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1 INTRODUCTION

The map-matching problem seeks to find a path Q in a planar graph G = (V,E) that has the
smallest distance to P. In a typical application setting, P models a noisy GPS trajectory from a
person traveling on a road network, modeled as the planar graph G, and the desired path Q should
correspond to the actual path in G that the person has traveled. Map-matching algorithms in the
literature [1, 2, 6] consider all possible paths in G as potential candidates for Q, and apply similarity
measures such as Hausdorff or Fréchet distance to compare input curves.

We propose to restrict the set of potential paths in G to a natural subset: those paths that
correspond to shortest paths, or concatenations of shortest paths, in G. Restricting the set of paths
to which a path can be matched makes sense in many settings. In particular, vehicles often follow
routes computed by a navigation system, which often prefers certain types of routes over others. To
the best of our knowledge, the current literature also does not consider the case where the vehicle
makes multiple stops. For example, consider a person running several errands in one trip, where

Authors’ addresses: Erin Chambers, Saint Louis University, Department of Computer Science, 220 N. Grand Avenue, Saint
Louis, Missouri, 63103, echambe5@slu.edu; Brittany Terese Fasy, Montana State University, School of Computing, 363
Barnard Hall, Bozeman, Montana, 59717, brittany @cs.montana.edu; Yusu Wang, The Ohio State University, Computer Science
and Engineering Department, 2015 Neil Avenue, Columbus, Ohio, 43210, yusu@cse.ohio-state.edu; Carola Wenk, Tulane
University, Department of Computer Science, 6823 St. Charles Avenue, New Orleans, Louisiana, 70118, cwenk@tulane.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Chambers, Fasy, Wang, Wenk

we are given the approximate path that the person followed, along with the underlying map. In
this setting, knowledge of the number of stops as well as the type of path preferred (shortest travel
time, shortest distance, or perhaps avoiding certain types of roads) can improve the final quality of
the path that our algorithm matches to in the graph.

Related work. Map-matching is widely used in practice, e.g., to establish fast routes or points of
interest from a large set of trajectories [18, 19]. Common approaches include the use of Fréchet
distance variants [2, 6], ad-hoc incremental methods [6, Sec. 3], matching low-sampling-rate
trajectories using spatial-temporal constraints [13], and hidden Markov models [15, 17]. Despite
this, only few map-matching algorithms provide quality guarantees.

Only a small proportion of prior work considers restricting the set of paths in G. Instead, com-
mon practice reduces the space of paths by cropping G inside an ¢-neighborhood around P before
applying a general map-matching algorithm. Recently, Gheibi et al. [10] gave a map-matching
algorithm that minimizes the sum of the lengths of walks on P and Q within some Fréchet
distance. Their algorithm runs in O(Nm(N + m)log(N + m)) time and O(Nm(N + m)) space,
where n = |V|,m = |E|, N = |P|, and computes a shortest path in a discretized free space.

Our contribution. We provide algorithms for variants of the map-matching problem, in which
the set of paths are restricted to shortest paths, or concatenations of shortest paths, in the graph.
As a distance measure between paths, we use the Fréchet distance, which is a standard distance
measure for curves in this setting that produces better matchings than other distance measures
such as the Hausdorff distance, since it takes the continuity of the curves and not simply distance
between them into account.

In Section 3, we provide an algorithm to match P to the shortest possible path within some Fréchet
distance in G. We prove properties of a distance function on the free space diagram, which is the
main tool used to compute Fréchet distance this allows us to use an incremental algorithm, which
in turn uses less space less space than alternatives [10]. In Section 4, we give algorithms to match P
to concatenations of shortest paths in G: In the min-k variant, we find a path Q in G consisting
of the smallest number k of shortest path pieces that does not exceed a given Fréchet distance.
In the min-¢ variant, we find a path Q in G consisting of at most k shortest paths, for given k,
such that the Fréchet distance to P is minimized. We assume that break-points between shortest
paths lie on vertices of G, and these break-points are mapped to vertices of P. In Section 5, we relax
this constraint on the break-points, and provide approximation algorithms that approximate the
number of shortest path pieces as well as the Fréchet distance ¢ when break-points can lie in the
interior of edges in G and can be mapped to the interior of edges of P.

To the best of our knowledge, we present the first systematic study of map-matching algorithms
that consider a subset of paths with pre-defined properties in G to be matched to P. Our paper
introduces a new perspective on map-matching and provides theoretical foundations for the
practically relevant problem, where we consider a restricted set of path classes. We remark that
an initial extended abstract of the present paper appeared in the 3rd International Workshop on
Interactive and Spatial Computing (IWISC), 2018 [7]. The main difference lies in Section 5, which
is a main technical component of the current paper, where no technical proofs were provided for
the earlier extended abstract.

Discussion of our model. While it has been recognized that factors other than purely shortest
distances may affect how people choose routes (see e.g [21]), many advanced models still rely
heavily on the shortest path assumption e.g., [4, 5, 11, 16, 20].

Furthermore, we note that it has been observed before that shorter trajectories are more likely
to be shortest paths, as do very long routes where the trajectory tends to follow a single route
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Fig. 1. Three school bus trajectories from the Athens-small dataset from mapconstrugtion.org.
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like a highway for most of the distance. Forvexample, in [21], the authors analyze GIS data from
travel routes over an eight week time frame, finding that nearly 34% of all trips follow the shortest
time path exactly; when they relax to allow the route to be “nearly" shortest, then about 40% of
all trips follow shortest routes. Routes also tend to revert to something close to a shortest path in
the evening [14], as do trips associated with work as opposed to other tasks like shopping [8]. In
another work [12], the authors analyze several data sets and show that in fact routes stay relatively
close to the shortest path, within an ellipse whose two foci are the start and end points of the
trajectory, and even within this area most deviations are small.

While we measure the length of a path by its arclength using Euclidean distances in this paper,
we remark that the weight of a shortest path can be based on other quantities, such as travel times.

We also emphasize that assuming that a path consists of k shortest paths is fundamentally
broader in scope than assuming that it is a single shortest path. Indeed, in the extreme case, by
choosing a sufficiently large k, any path can fit into our model: For example, any path consisting
of n road segments can be considered as a concatenation of k = n shortest paths.

In addition, several analyses suggest that breakpoints or anchors - key locations that attract a
large number of trajectories - can be a natural way to decompose longer paths into routes that
resemble optimal (or shortest) paths [12, 14]. This helps to support investigating algorithms in a
model where longer paths can be viewed as concatenations of shortest paths. For example, in Fig. 1,
bus route trajectories do not at all resemble shortest paths, but each can be broken into several
subtrajectories that do follow a shortest route.

2 PRELIMINARIES

Let G = (V,E) be a geometric graph with polygonal edges, and let P be a polygonal path. We
parameterize each (undirected) edge e = (u,v) € E linearly by e(s) := (1 — s)u + sv for s € [0, 1],
where the direction of the parameterization is fixed, but arbitrary. Let py, p1, . . . , pn be the sequence
of N +1 vertices defining the polygonal path P. We identify each of these vertices with a point in the
plane, and we parameterize each line segment edge e; = (p;, pi+1) linearly by p;(t) := (1—t)p; +tpis1
for t € [0,1]. We use P[p;, p] to denote the polygonal subpath from p; to some other point p € G.
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The length of a path or subpath, either in G or P, is simply the sum of all edge-lengths in the
path; in the case of partial edges, we use the fact that we have an arc length parameterization of all
edges, and take the arc length of the partial edge.

We are interested in finding a path in G that is close to an input path P. To measure this
closeness, we use the Fréchet distance [9]. Consider any two curves a, 8 : [0,1] — R?. Let ¢ and ¢/
be orientation-preserving homeomorphisms that serve as reparameterizations of [0, 1]. We can
measure the distance between (@o¢) and (foy/) pointwise, and take the supremum. Then, the Fréchet
distance dr(a, f) is defined to be the infimum of this measurement over all reparameterizations ¢
and . Formally: 5r(a, B) = infy y sup; ,¢(o 1 l|(@ 0 $)(t) — (B 0 ¥)(2)]|. Intuitively, one can imagine
a man walking along one curve and a dog along the other, continuously from beginning to end
without backtracking. Then, the Fréchet distance is the shortest leash needed to connect the man
and dog on their walk.

In order to match the path to the graph, we consider the cell complex G X P; see Fig. 2(a).
By convention, we say that the graph G = (V,E) is horizontal and the path P is vertical. For an
edge (u,v) € E and consecutive path vertices p; and p;.1, we consider the cell (u, v) X (p;, pi+1) C
G X P to be drawn with (u, v) as a horizontal edge and (p;, p;+1) as a vertical edge, as shown in
Fig. 2(b). A slice is the graph G cross an edge (p;, p;+1) of the path, G X (p;, pi+1), and a level is the
graph cross a vertex p; of the path, G X p;.

For ¢ > 0, the corresponding free space diagram D, is the subset of G X P such that for all
pairs (g, p) € D,, the following inequality is satisfied: ||g — p|| < ¢. The free space of a cell is equal
to an ellipse intersected with the cell [3]. As a consequence, equality ||g — p|| = € holds for at most
two points on each vertical or horizontal edge in the complex. On a vertical edge u X (p;, pi+1), we
denote these two points by a, and b’,. Where appropriate, we slightly abuse notation and use a,
to also identify the parameter ¢ for which p;(¢) = al,. In this way, we say a/, < b},. Likewise, on a
horizontal edge (u,v) X p;, we denote c’, < d’, as the points for which ||c}, — p;|| = ||d] — pi|| = &;
see Fig. 2(b) for an example of a labeled free space cell.

3 SHORTEST AMONG MATCHING PATHS

In this section, we consider only paths in G that have restricted Fréchet distance to an input
polygonal curve, and among those paths, we wish to find a shortest path. That means, we are
interested in finding the shortest matching path:

PROBLEM 1 (SHORTEST MATCHING PATH). Given a parameter ¢ > 0 and a path P, find the shortest
path in G that is within Fréchet distance ¢ to P.

We provide an incremental algorithm for computing such a shortest matching path. Our algorithm
computes a distance function on all edges of the free space. We also prove properties of this distance
functions which may be of independent interest.

3.1 Algorithm

Any path Q in G with §¢(P, Q) < ¢ corresponds to a P-monotone path r in free space D, € G X P.
A shortest such path Q then corresponds to a shortest P-monotone path 7 in D,, where the length
of 7 is only measured along G, i.e., in the horizontal direction. Our algorithm follows a dynamic
programming approach that combines the computation of paths in the free space diagram with
shortest path computations.

We define a function ¢ : G X P — R such that ¢(g, p) = ming |Q|, where Q ranges over all paths
in G ending at g such that §g(P[po, p], Q) < ¢, and |Q| denotes the length of Q. If no such path to (g, p)
exists, then ¢(g, p) = 0. In particular, ¢(g, p) = oo for (g,p) ¢ D.. We have that ¢(g, p) = min, ||,
where 7 ranges over all P-monotone paths in D, that end at (g, p), and the length || is measured
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Fig. 2. On the left, we illustrate the parameter space G X P, a graph G (shown in red with white vertices)
times a path P of length four. For convenience, the path is drawn as a straight path. A slice is the graph cross
an edge e of the path: G X e; see the shaded pink region. A level is the graph cross a vertex v in the path: G X v.
Each level can be thought of as a copy of G. A cell corresponds to two edges, one of the path and one on G, as
shown in cyan. On the right, we illustrate one free space of a cell (u,v) X (pi, pi+1), where (u,v) is an edge in
the graph and p;, pi+1 are consecutive points in P. The free space is equivalent to an ellipse intersecting this
rectangle. Therefore, each edge of the rectangle has at most two points (g, p) for which ||g — p|| = e.

along G only. We call = a G-shortest path, or shortest path for short. Thus, ¢ captures the length of
G-shortest paths in free space. Our algorithm computes ¢ slice-by-slice over G X P, with the goal
to compute ¢(g, pn) for some g € G. Observe that a G-shortest path 7 has to be monotone in each
cell of G x P. Therefore, it suffices to compute ¢ on the vertical and horizontal edges of G X P. In
each slice of G X P, we perform a Bellman-Ford inspired computation to propagate ¢ between the
vertical edges by relaxing along the horizontal edges.

For a vertical edge defined by v € V and an edge (p;, pi+1) of the path, let ¢, ;(¢) : [0,1] = R
be defined by ¢, ;(t) = (v, pi(t)). For a horizontal edge defined by e € E and a vertex p; of the
path, let . ; : [0,1] — R be defined by ¢ i(s) := ¢(e(s), pi). Note that for each (undirected)
edge (u,v) € E, we only store one ¢-function, say, ¢, .),:(s), since ¢, u),i(s) = @, v),i(1 = ).

LEmMMA 3.1 (VERTICAL MONOTONICITY). The vertical function ¢, ;(t) is monotone non-increasing
fort € [a,,b.].

ProoF. Observe that [a’,, b! ] corresponds to the intersection of the freespace D, with the vertical
edge. Since ¢ measures the length of paths in D, in the G-direction only, paths can move in the
vertical direction without increasing in length. O

In particular, we note that a direct consequence of the above lemma is the fact that the minimum
of this edge is attained at a’: ¢,, ;(al) < ¢, ;(t) for all t € [a’,,b]].

Our dynamic programming algorithm, Algorithm 1, is based on the reachability propagation
introduced by Alt and Godau to compute the Fréchet distance [3]. Instead of propagating binary
reachability information from cell to cell, we propagate function values for ¢ along vertical and
horizontal edges of G X P. We will see in Lemma 3.4 and Lemma 3.5 that ¢ is piecewise linear on
a vertical or horizontal edge. We therefore store each ¢, ;(t) and ¢, i(s) as a list of linear pieces.
Updates such as the ones in lines 8, 11, and 12 then take linear time in the length of the lists. The
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Algorithm 1: Shortest Among Fréchet-Matching Paths

1 Initialize ¢, i(t) = @e,i(s) = co for all v, e, i, s, t.
2 forall v € V with |[v — py|| < ¢ do

3 | 9000)=0
4 forall e € E and s € [0, 1] with ||e(s) — po|| < ¢ do
5 L (Pe,O(s) =0

6 fori=0,...,N do // Compute slices
7 forall v € V andt € [0, 1] with ||v — p;(t)|| < ¢ do
// Initialize vertical edges

8 ¢o,i(t) = min{gy,;(al), ueriloiz?@ srerhi)q]{w(u,m,i(S) +(1=9)|lu—ol}}

9 while there exist edges e € E to be relaxed do
// Compute vertical edges in slice i
10 forall e = (u,v) € E andt € [0,1] do
// Relax edge e (both directions)
- Ps(t) = min{po, (2), gu, s(maxt, @l }) + [|u — o]}
12 Pui(t) = min{g i(0), o, (mas{t, al}) + [lu - oll}

13 forall e € E do
// Compute horizontal edges in level i + 1

14 | Compute @, ;+1(s) according to Lemma 3.3.

condition in line 9 is true if there exists an edge e = (u,v) such that ¢,, ;(t) or ¢, ;(¢) are updated
in lines 11 and 12.

3.2 Properties

Algorithm 1 is based on the recursive formulas given in Lemma 3.2 and Lemma 3.3.

LeEMMmA 3.2 (ComPUTE VERTICAL EDGES). Consider a
vertical edge v X (p;, pi+1) foranyv € V andi € {0,...,N}. Then, for anyt € [0, 1], we have:
o If||lv —pi(t)|]| > € then ¢, i(t) = co.
o If||lv — pi(t)|| < € then ¢,,0(0) =0, and fort € (0,1] :

Do, i(aij)9

. min ((max{t,al}) + |lu - v||,
pos(t) = mind o0 Quilmax{t,al}) + [l ol

min min i)+ (1 —=9)|lu-v
Jmin - min (g0,4(5) + (1= 9)llu = o]

Proor. The first two equalities follow directly from the definition of ¢. To prove the third
equality, consider a shortest monotone path 7 in D, ending at (v, p;(¢)) for some ¢ € [0, 1]. The last
segment of 7 connects to one of the following:

(1) The bottom-most feasible point, a’,, on the same vertical edge v X (p;, pi+1),
(2) a point on a vertical edge u X (p;, pi+1) for a vertex u € V adjacent to v, or
(3) a point on a horizontal edge (u, v) X p; for a vertex u € V adjacent to v.

A shortest monotone path always exists for which this last segment is a straight-line segment. The
three cases correspond to the three values minimized over in the theorem. Measuring lengths in G,
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we observe that vertical paths in D, have length zero. Hence, the length of the corresponding path
in G in the first case is ¢, ;(a,), the lengths in the other cases minimize over all vertices u adjacent
to v, and the value ¢, ;(¢) is the minimum of these three lengths. In the second case, the projection
of & onto G traverses the entire edge (u, v), which contributes length |[u — v||. The third case
minimizes over all possible connections to the horizontal edge e X p; where e = (u,v). A segment
connecting (v, p;(t)) to a point (e(s), p;) has length (1 — s)||u — v||, assuming e is parameterized
by e(s) = (1 — s)u + sv. O

LeMMa 3.3 (CompUuTE HoOrizoNTAL EDGES). Consider
a horizontal edge e X p;41 for any e = (u,v) € E andi € {0,...,N}. Then, for anys € [0, 1] we have:
0, if |le(s) — <e¢
'%M9={m Al
o Iflle(s) = pir1ll > &, then e is1(s) = co.
o Ifle(s) = pis1l| < &, then

Pui(Bl) + sllu o]l
q)e,iﬂ(s) = min (pv,i(b;})—i_(l _S)“u_U”’ (1)
S,Ia%n”{fpe,i(S') +ls=s'| - |lu—oll}

Proor. The first two equalities follow directly from the definition of ¢. It remains to prove the
last equality given in Equation (1). Consider a shortest monotone path  in D, ending at (e(s), pi+1)-
The last segment of 7 connects to one of the following:

(1) a point on the vertical edge u X (p;, pi+1)

(2) a point on the vertical edge v X (p;, pi+1), or

(3) a point on the horizontal edge e X p;.
These three cases correspond to the three values minimized over in Equation (1). By defini-
tion, @ j+1(s) is the minimum of these three values. In the first case, the last segment of 7 connects
to b, (or to a point below it on u X (p;, pi+1) with the same value of ¢), since ¢, ;(t) is monotone
decreasing; the length of this segment is s||u — v||. The second case is analogous to the first case,
for the other vertical edge in the free space cell. The third case minimizes over all possible con-
nections to the horizontal edge e X p;. A segment connecting (e(s), pi+1) to a point (e(s’), p;) has
length |s — s'| - ||u — v]|. O

The following two lemmas will be used to prove correctness of Algorithm 1 in Theorem 3.6.

LEmMA 3.4 (VERTICAL FUuNCTION COMPLEXITY). Let v X (p;, pi+1) be a vertical edge. Then, fort €
al,, bl ], the function ¢@,_;(t) is piecewise constant and monotone non-increasing with complexity O(n).
v 0y Po, p g piexity

Proor. If ¢ € [al, bL], then ¢, ;(t) < ¢y, i(al,) since the path from p(al,) to p(t) has length zero
in G. The endpoints of each constant piece in ¢, ;(t) can only be lower endpoints a, of the free
space on vertical edges u X (p;, pi+1), for any u € V. Hence, the complexity is O(n). O

LEmMA 3.5 (HorizonTAL FuncTION COMPLEXITY). Let e X p; be a horizontal edge. Then the
function @, ;(s) is piecewise linear, for s € [c,,d.], where each piece is of slope ||e||, —||e|| or zero. Note

that such a function is necessarily ||e||-Lipschitz. Furthermore, the complexity of .. ; is O(i).

Proor. We prove this claim by induction on i. By definition, we know that ¢, ¢(s) = 0 for
all s € [¢2,d?]. As a consequence of Lemma 3.3, we have that ¢, ;4 is the lower envelope of a linear
function with slope ||e||, a linear function with slope —||e||, and mingy o, 17{@e,i(s") + |s — 5’| - ||e][}.
Since, by inductive hypothesis, ¢, ; is piecewise linear, where each piece is of slope ||e||, —||e|| or
zero, the minimum of the last term is attained as follows: If s < ¢’ then s’ = ¢, and ¢} < s < d!,
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then s’ = s, and if d. < s, then s’ = d.. Hence, the function ¢, ;.1 consists of a translated copy
of . ; with at most two additional linear pieces at each end. Therefore, we know that ¢, ;+; has
the desired structure, and its complexity is O(i). O

We prove the correctness and analyze the runtime of Algorithm 1 in the following theorem:

THEOREM 3.6 (CORRECTNESS AND TIME COMPLEXITY). Algorithm 1 computes the length of a shortest
matching path in O(N(kmn + mN)) time and O(n* + mN) space, where k is the number of edges in
the shortest matching path in G.

Proor. For each vertical edge v X (p;, pi+1) (and each horizontal edge e X p;), we compute ¢, ;
(and @, ;, respectively). The time for initialization (lines 1-5) is O(n + m). From Lemma 3.4, we know
that each ¢, ; has complexity O(n), and from Lemma 3.5, that each ¢, ; has complexity O(i). We
use these discrete representations of ¢, ; and ¢, ; throughout the algorithm. Since the algorithm
computes one slice at a time, we only need to store ¢, ; and ¢, ; for only one slice. Hence, the total
storage complexity is O(n? + mN).

The correctness of the algorithm follows from Lemma 3.2 and Lemma 3.3. In particular, lines 7-12
are based on the recursive formula given in Lemma 3.2. All ¢,, ; on vertical edges v X (p;, pi+1) are
initialized in Lines 7-8 with values from the bottom horizontal edge. Then lines 9-12 perform a
Bellman-Ford shortest path propagation across all vertical edges in slice i. We continue the while
loop in line 9 as long as at least one ¢,, ; (or ¢, ;) was updated in lines 11-12. Hence, the number
of iterations of the while loop is k + 1 (once the shortest paths are found, no improvements will
be made). After all, ¢,, ; have been computed in slice i, all ¢, ;+1 are computed from the vertical
edges and the horizontal edges in level i, according to Lemma 3.3. Lines 7-8 take O(n?) time,
lines 11-12 take O(n) time, and line 14 takes O(i) time. Hence, lines 6-14 of the algorithm take
time O(N(n? + kmn + mN)), and thus the total runtime is O(N(kmn + mN). O

REMARK 1. As stated, Algorithm 1 enforces monotonicity on P but not on edges of G = (V,E).
If desired, the algorithm can be modified to enforce monotonicity on the edges in E as follows: The
cell complex would need to be defined using directed edges E’, where undirected edges in E are
represented using two directed edges. The propagations according to Lemma 3.2 need to use adjacency
lists Adj(v) = {(u,v) | (u,v) € E’}. The horizontal propagation in Lemma 3.3 needs to be adjusted, by
replacing equation (1) with @, ;+1(s) = min{g, ;(b})+s|lu=vl|, fe.i(s)}. Here, f. i(s) = 0ifcl < s < dL,
and f, i(s) = s —d. ifd. < s. This formula models monotone propagation in the same way as in Alt
and Godau [3], just that in addition to reachability we propagate the length of a G-shortest path.

4 MATCH TO CONCATENATION OF SHORTEST PATHS

In this section, we are interested in matching the path P to a concatenation of shortest paths in G.
We consider two variants of the problem, one that minimizes the number of shortest paths that are
concatenated, the other that minimizes the Fréchet distance .

PrROBLEM 2 (MIN-k). Given a parameter ¢ > 0, find a path Q in G that is a concatenation of the
smallest number of shortest paths in G, such that 5p(P, Q) < e.

PrROBLEM 3 (MIN-¢). Given a parameter k > 1, find a path Q in G that is a concatenation of at
most k shortest paths in G, such that the Fréchet distance between P and Q is minimized.

In this section, we assume that the paths in G must begin and end at a vertex. We begin by
exploring the case where k = 1in Section 4.1, then consider the more general case in Section 4.2 and
Section 4.3. Allowing paths to start or end anywhere on an edge makes the problem considerably
harder. We sketch approximation algorithms for this case in Section 5.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Map-Matching Using Shortest Paths 111:9

4.1 Matching to Shortest Paths

As a warm-up, we consider the min-¢ problem for the case where k = 1, i.e., we wish to find a
shortest path Q in G that minimizes the Fréchet distance to P, among all shortest paths in G that
start and end at vertices in V.

First, we compute an implicit representation of all shortest paths between all pairs of vertices
in V, by running Dijkstra’s shortest path algorithm for each s € V as a source vertex. Shortest paths
with a common start vertex are stored in a shortest path directed acyclic graph (DAG); note that
while algorithms usually assume uniqueness of shortest paths and store only a tree, we wish to
keep all possible shortest paths since we must store all of them in order to consider their Fréchet
distance to P. The shortest path DAGs are computed and stored for each s € V as a source vertex,
in total in O(n(m + nlogn)) time and O(n?) space.

Then, we need to compute the Fréchet distance between P and each shortest path, in order to
identify the minimum distance. We batch these computations by computing the Fréchet distance
between a path and the entire shortest path DAGs. The following lemma and the resulting corollaries
show that distances between shortest path prefixes and prefixes of P can be computed efficiently in
a batched manner. We state these results for a general DAG with a single root.

LemMa 4.1. Let T = (Vr,Er) be a DAG with a root r and |Et| = mr. Let P be a polygonal path
with vertices py, p1, . . .,pN. A path in T from the root to a leaf, that has the smallest Fréchet distance
to P, can be computed in O(mtN log(mr + N)) time.

Proor. This is a simple modification of Alt and Godau’s computation of the Fréchet distance
for two polygonal paths [3], and a special case of the map-matching setting considered in [2].
For fixed ¢ > 0, we compute the free space in T X P. We then propagate reachability information
from (r, pp) in dynamic programming fashion in this free space. Starting with filling reachability
information in r X P, we then propagate the reachability monotonically across both T and P,
traversing T in an order determined by a topological sort of T, and P from p, to pn. For each
edge (u, v) € ET, the reachable points in (u,v) X P are computed by straight-forward propagation
from the reachable points in u X P. But since v may have multiple incoming edges, the reachability
information for v X P is then computed as the union of all the propagated reachability information
for all (u,v) € Er. It takes time and space O(mrN) to solve the decision problem. With parametric
search [2, 3], the path in T from the root to a leaf, that has the smallest Fréchet distance to P, can
be found in O(m7 N log(mt + N)) time. O

For fixed ¢ > 0, the algorithm described in the proof of Lemma 4.1 does in fact compute
reachability information for all paths starting in the root of T and all prefixes of P:

COROLLARY 4.2. LetT = (Vr, ET) be a DAG with a rootr and |Et| = mr, and let ¢ > 0. In O(m7N)
time, one can compute for all points g € T and p € P whether there exists a path Q, 4 in G fromr tog

such that 5p(Qr. g, P[po.p]) < «.

And in fact, reachability can be computed efficiently if either the start point of the path P or the
start point of a corresponding path in T is allowed to vary along an edge:

CororLARY 4.3. Let T = (Vr, Et) be a DAG with root r, and let |Et| = mr and ¢ > 0. The following
can be computed in O(mpN) time:

(i) For all pointsg € T, p € P, and x € (py, p1) whether there exists a path Q, 4 in G fromr tog
such that 5p(Qy, g, P[x,p]) < e.

(ii) If (r,v) is the only edge incident on the root, then it can be computed for all pointsg € T, p € P,
and x € (r,v) whether there exists a path Q. 4 in G from x to g such that 5p(Qx, ¢, P[po, p]) < &.
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Proor. For (i), a simple modification of the reachability initialization step in the proof of
Lemma 4.1 results in computing reachability from (r, x) for any x € (po, p1). For (ii), if g ¢ (r,v),
then a simple modification of the reachability initialization step in the proof of Lemma 4.1 results
in computing reachability from any x € (r,v). If both x and g are on the same edge (7, v), then we
compute the reachability in (r, v) X P directly. O

We apply Lemma 4.1 to the shortest path DAG T for each start vertex s € V. We compute a
shortest path in Ty that has the smallest Fréchet distance to P in O(mN log(m + N)) time. Repeating
this for each source vertex, and accounting for running Dijkstra’s algorithm in the beginning,
results in a total runtime of O(nmN log(m + N)) and O(n(n + N)) space. We summarize our result:

THEOREM 4.4 (MATCHING TO SHORTEST PATH). A path Q that minimizes the Fréchet distance to P,
among all shortest paths in G that start and end at vertices in V, can be computed in O(nmN log(m+N))
and O(n(n + N)) space.

4.2 The Min-k Problem

In this section, we solve the min-k problem: For fixed ¢ > 0, we wish to find a path Q that is a
concatenation of the smallest number of shortest paths in G such that §¢(P, Q) < ¢. We require
that all shortest paths start and end at vertices in V.

Auxiliary Graph. We build an auxiliary graph G’ = (V’, E’) as follows. The set of vertices V'
are ordered pairs of a vertex in V and a vertex in P; formally, we write: V' = {{(v,p;) |v e V,i €
{0,...,N}}. There is an edge in E’ connecting (u, p;) and (v, p;), if there is a shortest path Q
in G from u to v such that the Fréchet distance between P[i, j] and Q is at most ¢. Formally, we
have E" = {({u, pi),{v,p;)) | 0 < i < j < N, and there is a shortest path Q from u to v in G such
that 5¢(Q, P[i, j]) < €}. We have |V’| = nN and |E’| € O(n*N?).

This auxiliary graph can be constructed as follows: We compute all shortest path DAGs T, by
running Dijkstra’s shortest path algorithm for every u € V. For fixedu € Vandi € {0 <i < N},
we use Corollary 4.2 to compute the reachability information. For eachv € Vandi < j < N, we can
then read off whether there exists a shortest path in G from u to v such that §p(Qy, ., P[i, j]) < e.
This determines whether ({u, p;), (v, p;)) € E’. The runtime is O(n(m + nlogn)) to compute all
shortest path DAGs, O(mN) to compute the edges for fixed u and i, and hence O(n(mN? + nlog n))
time total to compute E’.

Algorithm. We can now solve our problem by finding a shortest path in G’, starting at any
vertex (u, py) for any u € V and ending at any vertex (v, py). We connect a super-source § to
all (u, po) for any u € V. Since the length of the path is determined by the number of edges, we can
compute such shortest paths by running breadth-first search from § in time O(|V’|+|E’|) = O(n®N?).
The total runtime is dominated by the time O(n(mN? + nlogn)) to compute the auxiliary graph.
We summarize our result in the following theorem:

THEOREM 4.5 (MIN-k). For fixed ¢ > 0, a path Q that is a concatenation of the smallest num-
ber of shortest paths in G such that 5p(P,Q) < & can be computed in O(n(mN? + nlogn)) time
and O(n*N?) space.

4.3 Min-¢

Next, we show how we can use our solution for the min-k problem described in Section 4.2, in
order to develop a solution for the min-¢ problem. For fixed k > 2, we wish to find a path Q that is
a concatenation of at most k shortest paths in G such that 6p(P, Q) is minimized. Again, we require
that all shortest paths start and end at vertices in V.
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Let k > 2 be fixed. We modify the algorithm described in Section 4.2 to serve as a decision
procedure for a given ¢ > 0: Return true if a shortest path exists of length < k, and false otherwise.
We optimize ¢ by performing a binary search on a superset of the critical values for ¢, which are values
for which solutions to the decision procedure changes combinatorially. These changes are caused by
combinatorial changes in the free space diagram for a shortest path Q and P; see Alt and Godau [3].
We consider all possible critical values within each free space cell and across pairs of free space
cells. Possible critical values are those ¢ for which aL = b{) or cf:, = dé foru,veV,ecE,andj=1i
or j = i + 1. There are O(n> N + N%n) such values that constitute a superset of the combinatorial
changes that affect our decision procedure. We sort these critical values in O((n>N +N?n) log(n+N))
time and perform a binary search using the decision procedure, which results in a total runtime
of O(n(mN? + nlog n)log(n + N)). We summarize our result as follows.

THEOREM 4.6 (MIN-¢). For fixed k > 0, a path Q that is a concatenation of at most k shortest
paths in G such that §p(P, Q) is minimized, can be computed in O(n(mN? + nlogn)log(n + N)) time
and O(n®>N?) space.

5 APPROXIMATION ALGORITHM FOR k-SP WITHOUT VERTEX-CONSTRAINT

In this section, we consider the more general version of the k-shortest path problem, by removing
the vertex-constraint. Let |G| denote the underlying space of G, comprising all points in G, including
those in the interior of edges. We say that a path Q C |G| is a k-SP if it can be partitioned into k
consecutive pieces Q = Q7 o Qy - -+ o QO such that each Q; is a shortest path between its two
endpoints in |G|. Let P = {Py,...,P;} be a k-partitioning of the underlying space |P| of the
polygonal curve P; that is, [P| = P; o P,--- o P with P; and P; disjoint in their interior for
all i # j. We say that G has a (k, €)-matching for P if there exists a k-SP Q = Q; 0 Q-+ 0 Qk
and a k-partitioning P = {Py, P,,...Px} such that for any i € [1,k], the Fréchet distance is
bounded: 5¢(Q;, P;) < ¢. (This also implies that §g(Q, P) < ¢). We refer to endpoints of each path
in Q and in P as break-points. Note that the break-points could lie in the interior of edges.

PrROBLEM 4. Givenk ande > 0, the goal is to decide whether there exists ak-SPQ = Q;0Q; - - -0 Qg
and a k-partitioning P = {P1, P, ... Py} of P such that for any i € [1,k], the Fréchet distance is
bounded: 6r(Q;, P;) < e.

This general version of the problem seems to be much more challenging. For example, consider
Fig. 3. Suppose we already know that point p, should be matched to some point on edge e; = (uy, uz),
and the last point px should be matched to some point on edge e; = (w;, wy). Let 7y be a shortest
path from u; to wy, and 7, be a shortest path from u, to w;. We need to compute a shortest path
starting in some u € e; and ending in some w € e; whose Fréchet distance to P is at most e.

Uy

”\u{Z‘L
s (Po
i 3

R ! T2
. DN ..

w, €2 w w2

Fig. 3. The path u ~ m; ~ w or the path u ~ 1 ~ w may be shortest, depending on the positions of u
and w, where w depends on u.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:12 Chambers, Fasy, Wang, Wenk

However, whether the path u ~ m; ~» w or the path u ~ 1, ~ w is shortest depends on the
positions of both u and w. Hence, the end point w depends on the starting point u, which makes
developing a dynamic programming strategy challenging.

In this section, we focus on approximation algorithms. We say that an algorithm is an («, §)-
approximation for the (k, ¢)-matching problem, if it computes an (ak, f¢)-matching for the path P
whenever there exists a (k, €)-matching for P in G. In what follows, we describe such an approxi-
mation algorithm, where the input satisfies the following mild assumption:

Assumption-R: For the optimal k-SP Q, there is no U-turn in the interior of an edge. Equiva-
lently, for a break-point s; connecting shortest path pieces Q; and Qj1, if s; is in the interior
of edge e = (u,v), then Q; N Q41 Ne = {s;}.
Remark: From a technical point of view, this assumption is important in proving Proposition 5.2
below. It may be possible to remove this assumption and still achieves a G-restricted (2k, ¢), as in
Proposition 5.2 with a more complicated argument. However, we note that this assumption is in
fact natural, or even necessary for a real route planning. Indeed, assuming each edge in the graph
represents a road segment connecting two junction nodes, many jurisdictions do not allowed a
U-turn between the junction nodes.

THEOREM 5.1 (APPROXIMATION THEOREM). Let P be a polygonal path and G = (V, E) be a graph
satisfying Assumption-R, there is a (2, 2)-approximation algorithm for the (k, €)-matching problem
with running time O(nmN?), wheren = |V|,m = |E|, and N = |P|.

To prove Theorem 5.1, we solve a version of the k-matching problem for which we require
that all break-points in the k-SP Q, other than the start point and endpoint, have to be vertices
from the graph G. We call this the G-restricted (k, €)-matching problem for P. Theorem 5.1 follows
immediately from the two propositions below.

ProrosITION 5.2. Ifthereisa(k, €)-matching between P and G, where the input satisfies Assumption-
R, then there is a G-restricted (2k, €)-matching between P and G.

ProrosITION 5.3. Given a polygonal path P and a graph G = (V, E), there is a (1, 2)-approximation
algorithm for the G-restricted (k, €)-matching problem whose running time is O(nmN?), wheren = |V|,
m = |E|, and N = |P|.

Proof of Proposition 5.2. Assume G has a (k, ¢)-matching and let Q* = Q; 0 Q; 0 -+ 0 Ok be
the k-SP and P = {P;,P,,--- , Py} be the k-partition in this matching. We now show that we
can modify Q to a G-restricted 2k-SP 0 forming a (2k, £)-matching with some 2k-partition of P.
Our modification re-partitions P and Q*. Note that for any oriented path 7, given an ordered
sequence of points {ay, . .., a¢} along this path with start point y and endpoint ay, it induces a
unique partition z[ap, o1 ] o [y, az] o« - - o m[atp_1, ar] of . (Recall that z[a, f] is the subcurve of 7
between two points < f§, meaning that « has a smaller preimage than  under the parametrization
of 7.) Hence, in what follows, we simply specify such sequences of break-points to describe
(re-)partitioning of the paths Q* and P.

Definition 5.4. Repartitions of Q* and P induced by a sequence of break-points S = {so, ...,s¢}
and IT = {by, ..., b} are called valid if for all i € [0,£ — 1],

(i) each piece Q*[s;, si+1] is a shortest path in G, and

(ii) Sp(Q™[si,sit1], P[bi, bir1]) < e.

Let S = {s;,s],..- ,s]’;} be the sequence of break-points of the optimal k-SP Q; and IT* = {by =

o b1, bzfl, bz = pnp} be the sequence of break-points for the optimal k-partition of P. We
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b1 U b= by

Fig. 4. Black dots are break-points, and dashed segments indicate aligned points.

now process each s} in order from i = 1to i = k — 1. In the beginning, Sy = §* and Ily = P*. In the
i-th iteration, we obtain S; from S;_; such that |S;| < |S;_;| + 1, and we obtain II; from II;_; such
that |II;| < |IT;_1| + 1. We also maintain the invariant that the partitions S; and II; are valid.

Specifically, in the ith iteration, suppose the break-point s} from the optimal k-SP is still present
in S;_;. Assume s} € e = (u,v) € E. By Assumption-R, the entire edge (u, v) must be covered by the
path Q" and Q*[u, v] = (u,v). Let S;—1 = {so,...,s¢} and II;_y = {by,...,be}. Since S;_; and II;_4
are valid, there exist Fréchet matching F between Q* and P composed by the union of Fréchet match-
ings between Q*[s;, sj+1] and P[b;, bj41] for all j € [1,¢), such that 5p(Q*[s;, sj+1], P[bj, bj+1]) < e.
Let &2 and ¢ be two points aligned to u and v under this matching F; obviously, §r((u, v), P(i1,0)) < e.
See Fig. 4 for an illustration, where suppose s; = s; € S;_;.

We obtain S; by removing s} as a break-point from S;_; and adding u and v as new break-points
to S;_1. (In general, the edge (u, v) may contain more break-points than s}, and we need to remove
all of them from S;_;). Similarly, we add @ and 9 as new break-points, and remove any existing
break-points of I1;_; contained in P[#, 9] (the break-point b; that s; is matched to will necessarily
be removed). This gives rise to a pair of new partitions S; and II;, where the number of pieces can
increment by at most one.

We now argue that S; and I1; are also valid. We already know that S;_; = {sg,...,s¢} and II;_; =
{bo, ..., b} are valid. Consider any two consecutive break-points in S;. Then, one of the following
three cases must hold:

(1) Both break-points s;, sj4+1 € S;—; N S;. Then as S;_; and II;_; are valid, we have that the two
conditions (i) and (ii) in Definition 5.4 hold for s; and s;,1.

(2) We have a pair of new consecutive break-points u and v in S;, corresponding to new break-
points 4 and 0 in I1;_;. However, we know that Q[u, v] = (u, v) thus it is a shortest path between u
and v; and also we know from above that §z((u, v), P(4, 9)) < e.

(3) The two consecutive break-points in S; are either of the form s;,u (j = t — 1 in Fig. 4);
or symmetrically, they are v,s; from S; (j* = t + 1 in Fig. 4). Consider s; and u from S;, which
correspond to consecutive break-points b;, @ from II;. By construction, Q*[sj,u] S Q*[sj, sj+1];
thus Q*[s;, u] is necessarily a shortest path of G as well. Furthermore, P[b;, @t] C P[b;, bj;1] and u
is aligned to 4 under the Fréchet matching F between Q*[s;, sj+1] and P[b;, bj,1] mentioned above.
Thus, we have 5¢(Q*[s;, u], P[bj, @1]) < e under the same matching F. Symmetrically, we can argue
that 8r(Q*[v, sy ], P[0, by]) < e.

It then follows that S; and II; are valid. Furthermore, after each iteration, if break-point s; is in the
interior of an edge in G, then we remove at least this break-point and add two new break-points u
and v, which are vertices of graph G. Thus, in each iteration, the number of break-points can
increase by at most one; implying that |Si| < 2k + 1. After processing all s;’s, all break-points
from Q that are in the interior of graph edges are removed, and all newly added break-points are
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graph nodes. Hence, the new partitions Sy of Q* and Iy of P witness a G-restricted (2k, ¢)-matching
for P in G, which proves Proposition 5.2. O

Proof of Proposition 5.3. We now describe a (1, 2)-approximation algorithm for the G-restricted
case, which would then prove Proposition 5.3. To make the main idea clear, we first assume that
in the G-restricted (k, ¢)-matching, all break-points of the k-SP Q have to be vertices in G (in our
earlier definition, the start point and endpoint may not be). At the end of this proof, we will describe
how to remove this assumption.

The high-level framework is similar to the approach in Section 4.2. Given parameter ¢, we build an
auxiliary graph G’ = (V’, E’) as follows. The node set V’ consists of {(v,e;) | v € V,e; = (pi, pi+1)
is the i-th edge in P}. The edge ((v, e;),(v’,e;)) € E’ is in the auxiliary graph G’ if and only if
there is a subpath P[a,b] C P with a € ¢; and b € e}, as well as a shortest path Q fromv € V
to v’ € V in G, such that 8¢(Q, P[a, b]) < &; if i = 0, then we require a = py, and if j = N — 1, then
we require b = py. The latter two conditions are to guarantee that the first and last break-points
for the partition of P have to be py and py, respectively. Our algorithm returns ‘yes’ if a path of at
most k links exists from (s, ep) to (t, en) in the auxiliary graph G’ for some s,t € V.

We compute the edge set E’ for this auxiliary graph as follows. We add the edge ({v, e;), (v’, ¢;))
to the auxiliary graph G’ as long as there is a monotone path in the free space D,, starting from
some point, say (v, a), along the vertical edge v X e;, to some point, say (v, b), within the vertical
edge v’ X ej. We further associate the pair (g, b) with the edge ((v, e;), (v’,e;)) € E’, and say
that (a,b), with a € e; and b € e;, witnesses the existence of the edge ({v, e;), (v’, ¢;)). Using
Corollary 4.3 for the shortest path DAG T, for v € V, this can be computed in O(|T,|N) = O(mN)
time for fixed v and i.

Overall, this auxiliary graph has |[V’| = O(nN) nodes, and |E’| = O(n? N?) edges. Constructing all
edges takes O(|V’|mN) = O(nmN?) total time. We need to test whether there is a path from (s, e)
to (t, ex) of at most k links in G’ for some s, t € V. This can be done in O(|V’| + |E’|) = O(nmN?)
time by adding a super-source node as in the algorithm for Theorem 4.5. Hence, the claimed time
complexity in Proposition 5.3 follows.

To prove the correctness of our algorithm, we will show how to construct a G-restricted (k, 2¢)-
matching from the k-link path mentioned above from the auxiliary graph. Let

Up = (S =50,00), U1 = (S1,€i)s -+,

Ug—1 = (Sk—1»€i_, ) Uk = (Sk = L, PN)

(2)

be the sequence of nodes for a path of k links from uy = (s, po) to ux = (t, pn-1) in the auxiliary
graph G’. Obviously, this gives rise to a k-SP Q = Q; 0 Q; o - - - O, where for each j € [0,k — 1], Q;
is a shortest path from s; to s;;1 in G. We now construct a k-partition of P as follows. Consider the
edge (uj, uj+1) from the path in Equation (2). Let a; € e;; and b; € e;,, be the two points witnessing
the existence of edge (uj,uj.1) in E’ for any j € [1,k — 1]. Note that both b;_; and a; are from
the same edge e;; of P; and we set ¢; = @ to be the mid-point of b;_;a;. Obviously, c; is also
contained in ei;- Now simply consider the sequence of break-points {py, 1, ¢z, . . . , ck—1, pn } and the
corresponding k-partition of P. We next prove that 6r(Q}, P[cj, ¢j+1]) < 2¢ for each j € [1,k — 2].
Indeed, by construction, we know that:

Or(Qj-1,Plaj-1,bj_1]) < ¢
0r(Qj, Plaj, bj]) < e

and aj,bj—; € e = e;,. See Fig. 5 for an illustration. Since the start point of Q; and the endpoint
of Q;_; are the same, which is s;, we then have that ||a;—s;|| < eand ||bj_;—sj41]| < &. By the triangle
inequality, [|aj—b;_1|| < 2e. Since c; is the mid-point of b;_;a;, we have that ||a;—c;|, ||c;—=bj-1]| < e.
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Sj—1

Qj-1

Fig. 5. Since c;j is within the segment bj_1aj, ||sj — cj|| < & by convexity of the e-ball around s; (shaded
region).

Now, consider the Fréchet matching ¥ between Q; and P[a;, b;]: If ¢; < a; (the case illustrated
in Fig. 5), then we can extend this matching to a matching between Q; to P[c;,a;] by simply
matching all points in P[c;, a;] to the point s; € Q;. By convexity of the distance function, we have
that |[p — s;|| < ¢ for any point p in the segment P[c;, a;]. Hence, we obtain a Fréchet matching
between Q; and P[c;, b;] with error still at most e.

Otherwise if ¢; > aj, then let g be the first point in Q; that is matched to ¢; under the Fréchet
matching between Q; and P[aj, b;]. Consider the subcurve Qj[s;, q]. We construct a Fréchet match-
ing ' between Q; and P[c;, b;] by keeping the matching for all points in Q;[g, sj+1] the same as
in ¥, but re-matching all points in Q;[s;, ] to c;. Note that each q" € Qj[s;, ] is matched to some
point p € P[aj, c;] under . Hence, |lg"—¢;|| < |lg"—pll +[lp—¢;ll < 2¢. Thus, the new matching F”
has error at most 2¢.

By a symmetric argument, we can further modify the Fréchet matching ¥ between Q; and P[c;, b;]
to a new matching ¥ between Q; and P[cj, ¢j+1] with error at most 2¢. After performing this
modification for all j, we have 6r(Q;, P[cj, cj+1]) < 2¢ for all j € [1,k — 2]. Finally, we have
that §p(Q1, P[po, c1]) < 2¢ and Sp(Qk, P[ck-1,pN]) < 2¢ by a similar argument. The proposition
then follows.

We now describe how to remove the assumption that all break-points in the G-restricted (k, ¢)-
matching have to be graph vertices. So, we must explain how to allow the start point and endpoint
of Q to lie in the interior of graph edges.

In the argument above, we assumed that all break-points of the k-SP path Q have to be graph
vertices. In our definition of G-restricted (k, €)-matching, the first and last break-points of Q could
be points from the interior of graph edges. To allow this, we modify the auxiliary graph G’ = (V’, E)
to also add nodes of the form (e, ey) or (e, ex—1) to V', where e € E is any edge in input graph G,
and ey (resp., en—1) is the first (resp., the last) edge of the input path P. In order to check whether
an edge ({e, o), (v, €;)) is in the edge set E’ of the auxiliary graph G’, we perform the following.

Let e = (s, t) with s,t € V. For any point x € |e|, the shortest path from v to x either passes
through vertex s, or through vertex t. In fact, there exists a point w € |e| such that for any point
in segment sw, the shortest path from v to it passes through s; while for any point in wt, the
shortest path from v to it passes through t. We break e into two segments e; = sw and e,. First
consider es. For any x € |eg|, a shortest path from v to x in G is the concatenation of a shortest path
from v to s and segment sx. We thus construct a DAG T, containing all shortest paths from v to s,
plus the edge e;. We then build the free space diagram D,, = T,, X P[p;1, po], where P respresents
the path P with the reverse orientation. We add an edge ({e, e), (v, €;)) to the auxiliary graph if
there is a shortest path 7, in G from v to some point x in e; and a point b € e; = p;p;;1 such
that 8¢ (7Ty~sx, P[b, po] < ¢. This decision problem can be answered by checking whether any point
on the grid edge es X py € D,, is reachable by a monotone path from the free-region of D, starting
from any point in the grid edge v X e; € D,,. Such reachability can be maintained by a similar
dynamic programming procedure as used earlier in time O(|D,|N) = O(mN). Similarly, we also
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check whether there is a shortest path from v to a point in subedge e, C e that is within Fréchet
distance ¢ to the sub-path P[b, py] for some b € e; = pipi1, using the same approach. We add
edge ((e, o), (v, €;)) to the auxiliary graph if the answer is yes.

The total number of extra edges we need to check for is O(mnN), and checking for the existence of
each such edge takes O(mN) time. Hence, we need O(nm?N?) extra time to build the auxiliary graph.

This time complexity however can be improved to O(nmN?) by batching the testing for all edges
of the form ({e, €y), (v, €;)) for a fixed v € V,e; € P, but all e € E. We sketch the argument here.
Let D}, be the shortest path DAG rooted at v to all other graph nodes in V. Next, for each s € V,
consider the set of edges E; incident on s but not in Dj,. For each such edge e = (s,t) € Es, we
compute the furthest point w € |e| from s such that the shortest path in G from v to w passes through
graph node s. We then add the partial edge ws to the DAG D, (note that it is possible that w = s.
We do this for all edges in E; for all nodes s € V. The resulting modified DAG is denoted by D,,.
We call edges in D,, \ D;, partial edges. We then run the same dynamic programming procedure to
compute the reachability on all grid edges e’ X p, for all partial edges e’ in O(|D,|N) = O(mN) as
before. For any partial edge e’ which is a subsegment of edge (s’,t’) € E, if any point is reachable,
then we add the edge ({(s’,t"), e9), (v, €;)) to the auxiliary graph. Overall, we need to perform this
construction O(nN) times for all v € V and e; € P. Hence, the total construction time is O(nmN?).
This completes the proof of Proposition 5.3. O

Recall that our main result, Theorem 5.1 then follows from Propositions 5.2 and 5.3.

Remark: We conjecture that we can develop an algorithm, with approximation factors better
than (2, 2), for example, by constructing an approximate matching directly, instead of going through
an intermediate G-restricted matching. We leave this as a direction for future research.

6 DISCUSSION AND FUTURE WORK

In this paper, we present the first algorithms for map matching where we restrict possible matching
candidates to consist of shortest paths in the graph. This variant arises naturally given the nature
of GPS data, as many routing algorithms prefer certain types of paths; shortest paths are natural in
this setting, but similar algorithms could be investigated in more complex settings, such as least
costs roads or shortest travel time paths.

We are able to give exact algorithms for the case where shortest paths go between vertices in the
graph; however, these techniques will not generalize to give exact algorithms when the shortest
paths begin or end in the middle of an edge. Even our approximation for this setting does not allow
the two consecutive shortest paths to reverse in the middle of an edge. Further investigation and
extensions of these algorithms, as well as improved running time, are perhaps the next natural
area of investigation in this work.
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