it connects. As shown in [14], the perturbation
that the removal of edge e = (i, j) inflicts on the spectrum
of an undirected graph is proportional to didj ; that is,
removing edges that connect high-degree nodes leads to
higher perturbation. Thus, Algorithm 2 tends to inflict
minimal perturbation by sampling with probability that
is inversely proportional to didj for di, dj � 1; this is
because the denominator of (27) dominates its numerator for
large degrees. On the other hand, for smaller di and dj , the
numerator ensures relatively high probabilities for moderate-
degree nodes. The combination of the two effects yields edge
samples that are fairly representative of the graph, while
inflicting low perturbation when removed.

4.2 Parameter training
Subsequently, for a given sample S , we can obtain the
corresponding optimal parameters as (cf. (26))

θ∗S = arg min
θ∈SK

∑
i,j∈S

` (Ai,j , sG−(vi, vj ;θ)) (28)

where G− := (V , E \ S+) is the original graph with the
randomly sampled subset S+ of edges removed.

Interestingly, one way that (28) could be solved is by
explicitly computing the entries of SG(θ) that are in S . This
would require performing K sparse matrix-vector products
to obtain every column of Sk for k ∈ {1, . . . ,K}, for all the
columns that contain sampled entries. In the worst case, if
all nodes in the tuples of S correspond to different columns
of SG(θ), two random walks are required for every tuple,
for a total of 2Ns random walks. This requires O (NsK|E|)
computations, and O (NsN) memory if they are to be
performed concurrently or in matrix form. Since K will
typically be in the order of tens, these requirements will
be affordable, if Ns is relatively small. Nevertheless, they
quickly become cumbersome for Ns � K, which may be
necessary to estimate the K-dimensional θ.

Algorithm 1 ADAPTIVE SIMILARITY EMBEDDING

Input: G Output: E

// Training phase
Θ = ∅
while |Θ| < Ts do
G−, S+, S− = SAMPLE EDGES( G )
θ∗S = TRAIN PARAMETERS( G−,S+,S−)
Θ = Θ ∪ θ∗S

end while
θ∗ = T−1s

∑
θ∈Θ θ

// Embedding phase
S = 1

2

(
I + D−1/2AD−1/2

)
S = UdΣdU

T
d

Σd(θ
∗) =

∑K
k=1 θ

∗
kΣ

k
d

return E = Ud

√
Σd(θ

∗)

Instead, we will rely on the fact that the proposed
embeddings are smooth and differentiable wrt to θ (cf. (10)),
to develop a solution that allows for selecting arbitrarily
large Ns, using the approximation

sG−(vi, vj ;θ) ≈ sE(e−i (θ, e
−
j (θ))

=
(
e−i (θ)

)>
e−j (θ)

=

(√
Σ−d (θ) u−i

)>√
Σ−d (θ) u−j

=
(
u−i
)>

Σ−d (θ)u
−
j

= x>i,j θ (29)

where
xi,j =

(
u−i ∗ u−j

)>
ΣK
d , (30)

and

ΣK
d =


σ1 σ2

1 · · · σK1
...

...
. . .

...
σd−1 σ2

d−1 · · · σKd−1
σd σ2

d · · · σKd

 .
Conveniently, {xi,j}s act as features over every possible
pair of nodes, which when linearly combined with weights
θ to produce similarities, allow us to approach (28) using
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Algorithm 2 SAMPLE EDGES

Input: G Output: G−,S+,S−

// Sample edges
S+ = ∅, G− = G
while |S+| < Ns/2 do

Sample v1 ∼ Unif (V)
if |NG−(v1)| > 1 then

Sample v2 ∼ Unif (NG−(v1))
if |NG−(v2)| > 1 then
S+ = S+ ∪ (v1, v2)
G− = G− \ (v1, v2)

end if
end if

end while

// Sample non-edges
S− = ∅
while |S−| < Ns/2 do

Sample (v1, v2) ∼ Unif (V × V)
if (v1, v2) /∈ E then
S− = S− ∪ (v1, v2)

end if
end while
return G−, S+, S−

Algorithm 3 TRAIN PARAMETERS

Input: G, S+, S− Output: θ∗S
S = 1

2

(
I + D−1/2AD−1/2

)
S = UdΣdU

T
d

S = S+ ∪ S−
Form XS = {x(i,j)}(i,j)∈S as in (30)

return θ∗S = SIMPLEXSVM( XS ,S+,S−)

Algorithm 4 SIMPLEXSVM

Input: X ,S+,S− Output: θ∗

θ0 = 1
K1, t = 1

while ‖θt − θt−1‖∞ ≥ tol do
t = t+ 1, ηt = a/

√
t

S+a = {e ∈ S+| xTe θt−1 ≤ ε}
S−a = {e ∈ S−| xTe θt−1 ≥ −ε}
gt =

∑
e∈S−

a
xe −

∑
e∈S+

a
xe

zt = (1− 2ηtλ)θt−1 − ηt
Ns

gt

θt =SIMPLEXPROJ( zt )
end while
return θt

well-understood learning and optimization tools. Among the
various loss functions one may fit the removed edges2 using
the hinge loss

`(y, f) := max(0, ε− yf) (31)

2. In our implementation, we also provide learning mechanisms based
on least-squares, logistic regression, as well as finding the best single k.
Due to space constrains though we only present and report results of
the SVM-based approach.

which is suitable for real-world graphs thanks to its ro-
bustness properties [13]; note that target variables here are
defined as yi,j = 2Ai,j − 1 so that yi,j ∈ {−1, 1}. We can
then equivalently express (28) as

θ∗S = arg min
θ∈SK

∑
i,j∈S

max(0, ε− yi,jx>i,j θ) + λ‖θ‖22 (32)

where λ ≥ 0 is the regularization parameter of the `2
regularization typically used to improve the robustness
and generalization capability of SVMs [13]. To solve our
variant of simplex-constrained SVMs (cf. (32)), we employ
the projected-gradient descent approach [3] that we describe
in Algorithm 4, where SIMPLEXPROJ( · ) is a subroutine
that implements projections onto SK ; the latter can be
performed with O(K logK) complexity as described in [21].
The overall parameter learning procedure for a given sample
is summarized in Algorithm 3.

In general, if runtime or computational resources allow,
the sampling and training process described in the last
two sections can be repeated Ts times to obtain different
{θ∗S}s, which can then be averaged in order to reduce their
variance. In practice, this may not be necessary if Ns is large
enough, which will yield a near-deterministic θ. The overall
proposed adaptive-similarity embedding (ASE) framework
is summarized in Algorithm 1.

4.3 Complexity

The computational complexity of ASE is dominated by the
cost of performing the truncated SVD of S in the training as
well as testing phases of Algorithm 1. Relying on the sparsity
(|E| � N2) and symmetry of S, the Lanczos algorithm
followed by EVD of a tridiagonal matrix yield the truncated
SVD in a very efficient manner. Provided that d � N , the
decomposition can be achieved in O(|E|d) time and using
O(Nd) memory. Therefore, for the Ts ≥ 1 training rounds
and a single embedding round of Algorithm 1, the overall
complexity is O((Ts + 1)|E|d).

5 RELATED WORK

Two recent embedding methods also pursue similarity
matrices that combine walks of different lengths [12], [38].
Most relevant to the proposed ASE is the “Arbitrary-Order
Proximity Preserved Network Embedding” [12] approach,
where a method is proposed for obtaining the SVD of
a polynomial of the adjacency matrix without having to
recompute the singular vectors.

Compared to [12], we put forth the following contribu-
tions. First, we introduce a family of multihop similarities
whose decomposition leads to embeddings that inherit the
rich information contained in the spectral embeddings (cf.
Section 2.3). An equally important contribution in terms
of modeling is that our embeddings can be differentiated
with respect to (wrt) weights θ (cf. (29)-(32)), whereas the
embeddings in [12] are non-differentiable wrt the weights.
Hence, [12] can only proceed in a “forward” fashion given
some order proximity weights θ, whereas our approach
allows for “navigating” the space of possible similarity
functions s(vi, vj ;θ) in a smooth fashion, meaning that θ can
be learned with simple optimization on well-defined fitting
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models such as logistic regression or SVMs (cf. (32)). This
leads to the third main contribution, which is a means of
learning “personalized” θ (cf. Section 4) in an unsupervised
fashion, meaning without downstream information such as
node or edge labels/attributes that can guide cross-validation
in high-dimensional discretized parameter grids.

The second related embedding method presented in [38]
builds on the concept of graph attention mechanisms to
place weights on lengths of truncated random walks. These
mechanisms are used to build a similarity matrix containing
co-occurrence probabilities. The matrix is jointly decomposed
by maximizing a graph-likelihood function. The model in
[38] is a generalization of the ones implicitly adopted by
[39] and [40], building on similar tools and concepts that
emerge from natural language processing. Different from
[39], [40] and the proposed ASE, [38] explicitly constructs
and factorizes a dense N ×N similarity matrix. The detailed
procedure incurs complexity that is cubic wrtN , and becomes
at best quadratic after model approximations, meaning that
[38] scales rather poorly beyond small graphs.

6 EXPERIMENTAL EVALUATION

The present section reports extensive experimental results on
a variety of real-world networks. The aim of the presented
tests is twofold. First, to determine and quantify the quality
of the proposed ASE embeddings for different downstream
learning tasks. Second, to analyze and interpret the resulting
embedding parameters for different networks.
Datasets. In our experiments, we used the following real-
world networks (see also Table 2).

• ca-AstroPh. The Astro Physics collaboration net-
work is from the e-print arXiv and covers scientific
collaborations between co-authored papers submitted
to Astro Physics category [52]. If an author i co-
authored a paper with author j, the graph contains
a undirected edge from i to j. If the paper is co-
authored by k authors, this generates a completely
connected (sub)graph on k nodes.

• ca-CondMat. Condense Matter Physics collaboration
network from ArXiv [52].

• CoCit. A co-citation network of papers citing other
papers extracted by [36]; labels represent conferences
in which papers were published.

• com-DBLP. Computer science research bibliography
collaboration network [52].

• com-Amazon. Network collected by crawling Ama-
zon website [52]. It is based on “Customers Who
Bought This Item Also Bought” feature of the Amazon
website. If a product i is frequently co-purchased with
product j, the graph contains an undirected edge from
i to j.

• vk2016-17. VK is a Russian all-encompassing social
network. In [36], two snapshots of the network were
extracted in November 2016 and May 2017, to obtain
information about link appearance.

• email-Enron. Enron email communication network
covering all the email communication within a dataset
of around half a million emails [52].

• PPI (H.Sapiens). Subgraph of the protein-protein
interaction network for Homo Sapiens. The subgraph

TABLE 2: Network Characteristics

Graph |V| |E| |Y| Density

PPI (H. Sapiens) 3,890 76,584 50 10−2

Wikipedia 4,733 184,182 40 1.6× 10−2

BlogCatalog 10,312 333,983 39 6.2× 10−3

ca-CondMat 23,133 93,497 - 3.5× 10−4

ca-AstroPh 18,772 198,110 - 1.1× 10−3

email-Enron 36,692 183,831 - 2.7× 10−4

CoCit 44,312 195,362 15 2× 10−4

vk2016-17 78,593 2,680,542 - 8.7× 10−4

com-Amazon 334,863 925,872 - 1.7× 10−5

com-DBLP 317,080 1,049,866 - 2.1× 10−5

corresponds to the graph induced by nodes for which
labels (representing biological states) were obtained
from the hallmark gene sets [40].

• Wikipedia. This is a co-occurrence network of
words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-
Speech (POS) tags inferred using the Stanford POS-
Tagger [40].

• BlogCatalog. A network of social relationships of
the bloggers listed on the BlogCatalog website. The
labels represent blogger interests inferred through the
meta-data provided by the bloggers.

Methods. Experiments were run using the following unsu-
pervised and scalable embedding methods.

• ASE. Our proposed adaptive similarity embedding.
Based on observations made in Sections 3, and to
retain optimization stability, we set the maximum
number of steps to K = 10. We also use the default
SVM regularizer (λ = 1). To have a single learning
round with learned parameters having small enough
variance, we sampled with Ns/2 = 1, 000. We made
our implementation of ASE freely available 3.

• VERSE [36]. This is a scalable framework for gen-
erating node embeddings according to a similarity
function by minimizing a KL-divergence-objective via
stochastic optimization. We used the default version
with similarity (PPR with α = 0.85), as suggested and
implemented by the authors.4

• Deepwalk [39]. This approach learns an embedding
by sampling random walks from each node, and
applying word2vec-based learning on those walks.
We use the default parameters proposed in [39], i.e.,
walk length t = 80, number of walks per node
γ = 80, window size w = 10, and the scalable C++
implementation5 provided in [36].

• HOPE [29]. This SVD-based approach approximates
high-order proximities and leverages directed edges.
We report the results obtained with the default pa-
rameters, i.e, Katz similarity as the similarity measure
with β inversely proportional to the spectral radius.

• AROPE [12]. An approach for fast computation of
thin SVD of different polynomials of A. We used
the official Python implementation 6 to produce the

3. https://github.com/DimBer/ASE-project
4. https://github.com/xgfs/verse
5. https://github.com/xgfs/deepwalk-c
6. https://github.com/ZW-ZHANG/AROPE
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TABLE 3: Inferred parameters and interpretation

Graph θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 range strength

PPI (H. Sapiens) 0.00 0.14 0.31 0.29 0.21 0.04 0.00 0.00 0.00 0.00 medium medium
Wikipedia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.37 0.62 long strong

BlogCatalog 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short very strong
ca-CondMat 0.55 0.33 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
ca-AstroPh 0.76 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
email-Enron 0.24 0.25 0.18 0.14 0.1 0.06 0.02 0.00 0.00 0.00 medium weak

CoCit 0.61 0.33 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
vk2016-17 0.71 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
com-Amazon 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 short very weak
com-DBLP 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.08 short very weak
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Fig. 4: Micro and Macro F1 scores for the four labeled graphs, when the “pure” k−order Sk is used for embedding, given as
a function of k. Red shade denotes the corresponding k’s where ASE assigned non-zero θk’s; see also Table 2.

embeddings. We selected the polynomial (hyper)
parameters of AROPE using a set of validation edges
that was sampled similarily to ASE (Algorithm 2).
We consider proximity orders in the range [1, 10],
and perform grid search over the different proximity
weights as suggested in [12].

• LINE [35]. This approach learns a d-dimensional
embedding in two steps, both using adjacency sim-
ilarity. First, it learns d/2 dimensions using first-
order proximity; then, it learns another d/2 features
using second-order proximity. Last, the two halves
are normalized and concatenated. We obtained a copy
of the code7, and run experiments with T = 1010

samples (although T = 109 yielded the same accuracy
for smaller graphs), and s = 5 negative samples, as
described in the paper.

• Spectral. This approach relies on the first d eigenvec-
tors of D−1/2AD−1/2. The baseline was developed
for clustering [17], and has also been run as a
benchmark for node embeddings [40]. In our case,
spectral embedding is of particular interest since it
can be obtained by column-wise normalization of the
embeddings generated by the proposed method.

We excluded comparisons with Node2vec [40] because
they use cross-validation on node labels for hyper-parameter
selection. Thus comparing Node2vec to methods such as
LINE, Deepwalk, HOPE, VERSE, and EMB that all operate
with fixed hyperparameters in a fully unsupervised manner
would be unfair. We also excluded comparisons with GraRep
[31] and M-NMF [30] due to their limited scalability (O(N2d)

7. https://github.com/tangjianpku/LINE

computational and O(N2) memory complexity).

Evaluation methodology. Our experiment setting follows
the one in [36]. All methods are set to embed nodes to
dimension d = 100. Using the resulting embeddings as
feature vectors, we evaluated their performance in terms
of node classification and link prediction accuracy, and
clustering quality. All experiments were repeated 10 times
and reported are the averaged results.

Interpretation of results. One interesting aspect of the
proposed ASE method, is that the inferred parameters θ∗

from the first phase of Algorithm 1 can be used to characterise
the underlying similarity structure of the graph, and the way
nodes “interact” over different path lengths (short, medium,
and long range). The “strength” of interactions is inferred by
how uniform the coefficients of θ∗ are, and depend on the
value of λ. Since the default value was λ = 1 for all graphs,
the results can be interpreted as relative interaction strengths
between them. The resulting {θ∗}s for all graphs are listed
in Table 3.

It can be immediately observed that the type of node
interactions varies significantly across different graphs, with
similar behavior for graphs that belong to the same domain.
Specifically, ca-CondMat, ca-AstroPh, and CoCit that
belong to the citation/co-authorship domain all show
relatively strong interactions of short range. BlogCatalog
shows very strong short-range similarities of only one-hop
neighborhood interactions among bloggers. On the other
hand, the Wikipedia word co-occurrence network shows
a strong tendency for long-range interactions; while other
graphs, such as the PPI protein interaction network stay on
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Fig. 5: Micro (upper row) and Macro (lower row) F1 scores that different embeddings + logistic regression yield on labeled
graphs, as a function of the labeling rated (percentage of training data)

the medium range.

Node classification. Graphs with labeled nodes are fre-
quently used to measure the ability of embedding methods
to produce features suitable for classification. For each
experiment, nodes were randomly split to a training set
and a test set. Similar to other works, and to cope with
multi-label targets, we fed the training features and labels
into the one-vs-the-rest configuration of logistic regression
classifier provided by the sklearn Python library. In the
testing phase, we sorted the predicted class probabilities
for each node in decreasing order, and extracted the top-ki
ranking labels, were ki is the true number of labels of node
vi. We then computed the Micro- and Macro-averaged F1

scores [10] of the predicted labels.
Apart from comparisons with alternative embedding

methods, node classification can reveal whether available
node labels (metadata) are distributed in a manner that
matches the node relations/interactions that are inferred
by ASE. To reveal this information, we obtain embeddings
for every k ∈ {1, . . . , 10} by ignoring the training phase
and “forcing” θ∗ = ek (i.e., 1 at the k-th entry and 0
elsewhere) in Algorithm 1, and then using each embedding
for classification with 10% labeling rate. Figure 4 plots Micro
and Macro F1 for all labeled graphs as a function of k, while
red shade is placed on the hops where the unsupervised ASE
parameters θ∗ are non-zero (cf. Table 1). As seen in Fig. 4,
the accuracy on the four labeled graphs evolves with k in
a markedly different manner. Nevertheless, ASE identifies
the trends and tends to assign non-zero weights to hops
that yield a desirable trade-off between Micro and Macro F1.
Bearing in mind that ASE does not use labels for training or
validation, this is rather remarkable considering the fact that
θ∗ depends only on the graph.

We also compared the classification accuracy of ASE
embeddings with those of the alternative embedding ap-
proaches, with results plotted in Fig. 5. The plots for some
method-graph pairs are not discernible when values are too
low. While the relative performance of any given method
varies from graph to graph, ASE adapts to each graph and
yields consistently reliable embeddings, with accuracy that
in most cases reaches or surpasses that of state-of-the-art
methods, especially in terms of Macro F1. The two exceptions
are the Macro F1 in CoCit, and Micro F1 in Wikipedia,
where VERSE and HOPE are correspondingly more accurate.
Interestingly, HOPE achieving high Micro F1 and low Macro
F1 in Wikipedia is in agreement with the findings in Fig. 4,
combined with the fact that HOPE focuses on longer paths.

TABLE 4: Link Prediction Accuracy on vk2016-17

VERSE ASE LINE Deepwalk AROPE HOPE Spectral

0.79 0.75 0.74 0.69 0.65 0.62 0.60

Link prediction. Link prediction is the task of estimating the
probability that a link between two unconnected nodes will
appear in the future. We repeat the experiment performed in
[36] on the vk2016-17 social network. For every possible
edge, we build a feature vector as the Hadamard product
between the embedded vectors of its two adjacent nodes.
Using the two time instances of vk2016-17, we predict
whether a new friendship link appears between November
2016 and May 2017, using 50% of the new links for training
and 50% for testing. To train the binary logistic regression
classifier, we also randomly sample non-existing edges as
negative examples. The link prediction accuracy for different
embeddings is reported in Table 3. While for this experiment
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Fig. 6: Average conductance of different embeddings used by kmeans for clustering, as a function of number of clusters.

ASE does not reach the accuracy of VERSE, it provides the
second most accurate link prediction, far surpassing the also
SVD-based HOPE and spectral embeddings.

Node clustering. Finally, the embedded vectors were used
to cluster the nodes into different communities, using the
sklearn library K-means with the default K-means++
initialization [18]. We evaluate the quality of node clustering
with conductance, a well-known metric for measuring the
goodness of a community [5]; conductance is minimized
for large, well connected communities that are also well
separated from the rest of the graph. Each plot in Fig. 6
gives the average conductance across communities, as a
function of the total number of clusters. Results indicate
that the proposed ASE as well as the spectral clustering
benchmark yield much lower conductance compared to
other embeddings. Apparently, since ASE builds on the same
basis of eigenvectors used by normalized spectral clustering,
it inherits the property of the latter to approximately
minimize the normalized-cut metric [17], which is very
similar to conductance. A closer look at the resulting clusters,
reveals that clustering beased on VERSE, Deepwalk, LINE,
and HOPE splits graphs into very large communities of
roughly equal size, cutting a large number of edges in
the process. This is an indication that these methods are
subject to a resolution limit, which is the inability to detect
well-separated communities that are below a certain size
[1]. On the other hand, Spectral and the proposed ASE
separate the graph into a large-core component, and many
smaller well-separated communities, a structure that many
large-scale information networks have been observed
to have [5]. Indeed, the conductance gap is smaller for

BlogCatalog, which is relatively small and with less
pronounced communities.

Parameter sensitivity. We also present results after varying
ASE parameters and measured embedding runtime for
PPI as well as classification Micro F1 accuracy with 10%
labeling rate. The aim is to assess the sensitivity of ASE
wrt its basic parameters. The plot on the left shows how
increasing λ (cf. (32)) may decrease accuracy by forcing
the entries of θ∗ to be close to uniform, thus losing the
benefits of graph-specific adaptation. Regarding the number
of sampled edges Ns, results (middle plot) indicate relative
robustness of ASE embeddings, given a minimum number
of samples. As expected, sampling a large number of edges
may cause noticeable perturbation on the graph (even using
the minimally-perturbing Algorithm 2); this may be causing
a slight decrease in accuracy. Sensitivity is also measured
wrt K (i.e., the maximum walk length considered in the
optimization). As expected, the accuracy increases sharply
with K for the first few steps, and then plateaus as higher
order coefficients of PPI take zero values (c.f., Table 3) and
do not affect the results. Finally, the plot on the left depicts
accuracy across a range of embedding dimensions d.

Runtime. Finally, we compared different embedding meth-
ods in terms of runtime. Results for all graphs are reported in
Fig. 8. All experiments were run on a personal workstation
with a quad-core i5 processor, and 16 GB of RAM. For
our proposed ASE, we provide a light-weight yet highly
portable implementation 8 that uses the SVDLIBC library
[51] for sparse SVD. We also developed a more scalable

8. https://github.com/DimBer/ASE-project/tree/master/portable
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implementation 9 that relies on (and requires installation of)
the SLEPc package [49]; this scalable version can perform
large-scale sparse SVD on multiple processes and distributed
memory environments using the message-passing interface
(MPI) [48]. We used the high-performance implementation
for the five larger graphs, and the portable one for the five
smaller ones. Evidently, ASE and HOPE that are SVD-based
are orders of magnitudes faster than VERSE, Deepwalk,
and LINE. The main factor that slows the latter down
seems to be the large number of stochastic optimization
iterations that these methods must perform to reach accurate
embeddings. Nevertheless, it should be noted that sampling
based methods enjoy nearly-full parallelization and could
thus benefit more from highly multi-threaded environments.
On the other hand, methods that rely on SVD (and EVD) can
greatly benefit from decades of research on how to efficiently
perform these decompositions, and a suite of stable and
highly optimized software tools.

7 CONCLUSIONS AND FUTURE WORK

We presented a scalable node embedding framework that
is based on factorizing an adaptive node similarity matrix.
The model is carefully studied, interpreted, and numerically
evaluated using stochastic block models, with an algorith-
mic scheme proposed for training the model parameters
efficiently and without supervision.

The novel framework opens up several interesting future
research directions. For instance, one can explore larger
families of node similarity metrics that can be learned using
the graph. Furthermore, it would be interesting to assess
the performance of different randomized edge sampling
methods, and generalize the notion of adaptive-similarity to
heterogeneous and multi-layered graph embedding, as well
as to edge embedding.

9. https://github.com/DimBer/ASE-project/tree/master/slepc based
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