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Abstract. For any surface X of infinite topological type, we study the Torelli subgroup
J(¥) of the mapping class group MCG(X), whose elements are those mapping classes
that act trivially on the homology of . Our first result asserts that J(X) is topologically
generated by the subgroup of MCG(X) consisting of those elements in the Torelli group
which have compact support. Next, we prove the abstract commensurator group of J(X)
coincides with MCG(X). This extends the results for finite-type surfaces [9, 6, 7, 16] to the
setting of infinite-type surfaces.
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1. Introduction

Let X be a connected oriented surface of infinite topological type — that is, a
surface with fundamental group that is not finitely generated. We will also assume
the boundary components of ¥ are compact. The mapping class group of X is the
group:

MCG(X) = Homeo(X, %)/ Homeoy (X, 0%),

where Homeo(X, 0X) is the group of self-homeomorphisms of ¥ which fix %
pointwise, equipped with the compact-open topology, and Homeog (X, 0X) is the
connected component of the identity in Homeo(X, dX). We equip MCG(X) with
the quotient topology.

There is a natural homomorphism MCG(X) — Aut(H;(X, 7)), whose ker-
nel is commonly referred to as the Torelli group J(¥) < MCG(X). While Torelli
groups of finite-type surfaces have been the object of intense study (see for exam-
ple [3, 4,12, 15,17, 20, 22, 24, 26]) not much is known about them in the case of
surfaces of infinite type. The present article aims to be a first step in this direction.
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Generation. In arecent article, Patel and Vlamis [23] give a topological generat-
ing set for the pure mapping class group PMCG(X) (i.e. the subgroup of MCG(X)
consisting of those mapping classes which fix every end of X; see Section 2).
More concretely, they show that PMCG(Z) is topologically generated by the sub-
group of elements with compact support if 3 has at most one end accumulated by
genus; otherwise, PMCG(X) is topologically generated by the union of the set of
compactly-supported elements and the set of handle shifts; see Section 2.

Observe that J(¥) < PMCG(X). Denote by J.(X) the subgroup of J(X)
consisting of those elements with compact support, and let J.(X) be the closure
of J.(X) in PMCG(X). Our first result asserts that, for any infinite-type surface
3, the set of compactly-supported mapping classes contained in the Torelli group
topologically generates the Torelli group:

Theorem 1.1. For any connected oriented surface X of infinite type, we have
I(2) = I(3).

Birman [4] and Powell [24] showed that the Torelli group of a finite-type sur-
face with at most one boundary or puncture is generated by separating twists (i.e.
Dehn twists about separating curves), plus bounding pair maps (that is, products
of twists of the form T, TS_I, where y and § are disjoint non-separating curves but
their union separates and y and § are homologous). We will show the same is true
for finite-type surfaces with arbitrary number of boundary components and punc-
tures. By exhausting X by an appropriate sequence of finite-type subsurfaces, we
obtain:

Theorem 1.2. Let X be a connected oriented surface of infinite topological type.
Then 1(X) is topologically generated by separating twists and bounding-pair
maps.

Theorem 1.1 implies J(X) is a closed subgroup of MCG(X). Since MCG(X) is
a Polish group [1] and closed subgroups of Polish groups are Polish, we have the
following corollary.

Corollary 1.3. Let X be a connected oriented surface of infinite topological type.
Then 1(X) is a Polish group.

Commensurations. Recall that, given a group G, its abstract commensurator
Comm(G) is the group of equivalence classes of isomorphisms between finite-
index subgroups of G; here, two isomorphisms are equivalent if they agree on a
finite-index subgroup. Observe that there is a natural homomorphism

Aut(G) — Comm(G).

We will prove the following result.
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Theorem 1.4. For any connected oriented surface X of infinite topological type
and without boundary we have

CommI(¥) = AutI(¥) = MCG(X).

Before continuing we stress that to the best of our knowledge, it is not known
whether the Torelli group of an infinite-type surface has any finite-index sub-
groups, and so in particular it is possible that Comm J(X) may in fact coincide
a priori with AutJ(X).

Historical context and idea of proof. Theorem 1.4 was previously known to
hold for finite-type surfaces. Indeed, Farb and Ivanov [9] proved it for closed
surfaces of genus at least five, which was then extended (and generalized to the
Johnson Kernel) by Brendle and Margalit to all closed surfaces of genus at least
three [6, 7]. Kida extended the result of Brendle and Margalit to all finite-type
surfaces of genus at least four [16]. Finally, recent work of Brendle and Margalit
and McLeay has further generalized the result to apply to a large class of normal
subgroups of finite-type surfaces [5, 21].

In order to prove the theorem, we closely follow Brendle and Margalit’s strat-
egy. First, we adapt ideas of Bavard, Dowdall, and Rafi [2] to show that every
commensuration of the Torelli group respects the property of being a separating
twist or a bounding pair map. From this we deduce that every commensuration
induces an automorphism of a combinatorial object called the Torelli complex.
This complex was originally introduced, for closed surfaces, by Brendle and Mar-
galit [6], who proved that its automorphism group coincides with the mapping
class group; this was later extended by Kida [16] to finite-type surfaces with punc-
tures. Using this, plus an inductive argument due to Ivanov [14], we will show that
every automorphism of the Torelli complex of an infinite-type surface is induced
by a surface homeomorphism. At this point, Theorem 1.4 will follow easily using
a well-known argument of Ivanov [14].
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2. Definitions

In this section we introduce the main objects needed for the proofs of our results.

2.1. Surfaces. Throughout, by a surface we mean a connected, oriented, second-
countable topological surface with (possibly empty) compact boundary. We say
that X has finite type if its fundamental group is finitely generated; otherwise, we
say that X has infinite type. In the finite type case, we will sometimes use the
notation ¥ = Z’é’,’ s where g, p, and b are, respectively, the genus, the number of
punctures, and the number of boundary components of X. In this case, we define
the complexity of X to be the integer £(X) =3g -3+ p + b.

The space of ends of X is the set
Ends(X) = Llnng(E \ K),

where the inverse limit is taken over the set of compact subsets K C X, di-
rected with respect to inclusion. Here, the topology on Ends(X) is given by the
limit topology obtained by equipping each o(X \ K) with the discrete topology.
See [27] for further details.

We say that e in Ends(X) is accumulated by genus if every neighborhood of e
has infinite genus; otherwise, we say that e is planar. In particular, observe that
every puncture of X is a planar end. We denote by Ends, (X) the subset of Ends(X)
consisting of ends accumulated by genus. It is a classical theorem (see [27] for
a discussion and proof) that the homeomorphism type of X is determined by the
tuple

(g(X2).b(2),Ends(X), Endsg (X)),

where g(X) and h(X) denote the genus and the number of boundary components
of X.



Big Torelli groups 1377

2.2. Curves and domains. By a curve on ¥ we mean the free homotopy class
of a simple closed curve that does not bound a disk or a disk containing a single
planar end of X. Abusing notation, we will not make any distinction between a
curve and any of its representatives.

We say that a curve y is separating if ¥ \ y has two connected components;
otherwise, we say that y is non-separating. We say that two curves are disjoint
if they have disjoint representatives in X. A multicurve is a set of pairwise
disjoint curves. Given two curves « and 8, we denote by i(«, ) their geometric
intersection number. The intersection number between two multicurves is defined
additively.

A domain Y in X is a closed subset which is itself a surface and the inclusion
map is a proper, r;-injective embedding. Note that domains are only defined up to
isotopy. A subsurface of X is a disjoint union of domains. The following definition
appears in [2].

Definition 2.1. A domain Y of ¥ is called principal if Y has finite-type and every
component of ¥ \ Y has infinite-type.

The following lemma was communicated to us by the referee. The statement
and the proof are due to Federica Fanoni.

Lemma 2.2. Let 0 be multicurve. Then there are curves realizing the homotopy
classes in o which do not accumulate in any compact set of X if and only if for
every o ¢ o, the set {B € o|i(«, B) # 0} is finite.

Proof. The forward direction is clear so we will focus on the other direction.
Choose a complete hyperbolic metric on ¥ without half planes and realize all
curves as geodesics. The assumption on the metric implies that we can decompose
¥ into pairs of pants with geodesic boundary, funnels and/or cusps (as shown
in [13]). If the geodesic representative of o has an accumulation point, then we
can find a pair of pants P of X containing such a point. However, by assumption,
there are only finitely many curves of ¢ that intersect the boundary of P. Thus,
only finitely many curves of ¢ intersect P. In particular, they cannot accumulate
in P, a contradiction. O

Given an element f € MCG(X), there is a canonical (possibly empty) multi-
curve df in X for which f(df) = df, defined as follows. Let O( f) be the set of
curves « such that { /¥ («)|k € Z)} is finite. Then df is the set of curves in O( f)
that are disjoint from all other elements of O( /). See [11, Section 2] and also [2]
for further details.

Given f € MCG(X) and a subsurface Y, we say Y supports f or f is
supported on Y if f can be realized by a homeomorphism which is the identity
outside of Y. An element f € MCG(ZX) is said to have compact support if there
is a compact subsurface that supports f. Similarly, f has finite support if there is
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a subsurface of finite-type that supports f. If f is a product of Dehn twists about
a multicurve «, then we will also say « supports f.

The following statement follows from [2]. The first assertion is Lemma 2.6,
while the second follows from its proof.

Lemma 2.3. If f € MCG(X) is nontrivial and has finite support, then f has
infinite order and df is a nonempty multicurve in X. Furthermore, let Y be the
(finite) union of all finite-type domains in ¥\ dof, then Y supports f.

2.3. Pure mapping classes. The pure mapping class group PMCG(X) is the
normal subgroup of MCG(X) whose elements fix every end of X.

The set of compactly-supported mapping classes PMCG.(X) forms a
subgroup of PMCG(X) which is normal in MCG(X). Note that if f lies in
PMCG(X) and f has finite support, then it necessarily has compact support. Since
PMCG¢(X) is a direct limit of pure mapping class groups of compact surfaces, a
classical result due to Dehn and Lickorish (see [10, Section 4], for instance) im-
plies that PMCG(X) is generated by Dehn twists.

2.4. Handle Shifts. For any subgroup I' < MCG(X), we denote by T its
topological closure in MCG(X).

Patel and Vlamis introduced handle shifts and showed that handle shifts and
Dehn twists topologically generate PMCG(X), see [23]. Subsequently, in [1] it
was shown that PMCG(X) = PMCG.(X) x H, where H is a particular subgroup
isomorphic to a direct product of pairwise commuting handle shifts. We now
recall the definition of a handle shift.

Let A be the surface obtained from R x [—1, 1] by removing disks of radius i
centered at (¢, 0) for ¢ in Z and gluing in a torus with one boundary component,
identifying the boundary of the torus with the boundary of the removed disk. Let
o: A — A be the homeomorphism that shifts the handle at (¢, 0) to the handle at
(t + 1,0), and is the identity on R x {—1, 1} (see [1] or [23] for an image of such
a homeomorphism). The isotopy class of ¢ is called a handle shift of A.

An element & in MCG(X) is a handle shift if there exists a proper embedding
t: A — X which induces an injective map on ends, and such that [i] = [§] where
8 |.(a)= o and ¢ is the identity outside ¢(A). As a consequence of our definition,
we must have |Endsg(2)| > 2; also, for each handle shift there is an attracting
end e and a repelling end e_ in Ends, (X), and they are distinct.

We say a handle shift 2 with attracting end €4 and repelling end e_ is dual to a
separating curve y if each component of X \ y contains exactly one of €4 and e_.

2.5. Principal exhaustions. We now introduce a minor modification of the
notion of principal exhaustion from [1, 2].
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Definition 2.4. A principal exhaustion of X is an infinite sequence of principal
domains { Py, P,, ...} such that, for every i > 1,

(1) P; C Piyrs

(2) every component of dP;; is separating

(3) no component of dP; is isotopic to a component of IP; y1;
4 =~

Lemma 2.5. Let X be a connected infinite-type surface and let { P;} be a principal
exhaustion of X. Then for all i,

o forall j >i, Hi(Pj) = H\(P;) ® M for some M < H{(P; \ P;);
e H\(X) =~ H{(P;) ® M' for some M’ < H{(Z\ P;).

Proof of Lemma 2.5. We will let W be either P; or X to prove both cases simul-
taneously.

Let 01 P;, ... d, P; be the boundary components of P;.

Since every component of ¥ — P; is of infinite type, every component of
W — P; either contains an end of ¥ or a boundary component of W. So there
is a collection of pairwise disjoint rays and arcs yy, ..., ¥, properly embedded in
W — P; such that y; N dx P; is a single point for all k.

By the Regular Neighborhood Theorem, we may deformation retract W along
the yg, fixing P; throughout, to obtain a subsurface A homotopy equivalent to W
that contains P; and such that P; N A — P; is a disjoint union of arcs «y, . .., oy,
as pictured in Figure 1.

— O D o | v <

Y1 V2

\ \

o @

Figure 1. Pictured at the top is the surface W, the subsurface P;, and the arcs y1,..., ym.
Below is the surface A, obtained by deleting open neighborhoods of the interiors of the yx .
The o are the dotted arcs.
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Consideration of the Mayer—Vietoris sequence gives us an exact sequence
3
0— Hi(Pi))® Hi(A—P;)) — Hi(W)— Ho(a; U---Uay).
This gives us the direct sum decomposition of H;(W). Since d, P; are separating,

then so are the ay. This implies that the boundary map 9 is zero, and since
H;(A — P;) is naturally a subgroup of H{(W — P;), the proof is complete. [

3. Compactly generating the Torelli group
Let X be an infinite-type surface. We define the compactly supported Torelli group
J(X) :={f € I(2) | f has compact support}.

The aim of this section is to prove the first main result of the introduction,
whose statement we now recall:

Theorem 3.1. For any connected oriented surface ¥ of infinite type, we have
I(2) = I(D).

Remark 3.2. The referee suggested an alternate way of proving that every element
of J(X) is a limit of mapping classes with compact support; we give this argument
at the end of this section. However, we have decided to keep our original argument,
phrased in terms of a new type of mapping class (pseudo handle shifts, see below),
which may be of independent interest.

We will need to know that certain, possibly infinite, products of handle shifts
are inaccessible by compactly supported mapping classes. For a general product
of handle shifts, this is too much to hope for. For example, in a surface with two
ends, the product of two commuting handle shifts with opposite dynamics is a
limit of compactly supported classes.

More generally, there are products of infinitely many commuting handle shift
that are limits of compactly supported classes. For example, there is the “boundary
leaf shift,” which we now explain.

Example 3.3 (boundary leaf shift). Start with an infinite regular tree T properly
embedded in the hyperbolic plane IH? with boundary a Cantor set in dIH2. Orient
dH? counterclockwise. Build a surface by taking the boundary of a regular
neighborhood of T in H? x R and attach handles periodically (in the hyperbolic
metric) along each side of T, see Figure 2. The orientation on dH? defines a
product K of handle shifts by shifting the handles in each region of H? — T in the
clockwise direction.
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To see the boundary leaf shift is in PMCG(X), pick a basepoint * in T and
consider the n-neighborhood B(n) of % in J. Then we may move the handles in-
cident to B(n) around in a counterclockwise fashion to get a compactly supported
class f, in PMCG¢(X). The sequence { f;,} converges to the boundary leaf shift.

Figure 2. The boundary leaf shift.

Let y be a separating curve in X whose complementary components are both
noncompact. Let ¥_ and X4 be the closures of the two components of ¥ — y.
By the same argument as in Lemma 2.5, ¥ deformation retracts to a subspace
homeomorphic to X v y v Y, where X and Y are subspaces of X_ and ¥,
respectively. It follows that H(X) splits as A & (y) & B, where A = H{(X) and
B = H(Y).

Similarly, if 4 is a handle shift dual to y, then

Hi(X) = L & (y) @ Hi(supp(h)) & R,

where L and R are subgroups of 4 and B.
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Definition 3.4 (pseudo handle shift). We say that a mapping class H is a pseudo
handle shift dual to a separating curve y with associated handle shift h if the
following hold:

(1) h is a handle shift dual to y;
(2) H. agrees with ., on Hy(supp(h));

(3) Hu(lyD =¥l
(4) Hu(L) < A5
(5) H«(R) < B.

In what follows, we always assume that the repelling end of 4 is on the
“A-side.”

Examples 3.5. Let / be a handle shift dual to a separating curve y. Then 4 is
itself a pseudo handle shift dual to y (with associated handle shift /).

For a less trivial example, take a connected component X of X\ (y Usupp(h)).
Then the composition 7 with any element g € MCG(X) supported on X is a
pseudo handle shift associated to 4. In particular, if #/ = []h; is a product of
commuting handle shifts #; with dual curves y;, such that & and 4’ commute,
supp(h’) is disjoint from y and supp(#) is disjoint from all y;, then the composition
k = h o I’ is a pseudo handle shift associated to 4.

Note that since pseudo handle shifts are defined by their action on homology,
if fi = . for a pseudo handle shift I associated to £, then f is also a pseudo
handle shift associate to /.

Theorem 3.6 (pseudo handle shifts are unapproachable). A pseudo handle shift
H dual to a separating curve y is not a limit of compactly supported mapping
classes.

Proof. Let h be the associated handle shift dual to y. Let e_ and ¢4 be the
ends of ¥ corresponding to the repelling and attracting ends of 4, respectively,
and let ¥_ and X, be the complementary components of ¥ — y containing
€_ and e, respectively. Choose some principal exhaustion {P;} of X, and let
Y =(Z-P)NX_and X\ = (T - P)NIy.

The curve y partitions the space of ends into two closed subspaces E_ and
E4 of which ¥_ and X are neighborhoods, respectively. The subsurfaces %
and Eﬂr are also neighborhoods of E_ and E.. Since ¥ is pure, H(Z") and
H (E’;) are also neighborhoods of E_ and E.. Since E_ and E are disjoint, the
intersection of the closures of H-C(EQE) and X is compact, and since the Eii are
nested and have empty intersection, we may take i/ large enough so that the term
P; in our principal exhaustion contains y and satisfies H(Z,) N S is empty.
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The handle shift 4 is supported on a strip § with equally spaced handles and
standard basis {cp, Bp }kez of H1(8) so that h(ap) = ap41 and hi(Bp) = Bp+1-
We choose once and for all curves in 8 representing these classes. After reindexing
the ;, and B, by translating p, we assume that oy and f; lie in > . Since ap and
By tend to €4, there is some j > 1 such that o and B; lie in X,

Suppose that H is a limit of compactly supported H,. Pick n large enough
so that 3, agrees with { on P; and so that 3, . agrees with /., on both H;(P;)
and (@1, B1,...,a;. B;). Let Py be some term in the exhaustion with & > i that
contains the support of J{,.

We have a direct sum decomposition

Hi(P) =Z' 7% ¢ 7"

where Z* is a subgroup of H,(Z_) @ (y), Z* = (a1, B1,....a;,B;),and Z" is a
subgroup of Hy(X4). Picking a basis (x1,...,x¢ 1. B1,....j, Bj. Vi.--os Vr)
for H;(P) compatible with this decomposition, we see that 3{,. has a block
decomposition:

2j —2

£ 0

j'Cn* =

neooSow
oox N~

{

*

* 0
2j =2 | * 1
r X 0

By properties (4) and (5) of a pseudo handle shift, and our choice of i, the blocks
X, Y, and Z are all zero. So the matrix is

£ 2j—-2 2 r
L * 0 0 0
_ 2 * 0 0 0
Hox = j—2|x I 0 =«
r 0 0 A B
This matrix is column equivalent to
£ 2j—-2 2 r
L * 0 0 0
_ 2 * 0 0 0
Hor = j—21x I 0 0
r 0 0 A B
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But the matrix [A B]is an r x (r 4+ 2) matrix, and so its Jordan form cannot have
a pivot in every column. So the matrix for 3, . is equivalent to a matrix with a
zero column. But H,. is an isomorphism, and this contradiction completes the
proof. O

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will first show that J(¥) < PMCG.(X). By [23,
Theorem 1], we only need to consider the case when X has at least two ends
accumulated by genus. We observe that J(¥) < PMCG(X). Let g be in PMCG(X)
so that g is not a limit of compactly supported mapping classes. We show that g
is not in J(X).

By Theorem 3 and Corollary 4 from [1], g can be written g = fk~! where f is
a limit of compactly supported classes and k is a product of pairwise commuting
handle shifts #;. The handle shift #; has the property that the support of 4; is
disjoint from the dual curve y; for h; whenever i # j. Thus, for any i, k is a
pseudo-handle shift dual to y; associated to /; (see Examples after the definition
of pseudo handle shifts). If g were in Torelli, then fi. = g.«k. = k«, which implies
f is a pseudo handle shift, but this violates Theorem 3.6. This shows

J(X) < PMCGc(Z).

If ¢, is a sequence in J.(X) that converges to ¢, then ¢ lies in J(X), since ¢, («)
eventually agrees with ¢ («) for any given simple closed curve «. So

7(2) < I(X).

For the other containment, let ¢ be an element of J(X) and let {i,} be a
sequence in PMCG(X) converging to ¢. We would like to convert v, into a
sequence of compactly supported ¢, in J(X) converging to ¢. The idea is that the
homology classes affected by 1/, must move further and further away from a given
basepoint, and so we can precompose the ¥, with a mapping class supported far
from the basepoint to produce the desired ¢,,.

Fix a principal exhaustion {P;} of . For each i, pick a j > i such that P;
contains ¢~ (P;). Pick an N large enough so that, for all n» > N, the map v, has
a representative that agrees with a fixed representative of ¢ on P;. Note that v+
agrees with ¢, on H(P;). Pick a k > j such that Py contains the support of .

By Lemma 2.5, we have H;(Py) = H1(P;) ® Q & R for some Q a subgroup
of H;(P; — P;) and R a subgroup of H;(Pr — P;). Let o be element of H;(Px)
and write « = y + u + v where y, u, and v are in H{(P;), Q, and R, respectively.
SO Ynx(e) =y + 1+ Yusx(v).
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The class v is represented by a 1-manifold N in Py — P;. By our choice of j
and n, the 1-manifold v, (N) is disjoint from P;. So ¥« (v) isin Q & R. Therefore
Ynx: H1(Pr) — H;(Pr) may be represented by a square matrix

I 0
1=lo 5]
where [ is the identity on H;(P;) and B is a square matrix. Since A is the induced
map on homology associated to a homeomorphism of Py, it is invertible and
respects the intersection form, and so the same is true of B.

We claim that the matrix B is represented by ahomeomorphism F’: Py — P; —
Py — P; that is the identity on dP; N P, — P;. To see this, note that B preserves the
intersection form and the homology classes of the boundary components of each
componentof Py — P;. Let X be the surface obtained from Py — P; by capping off
all the boundary components with disks. The homology of X is a quotient of that
of P, — P;, and B induces an automorphism of the homology of X that preserves
the intersection form. There is a homeomorphism X — X inducing this automor-
phism that preserves each component of X, by Burkhardt’s theorem [8]. By an
isotopy, we may assume that Burkhardt’s homeomorphism of X fixes, point-wise,
small disks around the centers of the disks we added to construct X. Restricting
this to Py — P; is the desired F’.

We extend F’ by the identity to all of X and call the result F.

Now consider the homeomorphism ¢,, = v, o F~!. By the construction of F,
this homeomorphism acts trivially on the homology of X, and agrees with v,
on P;.

This completes the proof. |

We finish this section with the alternate proof of J(¥) < PMCG.(X), as
suggested by the referee. Suppose, for contradiction, that there is f € J(X) which
may not be expressed as the limit of a sequence of mapping classes with compact
support. A consequence of [1, Theorem 4.5] is that there is a separating curve
y C X such that y and f(y) have different topological types in every compact
subsurface of ¥ containing them. In particular, they induce different splittings of
H (%, Z), which contradicts the fact that f acts trivially on homology.

3.1. Generation by separating twists and bounding pairs. The proofs in this
section are due to Justin Malestein.

b

Proposition 3.7. For any finite-type surface ¥ = ¥g ,

separating twists and bounding pair maps.

J(X) is generated by
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Proof. The Dehn twist about each boundary component of X is in J(X) and counts
as a separating twist. By capping off each boundary component of ¥ with a once-
punctured disk, we get an exact sequence

1 — [[(Te) — 3L ) — IS pis) — L.
a€lX

Since a separating twist (resp. bounding pair map) from J(X,, ,45) can be lifted
to a separating twist (resp. bounding pair map) in J(Eé’,, p)» Wemay assume b = 0.

Recall that J(¥) < PMCG(X) and PMCG(X) is generated by Dehn twists.
When g = 0, then all curves are separating, so PMCG(X) = J(X). When g = 1
and p < 1, J(X) is the trivial group. When g > 2 and p < I, then the statement
of the proposition holds by Birman [4] and Powell [24]. We now assume g > 1
and induct on p using the Birman exact sequence.

Set ¥ = X4 5,2 > 1and p > 1. Pick a point x € ¥ and let ¥ — x denote the
surface obtained from puncturing ¥ at x. The inclusion map ¥ — x — X gives
rise to the Birman exact sequence:

1 — 11(2, x) 2 PMCG(Z — x) —s PMCG(Z) — 1,

where 71(X, x) A PMCG(X — x) is the point-pushing map. Let
A=p Y I(Z —x)Nmi(Z, x).
The Birman sequence induces the exact sequence
l —A—IE—-x)— 1) — 1.

By the induction hypothesis, J(X) is generated by separating twists and bounding
pair maps. Every bounding pair (resp. separating curve) in X has a lift to ¥ — x
which is also a bounding pair (resp. separating curve). Thus, separating twists and
bounding pair maps in J(X) can be lifted to such maps in J(X — x). We now claim
p(A) is contained in the group generated by separating twists.

Given a simple curve ¢ € m;(X, x), the point-pushing map p, along « is
equal to a product of two Dehn twists; namely p, = Ty Ta_/,l, where o’ and o”
are freely homotopic to @ in X but not in ¥ — x. Let Ag = [71(X, x), 71(Z, x)].
By [25, Lemma A.1], p(Ay) is generated by point-pushing maps along simple
(null-homologous) separating curves. In particular, if « is separating, then py is
a product of two separating twists. This shows p(Ay) is contained in the group
generated by separating twists. Now let {x1, ..., x,} be the set of punctures of X.
For each x;, let o; € 71(X, x) be a simple curve which is freely homotopic to x;.
In this case, pg, is a single separating twist along a curve which is freely homotopic
to x; in X butnotin X — x.
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We now claim A = (Ag,aq,....ap). Lety € 71(2,x) — (Ag. a1, ...0p).
Then [y] € Hi(X)/(a1. ..., 0p) is nontrivial, so there is a simple non-separating
curve o on ¥ such that [y] = [o¥] in H1(2)/ (a1, . . ., ap). But then pq is a prod-
uct of Dehn twists along two disjoint non-separating, non-homologous curves,
so cannot be in J(X — x). This shows A = (A, ay,...,ap), and in particular
p(A) is contained in the group generated by separating twists. This finishes the
proof that J(X — x) is generated by separating twists and bounding pair maps. O

Lemma 3.8. Let X be a connected oriented surface of infinite type. If P is a
principal domain of ¥ such that each boundary component of P is separating,
then the inclusion map P — ¥ induces an embedding i.: MCG(P) — MCG(X)
and i;'(3(X)) N MCG(P) = I(P).

Proof. By our assumption, all boundary curves of P are essential and distinct
in X, hence Dehn twists along the boundary curves induce non-trivial mapping
classes in MCG(X). This shows i, is injective. For the second statement, by
Lemma 2.5, we have a direct sum decomposition H1(X) = H;(P) & M for some
M < H{(Z\ P), thus i1 (J(2)) N MCG(P) = I(P). O

We now prove the second main result of the introduction; namely:

Theorem 3.9. Let 3 be a connected oriented surface of infinite type. Then J(X)
is topologically generated by separating twists and bounding-pair maps.

Proof. Let {Pq, P», ...} be a principal exhaustion of X. By the previous lemma,
elements in J(X) with support on P; is J(P;). By Theorem 3.1, I(2) = (J; I(P;).
Finally, by Proposition 3.7, J(P;) is generated by separating twists and bounding
pair maps. O

4. Abstract commensurators of the Torelli group

In this section we prove Theorem 1.4. As in the statement of the theorem, through-
out this section we will assume that the surface ¥ has empty boundary. As men-
tioned in the introduction, the first step of the argument consists of proving that
an element of Comm J(X) induces a simplicial automorphism of a combinato-
rial object associated to X, called the Torelli complex, introduced by Brendle and
Margalit in [6].

4.1. Torelli complex. Recall that the curve complex of X is the (infinite-dimen-
sional) simplicial complex whose vertex set is the set of isotopy classes of curves
in X, and where a collection of vertices spans a simplex if and only if the corre-
sponding curves are pairwise disjoint. The curve complex was used by Ivanov [14],
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Korkmaz [18], and Luo [19] to prove that, for all but a few finite-type surfaces X,
Comm MCG(X) = Aut MCG(X) = MCG(X).

Subsequently, Bavard, Dowdall, and Rafi [2] established the analogous result for
every infinite-type surface. In a similar fashion, Farb and Ivanov [9], Brendle and
Margalit [6, 7, 5], and Kida [16] proved that, for all but a few finite-type surfaces,

CommI(¥) = AutI(¥) = MCG(X).

Here, we will adapt the ideas of Brendle and Margalit [6] to the infinite-type
setting. Given an infinite-type surface X, we define its Torelli complex to be the
(infinite-dimensional) simplicial complex whose vertex set is the set of isotopy
classes of separating curves and bounding pairs in X, and where a collection
of vertices spans a simplex if and only if the corresponding curves are pairwise
disjoint. In order to relax notation, we will blur the distinction between vertices
of T(X) and the curves (or multicurves) they represent.

The Torelli complex of a finite-type surface is connected [9]. As a conse-
quence, the same holds for the Torelli complex of an infinite-type surface also.
We record the following observation as a separate lemma, as we will need to make
use of it later:

Lemma 4.1. The Torelli complex T(X) has infinite diameter if and only if ¥ has
finite type.

Proof. If ¥ has finite type, a slick limiting argument due to Feng Luo (see the
comment after Proposition 4.6 of [20]) shows that the curve complex has infinite
diameter. The obvious adaptation of this method to the case of the Torelli complex
also implies that T(X) has infinite diameter.

For the other direction, suppose ¥ has infinite type. Since curves are compact,
given multicurves y, § C X, we can find a separating curve n C X which is disjoint
from both y and §. In particular, T7(X) has diameter two. |

4.2. Automorphisms of the Torelli complex. Denote by Aut T(X) the group of
simplicial automorphisms of T(X), and observe that there is a natural homomor-
phism MCG(X) — AutT(X). We want to prove:

Theorem 4.2. Let X be an infinite-type surface without boundary. The natural
homomorphism MCG(X) — Aut T (X) is an isomorphism.

As noted above, the finite-type case is due to Brendle and Margalit [6, 7, 5]
and Kida [16]. Indeed, the notion of sides which is used in this section is adapted
from arguments that may be found in Brendle and Margalit [6], and which find
their way back to ideas of Ivanov [14].
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Sides. Recall that the link of a vertex v of a simplicial complex X is the set of
all vertices of X that span an edge with v. In particular, v is not an element of its
link. For any finite-dimensional simplex o let Link(o’) be the intersection of the
links of each of the vertices in 0. We say that two vertices «, 8 in Link(o) lie on
the same side of o if there exists a vertex y in Link(o) that fails to span an edge
with both « and f, that is, if there exists a curve in Link(o') that intersects both «
and S. Observe that “being on the same side” defines an equivalence relation ~
on Link(0), that is, the sides of o are the equivalence classes of ~, in Link(o).

In particular, we may consider the sides of a vertex of J(X). We say that y in
T(X) is k-sided if there are k equivalence classes with respect to ~,,. As we shall
see, k is in {1, 2}.

For any vertex y of T(X) there exist two subsurfaces R, L C X obtained by
cutting X along y such that y is isotopic to the boundary components of both R
and L. Suppose R is of finite type. We call y a pants curve if y is a separating
curve and R =~ 2(1) »» a sphere with two punctures and one boundary component.
We call y a genus curve if y is a separating curve and R = 21 o»  torus with one
boundary component. If y is any other type of separating curve then we say it is
type X.

If y is a bounding pair and one of the associated subsurfaces of ¥ is homeo-
morphic to X7 ; then we call it a genus bounding pair.

Lemma 4.3. A vertexy in T(X) is 2-sided if and only if it is type X or it is a genus
bounding pair. Otherwise, y is 1-sided.

Proof. We first prove that if y has type X then it has exactly two sides. Let R and
L be the two subsurfaces of ¥ obtained by cutting along y. Let o, 8 € Link(y).
If « C Rand B C L, then any vertex of T(X) that intersects both « and 8 must
also intersect y. This implies that y has at least two sides. If o, 8 C R then there
exists an element of the MCG(X)-orbit of « that intersects both « and 8 and is
contained in R. An identical argument holds for two vertices contained in L and
so it follows that y has exactly two sides.

Now let y be a genus one separating curve or a pants curve. Define L, R C ¥ as
above. Observe that neither 2(1) , hor El o contains any non-peripheral separating
curves or bounding pairs. Therefore Llnk(y) does not contain any curves in R. As
above, all vertices contained in L are on the same side and so y is 1-sided.

We now move on to the case where y is a bounding pair. We define R and L as
above. Assume that neither R nor L is homeomorphic to E%,o- Leta, B € Link(y)
be such thatee C R and 8 C L. As shown in Figure 3, there exists a bounding pair

= {8Rr, 6.} such that

e any pair of curves in y or y’ forms a bounding pair,
e SR C Randé; C L, and
e SpNa#@Pand sy NP # 0.
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Figure 3. A general bounding pair y is 1-sided. For any two vertices «, 8 in T(X) adjacent
to y, we can find a bounding pair not adjacent to o and 8 but adjacent to y. Informally,
bounding pairs can “pass through” each other.

That is, y’ is in Link(y) and there is no edge between y’ and « or between y’
and . It follows that y has exactly one side.

If y is a genus bounding pair then no such y’ exists. Indeed, every non-
separating curve in R that forms a bounding pair with a curve in y is also isotopic
to a curve in y. By the same argument as for type X vertices, we conclude that y
is 2-sided. |

Let o be a finite-dimensional simplex of T7(X) consisting entirely of curves of
type X. Using similar methods to the above proofs it is straightforward to show
that the set of sides of o is in bijective correspondence with the subsurfaces of ¥
obtained by cutting ¥ along o.

The following lemma follows immediately from Lemma 2.2.

Lemma 4.4. Let 6 be a simplex in T(X). Then there are curves realizing the
homotopy classes in o which do not accumulate in any compact set of ¥ if and
only if for every vertex v ¢ o, the set {w € a|i(v, w) # 0} is finite.

Proof of Theorem 4.2. Let
d: MCG(X2) — Aut(T(X))

be the natural homomorphism; that is, for f in MCG(X), ®(f) is the automor-
phism of T(X) determined by the rule

S(Ny) = 1)

for every separating curve or bounding pair y.

First, we show that ® is injective. To this end, suppose ®( /) = Id. Then we
argue that f(y) = y for every curve y. Indeed, if y is separating, then y is a vertex
of T7(X), so ®(f)(y) = y and we are done. If y is non-separating, there is some
curve y’ such that y and y’ form a bounding pair. Because ®( 1) fixes the vertex
corresponding to y U y’, it must be the case that either f(y) = y and f(y') =y’
or f(y) =y’ and f(y’) = y. But there exists a separating curve 7 that intersects
y but not y’. Because f(n) = n, it cannot be the case that f(y) = y’. Therefore
f(y) = y as desired.
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By the Alexander method for infinite-type surfaces, due to Herndndez, Mora-
lez, and Valdez [13], we deduce that f is the identity in MCG(X).

We now show that ® is surjective. Let ¢: T(X) — T(X) be an automorphism.
Fix a principal exhaustion { Py, P», ...} of X such that P; has complexity at least
six. Define o; to be the simplex of T(X) corresponding to the multicurve dP;.
Denote by P; the subcomplex of T(X) spanned by the curves and bounding pairs
contained in P;. Denote by P the surface obtained by gluing once-punctured
disks to each boundary component of P;. By construction, o; contains only type
X vertices and therefore T(?P;) is isomorphic to T(P;). As the complexity of P;
is at least six, P; is connected for all i. By Lemma 4.1, we know that P; is the
unique side of o; whose diameter is infinite.

Since ¢ is a simplicial automorphism, it induces a bijection between the sides
of 0; and the sides of ¢(0;). Because all simplicial automorphisms of T(X) are
isometries, ¢ (o;) has a unique side of infinite diameter. From Lemma 4.3 we have
that every vertex of ¢(o;) is of type X or it is a genus bounding pair. However,
since each side of ¢ (0;) is connected, it cannot contain a genus bounding pair by
Lemma 4.3.

We write Q; C Link(¢(0;)) for the unique side of ¢ (0;) with infinite diameter,
and Q; C X for the finite-type subsurface which it defines. By Lemma 4.4,
we can realize the curves | JQ; by non-accumulating curves in £. The Q;’s
form a sequence of nested subsurfaces, thus their union is an open set. The
nonaccumulation property implies that | J Q; is the full surface X.

Since each vertex of ¢ (o;) has type X we have that Q; =~ T(Q;). Furthermore,
¢ restricts to an isomorphism

(f)i:fpi e Qi.

Since each P; is assumed to have complexity at least six, the combination of results
of Kida [16] and Korkmaz [18] implies that ¢; is induced by a homeomorphism
fi: Pi — Q;. Moreover, the homeomorphism f;;; may be chosen so that it
restricts to f; on the subsurface P;. Hence their direct limit is a homeomorphism
of |JP; to |JQ; inducing ¢. Since ¥ = |JP; = | Qi, this completes the
proof. |

We now end this subsection with the following two observations which will be
useful later.

Lemma 4.5. For any simplex o in T(X) and any compactly-supported f € J(X),
if f preserves o then f fixes o pointwise.

Proof. Consider two vertices v, w € ¢, and assume f(v) = w. Then v and w are
either both separating curves or they are both bounding pairs.
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Suppose v separates X into two infinite-type subsurfaces. Since v and w are
disjoint, we can find a compact domain ¥ C X such that v and w are of different
topological type. By choosing Y large enough, we can assume that Y supports f.
But then it is impossible for f|y(v) = f(v) = w.

Suppose now that v (and w) separates X into a finite-type subsurface and an
infinite-type subsurface. Call the finite-type subsurfaces V and W, corresponding
to v and w respectively. Since v € ¥\ W and w € X \ V, the subsurfaces V' and
W are disjoint. By assumption f(v) = w, therefore V and W must have the same
topological type and f(V) C W. But this is impossible if f € J(X). |

Lemma 4.6. For any bounding pair v € T(X) and any [ € J(X), if f preserves
v, then [ must fix the curves in v.

Proof. Suppose v = {«, 8} and f(«) = . The complement of v in ¥ has two
components. Since f is pure it preserves the components. Let ¥ be one of the
components. The orientation of ¥ induces an orientation on « and 8. These
oriented curves (as homology classes) satistfy « = —f. The map f is orientation
preserving, so it must preserve the orientation of @ and 8. Thatis, f(x) = f as
oriented curves. But then o and f(«) cannot be homologous, contradicting that
f €I(®). O

4.3. Algebraic characterization of twists and bounding pair maps. Before
proving Theorem 1.4 we will need one more ingredient. Notice that the vertices
of T(X) define supports of elements in J(X). We must now show that commen-
surations of J(X) preserve such elements and therefore define a permutation of
the vertices of the complex. We will adapt the algebraic characterization of Dehn
twists of Bavard, Dowdall, and Rafi [2] to our setting.

We first introduce some terminology to facilitate the characterization of twists
and bounding pairs. Let G < MCG(X). We denote by F the set of elements of
G whose conjugacy class (in G) is countable. Bavard, Dowdall, and Rafi proved
that if G is finite-index in MCG(X) then f is in F¢ if and only if it has compact
support [2, Proposition 4.2]. Using similar methods, we will show:

Proposition 4.7. Let G < J(X) be a finite-index subgroup. An element f in G
has compact support if and only if f is in Fg.

Proof. 1t is clear that compactly-supported mapping classes have countable con-
jugacy classes. For the opposite direction, the argument in [2, Proposition 4.2] ex-
hibits a infinite sequence of pairwise-disjoint curves a; such that the Dehn twists
about the a; give rise to uncountably many conjugates of f. Since X has infi-
nite type, the curves a; may be chosen to be separating, so that the corresponding
twists belong to J(X). Hence the result follows. |
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We denote by Z(H) the center of H. If 1 is in H, we write Cg (h) for the
centralizer of & in H. Given a finite-index subgroup G < J(X) we write Mg for
the set of elements f in G which satisfy the following three conditions:

() f €6,
(2) Z(Fg N Cg(f)) is an infinite cyclic group, and
(3) Cg(f) = Cg(fk) forevery k > 0.

We now prove that, for any finite-index subgroup G of J(X), powers of Dehn
twists and bounding pair maps belong to the set Mg.

Lemma 4.8. Let G < J(X) be a finite-index subgroup. If f € G is a power of a
Dehn twist about a separating curve or a bounding pair map then f belongs to
M.

Proof. Since f has compact support, f € Fg. Suppose first f is a power of a
Dehn twist about the separating curve y. We have that

Cy)(TH) ={g€I(®) | gy) = r}.

for k # 0. It follows that all powers of 7,, have the same centralizer in J(X) and
hence, in any subgroup. A similar argument holds if f is a power of bounding
pair map. This implies the third condition in the definition of Mg.

To see that f satisfies the second condition, once again assume first that f is a
power of the Dehn twist about a separating curve y. Let g be a nontrivial element
of 36 N Cg (f) and assume that g is not a power of T,,. Then there exists a curve §
disjoint from y such that g(§) # §. If § is a separating curve then Tgk isin Cg(f),
for some k > 0, but gTSk #* Tgkg, so gisnotin Z(Fg N Cg(f)). On the other
hand, suppose § is a non-separating curve; since g acts trivially on homology we
have that § and g(§) are homologous curves. Because 7, g(8) = g7, (8) = g(§),
we have that g(§) is disjoint from y. It follows that some power of T Tg_(}g) belongs
to Cg(f), but does not commute with g. We have therefore shown that g is not
central in Fg N Cg (f) as desired.

A similar argument also shows that, if f is a power of a bounding pair map,
then g belongs to Z(Fg N Cg(f)) if and only if it is a power of the same bounding
pair map. O

When G is a finite-index subgroup of MCG(X), all elements of Mg are powers
of multi Dehn twists, see [2, Lemma 4.5]. In stark contrast, this is no longer true
in our setting. When G is a finite-index subgroup of J(X), then Mg may contain
elements which are not supported on a disjoint union of annuli: for example, we
may take a pure braid on a nonseparating planar subsurface with at least three
boundary components. The following proposition characterizes those elements
that lie in Mg, when G is a finite-index subgroup of J(X). Recall the definition of
df for a mapping class f, which is non-empty when f is compactly-supported.
We have the following statements.
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Lemma 4.9. Let G < J(X) be a finite-index subgroup. Given a nontrival
f € Mg, let o C df be the set of all separating curves or bounding pairs. The
Jollowing statements hold.

(1) Forall g € Fg N Cg(f), g fixes every component of ¥\ 0f .

(2) If o is empty, then for each finite-type domain Y of ¥ \ df, f|y is either the
identity map or pseudo-Anosov. Furthermore, there is at least one pseudo-
Anosov component of f.

(3) If o is non-empty then o = 0f is either a separating or a bounding pair,
and f = T4 for some non-zero j, where T, is either a separating twist or a
bounding pair map.

Proof. Forany g € F6 N Cg(f), g(3f) = d(gfg~"!) = df. To show that g fixes
every component of ¥ \ df, it is enough to show g fixes each component of df".
To see this, suppose there exists a domain Yof ¥ \ df such that g(Y) is not Y.
Since g fixes the components of df, ¥ and g(Y) share the same boundary. This
means ¥ = Y U g(Y) U dY, so Y must have infinite type. But then g cannot be
a pure mapping class, contradicting the fact that g € J(X). In the following, we
will consider the two cases that o is empty or o is not empty. For each case, we
show g fixes the components of df along with the statements of (2) and (3).

First suppose that ¢ is empty. In this case, every curve of df is non-separating
and no two form a bounding pair. In particular, no two curves of df are homolo-
gous, so every element of Fg N Cg () must fix the components of df. Now let ¥
be a component of X \ df of finite-type. The map f'|y is irreducible (otherwise
the reducing curves would also be in df), so it is either of finite order or pseudo-
Anosov. We now show it is not possible for f|y to be non-trivial and have finite
order. Since df does not contain any separating curves or bounding pairs, it has
cardinality at least 3. This means y(Y) < 0, in which case MCG(Y) is torsion-
free ([10, Corollary 7.3]). Hence, if f'|y is not pseudo-Anosov, then f|y is the
identity. Finally, if there is no pseudo-Anosov component of the support of f,
then there exists a power k > 1 such that f¥|y is the identity for any component
Y in ¥ \ df. But f has infinite order by Lemma 2.3, so f* must be a product
of powers of Dehn twists about curves in df. This is impossible as f € I(¥),
see [28].

Now suppose o is non-empty. Regard o as a simplex in T(X). Every element
g € Fg N Cg(f) preserves df, and hence also 0. By Lemma 4.5, g fixes each
vertex of o. Then, by Lemma 4.6, we can further conclude that g also fixes each
curve in 0. Let v by a vertex of o, and let T, be the twist about v, which belongs
to J(X). _

We now show f = T, for some non-zero j. In particular, v = 0 = 93f.
Since every g € Fg N Cg(f) preserves v, g commutes with 7, showing TJ‘ €
Z(Fg N Cg(f)) for some k > 1. Since f also lies in Z(Fg N Cg(f)) which is
infinite cyclic by assumption, we must have f™ = T,* for some non-zero integers
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m and n. Let w a vertex of J(X) disjoint from v and choose k > 1 so that Tulj €G.
Since v and w are disjoint, we have

TE e Co(TT) = Co(f™) = Ca(f).

This is only possible if f(w) = w. Thus, f fixes every separating curve and
bounding pair disjoint from v. Applying Lemma 4.6, we obtain that f fixes
every curve disjoint from v. This shows f = T, for some non-zero integer j,
concluding the proof. |

Definition 4.10 (essential support). For each element f € Mg, we define the
essential support supp(f) of f asfollows. Let o C df be the set of all separating
curves or bounding pairs.

e If ¢ is nonempty, then supp(f) = o.

e If o is empty, then supp( /) is the union over all domains Y in £\ d(f) such
that f'|y is a pseudo-Anosov. Note that by Lemma 4.9, supp( f) is nonempty.

Let
Cnig(f)=1g€Mg | fg=2gf}.

We also define a further subset:

(Pe)r = {8 € O (f) | g is supported in X\ supp(f)}.

The next lemma tells us that the elements supported in supp( /) are precisely those
that are central.

Lemma 4.11. Let G < I(X) be a finite-index subgroup. For any element f in Mg
we have that

Coig (f) = Z(Conig (/) ® (P6)y-

Proof. Let 0 C df be the set of all separating curves or bounding pairs. If o
is nonempty, then by Lemma 4.9, 0 = 9f is a separating curve or a bounding
pair, and f = T;, where T, is a separating twist or a bounding pair map. In this
case, any element g € Cy; (f) fixes every curve of o. Thus, if g has support in
supp( f), then g is itself a power of T,;. This shows g € Z(Cni (f)).

Now suppose o is empty. By Lemma 4.9, supp(f) is non-empty. Let g €
Cyig (f) € FNCq(f) be an element with support in supp( /). We want to show
g lies in the center of Co; (f). If i € Coy; (f) has support disjoint from supp( f),
then / and g clearly commute. Henceforth, we may assume this is not the case.

By Lemma 4.9, f, g, and / all preserve every component of supp( /). Thus,
we can assume without a loss of generality that 4 is also supported in supp( f).
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Let Yy,..., Y, be the components of supp( f). For each i, let f;, (resp. g; and ;)
denote the restriction of f (resp. g and k) to Y;. Since the components of df are
non-separating and no two form a bounding pair, we can write

f =N/l fa g =818 8n: h=hihy-h,.

where each f; is pseudo-Anosov on Y;. Since MCG(Y;) is torsion-free and
f € Mg, the centralizer of f; in MCG(Y;) is cyclic. As f commutes with g
and h, each f; commutes with g; and &;. Thus, each g; or A; is contained in
the centralizer of f;, yielding g; and s; commute for all i. This shows g and &
commute as required. O

Finally, we can prove the characterization of Dehn twists and bounding pair
maps.

Proposition 4.12. Let G < 1(X) be a finite-index subgroup, and let f lie in G.
Then f is a power of a Dehn twist or of a bounding pair map if and only f is
in Mg, and for all g in Mg such that (Pg)g = (Pg)s we have that there exist
integers i, j # 0 such that f' = g/.

Proof. The forward direction is Lemma 4.8 and the definition of (Pg)y.

For the other direction, we prove the contrapositive. Assume that f is not
a power of a Dehn twist or bounding pair map. Our goal is to find an element
g € Mg with supp(g) = supp(f) such that no powers of f and g are equal, but
(P6)r = (Pg)e-

By Lemma 4.9, there exists a domain Y in ¥ \ df on which f|y is a pseudo-
Anosov. Since Y supports a pseudo-Anosov, we may choose an element & €
MCG(X) such that & preserves the components of X \ df, is identity outside of
Y, and the restriction to Y of f and g = hfh™! are two independent pseudo-
Anosovs. Since J(X¥) is normal in MCG(X), g € J(¥), and by construction,
supp(g) = supp(f). Thus (Pg)s = (Pg)r, but f and g do not have a common
power. O

4.4. Abstract commensurators of the Torelli group. We can now finally prove
Theorem 1.4. For a bounding pair y = {y1, y2} we use the shorthand 7, for the

bounding pair map Ty, T,,.".

Proof of Theorem 1.4. Let [] be an element of Comm J(X) representing the iso-
morphism of finite index subgroups

1[/2 G1 e G2.

Let y be a separating curve or a bounding pair and choose n in IN so that 7 is in
G1. By Proposition 4.12, T} is in Mg, and for gll g in_J\/[G1 such that (Pg,)s =
(PG,)ry, there exist integers i, j so that (7)/)" = g/. Since these conditions



Big Torelli groups 1397

are preserved by isomorphism, we have that y(7}}) lies in Mg, , Proposition 4.12
implies there exists a separating curve or bounding pair § and a nonzero integer m
such that (7)) = Tg".

At this point, and again with respect to the above notation, we obtain that v
induces a map

Ve T(X) — T(2),

Y —> 4.

We observe that ¥, is a simplicial map, since powers of Dehn twists and bounding
pair maps commute if and only if the underlying curves are disjoint. Moreover,
the map is also bijective, with inverse the simplicial map associated to the inverse
of Y1,

By Theorem 4.2, there exists an f € MCG(X) such that ¥.(y) = f(y) for
every separating curve or bounding pair y. Now, for any g in G; we have

YETre ™) =v@UTHV (™) = v(@TF, V(€™ =T)e i)

and therefore

_ -1y _ _
Ty o =V@Tye ) =V (T, = Ty

Therefore ¥ (g) f(y) = fg(y). By use of the Alexander method [13] we conclude
that ¥ (g) = fgf~'. This shows that every abstract commensurator of J(X) is
defined by conjugation by a mapping class of X, and in particular, so is every
automorphism of J(X).

On the other hand, suppose there exists an f in MCG(X) and a finite-index
subgroup H < J(X) such that conjugation by f induces the identity map on H.
For any separating curve or bounding pair y, there exists some m > 1 such that
T)" lies in H. Thus

= [T =TF,.
By [2, Lemma 2.5], fy = vy, and thus f is the identity by Theorem 4.2. This
completes the proof. |
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