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Abstract: We show that, in any right-angled Artin group whose defining graph

has chromatic number k, every non-trivial element has stable commutator length at
least 1/(6k). Secondly, if the defining graph does not contain triangles, then every

non-trivial element has stable commutator length at least 1/20. These results are

obtained via an elementary geometric argument based on earlier work of Culler.
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1. Introduction

In a topological spaceX with fundamental group G, a loop γ : S1 → X
representing an element g∈G may extend to a map of an oriented sur-
face S → X with boundary γ. The smallest genus of such a surface
is called the commutator length (cl) of g ∈ G. The stable commutator
length (scl) of g is defined to be the limit scl(g) = limn→∞ cl(gn)/n.
These quantities have relevance in several areas, particularly low-dimen-
sional topology, bounded cohomology, and dynamics (see [5] and refer-
ences therein).

Both commutator length and stable commutator length can be very
difficult to compute. Understanding the qualitative behavior of scl is a
somewhat more tractable problem. For many important classes of groups
it has been shown that the spectrum of values of scl has a gap above zero
(e.g. [6, 8, 1]). An early result along these lines is due to Culler. In [9]
he gave a lower bound for the stable commutator length of elements in
a free group F : for every non-trivial g ∈ F ,

scl(g) ≥ 1

6
.

The purpose of this note is to generalize Culler’s argument to the case
of right-angled Artin groups (RAAGs) in two different ways. We obtain:
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Theorem 1.1. Let G = A(Γ) be a right-angled Artin group whose
defining graph Γ has chromatic number k. Then every non-trivial ele-
ment g ∈ G satisfies:

scl(g) ≥ 1

6k
.

Theorem 1.2. Let G = A(Γ) be a right-angled Artin group whose
defining graph Γ does not contain triangles. Then every non-trivial ele-
ment g ∈ G satisfies:

scl(g) ≥ 1

20
.

Note that Theorem 1.2 is not a consequence of Theorem 1.1, as demon-
strated by the existence of triangle-free graphs with large chromatic num-
ber, such as Mycielski’s graphs [16].

It should be noted that Culler’s result has since been improved. Dun-
can and Howie ([10]) showed that scl(g) ≥ 1/2 for all non-trivial g ∈ F
(see [7] for another proof of this result). This is the best possible lower
bound for free groups since scl([a, b]) = 1/2 in 〈a, b〉.

We also note that Heuer, very recently, obtained the same lower bound
of 1/2 for scl in any right-angled Artin group [14]. His method is based on
constructing quasimorphisms, as was the previous general lower bound
of 1/24 established in [11]. The arguments presented here are quite ele-
mentary and geometric in nature, and we believe that they are of inde-
pendent interest.

Methods. The proofs of Theorems 1.1 and 1.2 find explicit lower bounds
for cl(gn) in terms of n, by considering a map of a surface S into a Sal-
vetti complex X(Γ) with boundary representing gn. Taking pre-images
of the hyperplanes, we obtain one-dimensional submanifolds of S, trans-
versely labeled by generators of the right-angled Artin group. Unlike in
the free groups setting, these curves may cross each other if their labels
are generators that commute.

Theorem 1.1 is obtained by showing that the collection of curves in-
cludes a suitably large sub-collection of properly embedded arcs that are
pairwise disjoint and non-parallel in S.

For Theorem 1.2, we first “tighten” the pattern of curves and reduce
the genus of S; the resulting pattern of curves cuts S into polygons,
all having four or more sides. This is where the two-dimensionality as-
sumption is used (otherwise there could be triangles). This combinatorial
structure now has non-positive curvature and we can estimate χ(S) using
a Gauss–Bonnet formula.
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An easy but crucial step in Culler’s argument is to observe that a
cyclically reduced word w in a free group cannot contain overlapping
subwords of the form u and u−1. Thus, if wn contains both u and u−1,
then |u| ≤ |w|/2. This fact is used to relate the amount of negative
curvature in S to the exponent n.

In the case of a right-angled Artin group G, we must consider pairs of
subwords u, u−1 appearing in a cyclically reduced word w that represents
gn ∈ G; we need to know that such words always satisfy |u| ≤ |w|/(2n).
The difficulty is that G has relations and w itself need not be a proper
power. We call this property the non-overlapping property (by analogy
with the free group case) and prove it for all right-angled Artin groups in
Theorem 6.6. This result is needed in both Theorem 1.1 and Theorem 1.2.

The non-overlapping property for right-angled Artin groups appears
to be rather non-trivial. For instance, the proof makes use of all of
Haglund and Wise’s axioms for special cube complexes from [13]. In
Section 6 we give the proof, after reviewing some of the terminology and
ideas from [11] concerning essential characteristic sets in CAT(0) cube
complexes.

One might wish to extend the methods of this paper to other non-
special group actions on CAT(0) cube complexes. This cannot succeed in
complete generality since there are examples, such as irreducible lattices
acting on products of trees [4], for which stable commutator length is
known to vanish [3].
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2. Preliminaries

We remind the reader of some relevant definitions.

Definition 2.1 (Commutator length, stable commutator length). Given
G, let X be a path connected space with fundamental group G. For
any g ∈ [G,G], the commutator length of g is equal to

cl(g) = min
S

genus(S),
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where the minimum is taken over all continuous maps of surfaces f : S →
X such that S is compact, connected, oriented, has one boundary com-
ponent, and the restriction f |∂S : ∂S → X represents the conjugacy class
of g in π1(X). Such a surface will be called (in this paper) an admissi-
ble surface for g. The condition that g ∈ [G,G] ensures that admissible
surfaces exist.

The stable commutator length of g ∈ [G,G] is defined by the conver-
gent limit

scl(g) = lim
n→∞

cl(gn)/n.

See [5] for details on convergence and for other basic properties and
equivalent definitions. If gn ∈ [G,G] for some n 6= 0 we may define
scl(g) = scl(gn)/n, which is consistent with the first definition because
of the identity scl(gn) = n scl(g). If gn 6∈ [G,G] for any n 6= 0, then
scl(g) =∞ by convention.

Definition 2.2 (Right-angled Artin group). Let Γ be a finite simplicial
graph with vertex set V (Γ) and edge set E(Γ). The right-angled Artin
group, or RAAG, associated to Γ is a finitely presented group A(Γ) given
by the presentation

A(Γ) = 〈a ∈ V (Γ) | [a, b] = 1 if (a, b) ∈ E(Γ)〉.

Definition 2.3 (Salvetti complex). For each a ∈ V (Γ), let S1
a be a circle

endowed with the structure of a CW complex having a single 0-cell and a
single 1-cell. Let n = #V (Γ) be the number of vertices of Γ and let T =∏
a∈V (Γ) S

1
a be an n-dimensional torus with the product CW structure.

For every complete subgraph K ⊆ Γ with V (K) = {a1, . . . , ak}, define
a k-dimensional torus TK as the Cartesian product of CW complexes

TK =
∏k
i=1 S

1
ai and observe that TK can be identified as a combinatorial

subcomplex of T . Then the Salvetti complex associated with A(Γ) is

X(Γ) =
⋃
{TK ⊆ T | K a complete subgraph of Γ}.

Thus, X(Γ) has a single 0-cell and n 1-cells. Each edge (a, b) ∈ E(Γ)
contributes a square 2-cell to X(Γ) with the attaching map aba−1b−1.
In general each complete subgraph K ⊆ Γ contributes a k-dimensional
cell to X(Γ) where k = #V (K).

Definition 2.4 (Fat Salvetti complex). Given ε > 0, define the fat Sal-
vetti complex associated to A(Γ) to be the open ε-neighborhood of X(Γ)
in the torus T , denotedXε(Γ). There is a deformation retraction of Xε(Γ)
onto X(Γ) for ε sufficiently small. Fix such an ε from now on.
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The fat Salvetti complex is convenient for carrying out an easy
transversality argument. One could alternatively use an approach to
transversality similar to those in [18, 19, 2].

Following [15] we now introduce a useful tool for computing the Euler
characteristic of a 2-dimensional complex.

Definition 2.5 (Corners, angled 2-complex). Let X be a locally finite
combinatorial 2-complex and v a 0-cell of X. We will refer to the edges
of Link(v) as corners of v. X is called an angled 2-complex if it has an
angle ∠c ∈ R associated to each corner c of every 0-cell of X.

Definition 2.6 (Curvature). For every 0-cell v of X, its curvature κ(v)
is defined as

κ(v) = 2π − πχ(Link(v))−
∑

c∈Corners(v)

∠c.

For every 2-cell f of X, its curvature κ(f) is defined as

κ(f) =
∑

c∈Corners(f)

∠c− (P (f)− 2)π,

where

Corners(f) = {edges in Link(v) contained in f |
v is a 0-cell belonging to f},

and P (f) is the combinatorial length of the boundary of f .

The following theorem was proved in [15, Theorem 4.6]:

Combinatorial Gauss–Bonnet Theorem. Let X be a compact angled
2-complex. Then

2πχ(X) =
∑

v∈0-cells

κ(v) +
∑

f∈2-cells

κ(f).

3. Surfaces with patterns

Mapping a surface to a fat Salvetti complex. From now on we let Γ
be a finite simplicial graph. For each a∈V (Γ), let ea be the corresponding
oriented edge of X(Γ) (so that ea, considered as a based loop in X(Γ) ⊂
Xε(Γ), represents the element a of π1(Xε(Γ)) = A(Γ)).

Recall that the subcomplex of X(Γ) determined by ea is a circle S1
a,

and note that there is a retraction ra : Xε(Γ)→ S1
a which is the restric-
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tion of the projection map from the torus T to the factor S1
a. We define

the hyperplane dual to a in Xε(Γ) to be the pre-image of the midpoint
of ea under this retraction. It is denoted Ha. Note that this is not quite
the usual definition of hyperplane, because we are working in the fat Sal-
vetti complex Xε(Γ). In fact Xε(Γ) is a manifold and the hyperplanes Ha

are codimension-one submanifolds.
Let f : S → Xε(Γ) be an admissible surface for g ∈ A(Γ). The compo-

sition S → Xε(Γ) ↪→ T is the product of the component maps fa = ra◦f ,
since T =

∏
a S

1
a. Each of these maps fa : S → S1

a may be changed by
an arbitrarily small homotopy to arrange that the midpoint of ea is a
regular value of fa. Since Xε(Γ) is open in T , this can be achieved for
all a by homotopies such that the product homotopy is a homotopy of f
inside Xε(Γ). Thus, after such a homotopy of f , we may assume that
f is simultaneously transverse to all of the hyperplanes Ha. Then, for
each a, the pre-image Ma = f−1(Ha) is a compact properly embedded
one-dimensional submanifold of S. The submanifolds Ma and Mb may
intersect, but they will only do so transversely, in the interior of S, and
only if (a, b) is an edge of Γ. If (a, b) is not an edge, then Ma and Mb

will be disjoint because Ha ∩Hb = ∅.
Each component of Ma comes with a transverse orientation (i.e. a

choice of normal direction) which we label by the generator a. This is
the transverse orientation induced by the orientation of ea under the
map ra ◦ f . The opposite transverse orientation is labeled by a−1. Any
small arc α in S that crosses Ma in one point will map by f to an arc
that crosses Ha in one point. The direction that it crosses in will agree
with ea if and only if α is oriented with the transverse orientation of Ma.

More generally, any path α in S, which crosses the submanifolds Ma

transversely in distinct points, has a corresponding word wα in the
generators of A(Γ) and their inverses; the letters of wα are the la-
bels assigned to the transverse orientations followed by α as it passes
through each crossing. If α is a based loop with basepoint p disjoint from
the submanifolds Ma, then the word wα represents the element [f ◦ α]
in π1(Xε(Γ), f(p)).

In particular, the oriented boundary of S crosses the endpoints of the
manifolds Ma transversely and has an associated cyclic word w∂S . This
word represents the conjugacy class of g in π1(Xε(Γ)).

Simplification. We now have a compact surface S together with what
we call a pattern on S: for each a ∈ V (Γ), a properly embedded sub-
manifold Ma of S with a choice of transverse orientation (labeled a) on
each component. The surface with pattern (S, {Ma}a∈V (Γ)) satisfies:
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T1: If Ma and Mb intersect, then (a, b) is an edge of Γ, and the inter-
sections are transverse and occur in the interior of S.

T2: The cyclic word w∂S given by the transverse labels along ∂S rep-
resents the conjugacy class of g in A(Γ).

At this point we have no further need for the continuous map f : S →
Xε(Γ). We will simplify both S and the pattern {Ma}a∈V (Γ) by applying
some moves. These moves will preserve properties T1 and T2. These two
properties, along with the additional properties achieved by the moves,
are all that will be needed to estimate χ(S). In order to describe the
moves we need some further terminology.

Definition 3.1. A pattern curve is a connected component of Ma for
any a ∈ V (Γ). A pattern curve is called a pattern arc if it is homeo-
morphic to an interval, and a pattern loop if it is homeomorphic to a
circle.

An intersection point is a point of intersection either between two
pattern curves, or between a pattern curve and ∂S.

Now letM be any union of pattern curves. If we cut S−∂S alongM,
we get pieces, some of which may be open disks. Each such disk has a
characteristic map D2 → S giving D2 the structure of a polygon with
some number of sides. Here, a side is a maximal connected subset of ∂D2

mapping into a single pattern curve ofM or into ∂S. Informally, we say
that the original open disk is a polygon with that number of sides (even
though distinct sides of D2 may map to the same arc in S).

Definition 3.2. A bigon is a complementary component ofM in S−∂S
which is a polygon with two sides (for some M, which may be taken to
be just one or two pattern curves). A bigon is called innermost if every
pattern curve that intersects one side also intersects the other side.

A half-bigon is a complementary component ofM which is a polygon
with three sides, one in ∂S. Call the other two sides interior sides. A
half-bigon is called innermost if every pattern curve that intersects one
interior side also intersects the other interior side.

Remark 3.3. If a bigon B is not innermost, then it properly contains
a smaller bigon. Similarly, if a half-bigon B is not innermost, then it
properly contains either a half-bigon or a bigon. It follows that if there
are no innermost bigons or half-bigons, then there are no bigons or half-
bigons at all.

Now we are ready to describe the moves for simplifying the pattern
on S. Recall that there is no need for us to keep track of continuous
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maps inducing the patterns, though in principle one could do so; every
pattern on S satisfying T1 is induced by a map to X(Γ).

The moves are as follows:

1. Remove an innermost bigon (whose sides are not in ∂S). See Fig-
ure 1.

Mb

Ma

Mb

Ma

Figure 1. Removing an innermost bigon (Move 1).

2. Remove an innermost half-bigon. See Figure 2.

Mb

Ma

a±1

∂S

b±1

Mb

Ma

a±1

∂S

b±1

Figure 2. Removing an innermost half-bigon (Move 2).

3. Splice together two endpoints of Ma that land on adjacent can-
cellable letters of w∂S . See Figure 3.

a±1

∂S

a±1

a±1

∂S

Figure 3. Splicing adjacent endpoints (Move 3).

4. Discard any pattern loop.
5. Perform surgery along a non-separating simple closed curve in S

which is disjoint from every pattern curve, that is, replace an an-
nular neighborhood (also chosen disjoint from every pattern curve)
with two disks.
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Remark 3.4. The only move that changes the topology of S is move 5.
This move increases χ(S) by 2, but preserves the fact that S is connected
and has one boundary component. Such a surface has Euler character-
istic at most 1.

Remark 3.5. The only moves that change w∂S are moves 2 and 3. Move
2 exchanges two adjacent letters of w∂S which are commuting elements
of A(Γ). Move 3 removes a subword aa−1 or a−1a from w∂S . In both
cases, w∂S still represents g after the move (that is, property T2 is
preserved by all moves).

Remark 3.6. In moves 1 and 2, the new pattern curves after the move
cross exactly the same pattern curves that they did before the move, by
the innermost property of the bigon or half-bigon. Thus property T1 is
preserved by all moves (the other cases being obvious).

Now define the complexity of (S, {Ma}a∈V (Γ)) to be the sum of three
quantities: the total number of pattern curves, the total number of in-
tersection points (including intersections with ∂S), and 1 − χ(S). The
complexity is a non-negative integer.

Lemma 3.7. Each of the moves 1–5 decreases the complexity of
(S, {Ma}a∈V (Γ)).

Proof: Moves 1 and 2 reduce the number of intersection points without
changing the other two components of complexity. Move 3 reduces the
number of intersection points by 2, and possibly also the number of
pattern curves (unless it turns an arc into a loop). It does not change 1−
χ(S). Move 4 reduces the number of pattern curves, and possibly also
the number of intersection points. It leaves 1−χ(S) unchanged. Move 5
reduces 1− χ(S) by 2 without changing the other two quantities.

Starting with (S, {Ma}a∈V (Γ)), one can perform moves, in any order,
until the complexity cannot be reduced any further. Since no moves
are available, we may conclude several things (in addition to proper-
ties T1, T2):

T3: The word w∂S is cyclically reduced (or move 3 could be performed).
T4: There are no bigons or half-bigons:

An innermost half-bigon, or an innermost bigon not on ∂S, can-
not exist (or move 1 or 2 is available). An innermost bigon on ∂S ei-
ther contains a half-bigon (which contains an innermost half-bigon
or bigon, which is a contradiction), or makes move 3 available. The
claim now follows from Remark 3.3.
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T5: The union
⋃
a∈V (Γ)Ma cuts S into disks:

Consider a simple closed curve in S − ∂S that is disjoint from
M =

⋃
a∈V (Γ)Ma. If it is non-separating, then move 5 is available.

If it is separating, then M lies entirely on one side since every
pattern curve is a pattern arc meeting ∂S. The other side either
is a disk or admits move 5.

T6: If Γ has no triangles, then each of these disks is a polygon with at
least four sides:

The number of sides cannot be 1 since there are no pattern
loops. It cannot be 2 because there are no bigons. If a polygon
has three sides and is not a half-bigon, then the sides are on Ma,
Mb, Mc with a, b, c forming a triangle in Γ.

Definition 3.8. A surface with pattern (S, {Ma}a∈V (Γ)) satisfying prop-
erties T1 and T2, of smallest complexity, is called a taut surface with
pattern for g. It will then also satisfy T3–T6.

We have just proved:

Proposition 3.9. Let S0 be an admissible surface for g in Xε(Γ). Then
there exists a taut surface with pattern (S, {Ma}a∈V (Γ)) for g such that
1− χ(S0) ≥ 1− χ(S).

Bands. Let (S, {Ma}a∈V (Γ)) be a taut surface with pattern for g. We
organize the pattern arcs into regions called bands.

Definition 3.10 (Band). A rectangle is an embedded disk in S whose
boundary is decomposed into four sides, such that two opposite sides
are contained in ∂S, and the other two sides are pattern arcs. We also
allow a rectangle to be degenerate, consisting of a single pattern arc.
The sides in ∂S are called the boundary sides and the other two sides
are called the interior sides of the rectangle. A band is a rectangle in S
which is maximal with respect to inclusion. Since degenerate rectangles
are allowed, every pattern arc is contained in a band.

Remark 3.11. Suppose C1 and C2 are pattern arcs that are topologically
parallel, meaning that they are homotopic as maps of pairs (I, ∂I) →
(S, ∂S). Then they must be disjoint and form part of the boundary of a
rectangle R, since otherwise there would be a half-bigon.

If C3 is a third pattern arc that is topologically parallel to the other
two, then either it lies in R between C1 and C2, or it cobounds a second
rectangle R′ with either C1 or C2. In this case, R∪R′ is a rectangle con-
taining all three pattern arcs. More generally, if C1, . . . , Ck is a maximal
family of pairwise parallel pattern arcs, then there is a band bounded
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by two of them, and all the others lie inside the band. Thus, bands
correspond to equivalence classes of pattern arcs under the relation of
parallelism.

Remark 3.12. Let B be a band, and suppose the pattern arcs inside it
are C1, . . . , Ck, numbered in order along ∂S in one boundary side of the
band. Let aε11 , . . . , a

εk
k be their transverse labels along this side. Then

the opposite endpoints of C1, . . . , Ck lie along the other boundary side
of B and their transverse labels are a−εkk , . . . , a−ε11 in order along ∂S,
because S is orientable (see Figure 4). Moreover, no other pattern arc
can meet ∂S in one of the boundary sides of B, since it would then form
a half-bigon with some Ci. Therefore, w∂S contains u = aε11 · · · a

εk
k and

u−1 = a−εkk · · · a−ε11 as disjoint subwords. In fact w∂S is partitioned into
these subwords, since every letter is the label of one end of a pattern arc,
and the set of arcs is partitioned by the bands.

Figure 4. The shaded region is a band, joining two subwords u,
u−1 of w∂S . In this example Γ has no triangles and so every face

has four or more sides.

Remark 3.13. We make one last observation in the case where Γ has no
triangles, to be used in the proof of Theorem 1.2. By property T6, every
polygonal face of S has four or more sides. Let R be a rectangle and
C one of its interior sides. Consider the faces of S that are outside R
but have a side in C. If all of these faces have four sides, then the closure
of their union is a rectangle R′, and R ∪R′ is also a rectangle, properly
containing R. Therefore, for any band B, each of its interior sides is
adjacent to at least one face with 5 or more sides. See again Figure 4.

Recall now that our goal is to estimate scl(g). To do this we need to
estimate cl(gn) in terms of n. The following theorem, proved in Section 6,
provides the connection to the exponent n.
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Theorem 6.6. Let w be a cyclically reduced word in the generators
of A(Γ) representing the conjugacy class of the element gn in A(Γ), and
suppose u is a word such that both u and u−1 appear as subwords of w
(considered as a cyclic word). Then

|u| ≤ |w|
2n

.

Corollary 3.14. Let (S, {Ma}a∈V (Γ)) be a taut surface with pattern
for gn. Then the total number of bands on S is at least n.

Proof: Recall from Remark 3.11 that the bands provide a partition of
the set of pattern arcs. The subwords u, u−1 of w∂S associated to bands
then form a partition of the letters of w∂S . Each band accounts for two
subwords, each of length at most |w∂S |/(2n), so there must be at least
n bands.

4. Proof of Theorem 1.1

Let G = A(Γ) and suppose gn ∈ [G,G] for some n > 0. Let S0 →
Xε(Γ) be an admissible surface for gn. By Proposition 3.9 there is a
taut surface with pattern (S, {Ma}a∈V (Γ)) for gn such that 1− χ(S0) ≥
1− χ(S).

Recall that the chromatic number of Γ is the smallest number of colors
needed to color the vertices of Γ so that no two adjacent vertices have the
same color. Let such a coloring with k colors be given. Every pattern arc
inherits a color from its transverse label, and whenever two pattern arcs
cross, they must have different colors. In particular, the set of pattern
arcs having any single color is pairwise disjoint.

For each band in S, assign it the color of one of its pattern arcs.
Since there are at least n bands (Corollary 3.14) and only k colors, there
must be at least n/k bands of the same color c for some c (pigeonhole
principle). Taking one pattern arc with color c from each of these bands,
we obtain a collection C of pattern arcs that are pairwise disjoint and
non-parallel, of size at least n/k.

The size of any such collection is at most 6 genus(S)− 3. To see this,
enlarge C to a maximal such collection C′, which defines an ideal trian-
gulation of S−∂S (or equivalently, a one-vertex triangulation of S/∂S).
Such a triangulation has 6 genus(S)− 3 edges.

Since
n

k
≤ 6 genus(S)− 3

we have

genus(S0) ≥ genus(S) ≥ n

6k
+

1

2
.
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The right hand side is a lower bound for cl(gn), since S0 was an arbitrary
admissible surface for gn. Dividing by n and taking n→∞, we obtain

scl(g) ≥ 1

6k
.

This finishes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

Let G = A(Γ), where Γ has no triangles, and suppose gn ∈ [G,G] for
some n > 0. As before, let S0 → Xε(Γ) be an admissible surface for gn.
By Proposition 3.9 there is a taut surface with pattern (S, {Ma}a∈V (Γ))
for gn such that 1− χ(S0) ≥ 1− χ(S).

By property T5, S can be given the structure of a combinatorial
2-complex, with 0-cells equal to the intersection points and 1-skeleton
equal to

⋃
a∈V (Γ)Ma∪∂S. Each 2-cell, or face, is a polygon as described

in Definition 3.1. These faces each have four or more sides by prop-
erty T6. We further endow S with the structure of an angled 2-complex
by declaring that every corner has angle π/2.

Observe that the curvature κ(v) of every 0-cell is 0. Indeed, for an
interior 0-cell v we have: κ(v) = 2π − π · 0− 4 · π2 = 0, and for a 0-cell v
on the boundary ∂S we have: κ(v) = 2π − π · 1 − 2 · π2 = 0. Thus, the
combinatorial Gauss–Bonnet formula gives us

2πχ(S) =
∑

f∈2-cells

κ(f).

For a 2-cell f we have

κ(f) =
π

2
(# of corners of f)− ((# of sides of f)− 2)π

= 2π − π

2
(# of sides of f).

Therefore,

(∗) 1− χ(S) = 1 +
∑

f∈2-cells

1

4
((# of sides of f)− 4).

Recall that all faces of S have four or more sides. The faces with
exactly four sides contribute 0 to the sum in (∗). Thus one can sum over
only the 2-cells f which have ≥ 5 sides. For simplicity in what follows
we will call them special faces.

Our goal now is to relate the quantity in (∗) to the number of bands
on S. We will do this simultaneously for the case of free groups (thus ob-
taining Culler’s bound scl(g) ≥ 1/6) and for the case of two-dimensional
right-angled Artin groups.
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First, we modify the right-hand side of (∗) as follows. In the case of
free groups the pattern arcs do not intersect each other. Hence the sides
of a 2-cell alternate between pattern arcs and arcs in ∂S. Therefore, the
number of sides of any 2-cell is always even. Hence the minimal number
of sides of a special face is 6. In the right-angled Artin group case, special
faces can have 5 or more sides. Thus, we have

(# of sides of f)− 4 ≥ A · (# of sides of f),

where A = 1
3 for free groups and A = 1

5 for RAAGs.
Second, recall from Remark 3.13 that each band is adjacent to at least

one special face on each of its two sides. It is possible that the two sides
of the band are adjacent to the same special face, but they will do so in
distinct sides of that face. Thus we may count the sides of special faces
as follows: ∑

f∈special faces

(# of sides of f) ≥ (# of bands)× 2.

This inequality can be strict if there is more than one special face on one
side of a band, or if there is a special face with one or more sides lying
on ∂S. Then these sides will not be accounted for by bands.

In the free group case, each special face has exactly half of its sides
lying on ∂S, so bands border exactly half of the total count of the sides
of special faces. Thus, we have∑

f∈special faces

(# of sides of f) ≥ (# of bands)× 4.

Going back to formula (∗), we get

1− χ(S) ≥ 1 +
B

4
(# of bands),

where B = 1
3 · 4 for free groups and B = 1

5 · 2 for RAAGs.
Corollary 3.14 tells us that (# of bands) ≥ n. Therefore,

genus(S0) =
1

2
·(1−χ(S0)) ≥ 1

2
·(1−χ(S)) ≥


1

2
+
n

6
for free groups,

1

2
+

n

20
for RAAGs.
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The right hand side is now a lower bound for cl(gn) as before. Dividing
by n and taking n→∞ yields

scl(g) ≥


1

6
for free groups,

1

20
for RAAGs.

This finishes the proof of Theorem 1.2.

6. The non-overlapping property

The purpose of this section is to prove Theorem 6.6, which was the
key ingredient for the estimation of scl in the previous section (see Corol-
lary 3.14). We start with basic definitions and some additional notions
from [11].

Preliminaries. A CAT(0) cube complex Y is a simply connected
polyhedral complex in which the closed cells are standard Euclidean
cubes [0, 1]n of various dimensions, such that any two cubes either have
empty intersection or intersect in a single face, and the link of every
vertex is a flag complex. The latter condition, called the Gromov Link
Condition, guarantees that Y is non-positively curved. The dimension
of Y is the dimension of its maximal dimensional cube.

An n-cube [0, 1]n has n midcubes defined by setting one of the co-
ordinates equal to 1/2. A hyperplane in Y is a closed subspace whose
intersection with each cube is either empty or equal to a midcube. Each
hyperplane separates Y into two connected components. The closure of
either of these two components is called a half-space. The hyperplane
which bounds a half-space H is denoted by ∂H and the half-space com-
plementary to H is denoted by H. The set H(Y ) of half-spaces of Y is
partially ordered by inclusion. Two distinct half-spaces H and H ′ are
nested if either H ⊃ H ′ or H ′ ⊃ H; they are tightly-nested if they are
nested and no other half-space is nested between them. We say that H
and H ′ cross, denoted H t H ′, if ∂H and ∂H ′ intersect. When this
occurs, there is a square S in Y in which ∂H ∩ S and ∂H ′ ∩ S are the
two midcubes of S.

Given H,K ∈ H(Y ) with H ⊃ K, we will call a sequence of half-
spaces γ = {H0, H1, . . . ,Hn, Hn+1} a chain of length n from H to K
if

H = H0 ⊃ H1 ⊃ · · · ⊃ Hn ⊃ Hn+1 = K.

A chain is taut if every adjacent pair is tightly-nested. A chain is longest
if n is largest possible; such chain is necessarily taut. Note that any chain
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from H to K can be enlarged to be a taut chain. We will call Hm, where
m = n/2 if n is even or m = (n + 1)/2 if n is odd, the midpoint of the
chain. We make the following observation.

Lemma 6.1. Suppose γ = {H,H1, . . . ,Hn,K} and γ′ = {H,H ′1, . . . ,
H ′n,K} are two longest chains from H to K. Then the midpoints of γ
and γ′ either cross or coincide.

Proof: Let Hm and H ′m be the midpoints of γ and γ′ respectively.
If Hm 6= H ′m and they do not cross, then the only other possibility
is that they are nested. If Hm ⊃ H ′m, then the chain

{H,H1, . . . ,Hm, H
′
m, . . . ,H

′
n,K}

from H to K is strictly longer than γ, a contradiction. If H ′m ⊃ Hm, then
again one can construct a chain from H to K that is longer than γ.

Equip Y (1) with the edge path metric d. Given two vertices x and y,
define the following set of half-spaces:

[x, y] = {H ∈ H(Y ) : x /∈ H, y ∈ H}.

An edge path from x to y is a geodesic if and only if it does not cross any
hyperplane twice. Thus d(x, y) = #[x, y], where #[x, y] is the cardinality
of [x, y]. An essential feature of this distance function is that (Y, d) is a
median space [12, 17]. That is, for every triple of vertices x, y, z, there
exists a unique vertex m = m(x, y, z) such that d(a, b) = d(a,m) +
d(m, b) for all distinct a, b ∈ {x, y, z}. Equivalently, [a, b] is the disjoint
union [a,m] ∪ [m, b] for all distinct a, b ∈ {x, y, z}.

We say that H ∈ H(Y ) intersects an edge e of Y if ∂H intersects e.
Every oriented edge e = (x, y) in Y naturally defines a half-space, namely
H = [x, y]; and conversely, every half-space naturally defines an orienta-
tion on all the edges it intersects.

We say that H ∈ H(Y ) intersects a subcomplex Z ⊂ Y if H inter-
sects an edge of Z. If Z is connected, then whenever H,K ∈ H(Y )
both intersect Z and are nested, every half-space in between them also
intersects Z. A full subcomplex Z of Y is called convex if Z(1) is convex
in Y (1) with respect to d, that is, Z contains all edge geodesics between
pairs of vertices in Z.

The cube complex of a right-angled Artin group. Let A(Γ) be
a right-angled Artin group and X(Γ) the Salvetti complex associated
to A(Γ). By equipping each torus with the standard Euclidean metric,
we obtain a CAT(0) cube complex structure on the universal cover Y (Γ)
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of X(Γ). The dimension of Y (Γ) is the dimension of a maximal dimen-
sional torus in X(Γ). Equivalently, this is the largest size of a complete
subgraph of Γ.

The 2-skeleton of Y (Γ) is the Cayley 2-complex of the defining pre-
sentation for A(Γ). That is, every oriented edge of Y (Γ) is labeled by
a generator of A(Γ) or its inverse, and squares are bounded by edges
whose labels correspond to distinct vertices of Γ that bound an edge. For
any H ∈ H(Y ), every oriented edge intersected by H has the same label,
and therefore every H ∈ H(Y ) can be labeled accordingly. If H ∈ H(Y )
has label a, then H has label a−1. Note that A(Γ) acts on H(Y ) in a
label-preserving manner.

Given H,K ∈ H(Y ), if H t K, then this occurs in a square, and their
labels correspond to distinct adjacent vertices of Γ. If H, K are tightly-
nested, then there exists an oriented edge path of length two whose edges
are dual to them, and these edges do not bound a square. Thus, their
labels either are equal, or correspond to distinct vertices of Γ that are
not adjacent.

These observations lead easily to the following results. They are a
reformulation of the axioms of special cube complexes from [13], as stated
in [11, Lemma 7.3].

Proposition 6.2. The action of A(Γ) on Y (Γ) satisfies the following
properties:

1. There do not exist H ∈ H(Y ), f ∈ A(Γ) such that f(H) = H.
2. There do not exist H ∈ H(Y ), f ∈ A(Γ) such that H t fH.
3. There do not exist H ∈ H(Y ), f ∈ A(Γ) such that H and f(H)

are tightly-nested.
4. There do not exist a tightly-nested pair H,K ∈ H(Y ) and f ∈ A(Γ)

such that H t f(K).

As discussed in [11, Section 3], every non-trivial g ∈ A(Γ) has a com-
binatorial axis L, which is a bi-infinite geodesic in the 1-skeleton of Y (Γ)
such that g(L) = L. Let Ag be the set of half-spaces that intersect L.
Though combinatorial axes for g are not unique, Ag is independent of
the choice of L. There is a decomposition of Ag into two disjoint col-

lections Ag = A+
g t A−g such that H ∈ A−g if and only if H ∈ A+

g , and

H ⊃ gH for all H ∈ A+
g . In other words, every H ∈ A+

g contains the

positive (attracting) end of L and H contains the negative end. Hence,
for every pair H,K ∈ A+

g , either H t K or H and K are nested.
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Every non-trivial g ∈ A(Γ) has an essential characteristic set Yg ⊂
Y (Γ). It is a convex 〈g〉-invariant subcomplex, intersected by all the
half-spaces of Ag and no others.

Proposition 6.3 ([11, Section 3]). The essential characteristic set Yg ⊂
Y (Γ) satisfies the following properties:

1. For any n > 0, if w is a cyclically reduced word representing the
conjugacy class of gn and x is a vertex of Yg, then

|w| = d(x, gnx) = nd(x, gx).

Moreover, there is a combinatorial axis L ⊂ Yg for gn, such that
every cyclic conjugate of w appears as a word along the labels of L
(read in the positive direction). The set of half-spaces crossing L
and containing the positive end of L is A+

g .

2. For every x ∈ Yg, we have A+
g =

⋃
n∈Z

[gnx, gn+1x].

Lemma 6.4. Given x, y ∈ Yg with [x, y] ⊂ A+
g and #[x, y] > #[x, gx]/2,

if [fy, fx] ⊂ A+
g for some f ∈ A(Γ), then there exists H ∈ [x, y] and

n ∈ Z such that gnH ∈ [fy, fx].

Proof: In the following, by a copy of a half-space H ∈ A+
g , we will

mean gkH for some k ∈ Z. Note that since [fy, fx] ⊂ A+
g , each ele-

ment of [fy, fx] is a copy of some element in [x, gx]. We proceed by
considering two cases.

First, suppose [x, y]⊆ [x, gx]. In this case, y=m(x, y, gx), so #[x, y]+
#[y,gx]=#[x,gx]. Since #[x, y]>#[x, gx]/2, we have #[y, gx]<#[x, y]=
#[fy, fx]. Thus, if [fy, fx] contains at most one copy of each element
of [y, gx], then it must contain a copy of some element in [x, y] and
the statement holds. So, suppose [fy, fx] contains at least two copies
of some K ∈ [y, gx]. That is, there exist i < j such that giK, gjK ∈
[fy, fx]. By definition, giK = fH for some H ∈ [x, y]. Consider
gi+1H ∈ [gi+1x, gi+1y]. The half-spaces giK, gi+1H, and gjK have
the same labels (up to sign), so no two of them can cross. Hence they
are nested in some linear order. Note that gi+1x ∈ giK − gi+1H and
gjy ∈ gi+1H − gjK, since i + 1 ≤ j. Thus giK ⊃ gi+1H ⊃ gjK. But
this implies gi+1H ∈ [fy, fx], concluding the argument in this case.

Now suppose that [x, y] 6⊆ [x, gx]. We can also assume that [x, gx] 6⊆
[x, y], for otherwise we will already be done. Let z be the median of x,
y, and gx. Then [x, gx] = [x, z] ∪ [z, gx] and [x, y] = [x, z] ∪ [z, y], where
[z, gx] and [z, y] are both non-empty. Let K ∈ [z, y] be any element.
For any K ′ ∈ [z, gx], since K and K ′ both lie in A+

g , they are either
nested or they cross. But gx ∈ K ′ and gx /∈ K and y ∈ K and y /∈ K ′,
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so it is impossible for them to be nested. Therefore, K crosses every
element of [z, gx]. Now consider fK ∈ [fy, fx], which by assumption
lies in A+

g , and thus fK = gnH for some H ∈ [x, gx]. If H ∈ [z, gx],
then gnH and gnK must cross, as H and K do, but this is not possible
since gnH = fK. Therefore, H ∈ [x, z] ⊂ [x, y], which concludes the
proof.

Proposition 6.5. Let x, y ∈ Yg be vertices such that [x, y] ⊂ A+
g and

#[x, y] > #[x, gx]/2. Then there does not exist f ∈ A(Γ) such that
[fy, fx] ⊂ A+

g .

Proof: The proof is by contradiction. Suppose such an element f exists.
Note that if [fy, fx] ⊂ A+

g , then [gnfy, gnfx] ⊂ A+
g for all n ∈ Z. Thus,

using Lemma 6.4 and replacing f by g−nf if necessary, we may assume
that there exist H,K ∈ [x, y] such that H = fK. It is not possible that
H = K or H t K, by properties 1 and 2 of Proposition 6.2, so H and
K must be nested. Suppose H ⊃ K. First we claim that fH = K.
Since both half-spaces are in A+

g , they are either transverse, nested, or

equal. However, K and fH = f2K cannot be transverse by property 2
of Proposition 6.2. Thus, if fH 6= K, then they must be nested. Now
consider a longest chain from H to K:

γ = {H,H1, . . . ,Hn,K}.
Maximality and nesting are preserved by the action of A(Γ), so

fγ = {fK, fHn, . . . , fH1, fH} = {H, fHn, . . . , fH1, fH}
is a longest chain from H to fH. If fH ⊃ K, then

{H, fHn, . . . , fH1, fH,K}
is strictly longer than γ, contradicting the choice of γ. Similarly, if K ⊃
fH, then

{H,H1, . . . ,Hn,K, fH} = {fK,H1, . . . ,Hn,K, fH}
is strictly longer than fγ. This shows that fH = K. In particular, both
γ and fγ are longest chains from H to K. To proceed with the contra-
diction, let Hm and H ′m be the midpoints of γ and fγ respectively. By
Lemma 6.1, either Hm = H ′m or they cross. If n is odd, then H ′m = fHm.
In this case, if Hm = H ′m, then this violates property 1 of Proposition 6.2.
If Hm and H ′m cross, then this violates property 2 of Proposition 6.2.
If n is even, then H ′m = fHm+1. In this case, if Hm = H ′m, then
f−1(Hm) = Hm+1. Since Hm and Hm+1 are tightly-nested, this vio-
lates property 3. Finally, if Hm and H ′m cross, then since Hm and Hm+1

are tightly-nested, this violates property 4.
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The case K ⊃ H will yield a similar contradiction. This concludes the
proof.

Theorem 6.6. Given g ∈ A(Γ) and n > 0, let w be a cyclically reduced
word in the generators of A(Γ) representing the conjugacy class of the
element gn in A(Γ), and suppose u is a word such that both u and u−1

appear as subwords of w (considered as a cyclic word). Then

|u| ≤ |w|
2n

.

Proof: Theorem 6.6 follows easily from Proposition 6.5. To see this, let
Yg be the essential characteristic set for g. By Proposition 6.3 there is
a path P in Yg whose labels read u. Let x and y be, respectively, the

initial and terminal endpoints of P , and let P be the reversal of P (which
reads u−1). Since w represents a positive power of g, [x, y] ⊂ A+

g .
By the same reasoning there is a path P ′, from x′ to y′, whose labels

read u−1, satisfying [x′, y′] ⊂ A+
g . The action of A(Γ) is transitive on

vertices, so there exists f ∈ A(Γ) such that fy = x′. Since P and P ′

both read u−1, we must have fP = P ′, and therefore [x′, y′] = [fy, fx].
Using Proposition 6.5 we conclude that

|u| ≤ d(x, gx)

2
=
|w|
2n

.
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