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ABSTRACT

We consider several variants of the map-matching problem, which
seeks to find a path Q in graph G that has the smallest distance to
a given trajectory P (which is likely not to be exactly on the graph).
In a typical application setting, P models a noisy GPS trajectory
from a person traveling on a road network, and the desired path Q
should ideally correspond to the actual path in G that the person
has traveled. Existing map-matching algorithms in the literature
consider all possible paths in G as potential candidates for Q. We
find solutions to the map-matching problem under different set-
tings. In particular, we restrict the set of paths to shortest paths, or
concatenations of shortest paths, in G. As a distance measure, we
use the Fréchet distance, which is a suitable distance measure for
curves since it takes the continuity of the curves into account.
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1 INTRODUCTION

The map-matching problem seeks to find a path Q in a planar
graph G = (V, E) that has the smallest distance to P. In a typical
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application setting, P models a noisy GPS trajectory from a person
traveling on a road network, modeled as the planar graph G, and the
desired path Q should correspond to the actual path in G that the
person has traveled. Map-matching algorithms in the literature [1,
2, 6] consider all possible paths in G as potential candidates for Q,
and apply similarity measures such as Hausdorff or Fréchet distance
to compare input curves.

We propose to restrict the set of potential paths in G to a natural
subset: those paths that correspond to shortest paths, or concatena-
tions of shortest paths, in G. Restricting the set of paths to which
a path can be matched makes sense in many settings. In particu-
lar, vehicles often follow routes computed by a navigation system,
which often prefers certain types of routes over others; and drivers
often have preferences for different roads [7]. The current literature
also does not consider the case where the vehicle makes multiple
stops. For example, consider a person running several errands in
one trip, where we are given the approximate path that the person
followed, along with the underlying map. In this setting, knowledge
of the number of stops as well as the type of path preferred (shortest
travel time, shortest distance, or perhaps avoiding certain types of
roads) can improve the final quality of the path that our algorithm
matches to in the graph.

Related work. Map-matching is widely used in practice, e.g., to
establish fast routes or points of interest from a large set of trajec-
tories [17, 18]. Common approaches include the use of Fréchet dis-
tance variants [2, 6], incremental methods [6, Sec. 3], matching low-
sampling-rate trajectories using spatial-temporal constraints [12,
15], and hidden Markov models [13, 16]. Despite this, only few
map-matching algorithms provide quality guarantees.

Only a small proportion of prior work considers restricting the
set of paths in G. Instead, common practice reduces the space of
paths by cropping G inside an e-neighborhood around P before
applying a general map-matching algorithm. Gheibi et al. [9] gave
a map-matching algorithm that minimizes the sum of the lengths
of walks on P and Q within some Fréchet distance. Their algorithm
runs in O(Nm(N + m) log(N + m)) time and O(Nm(N + m)) space,
where n = |V|,m = |E|, N = |P|, and computes a shortest path in
a discretized free space. Finally, Zhu et al. [20] consider a similar
notion as the one we study here, and break a longer path in order to
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map each subsegment to a short path; however, the curve matching
is done via a “Longest Common Subsequence” score, incorporat-
ing Hausdorff like similarity measures, and does not guarantee
absolutely shortest paths for each sub trajectory matched.

Our contribution. We provide algorithms for variants of the
map-matching problem, in which the set of paths are restricted to
shortest paths, or concatenations of shortest paths, in the graph !.
As a distance measure between paths, we use the Fréchet distance,
which is a standard distance measure for curves in this setting that
produces better matchings than some others, such as the Hausdorff
distance, since it takes the continuity of the curves into account.

In Section 3, we provide an algorithm to match P to the short-
est possible path within a given Fréchet distance in G. We prove
properties of a distance function on the free space and we com-
pute it incrementally, which allows us to use less space than [9].
In Section 4, we give algorithms to match P to concatenations of
shortest paths in G: In the min-k variant, we find a path Q in G
consisting of the smallest number k of shortest path pieces that
does not exceed a given Fréchet distance. In the min-¢ variant, we
find a path Q in G consisting of at most k shortest paths, for given k,
such that the Fréchet distance to P is minimized. We assume that all
break-points between shortest paths lie on vertices of G and map
to vertices of P. In Section 5, we relax this constraint on the break-
points, and provide approximation algorithms that approximate
the number of shortest path pieces as well as the Fréchet distance ¢
when break-pointscan lie in the interior of edges in G and can be
mapped to the interior of edges of P.

To the best of our knowledge, we present the first study of
Fréchet-based map-matching algorithms that consider a subset
of paths with pre-defined properties in G to be matched to P. Our
paper expands this new perspective on map-matching and provides
further theoretical foundations for the practically relevant problem,
where we consider a restricted set of path classes.

2 PRELIMINARIES

Let G = (V,E) be a geometric graph where each node in V is
embedded in the Euclidean space, and each graph edge is mapped
to the segment connecting its two nodes. Let P be a polygonal path.
We parameterize each (undirected) edge e = (u,v) € E linearly
by e(s) := (1 — s)u + sv for s € [0, 1], where the direction of the
parameterization is fixed, but arbitrary. Let pg, p1,...,pN be the
sequence of N+1 vertices defining the polygonal path P. We identify
each of these vertices with a point in the plane, and we parameterize
each line segment edge e; = (p;, pi+1) linearly by p;(¢) := (1—t)p; +
tpi+1 for t € [0, 1]. We use P[p;, p] to denote the polygonal subpath
from p; to some other point p € P.

The length of a path or subpath, either in G or P, is simply the
sum of all edge-lengths in the path; in the case of partial edges,
we use the fact that we have an arc length parameterization of all
edges, and take the arc length of the partial edge.

We are interested in finding a path in G that is close to an
input path P. To measure this closeness, we use the Fréchet dis-
tance [8]. Consider any two curves a,  : [0,1] — R?. Let ¢

!We note that while it has been recognized that factors other than purely shortest
distances may affect how people choose routes (see e.g [21]), many advanced models
still rely heavily on the shortest path assumption e.g., [4, 5, 11, 14, 19]
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Figure 1: We illustrate the parameter space G X P, a graph G
(shown in red with white vertices) times a path P of length
four. For convenience, the path is drawn as a straight path.
A slice is the graph cross an edge e of the path: G X ¢; see the
shaded pink region. A level is the graph cross a vertex v in
the path: G X v. Each level can be thought of as a copy of G.

and ¥ be orientation-preserving homeomorphisms that serve as
reparameterizations of [0,1]. We can measure the distance be-
tween (a o ¢) and (f o ) pointwise, and take the supremum.
Then, the Fréchet distance dp(a, f) is defined to be the infimum of
this measurement over all reparameterizations ¢ and i. Formally:
Sr(@. B) = infg, g sup, s efo, 1) I(@ o $)(1) - (B0 Y)(D). Intuitively,
one can imagine a man walking along one curve and a dog along the
other, continuously from beginning to end without backtracking.
Then, the Fréchet distance is the shortest leash needed to connect
the man and dog on their walk.

In order to match the path to the graph, we consider the cell com-
plex G X P; see Figure 1. By convention, we say that the graph G =
(V,E) is horizontal and the path P is vertical. For an edge (u,v) € E
and consecutive path vertices p; and p;+1, we consider the cell
(u,v) X (pi,pi+1) € G X P to be drawn with (u,v) as a horizontal
edge and (p;, pi+1) as a vertical edge, as shown in Figure 2. A slice
is the graph G cross an edge (p;, pi+1) of the path, G X (p;, pi+1),
and a level is the graph cross a vertex p; of the path, G X p;.

For ¢ > 0, the corresponding free space diagram D, is the subset
of G X P such that for all pairs (g, p) € D, the following inequality
is satisfied: ||g—p|| < ¢. The free space of a cell is equal to an ellipse
intersected with the cell [3]. As a consequence, equality ||g—p|| = ¢
holds for at most two points on each vertical or horizontal edge in
the complex. On a vertical edge u X (p;, pi+1), we denote these two
points by a’, and bl Where appropriate, we slightly abuse notation
and use a’, to also identify the parameter ¢ for which p;(t) = a’,. In
this way, we say a!, < b},. Likewise, on a horizontal edge (1, v) X p;,
we denote c,i < d,il as the points for which | |C11¢ -pill =1 |d,’4 -pill = ¢
see Figure 2.

3 SHORTEST AMONG MATCHING PATHS

In this section, we consider only paths in G that have restricted
Fréchet distance to an input polygonal curve, and among those
paths, we wish to find a shortest path. In short, we are interested
in finding the shortest matching path:
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Figure 2: We illustrate one free space cell (u,v) X (pi,pi+1)s
where (4,v) is an edge in the graph and p;, p;+; are consec-
utive points in P. The free space is equivalent to an ellipse
intersecting this rectangle. Therefore, each edge of the rec-
tangle has at most two points (g, p) for which ||g — p|| = «.

PROBLEM 1 (SHORTEST MATCHING PATH). Given a parameter ¢ >
0 and a path P, find the shortest path in G that is within Fréchet
distance ¢ to P.

Note that the source and destination of such a “shortest path”
may not be graph nodes in G. We provide an incremental algo-
rithm for computing such a shortest matching path. Our algorithm
computes a distance function on all edges of the free space. We
also prove properties of this distance functions which may be of
independent interest.

3.1 Algorithm

Any path Q in G with §r(P, Q) < ¢ corresponds to a P-monotone
path 7 in free space D, C G X P. A shortest such path Q then cor-
responds to a shortest P-monotone path 7 in D,, where the length
of 7 is only measured along G, i.e., in the horizontal direction. Our
algorithm follows a dynamic programming approach that combines
the computation of paths in the free space diagram with shortest
path computations.

We define a function ¢ : G X P — R such that ¢(g9,p) =
ming |Q|, where Q ranges over all paths in G ending at g such
that Sp(P[po, pl, Q) < ¢, and |Q| denotes the length of Q. If no such
path to (g, p) exists, then ¢(g, p) = co. In particular, ¢(g, p) = oo for
(9,p) ¢ D;. We have that ¢(g, p) = min, ||, where 7 ranges over
all P-monotone paths in D, that end at (g, p), and the length || is
measured along G only. We call 7 a G-shortest path, or shortest path
for short. Thus, ¢ captures the length of G-shortest paths in free
space. Our algorithm computes ¢ slice-by-slice over G X P, with the
goal to compute ¢(g, pn) for some g € G. Observe that a G-shortest
path 7 has to be monotone in each cell of GX P. Therefore, it suffices
to compute ¢ on the vertical and horizontal edges of G X P. In each
slice of G X P, we perform a Bellman-Ford inspired computation
to propagate ¢ between the vertical edges by relaxing along the
horizontal edges.

For a vertical edge defined by v € V and an edge (p;, pi+1) of
the path, let ¢, ;(t) : [0,1] — R be defined by ¢, i(t) = ¢(v, pi(1)).
For a horizontal edge defined by e € E and a vertex p; of the path,
let @e,i : [0,1] — R be defined by ¢, i(s) := ¢(e(s), pi). Note that
for each (undirected) edge (u, v) € E, we only store one ¢-function,
say, (P(u,v),i(s)s since (P(U,u),i(s) = (p(u,v),i(l -5s).
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Algorithm 1: Shortest Among Fréchet-Matching Paths

1 Initialize ¢o, ;(t) = @e,i(s) = cofor all v, e, 1, s, 1.
2 forall v € V with ||v — po|| < e do

3 | p00(0)=0
a forall e € E and s € [0, 1] with ||e(s) — po|| < ¢ do
5 L Pe,0(s) =0

6 fori=0,...,N do // Compute slices

7 forall v € V andt € [0, 1] with ||v — p;(t)|| < ¢ do
// Initialize vertical edges

8 @o,i(t) = min{gy, i(az),

. . ) 1— _
ue?‘ll;]"l(v) SIEIE(I)fll]{(p(u’v)’l(S) HO = olle=elly)

9 while there exist edges e € E to be relaxed do
// Compute vertical edges in slice i

10 foralle = (u,v) € E andt € [0,1] do
// Relax edge e (both directions)
11 ¢v,i(t) = min{gy, ;(t),
Qu,i(max{t, az,}) + [|u - v|[}
12 ®u,i(t) = min{gy, ;(?),

¢o,i(max{t, a,}) + [lu - vl[}

13 forall e € E do
// Compute horizontal edges in level i + 1

14 Compute @, ;+1(s) according to Lemma 3.3.

LEmMA 3.1 (VERTICAL MONOTONICITY). The function
¢o,i(t) is monotone non-increasing fort € [a,, b ].

Proor. Observe that [aé, b;] corresponds to the intersection
of the freespace D, with the vertical edge. Since ¢ measures the
length of paths in D, in the G-direction only, paths can move in
the vertical direction without increasing in length. O

In particular, we note that a direct consequence of the above
lemma is the fact that the minimum of this edge is attained at a’,:
¢0.i(al) < @y, i(t) for all ¢ € [al,, bL].

Our dynamic programming algorithm, Algorithm 1, is based
on the reachability propagation introduced by Alt and Godau to
compute the Fréchet distance [3]. Instead of propagating binary
reachability information from cell to cell, we propagate function
values for ¢ along vertical and horizontal edges of Gx P. We will see
in Lemma 3.4 and Lemma 3.5 that ¢ is piecewise linear on a vertical
or horizontal edge. We therefore store each ¢ ;(t) and ¢, ;(s) as a
list of linear pieces. Updates such as the ones in lines 8, 11, 12 then
take linear time in the length of the lists. The condition in line 9
is true if there exists an edge e = (u, v) such that ¢, ;(t) or ¢y, i(t)
are updated in lines 11 and 12.

3.2 Properties

Algorithm 1 is based on the recursive formulas given in Lemma 3.2
and Lemma 3.3.

LeEMMA 3.2 (ComPUTE VERTICAL EDGES). Consider a
vertical edge v X (p;, pi+1) foranyv € V andi € {0,...,N}. Then,
foranyt € [0,1], we have:
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o Ifllv—pi(Dll > € then ¢y, i(t) = oo.
o If|lv—pi(t)|| < e then ¢y, i(0) = 0, and fort € (0,1] :

(P‘U,i(a-l;;)’ ]
min i(max{t,a’,}) + ||lu -2,
Jmin g i(maxl.al)) + lu — ol

uelfxlciz?(v) Slel'f(ifll]{(/’(u,v),i(s) +(1=9)[|lu—2ll}

¢v,i(t) = min

Proor. The first two equalities follow directly from the defini-
tion of ¢. To prove the third equality, consider a shortest monotone
path 7 in D, ending at (v, p;(t)) for some t € [0, 1]. The last segment
of 7 connects to one of the following:

(1) The bottom-most feasible point, a,, on the same vertical

edge v X (pi, pi+1),

(2) a point on a vertical edge u X (p;, pi+1) for a vertex u € V

adjacent to v, or

(3) a point on a horizontal edge (u,v) X p; for a vertex u € V

adjacent to v.

A shortest monotone path always exists for which this last segment
is a straight-line segment. The three cases correspond to the three
values minimized over in the theorem. Measuring lengths in G,
we observe that vertical paths in D, have length zero. Hence, the
length of the corresponding path in G in the first case is ¢, ;(al,),
the lengths in the other cases minimize over all vertices u adja-
cent to v, and the value ¢, ;(t) is the minimum of these three
lengths. In the second case, the projection of 7 onto G traverses
the entire edge (u, v), which contributes length ||u — v||. The third
case minimizes over all possible connections to the horizontal edge
e X p; where e = (u,v). A segment connecting (v, p;(t)) to a point
(e(s), pi) has length (1 — s)||u — v||, assuming e is parameterized by
e(s) = (1 —s)u + sv. O

LEmMA 3.3 (CompUuTE HOR1ZONTAL EDGES). Consider
a horizontal edge e X p;41 foranye = (u,v) € E andi € {0,...,N}.
Then, for any s € [0, 1] we have:

0, i - <
.%’O(s):{ o Zslle(S) poll <e

o If|le(s) — pi+1l] > &, then @e i41(s) = oo.
o Iflle(s) = pi+1l| < &, then

u,i(by) + sllu— |,

@e,i+1(s) = min @0,i(by) + (1 = s)[|lu—2ll, 1)
min {¢e,i(s") +[s = s'| - [lu — o[}
s’€[0,1]

Proor. The first two equalities follow directly from the defini-
tion of ¢. It remains to prove the last equality given in Equation (1).
Consider a shortest monotone path 7 in D, ending at (e(s), pi+1)-
The last segment of 7 connects to one of the following:

(1) a point on the vertical edge u X (p;, pi+1),

(2) a point on the vertical edge v X (p;, pi+1), or

(3) a point on the horizontal edge e X p;.

These cases correspond to the three values minimized over in Equa-
tion (1). By definition, @e, ;+1(s) is the minimum of these three
values. In the first case, the last segment of 7 connects to bL (or
to a point below it on u X (p;, pi+1) with the same value of ¢),
since ¢y, ;(t) is monotone decreasing; the length of this segment
is s||lu — v||. The second case is analogous to the first case, for the
other vertical edge in the free space cell. The third case minimizes
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over all possible connections to the horizontal edge e X p;. A seg-
ment connecting (e(s), pj+1) to a point (e(s”), p;) has length |s —s’| -
[lu —vl|. O

The following two lemmas will be used to prove correctness of
Algorithm 1 in Theorem 3.6.

LEMMA 3.4 (VERTICAL FUNCTION COMPLEXITY). Let
v X (pi, pi+1) be a vertical edge. Then, fort € [al,,bL], the func-
tion ¢y, i (t) is piecewise constant and monotone non-increasing with
complexity O(n).

Proor. If ¢t € [al,,bL], then ¢, ;(t) < ¢y, i(al,) since the path
from p(al,) to p(t) has length zero in G. The endpoints of each
constant piece in ¢, ;(t) can only be lower endpoints al, of the free
space on vertical edges u X (p;, pi+1), for any u € V. Hence, the
complexity is O(n). O

LEmMA 3.5 (HorizoNTAL FUNCcTION COMPLEXITY). Lete Xp; bea
horizontal edge. Then, fors € [cL,dL], the function ., ; is a piecewise-
linear function, where each piece is of slope ||e||, —||e|| or zero. Note
that such a function is necessarily ||e||-Lipschitz. Furthermore, the
complexity of ge,; is O(i).

Proor. We prove this claim by induction on i. By definition,
we know that ¢ o(s) = 0 for all s € [¢2,d?]. As a consequence of
Lemma 3.3, we have that ¢¢, ;4+1 is the lower envelope of a linear
function with slope ||e||, a linear function with slope —||e||, and
ming ¢[o, 1]{@e,i(s") + |s — 5’| - ||e|[}. Since, by inductive hypothe-
sis, @e,; is piecewise linear, where each piece is of slope ||e]|, —||e]|
or zero, the minimum of the last term is attained as follows: If
s <clthens =clandcl <s <dl thens’ =5, andifdl <s,
then s’ = dé. Hence, the function ¢, ;+1 consists of a translated
copy of ¢, ; with at most two additional linear pieces at each end.
Therefore, we know that ¢, ;+1 has the desired structure, and its
complexity is O(i). O

We prove the correctness and analyze the runtime of Algorithm 1
in the following theorem:

THEOREM 3.6 (CORRECTNESS AND TIME COMPLEXITY). Algorithm 1
computes the length of a shortest matching path in O(N(kmn+ mN))
time and O(n? + mN) space, where k is the number of edges in the
shortest matching path in G.

Proor. For each vertical edge v X (p;, pi+1) (and each horizontal
edge e X p;), we compute ¢, ; (and ¢, ;, respectively). The time for
initialization (lines 1-5) is O(n + m). From Lemma 3.4, we know that
each ¢, ; has complexity O(n), and from Lemma 3.5, that each ¢, ;
has complexity O(i). We use these discrete representations of ¢, ;
and ¢, ; throughout the algorithm. Since the algorithm computes
one slice at a time, we only need to store ¢, ; and ¢, ; for only one
slice. Hence, the total storage complexity is O(n? + mN).

The correctness of the algorithm follows from Lemma 3.2 and
Lemma 3.3. In particular, lines 7-12 are based on the recursive for-
mula given in Lemma 3.2. All ¢, ; on vertical edges v X (p;, pi+1)
are initialized in Lines 7-8 with values from the bottom horizontal
edge. Then lines 9-12 perform a Bellman-Ford shortest path prop-
agation across all vertical edges in slice i. We continue the while
loop in line 9 as long as at least one ¢, ; (or ¢y, ;) was updated in
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lines 11-12. Hence, the number of iterations of the while loop is
k + 1 (once the shortest paths are found, no improvements will
be made). After all, ¢, ; have been computed in slice i, all @¢, ;+1
are computed from the vertical edges and the horizontal edges in
level i, according to Lemma 3.3. Lines 7-8 take O(n?) time, lines 11-
12 take O(n) time, and line 14 takes O(i) time. Hence, lines 6-14 of
the algorithm take time O(N(n? + kmn + mN)), and thus the total
runtime is O(N(kmn + mN). O

REMARK 1. As stated, Algorithm 1 enforces monotonicity on P but
not on edges of G = (V,E). If desired, the algorithm can be modi-
fied to enforce monotonicity on the edges in E as follows: The cell
complex would need to be defined using directed edges E’, where
undirected edges in E are represented using two directed edges. The
propagations according to Lemma 3.2 need to use adjacency lists
Adj(v) = {(u,v) | (u,v) € E’}. The horizontal propagation in
Lemma 3.3 needs to be adjusted, by replacing equation (1) with
Pe,iv1() = min{py,i(B]) + sllu = oll, fo.i(5)}. Here, foi(s) = 0
ifc, <s <d., and fe i(s) = s —d, ifd, < s. This formula mod-
els monotone propagation in the same way as in Alt and Godau [3],
Jjust that in addition to reachability we propagate the length of a
G-shortest path.

4 MATCH TO CONCATENATION OF
SHORTEST PATHS

In this section, we are interested in matching the path P to a con-
catenation of shortest paths in G. We consider two variants of the
problem, one that minimizes the number of shortest paths that are
concatenated, the other that minimizes the Fréchet distance 6.

PROBLEM 2 (MIN-k). Given a parameter ¢ > 0, find a path Q in G
that is a concatenation of the smallest number of shortest paths in G,
such that 5p(P,Q) < e.

PROBLEM 3 (MIN-¢). Given a parameter k > 1, find a path Q in G
that is a concatenation of at most k shortest paths in G, such that the
Fréchet distance between P and Q is minimized.

In this section, we assume that the paths in G must begin and
end at a vertex. We begin by exploring the case where k = 1 in
Section 4.1, then consider the more general case in Section 4.2 and
Section 4.3. Allowing paths to start or end anywhere on an edge
makes the problem considerably harder. We sketch approximation
algorithms for this case in Section 5.

4.1 Matching to Shortest Paths

As a warm-up, we consider the min-¢ problem for the case where
k = 1, i.e., we wish to find a shortest path Q in G that minimizes
the Fréchet distance to P, among all shortest paths in G that start
and end at vertices in V.

First, we compute an implicit representation of all shortest paths
between all pairs of vertices in V, by running Dijkstra’s shortest
path algorithm for each s € V as a source vertex. Shortest paths
with a common start vertex are stored in a shortest path directed
acyclic graph (DAG); note that while algorithms usually assume
uniqueness of shortest paths and store only a tree, we wish to keep
all possible shortest paths since we must store all of them in order
to consider their Fréchet distance to P. The shortest path DAGs are
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computed and stored for each s € V as a source vertex, in total in
O(n(m + nlog n)) time and O(n?) space.

Then, we need to compute the Fréchet distance between P and
each shortest path, in order to identify the minimum distance. We
batch these computations by computing the Fréchet distance be-
tween a path and the entire shortest path DAGs. The following
lemma and the resulting corollaries show that distances between
shortest path prefixes and prefixes of P can be computed efficiently
in a batched manner. We state these results for a general DAG with
a single root — We note that a more general version of Lemma 4.1
(which is between two DAGs) has already been observed in [10].
We include the proof here for our version for completeness.

LEMMA 4.1. Let T = (V,ET) be a DAG with a root r and |ET| =
mr. Let P be a polygonal path with vertices po, p1, . ..,pN- A path
inT from the root to a leaf, that has the smallest Fréchet distance to P,
can be computed in O(mN log(mt + N)) time.

Proor. This is a simple modification of Alt and Godau’s com-
putation of the Fréchet distance for two polygonal paths [3], and
a special case of the map-matching setting considered in [2]. For
fixed € > 0, we compute the free space in T X P. We then propagate
reachability information from (r, p9) in dynamic programming fash-
ion in this free space. Starting with filling reachability information
in r X P, we then propagate the reachability monotonically across
both T and P, traversing T in an order determined by a topologi-
cal sort of T, and P from py to pn. For each edge (u,v) € ET, the
reachable points in (¢, v) X P are computed by straight-forward
propagation from the reachable points in u X P. But since v may
have multiple incoming edges, the reachability information for v X P
is then computed as the union of all the propagated reachability
information for all (u,v) € Et. It takes time and space O(mtN) to
solve the decision problem. With parametric search [2, 3], the path
in T from the root to a leaf, that has the smallest Fréchet distance
to P, can be found in O(mrN log(mt + N)) time. O

For fixed ¢ > 0, the algorithm described in the proof of Lemma 4.1
does in fact compute reachability information for all paths starting
in the root of T and all prefixes of P:

COROLLARY 4.2. Let T = (Vp,ET) be a DAG with a root r and
|ET| = mT, and let ¢ > 0. In O(mTN) time, one can compute for all
points g € T and p € P whether there exists a path Qy, 4 in G fromr
to g such that 5p(Qr, g, P[po,p]) < €.

And in fact, reachability can be computed efficiently if either the
start point of the path P or the start point of a corresponding path
in T is allowed to vary along an edge:

CoROLLARY 4.3. Let T = (Vp,ET) be a DAG with root r, and let
|ET| = mT ande > 0. The following can be computed in O(m7 N) time:
(i) The existence of a path Qy, 4 in the graph G fromr to g such
that 8p(Qr, g, Plx.p]) < ¢, for each tripleg € T, p € P, and
X € (po,pl).
(ii) The existence of a path Qx4 in G from x to g such that
OF(Qx, g, Plpo.pl) < e, for each tripleg € T,p € P, and
x € (r,v), where (r,v) is the only edge incident on the root.

Proor. For (i), a simple modification of the reachability initializa-
tion step in the proof of Lemma 4.1 results in computing reachability
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from (r, x) for any x € (po, p1). For (ii), if g ¢ (r, v), then a simple
modification of the reachability initialization step in the proof of
Lemma 4.1 results in computing reachability from any x € (r,v).
If both x and g are on the same edge (r, v), then we compute the
reachability in (r, v) X P directly. O

We apply Lemma 4.1 to the shortest path DAG T for each start
vertex s € V. We compute a shortest path in T that has the smallest
Fréchet distance to P in O(mN log(m + N)) time. Repeating this for
each source vertex, and accounting for running Dijkstra’s algorithm
in the beginning, results in a total runtime of O(nmN log(m + N))
and O(n(n + N)) space. We summarize our result:

THEOREM 4.4 (MATCHING TO SHORTEST PATH). A path Q that
minimizes the Fréchet distance to P, among all shortest paths in G that
start and end at vertices in V, can be computed in O(nmN log(m+ N))
and O(n(n + N)) space.

4.2 The Min-k Problem

In this section, we solve the min-k problem: For fixed ¢ > 0, we
wish to find a path Q that is a concatenation of the smallest number
of shortest paths in G such that §p(P, Q) < ¢. We require that all
shortest paths start and end at vertices in V.

Auxiliary Graph. We build an auxiliary graph G’ = (V’,E’) as
follows. The set of vertices are ordered pairs of a vertex in V and a
vertex in P, formally V’ = {{v,p;) | v € V,i € {0,...,N}}. There
is an edge between (u, p;) and (v, p;), if there is a shortest path Q in
G from u to v such that the Fréchet distance between P[i, j] and Q
is at most ¢. Formally, E’ = {({u,p;), (v,p;)) | 0 <i < j < N, and
there is a shortest path Q from u to v in G such that §¢(Q, P[i, j]) <
e}. We have |V’| = nN and |E’| € O(n®N?).

This auxiliary graph can be constructed as follows: We compute
all shortest path DAGs Ty, by running Dijkstra’s shortest path al-
gorithm for every u € V. For fixedu € Vandi € {0 <i < N}, we
use Corollary 4.2 to compute the reachability information. For each
v e Vandi <j < N, we can then read off whether there exists
a shortest path in G from u to v such that §r(Qy, 0, P[i,j]) < e
This determines whether ((u,p;), (v,p;)) € E’. The runtime is
O(n(m + nlogn)) to compute all shortest path DAGs, O(mN) to
compute the edges for fixed u and i, and hence O(n(mN? + nlog n))
time total to compute E’.

Algorithm. We can now solve our problem by finding a shortest
path in G’, starting at any vertex (u, po) for any u € V and ending at
any vertex (v, pnN). We connect a super-source $ to all (u, po) for any
u € V. Since the length of the path is determined by the number of
edges, we can compute such shortest paths by running breadth-first
search from § in time O(|V’| + |E’|) = O(n®N?). The total runtime is
dominated by the time O(n(mN?+nlog n)) to compute the auxiliary
graph. We summarize our result in the following theorem:

THEOREM 4.5 (MIN-k). For fixed ¢ > 0, a path Q that is a con-
catenation of the smallest number of shortest paths in G such that
Sp(P,Q) < ¢ can be computed in O(n(mN? + nlogn)) time and
O(n®N?) space.
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4.3 Min-¢

Next, we show how we can use our solution for the min-k problem
described in Section 4.2, in order to develop a solution for the min-
¢ problem. For fixed k > 2, we wish to find a path Q that is a
concatenation of at most k shortest paths in G such that §p(P, Q) is
minimized. Again, we require that all shortest paths start and end
at vertices in V.

Let k > 2 be fixed. We modify the algorithm described in Sec-
tion 4.2 to serve as a decision procedure for a given ¢ > 0: Return
true if a shortest path exists of length < k, and false otherwise. We
optimize ¢ by performing a binary search on a superset of the criti-
cal values for ¢, which are values for which solutions to the decision
procedure changes combinatorially. These combinatorial changes
are caused by combinatorial changes in the free space diagram for
a shortest path Q and P; see Alt and Godau [3]. We consider all
possible critical values within each free space cell and across pairs
of free space cells. Possible critical values are those ¢ for which
al, =bl,orcl =d, foru,veV,ecE,andj=iorj=i+1 There
are O(n®N + N2n) such values that constitute a superset of the
combinatorial changes that affect our decision procedure. We sort
these critical values in O((n>N + N2n) log(n+ N)) time and perform
a binary search using the decision procedure, which results in a
total runtime of O(n(mN? + nlog n) log(n + N)). We summarize our
result as follows.

THEOREM 4.6 (MIN-¢). For fixed k > 0, a path Q that is a con-
catenation of at most k shortest paths in G such that 5p(P, Q) is
minimized, can be computed in O(n(mN? + nlog n)log(n + N)) time
and O(n®N?) space.

5 APPROXIMATION ALGORITHM FOR k-SP
WITHOUT VERTEX-CONSTRAINT

In this section, we consider the more general version of the k-
shortest path problem where there is no vertex-constraint. Let |G|
denote the underlying space of G, consisting of all points, including
those in the interior of edges, in G. We say that a path Q c |G|
in G is a k-SP if it can be partitioned into k consecutive pieces
Q = 010070 Q such that each Q; is a shortest path between
its two endpoints in |G|. Let P = {Py, ..., P} be a k-partitioning
of the underlying space |P| of the polygonal curve P; that is, |P| =
Py 0Py --- o Py with P; and P; disjoint in their interior for all i # j.
We say that the graph G has a (k, €)-matching for P if there exists a
k-SP Q = Q10Q3 -0 Qg and a k-partitioning P = {P1, Py, ... Py}
of P such that for any i € [1, k], the Fréchet distance is bounded:
Sr(Qi, Pi) < ¢. (Note that this also implies that dp(Q, P) < ¢.) We
refer to endpoints of each path in Q and in P as break-points. Note
that the break-points could lie in the interior of edges in G or in P.

PROBLEM 4. Given k and ¢ > 0, the goal is to decide whether
there exists ak-SP Q = Q1 0 Qg - - - 0 Q. and a k-partitioning P =
{P1, Py, ... P} of P such that for any i € [1, k], the Fréchet distance
is bounded: 5p(Q;, P;) < e.

This general version of the problem seems to be much more
challenging. For example, consider Figure 3. Suppose we already
know that point pg should be matched to some point on edge e; =
(u1,u2), and the last point py should be matched to some point
on edge ez = (wi, wy). Let w1 be a shortest path from u; to wy,
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and my be a shortest path from uy to wya. We need to compute a
shortest path starting in some u € e; and ending in some w € ey
whose Fréchet distance to P is at most . However, whether the path
u ~» 1 ~ w or the path u ~ 73 ~ w is shortest depends on the
positions of both u and w. Hence, the end point w depends on the
starting point u, which makes developing a dynamic programming
strategy challenging.

In this section, we focus on approximation algorithms. We say
that an algorithm is an (a, f§)-approximation for the (k, €)-matching
problem, if it computes an (ak, f¢)-matching for the path P when-
ever there exists a (k, €)-matching for P in G. In what follows, we
describe such an approximation algorithm, where the input satisfies
the following mild assumption:

Assumption-R: For the optimal k-SP Q, there is no U-turn
in the interior of an edge. Equivalently, for a break-point s;
connecting shortest path pieces Q; and Qj41, if s; is in the
interior of edge e = (u,v), then Q; N Q41 Ne = {s;}.

THEOREM 5.1 (APPROXIMATION THEOREM). Let P be a polygonal
path and G = (V,E) be a graph satisfying Assumption-R, there is a
(2, 2)-approximation algorithm for the (k, €)-matching problem with
running time O(nmN?), wheren = |V|,m = |E|, and N = |P|.

To prove Theorem 5.1, we solve a version of the k-matching
problem for which we require that all break-points in the k-SP Q,
other than the start point and endpoint, have to be vertices from the
graph G. We call this the G-restricted (k, €)-matching problem for P.
Theorem 5.1 follows immediately from the two propositions below.
The proofs of these propositions can be found in Appendix A.

PROPOSITION 5.2. If there is a (k, €)-matching between P and G,
where the input satisfies Assumption-R, then there is a G-restricted
(2k, £)-matching between P and G.

ProPoOsSITION 5.3. Given a polygonal path P and a graph G =
(V,E), there is a (1, 2)-approximation algorithm for the G-restricted
(k, £)-matching problem whose running time is O(nmN?), where n =
|V|,m = |E|, and N = |P|.

6 DISCUSSION AND FUTURE WORK

In this paper, we present the first algorithms for map matching
where we restrict possible matching candidates to consist of shortest
paths in the graph. This variant arises naturally given the nature of
GPS data, as many routing algorithms prefer certain types of paths;
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Figure 3: The path u ~ 71 ~ w or the path u ~ 73 ~ w may
be shortest, depending on the positions of u and w, where w
depends on u.
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shortest paths are natural in this setting, but similar algorithms
could be investigated in more complex settings, such as least costs
roads or shortest travel time paths.

We are able to give exact algorithms for the case where shortest
paths go between vertices in the graph; however, these techniques
will not generalize to give exact algorithms when the shortest paths
begin or end in the middle of an edge. Even our approximation for
this setting does not allow the two consecutive shortest paths to
reverse in the middle of an edge. Further investigation and exten-
sions of these algorithms, as well as improved running time, are
perhaps the next natural area of investigation in this work.
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A MISSING PROOFS

Proof of Proposition 5.2. Assume G has a (k, ¢)-matching and
let Q" =Q10Qz0---0Qy be the k-SPand P = {P1,Py,--- , P} be
the k-partition in this matching. We now show that we can modify
0 to a G-restricted 2k-SP O forming a (2k, £)-matching with some
2k-partition of P. Our modification re-partitions P and Q*. Note
that for any oriented path 7, given an ordered sequence of points
{ao, ..., ar} along this path with start point p and endpoint ay, it
induces a unique partition z[ag, @1] o [y, az] o - -+ o wlap_1, ar]
of 7. (Recall that 7[«, ] is the subcurve of 7 between two points
a < f, meaning that o has a smaller preimage than f under the
parametrization of 7.) Hence, in what follows, we simply specify
such sequences of break-points to describe (re-)partitioning of the
paths Q* and P.

Definition A.1. We say that repartitions of Q* and P induced by
a sequence of break-points S = {so,...,s¢} and I = {by, ..., bs}
are valid if for all i € [0,¢ — 1],

(i) each piece Q*[s;, si+1] is a shortest path in G, and

(i) Sp(Q*[si,si+1], Pbi, biv1]) < e.

Let $* = {sg,s],...,s;.} be the sequence of break-points of the
optimal k-SP Q*; and IT* = {by = p(*),bi‘, .. "bl*c—l’blt = pnp} be
the sequence of break-points for the optimal k-partition of P. We
now process each s;‘ in order for i = 1,. ..,k — 1. In the beginning,
Sp = S§*, IIp = P*. In the i-th iteration we obtain S; from S;_1
such that |S;| < |S;-1] + 1, and we obtain II; from IT;_; such that
|TT;| < |IT;j—1| + 1. We also maintain the invariant that the partitions
S; and I1; are valid for each i.

Specifically, in the ith iteration, suppose the break-point s} from
the optimal k-SP is still present in S;—1. Assume s} € e = (u,v) €
E. By Assumption-R, the entire edge (u,v) must be covered by
the path Q* and Q*[u,v] = (u,v). Let Si—1 = {so,...,s¢} and
;-1 = {bo,...,bp}. Since S;—1 and II;_; are valid, there exist
Fréchet matching F between Q* and P composed by the union
of Fréchet matchings between Q*[s;, sj+1] and P[b;, bj+1] for all
j €11,¢), such that §p(Q*[s;j, sj+1], P[bj, bj+1]) < ¢. Let i and 0 be
two points aligned to u and v under this matching F; obviously,
Or((u,v), P(21,0)) < . See Figure 4 for an illustration, where sup-
pose s} =s; € Sj_1.

We obtain S; by removing s} as a break-point from S;—; and
adding u and v as new break-points to S;—. (In general, the edge
(u,v) may contain more break-points than s;‘ and we need to re-
move all of them from S;_1). Similarly, we add @ and © as new break-
points, and remove any existing break-points of IT;_; contained
in P[i, 0] (the break-point b; that s; is matched to will necessarily
be removed). This gives rise to a pair of new partitions S; and II;
where the number of pieces can increment by at most 1.

Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk

bi—1 u by =b

Figure 4: Black dots are break-points, and dashed segments
indicate aligned points.

We now argue that S; and IT; are also valid. We already know that
Si—1 ={s0,...,setandII;—1 = {by,...,bg} are valid. Consider any
two consecutive break-points in S;. There are three possible cases:

(1) Both break-points sj,sj+1 € Si—1 N S;. Si—1 and S;. Then as
Si—1 and IT;_; are valid, we have that the two conditions (i) and (ii)
in Definition A.1 hold for s; and s;+1.

(2) We have a pair of new consecutive break-points u and v in
Si, corresponding to new break-points @ and 0 in IT;_1. However,
we know that Q[u, v] = (u,v) thus it is a shortest path between u
and v; and also we know from above that §r((u, v), P(@,9)) < e.

(3) The two consecutive break-points in S; are either of the form
sj,u (j = t — 1 in Figure 4); or symmetrically, they are v, sy from
S; (j’ =t + 1in Figure 4). Consider s; and u from S;, which corre-
spond to consecutive break-points b}, 7 from II;. By construction,
Q*[sj,u] € Q*[sj, sj+1]; thus Q*[sj, u] is necessarily a shortest path
of G as well. Furthermore, P[bj, @t] C P[b;, bj+1] and u is aligned to
i under the Fréchet matching F between Q*[s;, sj+1] and P[bj, bj11]
mentioned above. Thus, we have dr(Q*[s;, u], P[bj,@1]) < e under
the same matching F. Symmetrically, we can argue that §p(Q*[v, sj7],
P[0,bjr]) < e.

It then follows that S; and II; are valid. Furthermore, after each
iteration, if break-point s}k is in the interior of an edge in G, then
we remove at least this break-point and add two new break-points
u and v which are vertices of graph G. Thus, in each iteration, the
number of break-points can increase by at most one; implying that
ISk| < 2k + 1. After processing all s}’s, all break-points from Q*
that are in the interior of graph edges are removed, and all newly
added break-points are graph nodes. Hence the new partitions Sy
of Q* and Iy of P witness a G-restricted (2k, ¢)-matching for P in
G, which proves Proposition 5.2.

Proof of Proposition 5.3. We now describe a (1, 2)-approximation
algorithm for the G-restricted case, which would then prove Propo-
sition 5.3. To make the main idea clear, we first assume that in the
G-restricted (k, €)-matching, all break-points of the k-SP Q have
to be vertices in G (in our earlier definition, the start point and
endpoint may not be). At the end of this proof, we will describe
how to remove this assumption.

The high-level framework is similar to the approach in Section
4.2. Given parameter ¢, we build an auxiliary graph G’ = (V’, E’) as
follows. The node set V” consists of {{v, e;) | v € V,e; = (i, pi+1)
is the i-th edge in P}. There is an edge ((v, ¢;), (v",¢;)) € E’ in
the auxiliary graph G’ if and only if there is a subpath P[a, b] C P
with a € e; and b € ej, as well as a shortest path Q from v € V to
v’ € V in G, such that §r(Q, P[a, b]) < ¢; if i = 0, then we require
a = po, and if j = N — 1, then we require b = py. The latter two
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Figure 5: Since c; is within the segment b;_1a;, ||sj — cj|| < ¢
by convexity of the ¢-ball around s; (shaded region).

conditions are to guarantee that the first and last break-points for
the partition of P have to be py and py, respectively. Algorithm
RestrictedApprox(P, G, k, €) returns ‘yes’ if a path of at most k links
exists from (s, eg) to (t,en) in the auxiliary graph G’ for some
s,teV.

We compute the edge set E for this auxiliary graph as follows.
We add the edge ((v, e;), (v, ¢j)) to the auxiliary graph G’ as long
as there is a monotone path in the free space D, starting from some
point, say (v, a), along the vertical edge v X e;, to some point, say
(v, b), within the vertical edge v’ X e ;. We further associate the pair
(a, b) with the edge ((v, ¢;), (v, ¢j)) € E’, and say that (a, b), with
a € e; and b € ej, witnesses the existence of edge ((v, e;), (V’, j)).
Using Corollary 4.3 for the shortest path DAG Ty, for v € V, this
can be computed in O(|T,|N) = O(mN) time for fixed v and i.

Overall, this auxiliary graph has |[V’| = O(nN) nodes, and |E’| =
O(n®N?) edges. Constructing all edges takes O(|V’|mN) = O(nmN?)
total time. We need to test whether there is a path from (s, e9) to
(t,en) of at most k links in G’ for some s, t € V. This can be done in
O([V’| +|E’]) = O(nmN?) time by adding a super-source node as in
the algorithm for Theorem 4.5. Hence, the claimed time complexity
in Proposition 5.3 follows.

To prove the correctness of our algorithm, we will show how
to construct a G-restricted (k, 2¢)-matching from the k-link path
mentioned above from the auxiliary graph. Let

ug = (s = 50,p0), U1t = (S1,€i; ).,

U1 = (Sk—1-€ip_ 0> Uk = (Sk = L,PN)

@)

be the sequence of nodes for a path of k links from ug = (s, po)
to ug = (t,pN—1) in the auxiliary graph G’. Obviously, this gives
rise to a k-SP Q = Q1 0 Qy o - - - Ok, where for each j € [0,k — 1],
Qj is a shortest path from s; to sj+1 in G. We now construct a
k-partition of P as follows. Consider the edge (u;, uj+1) from the
path in Equation (2). Let a; € e;; and bj € e;;,, be the two points
witnessing the existence of edge (uj, uj+1) in E forany j € [1,k—1].
Note that both b;_; and a; are from the same edge ei; of P; and

we set ¢j = b”l# to be the mid-point of bj_1a;. Obviously, ¢; is
also contained in e;;. Now simply consider the sequence of break-
points{po, c1,¢2, . . ., cx_1, PN } and the corresponding k-partition
of P. We next prove that §r(Qj, P[cj, cj+1]) < 2¢ foreachj € [1,k -
2].

Indeed, by construction, we know that:

Or(Qj-1,Plaj_1,bj1]) < ¢

6r(Qj» Plaj, bj]) < ¢
and aj,bj-1 € e = e See Figure 5 for an illustration. Since the
start point of Q; and the endpoint of Q;—; are the same, which is
sj, we then have that ||a; — s;|| < eand [|bj—1 — sj+1]| < e. By the
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triangle inequality, ||aj — bj—1|| < 2¢. Since c; is the mid-point of
bj_1aj, we have that ||a; — ¢jl|, llc; — bj_1]| < e.

Now, consider the Fréchet matching ¥ between Q; and P[a;, b;]:
If ¢; < aj (the case illustrated in Figure 5), then we can extend
this matching to a matching between Q; to P[cj, a;] by simply
matching all points in P[c;, a;] to the point s; € Q;. By convexity of
the distance function, we have that ||p — s;|| < ¢ for any point p in
the segment P[c;j, a;]. Hence, we obtain a Fréchet matching between
Qj and P[cj, bj] with error still at most «.

Otherwise if ¢; > aj, then let g be the first point in Q; that is
matched to ¢; under the Fréchet matching between Q; and P[aj, bj].
Consider the subcurve Qj[sj, q]. We construct a Fréchet match-
ing 7' between Q; and P[c;, bj] by keeping the matching for all
points in Qj[q, sj+1] the same as in 7, but re-matching all points in
Qjlsj, gl to cj. Note that each g” € Qj[sj, q] is matched to some point
p € Plaj, cj] under F. Hence |lg" —¢;|| < |lg" —pll + lIp — ¢jll < 2e.
Thus, the new matching ¥ has error at most 2e.

By a symmetric argument, we can further modify the Fréchet
matching 7' between Q; and P|cj, b;] to a new matching 7"’ be-
tween Q;j and P[cj, cj+1] with error at most 2¢. After performing this
modification for all values j, we have dr(Qj, Pcj, ¢j+1]) < 2¢ for all
j € [1,k=2]. Finally, ¢(Q1. P[po, c11) < 2¢ and 6(Qg., Pleg_1.pn 1) <
2¢ by a similar argument. The proposition then follows.

We now describe how to remove the assumption that all break-
points in the G-restricted (k, £)-matching have to be graph vertices.
So, we must explain how to allow the start point and endpoint of
Q to lie in the interior of graph edges.

In the argument above, we have assumed that all break-points
of the k-SP path Q have to be graph vertices. In our definition of
G-restricted (k, €)-matching, the first and last break-points of Q
could be points from the interior of graph edges. To allow this, we
modify the auxiliary graph G’ = (V’, E’) to also add nodes of the
form (e, eg) or {e,en—_1) to V’, where e € E is any edge in input
graph G, and e (resp., en—1) is the first (resp., the last) edge of the
input path P. In order to check whether an edge ({e, ep), (v, €;)) is in
the edge set E’ of the auxiliary graph G’, we perform the following.

Let e = (s,t) with s,¢ € V. For any point x € |e|, the shortest
path from v to x either passes through vertex s, or through vertex
t. In fact, there exists a point w € |e| such that for any point in
segment sw, the shortest path from v to it passes through s; while
for any point in wt, the shortest path from v to it passes through ¢.
We break e into two segments e; = sw and e;. First consider es. For
any x € |eg|, a shortest path from v to x in G is the concatenation
of a shortest path from v to s and segment sx. We thus construct a
DAG T, containing all shortest paths from v to s, plus the edge es.
We then build the free space diagram D, = T, X ﬁ[pi_'.l, pol, where
P respresents the path P with the reverse orientation. We add an
edge ({e, eo), (v, e;)) to the auxiliary graph if there is a shortest
path 7y~ x in G from v to some point x in es and a point b €
e; = pipi+1 such that 8p(7y~sx, P[b, po] < e. This decision problem
can be answered by checking whether any point on the grid edge
es X po € Dy, is reachable by a monotone path from the free-region
of Dy starting from any point in the grid edge v X e; € Dy,. Such
reachability can be maintained by a similar dynamic programming
procedure as used earlier in time O(|Dy,|N) = O(mN). Similarly,
we also check whether there is a shortest path from v to a point
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in subedge e; C e that is within Fréchet distance ¢ to the sub-path
P[b, po] for some b € e; = p;p;+1, using the same approach. We add
edge ({e, e0), (v, €;)) to the auxiliary graph if the answer is yes.

Overall, the number of extra edges we need to check for is
O(mnN), and checking for the existence of each such edge takes
O(mN) time. Hence we need O(nm?N?) extra time to build the
auxiliary graph.

This time complexity however can be improved to O(nmN?) by
batching the testing for all edges of the form (e, e9), (v, e;)) for a
fixedv € V,e; € P,but all e € E. We sketch the argument here. Let
D}, be the shortest path DAG rooted at v to all other graph nodes
in V. Next, for each s € V, consider the set of edges Es incident on
s but not in DJ,. For each such edge e = (s,t) € Es, we compute
the furthest point w € |e| from s such that the shortest path in G
from v to w passes through graph node s. We then add the partial
edge ws to the DAG D}, (note that it is possible that w = s. We do
this for all edges in E for all nodes s € V. The resulting modified
DAG is denoted by Dy,. We call edges in Dy, \ D}, partial edges. We
then run the same dynamic programming procedure to compute
the reachability on all grid edges e’ X py for all partial edges e’ in
O(|Dy|N) = O(mN) as before. For any partial edge e’ which is a
subsegment of edge (s’,t’) € E, if any point is reachable, then we
add the edge ({(s’,t’), e0), (v, €;)) to the auxiliary graph. Overall,
we need to perform this construction O(nN) times for allv € V
and e; € P. Hence the total construction time is O(nmN?).
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