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We consider several variants of the map-matching problem, which seeks to find a path Q in graph G that

has the smallest distance to a given trajectory P (which is likely not to be exactly on the graph). In a typical

application setting, P models a noisy GPS trajectory from a person traveling on a road network, and the desired

path Q should ideally correspond to the actual path in G that the person has traveled. Existing map-matching

algorithms in the literature consider all possible paths in G as potential candidates for Q . We find solutions

to the map-matching problem under different settings. In particular, we restrict the set of paths to shortest

paths, or concatenations of shortest paths, in G. As a distance measure, we use the Fréchet distance, which is

a suitable distance measure for curves since it takes the continuity of the curves into account.
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1 INTRODUCTION
The map-matching problem seeks to find a path Q in a planar graph G = (V ,E) that has the
smallest distance to P . In a typical application setting, P models a noisy GPS trajectory from a

person traveling on a road network, modeled as the planar graphG , and the desired path Q should

correspond to the actual path in G that the person has traveled. Map-matching algorithms in the

literature [1, 2, 6] consider all possible paths inG as potential candidates forQ , and apply similarity

measures such as Hausdorff or Fréchet distance to compare input curves.

We propose to restrict the set of potential paths in G to a natural subset: those paths that

correspond to shortest paths, or concatenations of shortest paths, inG. Restricting the set of paths

to which a path can be matched makes sense in many settings. In particular, vehicles often follow

routes computed by a navigation system, which often prefers certain types of routes over others. To

the best of our knowledge, the current literature also does not consider the case where the vehicle

makes multiple stops. For example, consider a person running several errands in one trip, where

Authors’ addresses: Erin Chambers, Saint Louis University, Department of Computer Science, 220 N. Grand Avenue, Saint

Louis, Missouri, 63103, echambe5@slu.edu; Brittany Terese Fasy, Montana State University, School of Computing, 363

BarnardHall, Bozeman,Montana, 59717, brittany@cs.montana.edu; YusuWang, TheOhio State University, Computer Science

and Engineering Department, 2015 Neil Avenue, Columbus, Ohio, 43210, yusu@cse.ohio-state.edu; Carola Wenk, Tulane

University, Department of Computer Science, 6823 St. Charles Avenue, New Orleans, Louisiana, 70118, cwenk@tulane.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 Chambers, Fasy, Wang, Wenk

we are given the approximate path that the person followed, along with the underlying map. In

this setting, knowledge of the number of stops as well as the type of path preferred (shortest travel

time, shortest distance, or perhaps avoiding certain types of roads) can improve the final quality of

the path that our algorithm matches to in the graph.

Related work. Map-matching is widely used in practice, e.g., to establish fast routes or points of

interest from a large set of trajectories [18, 19]. Common approaches include the use of Fréchet

distance variants [2, 6], ad-hoc incremental methods [6, Sec. 3], matching low-sampling-rate

trajectories using spatial-temporal constraints [13], and hidden Markov models [15, 17]. Despite

this, only few map-matching algorithms provide quality guarantees.

Only a small proportion of prior work considers restricting the set of paths inG. Instead, com-

mon practice reduces the space of paths by croppingG inside an ε-neighborhood around P before

applying a general map-matching algorithm. Recently, Gheibi et al. [10] gave a map-matching

algorithm that minimizes the sum of the lengths of walks on P and Q within some Fréchet

distance. Their algorithm runs in O(Nm(N + m) log(N + m)) time and O(Nm(N + m)) space,

where n = |V |,m = |E |,N = |P |, and computes a shortest path in a discretized free space.

Our contribution. We provide algorithms for variants of the map-matching problem, in which

the set of paths are restricted to shortest paths, or concatenations of shortest paths, in the graph.

As a distance measure between paths, we use the Fréchet distance, which is a standard distance

measure for curves in this setting that produces better matchings than other distance measures

such as the Hausdorff distance, since it takes the continuity of the curves and not simply distance

between them into account.

In Section 3, we provide an algorithm tomatch P to the shortest possible path within some Fréchet

distance in G. We prove properties of a distance function on the free space diagram, which is the

main tool used to compute Fréchet distance this allows us to use an incremental algorithm, which

in turn uses less space less space than alternatives [10]. In Section 4, we give algorithms to match P
to concatenations of shortest paths in G: In the min-k variant, we find a path Q in G consisting

of the smallest number k of shortest path pieces that does not exceed a given Fréchet distance.

In the min-ε variant, we find a path Q in G consisting of at most k shortest paths, for given k ,
such that the Fréchet distance to P is minimized. We assume that break-points between shortest

paths lie on vertices ofG , and these break-points are mapped to vertices of P . In Section 5, we relax

this constraint on the break-points, and provide approximation algorithms that approximate the

number of shortest path pieces as well as the Fréchet distance ε when break-points can lie in the

interior of edges in G and can be mapped to the interior of edges of P .
To the best of our knowledge, we present the first systematic study of map-matching algorithms

that consider a subset of paths with pre-defined properties in G to be matched to P . Our paper
introduces a new perspective on map-matching and provides theoretical foundations for the

practically relevant problem, where we consider a restricted set of path classes. We remark that

an initial extended abstract of the present paper appeared in the 3rd International Workshop on

Interactive and Spatial Computing (IWISC), 2018 [7]. The main difference lies in Section 5, which

is a main technical component of the current paper, where no technical proofs were provided for

the earlier extended abstract.

Discussion of our model. While it has been recognized that factors other than purely shortest

distances may affect how people choose routes (see e.g [21]), many advanced models still rely

heavily on the shortest path assumption e.g., [4, 5, 11, 16, 20].

Furthermore, we note that it has been observed before that shorter trajectories are more likely

to be shortest paths, as do very long routes where the trajectory tends to follow a single route

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 1. Three school bus trajectories from the Athens-small dataset from mapconstruction.org.

like a highway for most of the distance. For example, in [21], the authors analyze GIS data from

travel routes over an eight week time frame, finding that nearly 34% of all trips follow the shortest

time path exactly; when they relax to allow the route to be “nearly" shortest, then about 40% of

all trips follow shortest routes. Routes also tend to revert to something close to a shortest path in

the evening [14], as do trips associated with work as opposed to other tasks like shopping [8]. In

another work [12], the authors analyze several data sets and show that in fact routes stay relatively

close to the shortest path, within an ellipse whose two foci are the start and end points of the

trajectory, and even within this area most deviations are small.

While we measure the length of a path by its arclength using Euclidean distances in this paper,

we remark that the weight of a shortest path can be based on other quantities, such as travel times.

We also emphasize that assuming that a path consists of k shortest paths is fundamentally

broader in scope than assuming that it is a single shortest path. Indeed, in the extreme case, by

choosing a sufficiently large k , any path can fit into our model: For example, any path consisting

of n road segments can be considered as a concatenation of k = n shortest paths.

In addition, several analyses suggest that breakpoints or anchors - key locations that attract a

large number of trajectories - can be a natural way to decompose longer paths into routes that

resemble optimal (or shortest) paths [12, 14]. This helps to support investigating algorithms in a

model where longer paths can be viewed as concatenations of shortest paths. For example, in Fig. 1,

bus route trajectories do not at all resemble shortest paths, but each can be broken into several

subtrajectories that do follow a shortest route.

2 PRELIMINARIES
Let G = (V ,E) be a geometric graph with polygonal edges, and let P be a polygonal path. We

parameterize each (undirected) edge e = (u,v) ∈ E linearly by e(s) := (1 − s)u + sv for s ∈ [0, 1],
where the direction of the parameterization is fixed, but arbitrary. Let p0,p1, . . . ,pN be the sequence

of N +1 vertices defining the polygonal path P . We identify each of these vertices with a point in the

plane, and we parameterize each line segment edge ei = (pi ,pi+1) linearly by pi (t) := (1−t)pi +tpi+1
for t ∈ [0, 1]. We use P[pi ,p] to denote the polygonal subpath from pi to some other point p ∈ G.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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The length of a path or subpath, either in G or P , is simply the sum of all edge-lengths in the

path; in the case of partial edges, we use the fact that we have an arc length parameterization of all

edges, and take the arc length of the partial edge.

We are interested in finding a path in G that is close to an input path P . To measure this

closeness, we use the Fréchet distance [9]. Consider any two curves α , β : [0, 1] → R2
. Let ϕ andψ

be orientation-preserving homeomorphisms that serve as reparameterizations of [0, 1]. We can

measure the distance between (α◦ϕ) and (β◦ψ ) pointwise, and take the supremum. Then, the Fréchet

distance δF (α , β) is defined to be the infimum of this measurement over all reparameterizations ϕ
andψ . Formally: δF (α , β) = infϕ,ψ sups,t ∈[0,1] | |(α ◦ϕ)(t) − (β ◦ψ )(t)| |. Intuitively, one can imagine

a man walking along one curve and a dog along the other, continuously from beginning to end

without backtracking. Then, the Fréchet distance is the shortest leash needed to connect the man

and dog on their walk.

In order to match the path to the graph, we consider the cell complex G × P ; see Fig. 2(a).

By convention, we say that the graph G = (V ,E) is horizontal and the path P is vertical. For an
edge (u,v) ∈ E and consecutive path vertices pi and pi+1, we consider the cell (u,v) × (pi ,pi+1) ⊆
G × P to be drawn with (u,v) as a horizontal edge and (pi ,pi+1) as a vertical edge, as shown in

Fig. 2(b). A slice is the graph G cross an edge (pi ,pi+1) of the path, G × (pi ,pi+1), and a level is the
graph cross a vertex pi of the path, G × pi .
For ε > 0, the corresponding free space diagram Dε is the subset of G × P such that for all

pairs (д,p) ∈ Dε , the following inequality is satisfied: | |д − p | | ≤ ε . The free space of a cell is equal
to an ellipse intersected with the cell [3]. As a consequence, equality | |д − p | | = ε holds for at most

two points on each vertical or horizontal edge in the complex. On a vertical edge u × (pi ,pi+1), we
denote these two points by aiu and biu . Where appropriate, we slightly abuse notation and use aiu
to also identify the parameter t for which pi (t) = aiu . In this way, we say aiu ≤ biu . Likewise, on a

horizontal edge (u,v) × pi , we denote c
i
u ≤ diu as the points for which | |ciu − pi | | = | |diu − pi | | = ε ;

see Fig. 2(b) for an example of a labeled free space cell.

3 SHORTEST AMONG MATCHING PATHS
In this section, we consider only paths in G that have restricted Fréchet distance to an input

polygonal curve, and among those paths, we wish to find a shortest path. That means, we are

interested in finding the shortest matching path:

Problem 1 (Shortest Matching Path). Given a parameter ε > 0 and a path P , find the shortest
path in G that is within Fréchet distance ε to P .

Weprovide an incremental algorithm for computing such a shortest matching path. Our algorithm

computes a distance function on all edges of the free space. We also prove properties of this distance

functions which may be of independent interest.

3.1 Algorithm
Any path Q in G with δF (P ,Q) ≤ ε corresponds to a P-monotone path π in free space Dε ⊆ G × P .
A shortest such path Q then corresponds to a shortest P-monotone path π in Dε , where the length

of π is only measured along G, i.e., in the horizontal direction. Our algorithm follows a dynamic

programming approach that combines the computation of paths in the free space diagram with

shortest path computations.

We define a function φ : G × P → R such that φ(д,p) = minQ |Q |, where Q ranges over all paths

inG ending atд such that δF (P[p0,p],Q) ≤ ε , and |Q | denotes the length ofQ . If no such path to (д,p)
exists, then φ(д,p) = ∞. In particular, φ(д,p) = ∞ for (д,p) < Dε . We have that φ(д,p) = minπ |π |,
where π ranges over all P-monotone paths in Dε that end at (д,p), and the length |π | is measured

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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(a) Parameter space. (b) A free space cell.

Fig. 2. On the left, we illustrate the parameter space G × P , a graph G (shown in red with white vertices)
times a path P of length four. For convenience, the path is drawn as a straight path. A slice is the graph cross
an edge e of the path:G × e ; see the shaded pink region. A level is the graph cross a vertex v in the path:G ×v .
Each level can be thought of as a copy ofG . A cell corresponds to two edges, one of the path and one on G, as
shown in cyan. On the right, we illustrate one free space of a cell (u,v) × (pi ,pi+1), where (u,v) is an edge in
the graph and pi ,pi+1 are consecutive points in P . The free space is equivalent to an ellipse intersecting this
rectangle. Therefore, each edge of the rectangle has at most two points (д,p) for which | |д − p | | = ε .

along G only. We call π a G-shortest path, or shortest path for short. Thus, φ captures the length of

G-shortest paths in free space. Our algorithm computes φ slice-by-slice over G × P , with the goal

to compute φ(д,pN ) for some д ∈ G. Observe that a G-shortest path π has to be monotone in each

cell of G × P . Therefore, it suffices to compute φ on the vertical and horizontal edges of G × P . In
each slice of G × P , we perform a Bellman-Ford inspired computation to propagate φ between the

vertical edges by relaxing along the horizontal edges.

For a vertical edge defined by v ∈ V and an edge (pi ,pi+1) of the path, let φv,i (t) : [0, 1] → R
be defined by φv,i (t) = φ(v,pi (t)). For a horizontal edge defined by e ∈ E and a vertex pi of the
path, let φe,i : [0, 1] → R be defined by φe,i (s) := φ(e(s),pi ). Note that for each (undirected)

edge (u,v) ∈ E, we only store one φ-function, say, φ(u,v),i (s), since φ(v,u),i (s) = φ(u,v),i (1 − s).

Lemma 3.1 (Vertical Monotonicity). The vertical function φv,i (t) is monotone non-increasing
for t ∈ [aiv ,b

i
v ].

Proof. Observe that [aiv ,b
i
v ] corresponds to the intersection of the freespaceDε with the vertical

edge. Since φ measures the length of paths in Dε in the G-direction only, paths can move in the

vertical direction without increasing in length. □

In particular, we note that a direct consequence of the above lemma is the fact that the minimum

of this edge is attained at aiv : φv,i (a
i
v ) ≤ φv,i (t) for all t ∈ [aiv ,b

i
v ].

Our dynamic programming algorithm, Algorithm 1, is based on the reachability propagation

introduced by Alt and Godau to compute the Fréchet distance [3]. Instead of propagating binary

reachability information from cell to cell, we propagate function values for φ along vertical and

horizontal edges of G × P . We will see in Lemma 3.4 and Lemma 3.5 that φ is piecewise linear on

a vertical or horizontal edge. We therefore store each φv,i (t) and φe,i (s) as a list of linear pieces.
Updates such as the ones in lines 8, 11, and 12 then take linear time in the length of the lists. The

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Algorithm 1: Shortest Among Fréchet-Matching Paths

1 Initialize φv,i (t) = φe,i (s) = ∞ for all v, e, i, s, t .

2 forall v ∈ V with | |v − p0 | | ≤ ε do
3 φv,0(0) = 0

4 forall e ∈ E and s ∈ [0, 1] with | |e(s) − p0 | | ≤ ε do
5 φe,0(s) = 0

6 for i = 0, . . . ,N do // Compute slices
7 forall v ∈ V and t ∈ [0, 1] with | |v − pi (t)| | ≤ ε do

// Initialize vertical edges
8 φv,i (t) = min{φv,i (a

i
v ), min

u ∈Adj(v)
min

s ∈[0,1]
{φ(u,v),i (s) + (1 − s)| |u −v | |}}

9 while there exist edges e ∈ E to be relaxed do
// Compute vertical edges in slice i

10 forall e = (u,v) ∈ E and t ∈ [0, 1] do
// Relax edge e (both directions)

11 φv,i (t) = min{φv,i (t), φu,i (max{t ,aiv }) + | |u −v | |}

12 φu,i (t) = min{φu,i (t), φv,i (max{t ,aiu }) + | |u −v | |}

13 forall e ∈ E do
// Compute horizontal edges in level i + 1

14 Compute φe,i+1(s) according to Lemma 3.3.

condition in line 9 is true if there exists an edge e = (u,v) such that φv,i (t) or φu,i (t) are updated
in lines 11 and 12.

3.2 Properties
Algorithm 1 is based on the recursive formulas given in Lemma 3.2 and Lemma 3.3.

Lemma 3.2 (Compute Vertical Edges). Consider a
vertical edge v × (pi ,pi+1) for any v ∈ V and i ∈ {0, . . . ,N }. Then, for any t ∈ [0, 1], we have:

• If | |v − pi (t)| | > ε then φv,i (t) = ∞.
• If | |v − pi (t)| | ≤ ε then φv,0(0) = 0, and for t ∈ (0, 1] :

φv,i (t) = min


φv,i (a

i
v ),

min

u ∈Adj(v)
φu,i (max{t ,aiu }) + | |u −v | |,

min

u ∈Adj(v)
min

s ∈[0,1]
{φ(u,v),i (s) + (1 − s)| |u −v | |}

 .
Proof. The first two equalities follow directly from the definition of φ. To prove the third

equality, consider a shortest monotone path π in Dε ending at (v,pi (t)) for some t ∈ [0, 1]. The last
segment of π connects to one of the following:

(1) The bottom-most feasible point, aiv , on the same vertical edge v × (pi ,pi+1),
(2) a point on a vertical edge u × (pi ,pi+1) for a vertex u ∈ V adjacent to v , or
(3) a point on a horizontal edge (u,v) × pi for a vertex u ∈ V adjacent to v .

A shortest monotone path always exists for which this last segment is a straight-line segment. The

three cases correspond to the three values minimized over in the theorem. Measuring lengths inG ,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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we observe that vertical paths in Dε have length zero. Hence, the length of the corresponding path

inG in the first case is φv,i (a
i
v ), the lengths in the other cases minimize over all vertices u adjacent

to v , and the value φv,i (t) is the minimum of these three lengths. In the second case, the projection

of π onto G traverses the entire edge (u,v), which contributes length | |u − v | |. The third case

minimizes over all possible connections to the horizontal edge e × pi where e = (u,v). A segment

connecting (v,pi (t)) to a point (e(s),pi ) has length (1 − s)| |u − v | |, assuming e is parameterized

by e(s) = (1 − s)u + sv . □

Lemma 3.3 (Compute Horizontal Edges). Consider
a horizontal edge e × pi+1 for any e = (u,v) ∈ E and i ∈ {0, . . . ,N }. Then, for any s ∈ [0, 1] we have:

• φe,0(s) =

{
0, if | |e(s) − p0 | | ≤ ε
∞, else

• If | |e(s) − pi+1 | | > ε , then φe,i+1(s) = ∞.
• If | |e(s) − pi+1 | | ≤ ε , then

φe,i+1(s) = min


φu,i (b

i
u ) + s | |u −v | |,

φv,i (b
i
v ) + (1 − s)| |u −v | |,

min

s ′∈[0,1]
{φe,i (s

′) + |s − s ′ | · | |u −v | |}
(1)

Proof. The first two equalities follow directly from the definition of φ. It remains to prove the

last equality given in Equation (1). Consider a shortest monotone path π in Dε ending at (e(s),pi+1).
The last segment of π connects to one of the following:

(1) a point on the vertical edge u × (pi ,pi+1),
(2) a point on the vertical edge v × (pi ,pi+1), or
(3) a point on the horizontal edge e × pi .

These three cases correspond to the three values minimized over in Equation (1). By defini-

tion, φe,i+1(s) is the minimum of these three values. In the first case, the last segment of π connects

to biu (or to a point below it on u × (pi ,pi+1) with the same value of φ), since φv,i (t) is monotone

decreasing; the length of this segment is s | |u −v | |. The second case is analogous to the first case,

for the other vertical edge in the free space cell. The third case minimizes over all possible con-

nections to the horizontal edge e × pi . A segment connecting (e(s),pi+1) to a point (e(s ′),pi ) has
length |s − s ′ | · | |u −v | |. □

The following two lemmas will be used to prove correctness of Algorithm 1 in Theorem 3.6.

Lemma 3.4 (Vertical Function Complexity). Let v × (pi ,pi+1) be a vertical edge. Then, for t ∈
[aiv ,b

i
v ], the function φv,i (t) is piecewise constant and monotone non-increasing with complexityO(n).

Proof. If t ∈ [a1v ,b
i
v ], then ϕv,i (t) ≤ ϕv,i (a

i
v ) since the path from p(a1v ) to p(t) has length zero

in G. The endpoints of each constant piece in φv,i (t) can only be lower endpoints aiu of the free

space on vertical edges u × (pi ,pi+1), for any u ∈ V . Hence, the complexity is O(n). □

Lemma 3.5 (Horizontal Function Complexity). Let e × pi be a horizontal edge. Then the
function φe,i (s) is piecewise linear, for s ∈ [cie ,d

i
e ], where each piece is of slope | |e | |, −||e | | or zero. Note

that such a function is necessarily | |e | |-Lipschitz. Furthermore, the complexity of φe,i is O(i).

Proof. We prove this claim by induction on i . By definition, we know that φe,0(s) = 0 for

all s ∈ [c0e ,d
0

e ]. As a consequence of Lemma 3.3, we have that φe,i+1 is the lower envelope of a linear
function with slope | |e | |, a linear function with slope −||e | |, and mins ′∈[0,1]{φe,i (s

′) + |s − s ′ | · | |e | |}.
Since, by inductive hypothesis, φe,i is piecewise linear, where each piece is of slope | |e | |,−||e | | or
zero, the minimum of the last term is attained as follows: If s < cie then s ′ = cie and c

i
e ≤ s ≤ die ,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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then s ′ = s , and if die ≤ s , then s ′ = die . Hence, the function φe,i+1 consists of a translated copy

of φe,i with at most two additional linear pieces at each end. Therefore, we know that φe,i+1 has
the desired structure, and its complexity is O(i). □

We prove the correctness and analyze the runtime of Algorithm 1 in the following theorem:

Theorem 3.6 (Correctness and Time Complexity). Algorithm 1 computes the length of a shortest
matching path in O(N (kmn +mN )) time and O(n2 +mN ) space, where k is the number of edges in
the shortest matching path in G.

Proof. For each vertical edge v × (pi ,pi+1) (and each horizontal edge e × pi ), we compute φv,i
(and φe,i , respectively). The time for initialization (lines 1-5) isO(n+m). From Lemma 3.4, we know

that each φv,i has complexity O(n), and from Lemma 3.5, that each φe,i has complexity O(i). We

use these discrete representations of φv,i and φe,i throughout the algorithm. Since the algorithm

computes one slice at a time, we only need to store φv,i and φe,i for only one slice. Hence, the total

storage complexity is O(n2 +mN ).

The correctness of the algorithm follows from Lemma 3.2 and Lemma 3.3. In particular, lines 7-12

are based on the recursive formula given in Lemma 3.2. All φv,i on vertical edges v × (pi ,pi+1) are
initialized in Lines 7-8 with values from the bottom horizontal edge. Then lines 9-12 perform a

Bellman-Ford shortest path propagation across all vertical edges in slice i . We continue the while

loop in line 9 as long as at least one φv,i (or φu,i ) was updated in lines 11-12. Hence, the number

of iterations of the while loop is k + 1 (once the shortest paths are found, no improvements will

be made). After all, φv,i have been computed in slice i , all φe,i+1 are computed from the vertical

edges and the horizontal edges in level i , according to Lemma 3.3. Lines 7-8 take O(n2) time,

lines 11-12 take O(n) time, and line 14 takes O(i) time. Hence, lines 6-14 of the algorithm take

time O(N (n2 + kmn +mN )), and thus the total runtime is O(N (kmn +mN ). □

Remark 1. As stated, Algorithm 1 enforces monotonicity on P but not on edges of G = (V ,E).
If desired, the algorithm can be modified to enforce monotonicity on the edges in E as follows: The
cell complex would need to be defined using directed edges E ′, where undirected edges in E are
represented using two directed edges. The propagations according to Lemma 3.2 need to use adjacency
lists Adj(v) = {(u,v) | (u,v) ∈ E ′}. The horizontal propagation in Lemma 3.3 needs to be adjusted, by
replacing equation (1) withφe,i+1(s)= min{φu,i (b

i
u )+s | |u−v | |, fe,i (s)}. Here, fe,i (s) = 0 if cie ≤ s ≤ die ,

and fe,i (s) = s − die if d
i
e < s . This formula models monotone propagation in the same way as in Alt

and Godau [3], just that in addition to reachability we propagate the length of aG-shortest path.

4 MATCH TO CONCATENATION OF SHORTEST PATHS
In this section, we are interested in matching the path P to a concatenation of shortest paths in G.
We consider two variants of the problem, one that minimizes the number of shortest paths that are

concatenated, the other that minimizes the Fréchet distance δF .

Problem 2 (Min-k). Given a parameter ε ≥ 0, find a path Q in G that is a concatenation of the
smallest number of shortest paths in G, such that δF (P ,Q) ≤ ε .

Problem 3 (Min-ε). Given a parameter k ≥ 1, find a path Q in G that is a concatenation of at
most k shortest paths in G, such that the Fréchet distance between P and Q is minimized.

In this section, we assume that the paths in G must begin and end at a vertex. We begin by

exploring the case where k = 1 in Section 4.1, then consider the more general case in Section 4.2 and

Section 4.3. Allowing paths to start or end anywhere on an edge makes the problem considerably

harder. We sketch approximation algorithms for this case in Section 5.
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4.1 Matching to Shortest Paths
As a warm-up, we consider the min-ε problem for the case where k = 1, i.e., we wish to find a

shortest path Q in G that minimizes the Fréchet distance to P , among all shortest paths inG that

start and end at vertices in V .

First, we compute an implicit representation of all shortest paths between all pairs of vertices

inV , by running Dijkstra’s shortest path algorithm for each s ∈ V as a source vertex. Shortest paths

with a common start vertex are stored in a shortest path directed acyclic graph (DAG); note that

while algorithms usually assume uniqueness of shortest paths and store only a tree, we wish to

keep all possible shortest paths since we must store all of them in order to consider their Fréchet

distance to P . The shortest path DAGs are computed and stored for each s ∈ V as a source vertex,

in total in O(n(m + n logn)) time and O(n2) space.
Then, we need to compute the Fréchet distance between P and each shortest path, in order to

identify the minimum distance. We batch these computations by computing the Fréchet distance

between a path and the entire shortest path DAGs. The following lemma and the resulting corollaries

show that distances between shortest path prefixes and prefixes of P can be computed efficiently in

a batched manner. We state these results for a general DAG with a single root.

Lemma 4.1. Let T = (VT ,ET ) be a DAG with a root r and |ET | = mT . Let P be a polygonal path
with vertices p0,p1, . . . ,pN . A path in T from the root to a leaf, that has the smallest Fréchet distance
to P , can be computed in O(mTN log(mT + N )) time.

Proof. This is a simple modification of Alt and Godau’s computation of the Fréchet distance

for two polygonal paths [3], and a special case of the map-matching setting considered in [2].

For fixed ε > 0, we compute the free space in T × P . We then propagate reachability information

from (r ,p0) in dynamic programming fashion in this free space. Starting with filling reachability

information in r × P , we then propagate the reachability monotonically across both T and P ,
traversing T in an order determined by a topological sort of T , and P from p0 to pN . For each
edge (u,v) ∈ ET , the reachable points in (u,v) × P are computed by straight-forward propagation

from the reachable points in u × P . But since v may have multiple incoming edges, the reachability

information for v × P is then computed as the union of all the propagated reachability information

for all (u,v) ∈ ET . It takes time and space O(mTN ) to solve the decision problem. With parametric

search [2, 3], the path in T from the root to a leaf, that has the smallest Fréchet distance to P , can
be found in O(mTN log(mT + N )) time. □

For fixed ε > 0, the algorithm described in the proof of Lemma 4.1 does in fact compute

reachability information for all paths starting in the root of T and all prefixes of P :

Corollary 4.2. LetT = (VT ,ET ) be a DAG with a root r and |ET | =mT , and let ε > 0. InO(mTN )

time, one can compute for all points д ∈ T and p ∈ P whether there exists a path Qr,д in G from r to д
such that δF (Qr,д , P[p0,p]) ≤ ε .

And in fact, reachability can be computed efficiently if either the start point of the path P or the
start point of a corresponding path in T is allowed to vary along an edge:

Corollary 4.3. LetT = (VT ,ET ) be a DAG with root r , and let |ET | =mT and ε > 0. The following
can be computed in O(mTN ) time:

(i) For all points д ∈ T , p ∈ P , and x ∈ (p0,p1) whether there exists a path Qr,д in G from r to д
such that δF (Qr,д , P[x ,p]) ≤ ε .

(ii) If (r ,v) is the only edge incident on the root, then it can be computed for all points д ∈ T , p ∈ P ,
and x ∈ (r ,v) whether there exists a pathQx,д inG from x to д such that δF (Qx,д , P[p0,p]) ≤ ε .
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Proof. For (i), a simple modification of the reachability initialization step in the proof of

Lemma 4.1 results in computing reachability from (r ,x) for any x ∈ (p0,p1). For (ii), if д < (r ,v),
then a simple modification of the reachability initialization step in the proof of Lemma 4.1 results

in computing reachability from any x ∈ (r ,v). If both x and д are on the same edge (r ,v), then we

compute the reachability in (r ,v) × P directly. □

We apply Lemma 4.1 to the shortest path DAG Ts for each start vertex s ∈ V . We compute a

shortest path inTs that has the smallest Fréchet distance to P inO(mN log(m +N )) time. Repeating

this for each source vertex, and accounting for running Dijkstra’s algorithm in the beginning,

results in a total runtime of O(nmN log(m + N )) and O(n(n + N )) space. We summarize our result:

Theorem 4.4 (Matching to Shortest Path). A path Q that minimizes the Fréchet distance to P ,
among all shortest paths inG that start and end at vertices inV , can be computed inO(nmN log(m+N ))

and O(n(n + N )) space.

4.2 The Min-k Problem
In this section, we solve the min-k problem: For fixed ε ≥ 0, we wish to find a path Q that is a

concatenation of the smallest number of shortest paths in G such that δF (P ,Q) ≤ ε . We require

that all shortest paths start and end at vertices in V .

Auxiliary Graph. We build an auxiliary graph G ′ = (V ′,E ′) as follows. The set of vertices V ′

are ordered pairs of a vertex in V and a vertex in P ; formally, we write: V ′ = {⟨v,pi ⟩ | v ∈ V , i ∈
{0, . . . ,N }}. There is an edge in E ′

connecting ⟨u,pi ⟩ and ⟨v,pj ⟩, if there is a shortest path Q
in G from u to v such that the Fréchet distance between P[i, j] and Q is at most ε . Formally, we

have E ′ = {(⟨u,pi ⟩, ⟨v,pj ⟩) | 0 ≤ i ≤ j ≤ N , and there is a shortest path Q from u to v in G such

that δF (Q, P[i, j]) ≤ ε}. We have |V ′ | = nN and |E ′ | ∈ O(n2N 2).

This auxiliary graph can be constructed as follows: We compute all shortest path DAGs Tu by

running Dijkstra’s shortest path algorithm for every u ∈ V . For fixed u ∈ V and i ∈ {0 ≤ i ≤ N },

we use Corollary 4.2 to compute the reachability information. For eachv ∈ V and i ≤ j ≤ N , we can

then read off whether there exists a shortest path in G from u to v such that δF (Qu,v , P[i, j]) ≤ ε .
This determines whether (⟨u,pi ⟩, ⟨v,pj ⟩) ∈ E ′

. The runtime is O(n(m + n logn)) to compute all

shortest path DAGs,O(mN ) to compute the edges for fixed u and i , and henceO(n(mN 2 + n logn))
time total to compute E ′

.

Algorithm. We can now solve our problem by finding a shortest path in G ′
, starting at any

vertex ⟨u,p0⟩ for any u ∈ V and ending at any vertex ⟨v,pN ⟩. We connect a super-source ŝ to
all ⟨u,p0⟩ for any u ∈ V . Since the length of the path is determined by the number of edges, we can

compute such shortest paths by running breadth-first search from ŝ in timeO(|V ′ |+ |E ′ |) = O(n2N 2).

The total runtime is dominated by the time O(n(mN 2 + n logn)) to compute the auxiliary graph.

We summarize our result in the following theorem:

Theorem 4.5 (Min-k). For fixed ε ≥ 0, a path Q that is a concatenation of the smallest num-
ber of shortest paths in G such that δF (P ,Q) ≤ ε can be computed in O(n(mN 2 + n logn)) time
and O(n2N 2) space.

4.3 Min-ε
Next, we show how we can use our solution for the min-k problem described in Section 4.2, in

order to develop a solution for the min-ε problem. For fixed k ≥ 2, we wish to find a path Q that is

a concatenation of at most k shortest paths inG such that δF (P ,Q) is minimized. Again, we require

that all shortest paths start and end at vertices in V .
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Let k ≥ 2 be fixed. We modify the algorithm described in Section 4.2 to serve as a decision

procedure for a given ε ≥ 0: Return true if a shortest path exists of length ≤ k , and false otherwise.

We optimize ε by performing a binary search on a superset of the critical values for ε , which are values
for which solutions to the decision procedure changes combinatorially. These changes are caused by

combinatorial changes in the free space diagram for a shortest pathQ and P ; see Alt and Godau [3].

We consider all possible critical values within each free space cell and across pairs of free space

cells. Possible critical values are those ε for which aiu = b
j
v or cie = d

j
e for u,v ∈ V , e ∈ E, and j = i

or j = i + 1. There are O(n2N + N 2n) such values that constitute a superset of the combinatorial

changes that affect our decision procedure.We sort these critical values inO((n2N +N 2n) log(n+N ))

time and perform a binary search using the decision procedure, which results in a total runtime

of O(n(mN 2 + n logn) log(n + N )). We summarize our result as follows.

Theorem 4.6 (Min-ε). For fixed k ≥ 0, a path Q that is a concatenation of at most k shortest
paths inG such that δF (P ,Q) is minimized, can be computed inO(n(mN 2 + n logn) log(n + N )) time
and O(n2N 2) space.

5 APPROXIMATION ALGORITHM FOR k-SP WITHOUT VERTEX-CONSTRAINT
In this section, we consider the more general version of the k-shortest path problem, by removing

the vertex-constraint. Let |G | denote the underlying space ofG , comprising all points inG , including
those in the interior of edges. We say that a path Q ⊂ |G | is a k-SP if it can be partitioned into k
consecutive pieces Q = Q1 ◦ Q2 · · · ◦ Qk such that each Qi is a shortest path between its two

endpoints in |G |. Let P = {P1, . . . , Pk } be a k-partitioning of the underlying space |P | of the
polygonal curve P ; that is, |P | = P1 ◦ P2 · · · ◦ Pk with Pi and Pj disjoint in their interior for

all i , j. We say that G has a (k, ε)-matching for P if there exists a k-SP Q = Q1 ◦ Q2 · · · ◦ Qk
and a k-partitioning P = {P1, P2, . . . Pk } such that for any i ∈ [1,k], the Fréchet distance is

bounded: δF (Qi , Pi ) ≤ ε . (This also implies that δF (Q, P) ≤ ε). We refer to endpoints of each path

in Q and in P as break-points. Note that the break-points could lie in the interior of edges.

Problem 4. Given k and ε > 0, the goal is to decide whether there exists a k-SPQ = Q1 ◦Q2 · · · ◦Qk
and a k-partitioning P = {P1, P2, . . . Pk } of P such that for any i ∈ [1,k], the Fréchet distance is
bounded: δF (Qi , Pi ) ≤ ε .

This general version of the problem seems to be much more challenging. For example, consider

Fig. 3. Suppose we already know that pointp0 should be matched to some point on edge e1 = (u1,u2),
and the last point pN should be matched to some point on edge e2 = (w1,w2). Let π1 be a shortest
path from u1 tow1, and π2 be a shortest path from u2 tow2. We need to compute a shortest path

starting in some u ∈ e1 and ending in some w ∈ e2 whose Fréchet distance to P is at most ε .

Fig. 3. The path u { π1 { w or the path u { π2 { w may be shortest, depending on the positions of u
andw , wherew depends on u.
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However, whether the path u { π1 { w or the path u { π2 { w is shortest depends on the

positions of both u andw . Hence, the end pointw depends on the starting point u, which makes

developing a dynamic programming strategy challenging.

In this section, we focus on approximation algorithms. We say that an algorithm is an (α , β)-
approximation for the (k, ε)-matching problem, if it computes an (αk, βε)-matching for the path P
whenever there exists a (k, ε)-matching for P in G. In what follows, we describe such an approxi-

mation algorithm, where the input satisfies the following mild assumption:

Assumption-R: For the optimal k-SP Q , there is no U-turn in the interior of an edge. Equiva-

lently, for a break-point si connecting shortest path pieces Qi and Qi+1, if si is in the interior

of edge e = (u,v), then Qi ∩Qi+1 ∩ e = {si }.

Remark: From a technical point of view, this assumption is important in proving Proposition 5.2

below. It may be possible to remove this assumption and still achieves a G-restricted (2k, ε), as in
Proposition 5.2 with a more complicated argument. However, we note that this assumption is in

fact natural, or even necessary for a real route planning. Indeed, assuming each edge in the graph

represents a road segment connecting two junction nodes, many jurisdictions do not allowed a

U-turn between the junction nodes.

Theorem 5.1 (Approximation Theorem). Let P be a polygonal path andG = (V ,E) be a graph
satisfying Assumption-R, there is a (2, 2)-approximation algorithm for the (k, ε)-matching problem
with running time O(nmN 2), where n = |V |,m = |E |, and N = |P |.

To prove Theorem 5.1, we solve a version of the k-matching problem for which we require

that all break-points in the k-SP Q , other than the start point and endpoint, have to be vertices

from the graph G. We call this the G-restricted (k, ε)-matching problem for P . Theorem 5.1 follows

immediately from the two propositions below.

Proposition 5.2. If there is a (k, ε)-matching between P andG , where the input satisfiesAssumption-
R, then there is a G-restricted (2k, ε)-matching between P and G.

Proposition 5.3. Given a polygonal path P and a graphG = (V ,E), there is a (1, 2)-approximation
algorithm for theG-restricted (k, ε)-matching problem whose running time isO(nmN 2), where n = |V |,
m = |E |, and N = |P |.

Proof of Proposition 5.2. Assume G has a (k, ε)-matching and let Q∗ = Q1 ◦ Q2 ◦ · · · ◦ Qk be

the k-SP and P = {P1, P2, · · · , Pk } be the k-partition in this matching. We now show that we

can modify Q to a G-restricted 2k-SP Q̂ forming a (2k, ε)-matching with some 2k-partition of P .
Our modification re-partitions P and Q∗

. Note that for any oriented path π , given an ordered

sequence of points {α0, . . . ,αℓ} along this path with start point α0 and endpoint αℓ , it induces a
unique partition π [α0,α1] ◦π [α1,α2] ◦ · · · ◦π [αℓ−1,αℓ] of π . (Recall that π [α , β] is the subcurve of π
between two points α ≤ β , meaning that α has a smaller preimage than β under the parametrization

of π .) Hence, in what follows, we simply specify such sequences of break-points to describe

(re-)partitioning of the paths Q∗
and P .

Definition 5.4. Repartitions of Q∗
and P induced by a sequence of break-points S = {s0, . . . , sℓ}

and Π = {b0, . . . ,bℓ} are called valid if for all i ∈ [0, ℓ − 1],

(i) each piece Q∗[si , si+1] is a shortest path in G, and
(ii) δF (Q

∗[si , si+1], P[bi ,bi+1]) ≤ ε .

Let S∗ = {s∗
0
, s∗

1
, . . . , s∗k } be the sequence of break-points of the optimal k-SP Q∗

; and Π∗ = {b0 =
p∗
0
,b∗

1
, . . . ,b∗k−1,b

∗
k = pnp } be the sequence of break-points for the optimal k-partition of P . We
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Q∗

s∗i = st
Pu

v
st−1

st+1

û
v̂

b∗i = btbt−1

bt+1

Fig. 4. Black dots are break-points, and dashed segments indicate aligned points.

now process each s∗i in order from i = 1 to i = k − 1. In the beginning, S0 = S∗ and Π0 = P∗
. In the

i-th iteration, we obtain Si from Si−1 such that |Si | ≤ |Si−1 | + 1, and we obtain Πi from Πi−1 such

that |Πi | ≤ |Πi−1 | + 1. We also maintain the invariant that the partitions Si and Πi are valid.

Specifically, in the ith iteration, suppose the break-point s∗i from the optimal k-SP is still present

in Si−1. Assume s∗i ∈ e = (u,v) ∈ E. By Assumption-R, the entire edge (u,v) must be covered by the

path Q∗
and Q∗[u,v] = (u,v). Let Si−1 = {s0, . . . , sℓ} and Πi−1 = {b0, . . . ,bℓ}. Since Si−1 and Πi−1

are valid, there exist Fréchet matching F betweenQ∗
and P composed by the union of Fréchet match-

ings between Q∗[sj , sj+1] and P[bj ,bj+1] for all j ∈ [1, ℓ), such that δF (Q
∗[sj , sj+1], P[bj ,bj+1]) ≤ ε .

Let û and v̂ be two points aligned tou andv under this matching F ; obviously, δF ((u,v), P(û, v̂)) ≤ ε .
See Fig. 4 for an illustration, where suppose s∗i = si ∈ Si−1.

We obtain Si by removing s∗i as a break-point from Si−1 and adding u and v as new break-points

to Si−1. (In general, the edge (u,v) may contain more break-points than s∗i , and we need to remove

all of them from Si−1). Similarly, we add û and v̂ as new break-points, and remove any existing

break-points of Πi−1 contained in P[û, v̂] (the break-point bi that si is matched to will necessarily

be removed). This gives rise to a pair of new partitions Si and Πi , where the number of pieces can

increment by at most one.

We now argue that Si and Πi are also valid. We already know that Si−1 = {s0, . . . , sℓ} and Πi−1 =

{b0, . . . ,bℓ} are valid. Consider any two consecutive break-points in Si . Then, one of the following
three cases must hold:

(1) Both break-points sj , sj+1 ∈ Si−1 ∩ Si . Then as Si−1 and Πi−1 are valid, we have that the two

conditions (i) and (ii) in Definition 5.4 hold for sj and sj+1.
(2) We have a pair of new consecutive break-points u and v in Si , corresponding to new break-

points û and v̂ in Πi−1. However, we know that Q[u,v] = (u,v) thus it is a shortest path between u
and v ; and also we know from above that δF ((u,v), P(û, v̂)) ≤ ε .
(3) The two consecutive break-points in Si are either of the form sj ,u (j = t − 1 in Fig. 4);

or symmetrically, they are v, sj′ from Si (j
′ = t + 1 in Fig. 4). Consider sj and u from Si , which

correspond to consecutive break-points bj , û from Πi . By construction, Q∗[sj ,u] ⊆ Q∗[sj , sj+1];
thus Q∗[sj ,u] is necessarily a shortest path ofG as well. Furthermore, P[bj , û] ⊆ P[bj ,bj+1] and u
is aligned to û under the Fréchet matching F between Q∗[sj , sj+1] and P[bj ,bj+1] mentioned above.

Thus, we have δF (Q
∗[sj ,u], P[bj , û]) ≤ ε under the same matching F . Symmetrically, we can argue

that δF (Q
∗[v, sj′], P[v̂,bj′]) ≤ ε .

It then follows that Si and Πi are valid. Furthermore, after each iteration, if break-point s∗i is in the
interior of an edge in G, then we remove at least this break-point and add two new break-points u
and v , which are vertices of graph G. Thus, in each iteration, the number of break-points can

increase by at most one; implying that |Sk | ≤ 2k + 1. After processing all s∗i ’s, all break-points
from Q∗

that are in the interior of graph edges are removed, and all newly added break-points are
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graph nodes. Hence, the new partitions Sk ofQ
∗
and Πk of P witness aG-restricted (2k, ε)-matching

for P in G, which proves Proposition 5.2. □

Proof of Proposition 5.3. We now describe a (1, 2)-approximation algorithm for theG-restricted
case, which would then prove Proposition 5.3. To make the main idea clear, we first assume that

in the G-restricted (k, ε)-matching, all break-points of the k-SP Q have to be vertices in G (in our

earlier definition, the start point and endpoint may not be). At the end of this proof, we will describe

how to remove this assumption.

The high-level framework is similar to the approach in Section 4.2. Given parameter ε , we build an
auxiliary graph G ′ = (V ′,E ′) as follows. The node set V ′

consists of {⟨v, ei ⟩ | v ∈ V , ei = (pi ,pi+1)
is the i-th edge in P}. The edge (⟨v, ei ⟩, ⟨v

′, ej ⟩) ∈ E ′
is in the auxiliary graph G ′

if and only if

there is a subpath P[a,b] ⊆ P with a ∈ ei and b ∈ ej , as well as a shortest path Q from v ∈ V
to v ′ ∈ V in G, such that δF (Q, P[a,b]) ≤ ε ; if i = 0, then we require a = p0, and if j = N − 1, then

we require b = pN . The latter two conditions are to guarantee that the first and last break-points

for the partition of P have to be p0 and pN , respectively. Our algorithm returns ‘yes’ if a path of at

most k links exists from ⟨s, e0⟩ to ⟨t , eN ⟩ in the auxiliary graph G ′
for some s, t ∈ V .

We compute the edge set E ′
for this auxiliary graph as follows. We add the edge (⟨v, ei ⟩, ⟨v

′, ej ⟩)
to the auxiliary graph G ′

as long as there is a monotone path in the free space Dv starting from

some point, say (v,a), along the vertical edge v × ei , to some point, say (v,b), within the vertical

edge v ′ × ej . We further associate the pair (a,b) with the edge (⟨v, ei ⟩, ⟨v
′, ej ⟩) ∈ E ′

, and say

that (a,b), with a ∈ ei and b ∈ ej , witnesses the existence of the edge (⟨v, ei ⟩, ⟨v
′, ej ⟩). Using

Corollary 4.3 for the shortest path DAG Tv for v ∈ V , this can be computed in O(|Tv |N ) = O(mN )

time for fixed v and i .
Overall, this auxiliary graph has |V ′ | = O(nN ) nodes, and |E ′ | = O(n2N 2) edges. Constructing all

edges takes O(|V ′ |mN ) = O(nmN 2) total time. We need to test whether there is a path from ⟨s, e0⟩
to ⟨t , eN ⟩ of at most k links in G ′

for some s, t ∈ V . This can be done in O(|V ′ | + |E ′ |) = O(nmN 2)

time by adding a super-source node as in the algorithm for Theorem 4.5. Hence, the claimed time

complexity in Proposition 5.3 follows.

To prove the correctness of our algorithm, we will show how to construct aG-restricted (k, 2ε)-
matching from the k-link path mentioned above from the auxiliary graph. Let

u0 = ⟨s = s0,p0⟩,u1 = ⟨s1, ei1⟩, . . . ,

uk−1 = ⟨sk−1, eik−1⟩,uk = ⟨sk = t ,pN ⟩
(2)

be the sequence of nodes for a path of k links from u0 = ⟨s,p0⟩ to uk = ⟨t ,pN−1⟩ in the auxiliary

graphG ′
. Obviously, this gives rise to a k-SP Q = Q1 ◦Q2 ◦ · · ·Qk , where for each j ∈ [0,k − 1], Q j

is a shortest path from sj to sj+1 in G . We now construct a k-partition of P as follows. Consider the

edge (uj ,uj+1) from the path in Equation (2). Let aj ∈ ei j and bj ∈ ei j+1 be the two points witnessing
the existence of edge (uj ,uj+1) in E ′

for any j ∈ [1,k − 1]. Note that both bj−1 and aj are from

the same edge ei j of P ; and we set c j =
bj−1+aj

2
to be the mid-point of bj−1aj . Obviously, c j is also

contained in ei j . Now simply consider the sequence of break-points {p0, c1, c2, . . . , ck−1,pN } and the
corresponding k-partition of P . We next prove that δF (Q j , P[c j , c j+1]) ≤ 2ε for each j ∈ [1,k − 2].

Indeed, by construction, we know that:

δF (Q j−1, P[aj−1,bj−1]) ≤ ε

δF (Q j , P[aj ,bj ]) ≤ ε

and aj ,bj−1 ∈ e = ei j . See Fig. 5 for an illustration. Since the start point of Q j and the endpoint

ofQ j−1 are the same, which is sj , we then have that ∥aj−sj ∥ ≤ ε and ∥bj−1−sj+1∥ ≤ ε . By the triangle
inequality, ∥aj−bj−1∥ ≤ 2ε . Since c j is the mid-point ofbj−1aj , we have that ∥aj−c j ∥, ∥c j−bj−1∥ ≤ ε .
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Fig. 5. Since c j is within the segment bj−1aj , | |sj − c j | | ≤ ε by convexity of the ε-ball around sj (shaded
region).

Now, consider the Fréchet matching F between Q j and P[aj ,bj ]: If c j ≤ aj (the case illustrated
in Fig. 5), then we can extend this matching to a matching between Q j to P[c j ,aj ] by simply

matching all points in P[c j ,aj ] to the point sj ∈ Q j . By convexity of the distance function, we have

that ∥p − sj ∥ ≤ ε for any point p in the segment P[c j ,aj ]. Hence, we obtain a Fréchet matching

between Q j and P[c j ,bj ] with error still at most ε .
Otherwise if c j > aj , then let q be the first point in Q j that is matched to c j under the Fréchet

matching between Q j and P[aj ,bj ]. Consider the subcurve Q j [sj ,q]. We construct a Fréchet match-

ing F ′
between Q j and P[c j ,bj ] by keeping the matching for all points in Q j [q, sj+1] the same as

in F , but re-matching all points in Q j [sj ,q] to c j . Note that each q
′ ∈ Q j [sj ,q] is matched to some

point p ∈ P[aj , c j ] under F . Hence, ∥q′−c j ∥ ≤ ∥q′−p∥+ ∥p−c j ∥ ≤ 2ε . Thus, the new matching F ′

has error at most 2ε .
By a symmetric argument, we can furthermodify the FréchetmatchingF ′

betweenQ j and P[c j ,bj ]
to a new matching F ′′

between Q j and P[c j , c j+1] with error at most 2ε . After performing this

modification for all j, we have δF (Q j , P[c j , c j+1]) ≤ 2ε for all j ∈ [1,k − 2]. Finally, we have

that δF (Q1, P[p0, c1]) ≤ 2ε and δF (Qk , P[ck−1,pN ]) ≤ 2ε by a similar argument. The proposition

then follows.

We now describe how to remove the assumption that all break-points in theG-restricted (k, ε)-
matching have to be graph vertices. So, we must explain how to allow the start point and endpoint

of Q to lie in the interior of graph edges.

In the argument above, we assumed that all break-points of the k-SP path Q have to be graph

vertices. In our definition of G-restricted (k, ε)-matching, the first and last break-points of Q could

be points from the interior of graph edges. To allow this, we modify the auxiliary graphG ′ = (V ′,E ′)

to also add nodes of the form ⟨e, e0⟩ or ⟨e, eN−1⟩ to V
′
, where e ∈ E is any edge in input graph G,

and e0 (resp., eN−1) is the first (resp., the last) edge of the input path P . In order to check whether

an edge (⟨e, e0⟩, ⟨v, ei ⟩) is in the edge set E ′
of the auxiliary graph G ′

, we perform the following.

Let e = (s, t) with s, t ∈ V . For any point x ∈ |e |, the shortest path from v to x either passes

through vertex s , or through vertex t . In fact, there exists a pointw ∈ |e | such that for any point

in segment sw , the shortest path from v to it passes through s; while for any point in wt , the
shortest path from v to it passes through t . We break e into two segments es = sw and et . First
consider es . For any x ∈ |es |, a shortest path from v to x inG is the concatenation of a shortest path

from v to s and segment sx . We thus construct a DAG Tv containing all shortest paths from v to s ,

plus the edge es . We then build the free space diagram Dv = Tv × P[pi+1,p0], where P respresents

the path P with the reverse orientation. We add an edge (⟨e, e0⟩, ⟨v, ei ⟩) to the auxiliary graph if

there is a shortest path πv{x in G from v to some point x in es and a point b ∈ ei = pipi+1 such

that δF (πv{x , P[b,p0] ≤ ε . This decision problem can be answered by checking whether any point

on the grid edge es × p0 ∈ Dv is reachable by a monotone path from the free-region of Dv starting

from any point in the grid edge v × ej ∈ Dv . Such reachability can be maintained by a similar

dynamic programming procedure as used earlier in time O(|Dv |N ) = O(mN ). Similarly, we also

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:16 Chambers, Fasy, Wang, Wenk

check whether there is a shortest path from v to a point in subedge et ⊆ e that is within Fréchet

distance ε to the sub-path P[b,p0] for some b ∈ ei = pipi+1, using the same approach. We add

edge (⟨e, e0⟩, ⟨v, ei ⟩) to the auxiliary graph if the answer is yes.

The total number of extra edges we need to check for isO(mnN ), and checking for the existence of

each such edge takesO(mN ) time. Hence, we needO(nm2N 2) extra time to build the auxiliary graph.

This time complexity however can be improved toO(nmN 2) by batching the testing for all edges

of the form (⟨e, e0⟩, ⟨v, ei ⟩) for a fixed v ∈ V , ei ∈ P , but all e ∈ E. We sketch the argument here.

Let D ′
v be the shortest path DAG rooted at v to all other graph nodes in V . Next, for each s ∈ V ,

consider the set of edges Es incident on s but not in D ′
v . For each such edge e = (s, t) ∈ Es , we

compute the furthest pointw ∈ |e | from s such that the shortest path inG fromv tow passes through

graph node s . We then add the partial edgews to the DAG D ′
v (note that it is possible thatw = s .

We do this for all edges in Es for all nodes s ∈ V . The resulting modified DAG is denoted by Dv .
We call edges in Dv \ D ′

v partial edges. We then run the same dynamic programming procedure to

compute the reachability on all grid edges e ′ × p0 for all partial edges e
′
in O(|Dv |N ) = O(mN ) as

before. For any partial edge e ′ which is a subsegment of edge (s ′, t ′) ∈ E, if any point is reachable,

then we add the edge (⟨(s ′, t ′), e0⟩, ⟨v, ei ⟩) to the auxiliary graph. Overall, we need to perform this

construction O(nN ) times for all v ∈ V and ei ∈ P . Hence, the total construction time is O(nmN 2).

This completes the proof of Proposition 5.3. □
Recall that our main result, Theorem 5.1 then follows from Propositions 5.2 and 5.3.

Remark: We conjecture that we can develop an algorithm, with approximation factors better

than (2, 2), for example, by constructing an approximate matching directly, instead of going through

an intermediate G-restricted matching. We leave this as a direction for future research.

6 DISCUSSION AND FUTURE WORK
In this paper, we present the first algorithms for map matching where we restrict possible matching

candidates to consist of shortest paths in the graph. This variant arises naturally given the nature

of GPS data, as many routing algorithms prefer certain types of paths; shortest paths are natural in

this setting, but similar algorithms could be investigated in more complex settings, such as least

costs roads or shortest travel time paths.

We are able to give exact algorithms for the case where shortest paths go between vertices in the

graph; however, these techniques will not generalize to give exact algorithms when the shortest

paths begin or end in the middle of an edge. Even our approximation for this setting does not allow

the two consecutive shortest paths to reverse in the middle of an edge. Further investigation and

extensions of these algorithms, as well as improved running time, are perhaps the next natural

area of investigation in this work.
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