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INTRODUCTION: Coral reefs worldwide are suf-
fering losses at an alarming rate as a result of
anthropogenic climate change. Increased sea-
water temperatures, even only slightly above
long-term maxima, can induce bleaching—the
breakdown of the symbiotic relationship be-
tween coral hosts and their intracellular pho-
tosynthetic dinoflagellates from the family
Symbiodiniaceae. Because these symbionts
provide themajority of energy required by the
coral host, prolonged periods of bleaching can
eventually lead to the death of the colony. In
the face of rapidly increasing temperatures, new
conservation strategies are urgently needed to
prevent future mass losses of coral cover, and
these benefit from an understanding of the
genetic basis of bleaching.

RATIONALE: Bleaching responses vary within
and among coral species; in the reef-building
coralAcroporamillepora, a commonly distrib-
uted species across the Indo-Pacific, these dif-
ferences have been shown to be at least partly
heritable. Inprinciple, therefore, interindividual
differences in bleaching should be predictable
from genomic data. Here, we demonstrate the
feasibility of using a genomics-based approach
to predict individual bleaching responses and
suggest ways in which this can inform new
strategies for coral conservation.

RESULTS:We first generated a chromosome-
scale genome assembly as well as whole-
genome sequences for 237 samples collected
at 12 reefs distributed across the central Great

Barrier Reef during peak bleaching in 2017.We
showed that we can reliably impute genotypes
in low-coverage sequencing data with a mod-
estly sized reference haplotype panel, demon-
strating a cost-effective approach for future
large-scale whole-genome sequencing efforts.
Very little population structure was detected

across the sampled reefs,
which was likely the result
of the broadcast spawning
mode of reproduction in
A. millepora. Against this
genomic background, we
detectedunusually old var-

iation at the heat-shock co-chaperone sacsin,
which is consistent with long-term balancing
selection acting on this gene. Our genomic se-
quencing approach simultaneously provides a
quantitativemeasure of bleaching and identifies
the composition of symbiont species present
within individual coral hosts. Testingmore than
6.8million variants for associations with three
different measures of bleaching response, no
single site reached genome-wide significance,
indicating that variation in bleaching response
is not due to common loci of large effect. How-
ever, a model that incorporates genetic effects
estimated from the genome-wide association
data, genomic data on relative symbiont spe-
cies composition, and environmental variables
is predictive of individual bleachingphenotypes.

CONCLUSION: Understanding the ge-
netics of heat and bleaching tolerance
will be critical to predict coral adapta-
tion and the future of coral reef eco-
systems under climate change. This
knowledge also supports both con-
ventional management approaches
and the development of new inter-
ventions. Our work provides insight
into the genetic architecture of bleach-
ing response and serves as a proof of
principle for the use of genomic ap-
proaches in conservation efforts. We
show that a model based on environ-
mental factors, genomic data from
the symbiont, and genome-wide as-
sociation data in the coral host can
help distinguish individuals most
tolerant to bleaching from those
that are most susceptible. These
results thus build a foundation to-
ward a genomic predictor of bleaching
response in A. millepora and other
coral species.▪

RESEARCH

Fuller et al., Science 369, 268 (2020) 17 July 2020 1 of 1

The list of author affiliations is available in the full
article online.
*Corresponding author. Email: zlf2102@columbia.
edu (Z.L.F.); mp3284@columbia.edu (M.P.); l.bay@
aims.gov.au (L.K.B.)
†These authors contributed equally to this work.
Cite this article as Z. L. Fuller et al., Science 369,
eaba4674 (2020). DOI: 10.1126/science.aba4674

Bleached A. millepora colonies on the central Great Barrier Reef. A. millepora colonies presenting various severity of
bleaching during March 2017 at Feather Reef on the Great Barrier Reef. Colonies with a greater severity of bleaching are
those with the most pale colors. Prolonged periods of bleaching can lead to the eventual death of the coral host. P
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Luke Sarre1, Julie Peng5, Yi Liao6,7, Joseph Pickrell8, Peter Andolfatto1, Mikhail Matz6†,
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Although reef-building corals are declining worldwide, responses to bleaching vary within and
across species and are partly heritable. Toward predicting bleaching response from genomic data,
we generated a chromosome-scale genome assembly for the coral Acropora millepora. We
obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the
Great Barrier Reef, among which we inferred little population structure. Scanning the genome
for evidence of local adaptation, we detected signatures of long-term balancing selection in
the heat-shock co-chaperone sacsin. We conducted a genome-wide association study of visual
bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive
model for bleaching in the wild. These results set the stage for genomics-based approaches in
conservation strategies.

A
nthropogenic global warming is trans-
forming ecosystemsworldwide, pressing
species to rapidly respond to changing
environments (1–4). To what extent they
will succeed isunclear; somemayundergo

range shifts or tolerate climate change through
phenotypic plasticity. If there is sufficient her-
itable variation in traits that confer a fitness ad-
vantage in the new environment, others may
adapt through evolutionary change (5–9). Par-
ticularly devastating has been the impact of
increased seawater temperatures on marine
ecosystems—notably on coral reefs,which cover
less than 1% of the ocean floor but are home to
more than a quarter of its total biodiversity
(10). Ecological stress brought on by changes
in temperature or salinity breaks down the
symbiotic relationship between reef-building
corals and their intracellular photosynthetic
dinoflagellates (family Symbiodiniaceae) in a
phenomenon known as bleaching (11). Because
these symbionts provide most of the energy
required to the coral host, prolonged periods

of bleaching can lead to the death of the coral.
Increased temperatures can also cause direct
cellular damage and necrosis to bleached corals
(12). Temperatures only slightly above long-
term maxima can result in corals over vast
areas losing their symbionts, decimating reefs
worldwide (13–15).
Despite the vulnerability of corals towarming,

there is phenotypic variation in the bleaching
andheat stress response bothwithin and among
coral species (16–18). In the coral Acropora
millepora, a common reef species across the
Indo-Pacific, variation in heat tolerance among
aposymbiotic larvae has been shown to be
partly heritable (19). This finding implies both
that a response to selection is possible and
that bleaching should be partly predicted
from genomic data. Simulation studies have
suggested the potential for rapid adaptation
in A. millepora populations (20), and gene
expression analyses have associated genes
related to oxidative, extracellular, transport,
and mitochondrial functions with elevated
heat tolerance (19). However, because previ-
ous studies rely on transcriptomics or re-
duced representation sequencing (19–22),
they cannot distinguish causes from effects
of bleaching, provide only a partial view of
the genome, and are hampered by the lack of a
high-quality, publicly available reference as-
sembly. Thus, we remain far from a genetic
understanding of bleaching and thermal toler-
ance and lack the ability to predict interindi-
vidual variation in the responses. In particular,
the heritability of a trait does not specify its
genetic architecture (23), so it remains unclear
whether variation in heat tolerance is poly-
genic or influenced by a small number of com-
mon large-effect loci.

Inferring population structure and
demographic history from genome-wide
patterns of variation
Heritable traits can be predicted from the re-
sults of genome-wide association studies
(GWASs) alongside other predictors, an ap-
proach widespread in agriculture and increas-
ingly in human genetics (24–26). We applied
a similar approach to conservation biology,
focusing on prediction of bleaching in wild
populations of A. millepora. To this end, we
assembled a highly contiguous chromosome-
level de novo A. millepora genome and gener-
ated high-coverage, whole-genome resequencing
data for samples collected across 12 reefs on the
Great Barrier Reef (GBR).
First, we constructed a chromosome-scale

assembly of the diploid A. millepora genome
using a combination of PacBio and 10X Chro-
mium barcoded Illumina reads generated from
DNA extracted from a single adult colony
(Fig. 1A, figs. S1 to S6, table S1, and materials
andmethods). We additionally sequenced two
pools of aposymbiotic larvae and mapped
these reads to our de novo assembly to re-
move symbiont contigs. In total, we assembled
475 Mb of sequence with chromosome-scale
scaffolds for an N50 of 19.8 Mb (where N50 is
the minimum scaffold length needed to cover
50% of the genome) (figs. S1 to S6). Using pre-
viously published transcriptome data (27, 28),
we predicted 28,188 gene models, which in-
clude >96% of core-eukaryotic single-copy
orthologs. A contiguous reference genome
facilitates complex trait mapping (29) and
reliable demographic inference (30).
To investigate genetic variation associated

with bleaching response, we collected branch
fragments from a total of 253 individual
A. millepora colonies during peak bleaching
in March 2017 from 12 reefs (Fig. 1B and table
S2) distributed along an ~300-km stretch of
the central GBR. Ecological conditions were
measured by use of 40 environmental and
spatial variables [recorded at a resolution of
1 km2 (31)] that varied among reefs, with the
strongest axes of variation being longitude
and latitude (Fig. 1C). In particular, mean
monthly sea surface temperatures differed by
more than 0.5°C. The depth of colonies from
which fragments were collected varied from
1.2 to 7.2 m, representing the range of depths
where A. millepora is commonly found on
reef flats and upper reef slopes (32). For each
colony, we recorded the bleaching level visu-
ally using the six-point coral health chart to
the nearest half increment (33) then later esti-
mated photosynthetic pigment concentration
and symbiont cell density (Fig. 1D). Individual
colonies sampled presented a range of bleach-
ing phenotypes, both within and between
reefs (fig. S7).
From this collection of samples, we re-

sequenced 48 whole genomes of diploid
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individuals (four from each of the 12 reefs) at
high coverage (>20x for all, 36 samples >100x)
(fig. S8 and table S3) to examine the extent of
population structure, characterize the demo-
graphic history, and scan for signals of adapta-

tion. We mapped reads from all individuals
to our de novo genome assembly and called
approximately 6.8 million biallelic single-
nucleotide polymorphisms (SNPs) after apply-
ing stringent quality filters.We validated these

filtered SNP calls by independently amplifying
and sequencing 10 intergenic regions in eight
samples at high coverage (>1400x) (fig. S10 and
table S4), observing an overall genotype con-
cordance of 99.6% between regions sequenced
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Fig. 1. Genome assembly and sample collection for A. millepora. (A) A de novo
assembly for the A. millepora genome was constructed by using a hybrid
sequencing approach. The alignment of reads generated from two pools of
aposymbiotic larvae was used to filter out symbiont contigs (fig. S3).
Assembled coral contigs were aligned to previously published linkage maps
(19, 80) to create a chromosome-scale assembly. (B) A total of 253 individuals
were collected from across 12 reefs on the GBR in 2017. The size of the
circles represents the number of individuals collected at each site, and
the circles are colored according to the bleaching severity at each reef. The
maximum degree heating weeks (DHW) is shown across the region from which
samples were collected (and across the GBR in the inset). The spatial layer
of DHW represents interpolated maximum values from the National Oceanic
and Atmospheric Administration Coral Reef Watch (CRW) v3.1 satellite product

at a resolution of 5 km. Each reef label is colored arbitrarily but consistent
with labels presented in other figures. AN, Arlington Reef; FY, Fitzroy Reef;
RL, Russell Island; CS, Coates Reef; FR, Feather Reef; NB, North Barnard
Islands; TR, Taylor Reef; DK, Dunk Island; RB, Rib Reef; PA, Pandora Reef;
JB, John Brewer Reef; HH, Havannah Island. (C) A PCA was performed
for 40 environmental and spatial variables for each reef, with abbreviations in
bold representing their location. The component loads for each environmental
variable projected on the first two principal components are depicted with
arrows. (D) The distribution of visual scores, chlorophyll abundance standardized
by host coral protein content, and standardized symbiont cell densities among
the collected individuals for which phenotype measurement was possible.
A visual score of 1 indicates severe bleaching, whereas a score of 6 represents
full pigmentation.
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by the two approaches. After an initial prin-
cipal components analysis (PCA) (fig. S9) and
test for outliers, we removed four individuals
that were likely the result of sample misiden-
tification at the time of collection (or conceiv-
ably represent rare diverged lineages) (fig. S16),
bringing the total number of high-coverage re-
sequencedgenomes to44. These44genomes are
all approximately equidistantly related (fig. S11).
From this set of 44 unrelated individuals,

we estimated the decay of pairwise linkage
disequilibrium (LD), r2, as a function of phys-
ical distance genome-wide. We observed that
on average, r2 falls below 0.05 after ~15 kb

(Fig. 2A). We also estimated the nucleotide
diversity (as p, the mean pairwise difference
per base pair) in nonoverlapping intergenic
regions of 1 kb, which yielded an average of
p = 0.363% (Fig. 2B). Assuming amutation rate
of 4 × 10−9 per base pair per generation (20, 34),
this value of diversity corresponds to a long-
term effective population size (Ne) of around
2.26 × 105. Applying the pairwise sequential
Markovian coalescent (PSMC) (35) to each
genome, we inferred how Ne has changed
over the past ~106 generations (Fig. 2C). All
samples display a highly similar demographic
trajectory, with the inferred Ne showing a

steady decline. Qualitatively similar results
were obtained when demographic histories
for the same samples were inferred jointly with
themultiple sequentiallyMarkovian coalescent
(MSMC) (fig. S12) (36). The increase in estimated
Ne back in time could reflect greater census sizes
in the past or greater population structure in
the ancestral population from which all cur-
rent lineages similarly derive (35). A pattern of
decline in estimatedNe has also been observed
in other corals, including a number ofAcropora
and Orbicella species (20, 37, 38).
The concordant long-term demographic his-

tories inferred across all individuals suggest high
connectivity among the 12 sampled reefs. Ac-
cordingly, there is no detectable relationship
between geographic distance and fixation index
(FST) between pairs of sampled reefs (Fig. 3A).
A PCA of SNPs in approximate linkage equi-
librium further reveals no obvious clusters
(Fig. 3B). In particular, although environmen-
tal conditions differ between inshore and off-
shore reefs (Fig. 1C), FST between these samples
is approximately 0 (–2.76 × 10−4). More gen-
erally, no significant relationshipsweredetected
between either of the first two eigenvectors and
any of the 40 environmental or spatial variables
for each reef, indicating that any population
structure that is present is at most very weakly
associated with our measured environmental
variables. The lack of population structure can
be visualized by estimating and plotting rela-
tive effectivemigration rates.Using theprogram
EEMS (39), we inferred homogenous migra-
tion rates and no obvious barriers to gene flow
among sampled reefs (Fig. 3C). This pattern of
gene flow across large geographic distances on
the central GBR is presumably a result of its
broadcast spawning mode of reproduction
(10, 17, 19, 20, 40–42). These findings are con-
sistent with previous inferences based on the
SNP allele frequency spectrum in A. millepora
(20) as well as analyses of microsatellites in
Acropora tenuis (43). However, in other Indo-
Pacific Acroporids, such as Acropora cytherea
and Acropora hyacinthus, high genetic diver-
gence, possibly representing cryptic species,
has been observed among corals over smaller
geographic scales (44). Thus, not all broadcast
spawning coral species show low population
structure at comparable geographic scales.

A scan for adaptation points to a heat-shock
protein co-chaperone

The near absence of genetic differentiation
across reefs indicates that there is little popu-
lation structure over hundreds of kilometers.
Yet, environmental conditions differ among
reefs, notably in terms of thermal regimes (Fig.
1B). Because adults only reproduce with those
individuals in their vicinity whereas larvae
can disperse over much larger ranges (16, 20),
larvae may experience strong selection each
generation, as they settle on a heterogeneous
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reefscape. Models suggest that this scenario of
strong, spatially varying selection in the face of
continual migration can lead to the mainte-
nance of locally beneficial alleles over long
periods of time (45, 46).We therefore searched
for signals of adaptation in the 44 resequenced
genomes by scanning for genomic regions dis-
playing the high levels of diversity that would
result from such long-lived balancing selection.
Genome-wide, the most extreme values (p >

5.0%, measured in 1-kb windows) (Fig. 4A) fell
over a region containing a single gene, which
is orthologous to sacsin in Acropora digitifera.
The same genic region also has a highly ele-
vated value of the h12 statistic (47), whichmea-
sures the frequencies of the twomost common
haplotypes (Fig. 4B). Confirming that this pat-
tern of relatedness is unusual, a PCA for the
region stands out by comparison with the rest
of the genome [as assessed with lostruct (48)]

(fig. S13). These summary statistics point to
an unusually deep genealogy with long inter-
nal branches at sacsin; the divergence of two
haplotypes even predates the species split with
A. tenuis andA. digitifera (Fig. 4C and fig. S15).
There was no significant elevation in coverage
surrounding sacsin for any sample to suggest
the presence of a paralog (fig. S17). To further
ensure that these findingswere not artifactual,
we confirmed the presence of the two diverged
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haplotypes by independently sequencing and
assembling overlapping 2-kb amplicons span-
ning the entire gene for a subset of four samples,
which include homozygotes for both alterna-
tive haplotypes and a heterozygote (fig. S18
and tables S6 and S7). In a de novo assembly
of sequences from both haplotypes across the
coding region, each amplicon aligned in the
expected order (fig. S19).
Sacsin is a co-chaperone for the heat-shock

protein Hsp70 and contains multiple regions
of homology toHsp90 (49, 50). Sacsin has been
shown to be significantly up-regulated when
exposed to elevated temperatures in the labo-
ratory inmultiple coral species from the genus
Acropora and Pocillipora (51–54), indicating
that variation in the gene is plausibly asso-
ciated with heat response in natural popula-
tions. Our analyses reveal that variation in
sacsin has been maintained for an atypically
long time (millions of generations), indicat-
ing that the gene is a target of balancing
selection and hence of functional importance
in the wild as well as in the laboratory. The
source of balancing selection is unclear, how-
ever; there is no discernable association of
the haplotype frequencies with genetic or
current environmental principal components
(P > 0.15) (table S5), although there may be
an association with the dominant symbiont
type (P = 0.059).

A GWAS for bleaching

Using the 44 high-coverage genomes, we used
read-backed phasing (55) to construct a ref-
erence haplotype panel and impute genotypes
in low-pass sequences of additional samples.
We generated amean of ~1.5x coverage whole-
genome data (56) for 193 individuals after
applying filters based on quality, read depth,
and the proportion of missing data (fig. S21).
Of these samples, 34 had also been sequenced
at high coverage, allowing us to assess the
accuracy of our imputation approach. In the
34 samples, the overall correlation between se-
quenced and imputed genotypes was >94% for
SNPs with minor allele frequency >0.05 and
genotype probability ≥0.95 (fig. S22), an impu-
tation accuracy similar to what is observed in
humandata that use reference panels of similar
size (57, 58).
Combining the low-coverage genomes with

the 44 high-coverage ones, we obtained geno-
type calls at ~6.8 million sites in a total of
237 total samples. After excluding outliers
that were likely species misidentifications or
possibly rare diverged lineages (59), individ-
uals with high levels of relatedness, and those
with missing phenotype data (figs. S23 to
S24), our final sample size was 213. Consist-
ent with our previous results, in the larger
sample we again observed minimal popula-
tion structure, evidence for high gene flow,
and a peak of elevated genetic diversity at

sacsin (fig. S25). Although the low-population
structure is helpful for a GWAS, it makes pre-
cise estimates of SNP heritability unattain-
able without substantially larger sample sizes
(60, 61).
The sequencing also yielded data from the

symbiont Symbiodiniaceae, of whichmultiple
species are known to associatewithA.millepora
(62, 63). Because intracellular symbiont DNA
was extracted and sequenced simultaneously
with the coral host, we used our genomic se-
quencing approach to characterize the sym-
biont species present in each sample (11, 59).
The abundance of symbiont reads in each
sample was significantly different between
quartiles of visual scores (P = 2.6 × 10−7 by
means of a Kruskal-Wallis test) (Fig. 5A) as
well as correlated with total chlorophyll con-
tent and symbiont cell density (fig. S27). We
further determined the composition of sym-
biont types for each sample by calculating the
relative proportion of reads thatmap to avail-
able draft genomes. In our samples, individuals
dominated by Durusdinium had significantly
higher visual scores on average (P = 2.46 × 10−7

by means of a Mann-WhitneyU test) (Fig. 5B),
which is consistent with previous findings
that Durusdinium (formerly Symbiodinium
Clade D) is associated with substantially higher
thermal tolerance (but often lower growth
rates) across diverse coral genera in the wild
(11, 64–66). Our results demonstrate that a low-
coverage sequencing approach can be used to
simultaneously obtain a quantitative measure
of bleaching and determine the relative com-
position of symbiont types.

Given these data from corals and their sym-
bionts, we used a linear mixed model (LMM)
to test for additive effects of SNPs (with minor
allele frequencies >5%) on the quantile-
normalized visual score (67, 68), including as
covariates the top four principal components
of environmental variables (which together
account for >85% of the total environmental
variance), the first two genetic PCs, batch ef-
fects (the collection date and sequencing batch),
the collection depth (69), and the proportion
of Durusdinium reads relative to all symbi-
ont reads. We also conducted similar GWASs
for total chlorophyll content and symbiont cell
density (fig. S28). The threemeasures of bleach-
ing are highly correlated (Spearman’s corre-
lation coefficient among pairs of phenotypes
>0.6) (fig. S26); because we are missing phe-
notype data for chlorophyll content (so that
n = 190 samples) and symbiont cell density
(n = 172 samples), we focused on the standard
visual score (n = 213 samples).
We determined a genome-wide significance

threshold of P = 4.3 × 10−8 for the quantile-
normalized visual score by considering the
distribution of P values obtained from 105 per-
mutation tests (fig. S34). With this approach,
no single SNP in our GWAS is genome-wide
significant, indicating the absence of common,
major effect loci associated with variation in
bleaching. In particular, the minimum P value
in the sacsin gene is high (0.01); for related
phenotypes of total chlorophyll content and
symbiont cell density, however, SNPs in sacsin
are among the top signals (minimal P values
are 5.05 × 10−5 and 2.38 × 10−5, respectively),
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suggesting that the lack of signal in the vi-
sual score GWAS may reflect lack of power.
For visual score, the top peaks were a region
encompassing two genes on chromosome 13
and one with three genes on chromosome 14
[also detected with the software BIMBAM
(fig. S33) (70)] (Fig. 6A). These associations
remain to be confirmed, but among the three
genes on chromosome 14 is malate synthase,
a key component of the glyoxylate cycle, a
pathway not found in metazoans outside of
cnidarians (71).Malate synthase is up-regulated
in response to thermal stress inA. palmata and
implicated in the coral stress response (72, 73).

Predicting individual responses in
natural populations

The GWAS results in 213 diploid individuals
indicate that variation in bleaching is not due
to common loci of large effect but instead is
polygenic, as has also been suggested for ther-
mal tolerance in A. hyacinthus (22), so that
our study is underpowered to identify indi-
vidual causal loci. Nonetheless, when com-
bined, the estimated effects of variants across
the genome may be predictive of phenotype
(25). We therefore constructed a polygenic
score [PGS; also called breeding value (23)]
using LD-based clumping (for a P value thresh-
old of 10−5) (fig. S35) and the effect sizes esti-
mated in the GWAS (74). Because we lacked a
true out-of-sample validation set, we assessed
the prediction accuracy of the PGS using a
jackknife cross-validation procedure with an
85/15% training-test split in each partition;
similar results were also obtained for 80/20%
and 90/10% training-test splits (fig. S36).
Given that both environmental and genetic

factors contribute to variation in bleaching, we
combined our PGS with other predictors, in-
cludingenvironmental effects and thedominant
symbiont species type. Using a cross-validation
procedure, we assessed the improvement in
prediction accuracy gained from including
these predictors in a linear model (Fig. 6B).
Compared with a model including only batch
effects and genetic principal components, we
observed a large increase in prediction accu-
racy using four principal components for the
environmental variables as well as a substan-
tial improvement when we included data ob-
tained from our genomic sequencing—namely,
the proportion ofDurusdinium reads out of all
symbiont reads and the PGS (Fig. 6B). Includ-
ing the PGS alone provided a small but signifi-
cant increase in prediction accuracy [P = 0.023;
mean incremental coefficient of determination
(R2) = 0.026]; the samewas true inmodels that
used the top six or eight environmental PCs
instead (which in total explain 99% of the var-
iance in environmental variables;P≤ 0.029) (fig.
S37). In total, the model explains an estimated
~62% of the variance in quantile-normalized
visual scores in our sample. However, moving

forward it will be important to test its perform-
anceonadistinct sample rather thanusing cross-
validation as we have of necessity done here.

Implications

Understanding how species will respond to
increasing temperatures is key to ensuring
adequate protection through conventional
management approaches and to supporting
interventions aimed at restoration or facili-
tating adaptation to prevent future losses. In
thiswork, we focused on bleaching in the coral
A. millepora, a trait of central ecological im-

portance, demonstrating the feasibility of pre-
dicting interindividual response from genomic
and environmental data. The lack of genome-
wide significant associations suggests that the
differences in bleaching response are due to
loci that individually explain only a small pro-
portion of the variance. As has been the case in
other species, we therefore expect that as sam-
ple sizes increase, so will the prediction accu-
racy of the PGS and hence of the model. With
larger samples, it will also become possible to
test for interactions between the coral genome
and environmental factors or symbiont types
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aswell as to estimate the heritability of bleach-
ing in thewild and hence learnmore about the
potential adaptive response.
In the development of effective conservation

strategies, a predictive model of bleaching can
help distinguish those individuals more likely
to be tolerant on reefs across different shelf
positions, latitudes, and environmental con-
ditions, informing current spatial protection
strategies and predictions about reef futures
(75, 76). As an illustration, using our cross-
validation procedure and full predictive model,
individuals in the top quartile of predicted phe-
notype values have significantly higher visual
scores on average than those in the lowest
quartile (P = 8.8 × 10−16 by means of a one-
tailedWilcoxon signed rank test) (Fig. 6C). The
approach may also help to identify the most
tolerant individuals to use for managed trans-
locations and selective breeding for assisted
evolution–based conservation strategies (77).
In that regard, the lack of population structure
in A. millepora over large geographic distances
makes it an ideal system because one could
conceivably breed corals with high predicted
trait values from multiple locations. Alterna-
tively, such predictions could be used to in-
crease the abundance of such corals in local
populations rather thanmoving them through
assisted gene flow, which carries risks and
ethical concerns.
Beyond the application to corals, our study

demonstrates the feasibility of high-quality ge-
nome assembly, imputation, and GWASs in a
nonmodel organism. Moreover, our work high-
lights the potential of combining genomic and
environmental data to predict phenotypes of
ecological importance—notably, traits that are
likely to play a role in the response to climate
change.

Materials and methods
Genome assembly and annotation

The de novo genome assembly ofA.millepora
was constructed by using a combination of
PacBio reads and Illumina paired-end reads
with 10X Genomics Chromium barcodes. Se-
quencing was performed by the New York
Genome Center and Cold SpringHarbor Labo-
ratory.We constructed PacBio-only assemblies
using the software Canu (78) and Falcon (79)
and used the 10X barcodes and paired-end
reads for scaffolding and error correction. The
high–molecular weight DNA used for the as-
sembly was extracted from an adult specimen,
which also contained symbiont DNA. To re-
move potential symbiont contigs from the coral
genome assembly, we additionally generated
paired-end reads from two pools of aposym-
biotic larvae and mapped these reads to our
draft assembly. Using an unsupervised cluster-
ing approach, we identified and removed as-
sembled contigs that appeared to be derived
from the symbiont and masked regions of the

assembly with no reads from the larvae. To
assemble chromosome-scale scaffolds, we used
previously published linkage maps (19, 80)
inferred fromSNPandrestriction site–associated
DNA sequencing (RAD-seq) markers to linearly
arrange contigs. Previously published transcrip-
tome data (27, 28) were used to predict gene
models and annotate the resulting assembly.

Sample collection and phenotyping

Coral sampleswere collected from 12 reefs in the
central region of the GBR at the height ofmass
bleaching between 14 March and 1 April 2017.
For each colony, the bleaching score was esti-
matedvisuallybyusing theCoralColorReference
Card (33) to the nearest color, including half
increments. During collection dives, samples
were sent to the surface every 5min and imme-
diately fixed in liquid nitrogen for further anal-
ysis. The total chlorophyll contentwas estimated
in three technical replicates by measuring ab-
sorbance at 665, 649, and 632 nm on a micro-
plate reader (synergyH4, BioTek Instruments,
USA). The total coral host protein was sim-
ilarly measured in triplicate by using the DC
Protein Assay (Bio-Rad Laboratories, USA)
following themanufacturersmicroplate proto-
col. Ecological conditions at each reef were
measured with environmental and spatial var-
iables recorded at a resolution of 1 km2 (31).

Whole-genome sequencing, variant calling,
and genotype imputation

The libraries for samples sequenced at high
coverage were prepared by using the Illumina
TruSeq polymerase chain reaction (PCR)–free
protocol and sequenced on an IlluminaHiSeqX
platform. Libraries for samples sequenced at
low coverage were prepared for multiplexed
shotgun genotypingwith Tn5 transposase and
tagmentation (56). The Tn5 libraries were se-
quenced on an Illumina HiSeq4000 platform
across 10 lanes. Illumina adapters and poly-
adenylate [poly(A)] sequences were trimmed
(81) and low-quality reads were removed be-
fore mapping to our A. millepora genome as-
semblywith bwa-mem (82). Variantswere called
by using Genome Analysis Toolkit (GATK) and
filtered according to GATK best practices (83).
The algorithm we used for genotype impu-
tation in the low-coverage sequencing data are
based on the copyingmodel of Li and Stephens
(84) and implemented in the software loimpute
developed by Gencove and available at www.
gencove.com.

Population genetic analyses

We used the software PLINK (74) to estimate
the decay of pairwise LD as a function of phys-
ical distance, to perform PCA, and to estimate
FST. To estimate nucleotide diversity, we used
a custom wrapper for vcftools (85) to take into
account missing data and uncalled sites. We
inferred historical changes in Ne using the

software PSMC (35), for which we increased
the stringency of the quality filter to 30 and
used a bin size of 10 base pairs (bp). We used
EEMS (39) to visualize effectivemigration rates
across the 12 sampled reefs, setting the number
of MCMC iterations to 5 × 106. The software
lostruct (48) was used to identify localized ge-
nomic regions in which patterns of relatedness
differ fromwhat is typical for the genome, under
default parameters. We used the read-aware
phasing module implemented in SHAPEIT2
(55) to infer haplotypes in the high-coverage
genomes. To identify localized genomic regions
with high frequencies of the twomost common
haplotypes, we calculated the h12 summary sta-
tistic in window sizes of 100 SNPs using a
custom Python script (47).

Genome-wide association tests and construction
of a PGS

We performed GWASs for bleaching measured
as either a visual score, a total chlorophyll con-
tent, or a symbiont cell density. For eachGWAS,
we removed samples with missing phenotype
data. The set of covariates included in all GWAS
models were the top four PCs of environmental
and spatial variables, the first two genetic PCs,
the collection date, the sequencing batch, col-
lection depth, and the relative proportion of
Durusdinium reads (out of all symbiont reads).
All GWASs were performed by using standard
linear regression implemented in PLINK (74),
and phenotypes were quantile-normalized.
Only common variants [minor allele frequency
(MAF) ≥ 0.05] and sites with less than 10% of
genotypes missing were considered. We addi-
tionally performed a GWAS for visual score
using a LMM implemented in GEMMA (67, 68)
and in a Bayesian framework using the soft-
ware BIMBAM (70). We set cutoffs for genome-
wide significance for each phenotype by
performing permutation tests. Specifically, we
shuffled the values of each phenotype across
samples 10,000 times; for each permutation,
we performed a standard linear GWAS using
the same covariates and assessed theminimal
P value. We then set the genome-wide sig-
nificance threshold as the 95th percentile of
the distribution of these minimal permuted
P values.
Because we lacked a true out-of-sample

validation set to assess the accuracy of PGSs
constructed fromGWAS, we used a jackknife
cross-validation (CV) procedure to subset the
samples into 100 partitions of training and test
sets. In each partition, we randomly withheld
15% of samples as the test set and selected the
other 85% of individuals as the training set.
We recalculated the genetic PCs for the train-
ing set and used the loadings from this PCA for
the genetic PCs in the test set. For each jack-
knife partition, a standard GWAS for quantile-
normalized visual score was performed on
the training set. To build the PGS, we used a
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P value threshold of 1 × 10−5 followed by LD-
clumping to choose sets of approximately
independent SNPs. For each set of selected
SNPs, the PGS was calculated by summing
the allelic dosages weighted by their estimated
effect size. To assess prediction accuracy, a PGS
was then estimated in the test set. We assessed
the prediction accuracy of the PGS along with
other factors thatmay influence bleaching (such
as environmental principal components, depth,
and proportion ofDurusdinium) in linearmod-
els. Mann-Whitney U tests were performed to
test for differences in predicted trait values
across jackknife partitions across different sets
of predictors.
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studies. These data were combined to generate a polygenic risk score for bleaching that can be used in coral
perform population genetic analyses with samples sequenced at lower coverage and conduct genome-wide association 

 (see the Perspective by Bay and Guerrero). They were able toAcropora milleporahigh-resolution genome of the coral 
 present aet al.the loss of photosynthetic endosymbionts that provide energy for the coral. Fuller −−coral bleaching

 Corals worldwide are under threat from rising sea temperatures and pollution. One response to heat stress is
Conservation help from genomics
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