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Abstract

In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do
is solve the Schrodinger equation for the molecules of interest. Unfortunately, the computational cost
of solving this equation grows exponentially with the number of electrons and for more than ~100
electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS)
equations of density functional theory (DFT) allow us to reformulate the Schridinger equation using
the electronic probability density as the central variable without having to calculate the Schridinger
wave functions. The cost of solving the Kohn-Sham equations grows only as N?, where N is the number
ofelectrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even
the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based
exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the
main variables, we discuss here how new methods can be developed that scale linearly with NV while
providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules?

Keywords: Density functionals; Electronic structure; Chemical reactivity.

Resumen

En cierta forma, la mecanica cuantica da solucion a todos los problemas de la quimica, lo unico
que hay que hacer es resolver las ecuaciones de Schridinger para las moléculas de interés.
Desafortunadamente, el costo computacional de resolver estas ecuaciones crece exponencialmente
con el numero de electrones y para mas de ~100 electrones resulta imposible resolverlas con
precision quimica (~2 kcal/mol). Las ecuaciones de Kohn-Sham (KS) de la teoria del funcional de
la densidad (density functional theory, DFT) permiten reformular las ecuaciones de Schridinger
usando la densidad de probabilidad electronica como la variable central sin necesidad de calcular
las funciones de onda de Schridinger. El costo de resolver las ecuaciones de Kohn-Sham solo crece
como N, donde N es el namero de electrones, lo que ha llevado a la inmensa popularidad de la DFT
en quimica. A pesar de esta popularidad, incluso las aproximaciones mas sofisticadas de las KS-DFT
llevan a errores que limitan el uso de métodos basados exclusivamente en la densidad electronica.
En este articulo se discute como pueden desarrollarse nuevos métodos que escalen linealmente con
N usando densidades de fragmentos como las variables principales en lugar de densidades totales,
asi como la forma en que estos métodos proveen una respuesta atractiva a la pregunta del subtitulo:
;cudl es la forma de los atomos en las moléculas?

Palabras clave: Funcionales de la densidad; Estructura electronica; Reactividad quimica.

Introduction

“What is the shape of atoms in molecules?” is a question without an answer. Atoms in
molecules do not have a real, independent existence. When we say that a water molecule
has two hydrogen atoms and one oxygen atom, what we mean is that an appropriate supply
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of energy can split the molecule into these three atoms. Each of these atoms, when isolated,
is spherical, but the ground-state electronic density of the water molecule is not simply
the sum of three spheres. However, it is approximately equal to the sum of three spheres
(Figure 1) and can be written exactly as the sum of three distorted spheres. Thus, the
question of the title may be vague, but it is not meaningless. All molecular information
(i.e.. what makes a molecule different from the simple sum of its isolated constituents) is
coded into a set of atomic density distortions.

There is no unique way of defining these atomic density distortions. In fact, there are
infinitely many ways in which one can decompose a given molecular density n (r) into
the sum of atomic-like functions n, (r) (here we use the subscript a to label atoms). For
example, Bader’s partitioning (Bader, 1990) based on the topology of the electron density
is a popular choice with merits and limitations that have been amply discussed (Nalewajski,
et al., 2000). In spite of the many possible definitions of atomic densities, there is a unique
set of densities {nq (r)} that sum up to n (r) while minimizing the sum of the atomic energies.
It is this special set of densities to which we turn our attention in this article.

The density functional theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham,
1965) establishes that any electronic property P of a molecule is a functional of its ground-
state electronic density P = P[n]. The uniqueness of the set {n, (r)} for a given density
allows one to understand molecular properties, in principle, as functionals P = P[{n, (r)}]
of that set. Decades of research in DFT have taught us how the total density # (r) can be used
as the main variable in molecular calculations, as explained briefly in Section II. Our group
is investigating how the atomic densities, as opposed to the total molecular density, may
be used as the main variables, which we discuss in Section III. This change of perspective
has advantages and disadvantages. The most obvious advantage is a significant lowering of
the computational cost of the calculations because instead of having to solve the N-electron
Schrédinger equation (a second-order differential equation on 3N coupled variables), only
a small number of independent equations has to be solved, each for less than N electrons.
A second advantage will be explained and illustrated in Section I'V: By focusing on atomic
densities rather than on total molecular densities, one can fix pervasive errors of density
functional approximations and significantly improve the accuracy of certain calculations.
A third advantage will be discussed in Section V: The chemical reactivity between two

LTI
e Frrrsssnnnnnng,
ot .,

Figure 1. Ground state density of a water molecule on the plane of the three atoms. Calculated using
Psi4 (Smith, et al., 2018) (Parrish, et al., 2017) with CCSD(T)/UGBS. The dotted line indicates a
density iso-contour.
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atoms or molecular fragments that approach each other is best described in a theory that
employs atomic (or fragment) densities as the main variables. On the downside, many of
the theorems and techniques that have been explored over the last six decades to describe
molecular systems are not directly applicable to the new set of variables, so entirely new
methods and approximations need to be developed. A growing community of researchers
working under the umbrella of embedding methods (Jacob & Neugebauer, 2014; Lee, ef
al., 2019; Sun & Chan, 2015; Nafziger & Wasserman, 2015; Niffenegger, ef al., 2019)
are pursuing this direction. We highlight here some of the recent developments.

The molecular density as the main variable

In the world of quantum chemistry, one is normally concerned with electronic hamiltonians
given within the Born-Oppeheimer approximation by:
A=T4+0,+[drv@a) (),

where T is the kinetic energy operator for N electrons, ﬁee the electron-electron repulsion
operator, v(r) the attractive potential generated by the nuclei, and 7i(r) the density operator.
The expectation value of the latter in the N-electron ground state y is the density n(r) = (y|
A(r)ly). but an accurate, explicit representation of y is unachievable for all but the smallest
systems. Ground-breaking work by Kohn, et al. (Hohenberg & Kohn, 1964; Kohn &
Sham, 1965) showed that it is possible to construct a theory that completely circumvents
the calculation of v so that any property, such as the ground-state energy E = (w|ﬁ|\p),
can be calculated as a functional of the density. The functional £[#n] is normally split into
the contribution from the nuclear potential | drn (r) v(r), and a universal functional F[n]
independent of v(r). In Kohn-Sham-DFT (KS-DFT), the most common formulation of
DFT, the functional F[n], is decomposed as:

Fln] = T[n] + 3 dr [ dr' 2252 4 By [n] @),

where T[n] is the kinetic energy for an auxiliary system of non-interacting eclectrons
with density n(r), the second term is the Hartree energy, and £ [r] is the exchange-
correlation (XC) energy functional, the only quantity that needs to be approximated in
practical calculations. We sometimes combine the Hartree and the XC-contributions into
one functional, E,,, [n], whose derivative with respect to the density is a potential, v, . (r)
= OE,, [n]/on(r). What one solves in practice are the KS equations:
(=32 + v5(1) ¢i(r) = € (r) 3,

with v(r)=v(r) + vuxe (r) leading to Y, [¢(r)]*= n(r) where the sum goes over the occupied
orbitals ¢,(r). An ample literature exists documenting the successes and failures of different
approximations to E,[n]. We point the reader to recent reviews (Pribram-Jones, et al.,
2015; Wasserman, ef al., 2017; Yang, 2012) and stress that some of the most pervasive
failures of approximate KS-DFT appear when stretching chemical bonds (Dutoi, ef al,
2016; Makmal, et al., 2011; Komsa & Staroverov, et al.,2016). The large errors observed
in these cases encompass both fractional-charge (or delocalization) and fractional-spin (or
static correlation) errors (Cohen, et al.,, 2008a; Cohen, et al., 2008b; Mori-Sanchez, et
al., 2008), which are ultimately due to the inability of the approximate X C-functionals to
reduce the molecular density to the correct atomic densities (or spin-densities) when bonds
are stretched. We illustrate both types of errors below for the local density approximation
(LDA), the simplest and earliest approximation for £, [n] on which the modern ladder of
approximations is built (Perdew, et al, 2001).

Fractional-charge error

Consider stretching Hj. The true ground-state density has left-right symmetry, with !/2
electron on the left atom and '/2 electron on the right atom. The physical state at infinite
separation must break this symmetry and produce a neutral hydrogen atom on one side
and a bare proton on the other. Both solutions (broken-symmetry and symmetric) should,
therefore, have the same energy at infinite separation, but this feature is not achieved by
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the LDA or other approximations built upon it. The LDA energy of an H atom with half an
electron is much lower than what it should be (half the energy of infinitely stretched Hj),
which leads to the incorrect binding shown in dashed pink in figure 2.

Fractional-spin error

Now consider stretching neutral H,. The issues of the previous paragraph are no longer
a problem because each atom has exactly one electron at infinite separation. However,
an analogous problem arises for fractional spins. The true-ground state of H, is spin
unpolarized and must remain so at very large separations in the absence of environmental
perturbations. Yet, an isolated H atom is spin-polarized so the energy of two spin-polarized
H atoms should be identical to that of two spin-unpolarized H atoms (each having half-spin
up. half-spin down). This condition is again violated by the LDA leading to the significant
overestimation of the binding as shown in dashed pink in figure 3.

These errors, illustrated here for the two simplest open-shelland closed-shell molecules,
are ubiquitous in quantum chemistry. Every time a bond is stretched, as in transition states
along chemical reactions, a combination of these errors can creep into and contaminate the
DFT calculations. Cancellation between the two errors can occur sometimes (note they
have opposite signs) and lead to accidentally accurate results for complex systems, but
predicting such cancellations is generally extremely difficult and not something DFT users
want to or should rely on. Results from approximate KS-DFT calculations are thus often
suspect. A theory that uses atomic densities as the main variables, as opposed to the total
molecular density, has the potential to fix such errors. Furthermore, it has the potential to
provide information about individual atomic density distortions along with a chemical
insight into the reactivity of individual fragments.
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Figure 2. Electronic binding energy of H;. Exact (solid, blue), KS-LDA (dashed, pink), and OA-
LDA(dash-dotted, yellow) from (Nafziger, 2015), as explained in Sec.IV.
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Figure 3. Electronic binding energy of H,. Exact (solid, blue), KS-LDA (dashed, pink), and OA-
LDA (dash-dotted, yellow) from (Nafziger &Wasserman, 2015), as explained in Sec.IV.
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Atomic densities as the main variables

As mentioned in the Introduction, there is a unique set of atomic densities {n, (r)} that
minimizes E,= 3, E, [n,] while satisfying the density constraint:

2a Mg (1) = n(r) 4).

The atomic energies E, [n,] in the above definition of E are not true ground-state
energies but rather given by E, [n,] = F [n,] + | dr v (r) n,(r), where v(r) is the o-atomic
potential. The constraint of Equation (4) prevents n,(r) from being the ground-state density
of the corresponding v,(r). However, each of the n (r) can be shown to be the ensemble
ground-state density of v,(r) + v,(r), where v,(r) is a unique c-independent potential. More
specifically, the partition potential theorem (PPT) (Cohen & Wasserman, 2006) establishes
the following: If a molecular potential v(r) is decomposed into atomic potentials {v (r)},
ie. v(r) =Y, v(r), then, for a set of fragment occupations {n,} there is a unique local
potential v,(r) such that, when added to the individual v (r)’s, leads to ensemble ground-
state densities {n,} summing up to the correct total density n(r).

Simple Hlustration of the PPT

Figure 4 provides the simplest illustration of this theorem. Consider first one electron
moving in the 1D-potential v,(x) (dotted grey line in the middle panel). Its ground-state
density, when isolated, is 7@ (x) (dotted orange line in the upper panel). Similarly, one
electron in v,(x) has density 7, (x). Now consider two non-interacting electrons in the
double-well potential v(x) = v,(x) + v,(x) (dashed yellow line in the middle panel). The
density of this system, n(x), is not equal to n®(x) = n,9(x) + n,(x), but it is close to it: n(x)
~ n%(x), especially if v,(x) overlaps weakly with v,(x). The PPT establishes that there is
only one potential v,(x) (purple line in the middle panel) such that, when added separately
to v,(x) (blue line in the lower panel) and v,(x), leads to ground-state densities n,(x) (blue
line in the upper panel) and n,(x) that differ from »,”(x) and 7, (x) in just the right way, so
that n,(x) + ny(x) = n(x). The theorem applies to any number of interacting electrons in 3D
and to any number of fragments (Cohen & Wasserman, 2006).

The algorithm to calculate v (r)

Several algorithms have been developed to solve the constrained optimization problem
involved in calculating v,(r) (i.e., minimizing £, [n,] under the constraint of Equation (4)).
The algorithm described here is perhaps conceptually the simplest:

1. Choose an approximation for £, [n], solve the KS equations in Equation (3) for the
isolated atoms, and find their self-consistent densities {n,®(r)} and corresponding
KS-potentials {v@,(r)}.

2. Build an approximate molecular density as n?(r)= > n, @ (r).

3. Invert the KS equations to find the effective KS-potential v ®(r) corresponding
to n” (r). For the exact density, this potential would be identical to v(r) + v, .
(r). but for the approximate density it is not. The difference between the two,
therefore, can be used as a correction to generate an improved atomic KS potential
vO() = v0r) + v (1) + v, [ (1) - v,(r).

4. Solve the KS equations for the atoms again with the improved atomic KS potential
and repeat until self-consistency is achieved. If convergence is achieved after
iterating & times, then the atomic KS potentials v#(r) are given by v, (r) + v,(r)
+ Ve [1,57V](r). The partition potential emerges as an a-independent piece to be
added to the a-nuclear potential.

Just as for the model system of figure 4, the main feature of v,(r) in real diatomic
molecules is an attractive well in between the nuclei. The presence of this well distorts the
density of each isolated atom by pulling it toward the bonding region. There are generally
also positive plateaus in v,(r) due to kinetic effects (Nafziger & Wasserman, 2014)
(contributions from the functional derivatives of T, [n,]) and a singularity at the nuclei
whose strength is proportional to the value of the density of one atom at the location of the
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other (Nafziger & Wasserman, 2014), modifying the isolated-atom density of the nuclei
according to Kato’s cusp condition. This is our partial response to the question without an
answer: “The shape of atoms in molecules is determined by v (r).”

Although we exemplify the use of Partition-DFT with systems composed of two atoms,
it must be noted that the framework is not limited to atomic densities. Any meaningful
fragmentation can be applied, such as individual molecules in dimers or functional groups.
This selective fragmentation not only has conceptual benefits but also computational
because it allows regions to be treated with different levels of theory so that the most
reactive regions are calculated using higher-level methods, as is the common practice in
WFT-in-DFT embedding (Lee, et al., 2019). This is consistent with the goal of the theory
to lower the computational cost while still accurately describing the relevant properties of
a larger system.

Fixing errors of approximate XC-functionals

Now define the partition energy £, as the difference between the total energy £ and the sum
of atomic energies £, Using a bold n(r) to denote the set of atomic densities, n(r) = {n, (r)},

Ep[n] = E[n] — Ef[n] )
with the KS energy-decomposition of Equation (2), the partition energy is given by:
Ep[n] = 7% [n] + B3¢ [n] + Vi [n] (©),

where the “nad” superscript is used to indicate nonadditive quantities, i.e., the difference
between the total and the sum of the fragments. Thus, T84 [n] = Ty[n] — Xq Te[nel,
ERd [n] = Eyxc [n] — Yo Euxc [N, and the last term stands for the non-additive external
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Figure 4. Graphic example of simplest PPT case for 2 non-interacting electrons in 1D potentials of
the form v, ,(x) = cosh?(x + a), witha= 2.5. Upper panel: The gray line magnifies the atomic-density
distortion n,(x) - n,(x)° by a factor of 5 to highlight what occurs upon formation of the chemical
bond: The density of the isolated atom is pulled towards the bonding region. Middle panel: Left
atomic potential v,(x) (dotted), total “molecular potential’ (dashed), and partition potential (solid,
purple). Bottom panel: Comparison of the isolated atomic potential v,(x) and the effective potential
vi(x) +v,(x) for which the polarized density n,(x) is a ground-state density.
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(nuclear) energy given by Vi34 [n] = [ drn(r)v(r) — X, [ drng (r)v, (r). We have again
combined the non-additive exchange-correlation and Hartree terms of Equation (2) into
E]‘}‘;‘(%. For a given approximation to £, .[n], the algorithm described in the previous section
exactly reproduces the results of the corresponding KS calculation including all of its errors.
It can be seen (Elliot, ef al, 2010) that the partition potential is the functional derivative
of the partition energy with respect to any of the atomic densities at the minimum. Since
Vh3d[n] is known exactly, the key to improving over Kohn-Sham is to propose adequate
approximations for the other two components of Equation (6), T#2¢ [n] and EJ3 [n]. We

discuss each of these separately.

Approximating ERd [n]
The origin of common errors of approximate XC functionals is well understood especially
for homonuclear diatomic molecules (Cohen, et al., 2008b) (see discussion above for H,
and H}) . For these and other molecules composed of two fragments, 4 and B, we have shown
how a simple overlap approximation (OA) to E3% [n] can fix both errors simultaneously
(Nafziger & Wasserman, 2015), a result that no approximate XC functional can achieve
with comparable accuracy within KS-DFT. The OA is defined by:
Efyc®* [n] = ER* [n] + S[n]EZ¢ [n] + (1 = S[n])AER* [n] (),
where S[n] is a measure of the overlap between the two atomic densities:
S[n] = erf(2 [ drVn,(r)ng(r)) (8).

The term AEﬂad [n]in Eq.(7) is a correction to the non-additive Hartree contribution,
so that both fractional-charge and fractional-spin errors are suppressed as the molecule is
stretched (Nafziger & Wasserman, 2015). The results shown in yellow in figure 2 and
labeled “OA-LDA” go a step further (Nafziger, 2015) and replace ER28 [n]in Equation (7)
by the non-additive exact-exchange functional canceling completely the self-interaction
error and leading to the exact E,[n] in this case. The only deviation from the exact binding
here is due to the effect that the slightly incorrect LDA fragment densities have on £,[n].
We stress that the correct energy is obtained here as the molecule is stretched without
symmetry breaking: The ground state of Hj retains left-right symmetry and the ground-
state of H, remains a spin-singlet throughout the entire range of separations. This is a
proof-of-principle demonstration that it is possible to use a simple functional of the density
for the atoms (not for the molecule) while approximating EJ3% [n] to fix the underlying
errors due to fragmentation. The route is complementary to the efforts of many others to
develop sophisticated XC-functionals of the total density (Hedge, 2017; Mardirossian &
Head-Gordon, 2017; Sun, ef al., 2015; Yu, et al., 2016; Zhang, 2018).

Approximating T"24[n]

Even with a robust and accurate functional for EJa [n] (based perhaps on future generaliza-
tions of the OA), an explicit approximation for T4 [n] is needed if one wants to reach the
goal of linear-scaling calculations. Step 3 of the algorithm described in Section III relies
on iterative inversions that make the method computationally impractical (at least, not
more efficient than regular KS-DFT). The most obvious way to avoid such inversions
is by resorting to orbital-free DFT (OF-DFT) (Chen, et al., 2016) and approximate
T34 [n]as an explicit functional of the set of atomic densities. Kinetic-energy functionals
are famously difficult to approximate and state-of-the-art functionals are still far from
reaching chemical accuracy, but we are looking for approximations to the non-additive
part of Tg[n], which is altogether a different challenge. The non-interacting kinetic energies
for the atoms are still calculated exactly via orbitals and we wish to approximate the
much smaller T2 [n]. Recent work shows that this approach is promising. For example,
writing T [n] = [ drn(r)t2d (r), an expression for the non-additive kinetic energy
density t229 (r) of the type

t22d (r) = @[]t () + (1 — QD™ (r) )
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has been shown (Jiang, ef al., 2018) to provide an excellent approximation to the exact
T22d ip covalent o-bonds. In Equation (9), t2*4"YY (r) is the von Weizsicker kinetic-energy
density (Weizsiicker, 1935), which is exact for one-orbital systems, t;‘ad'TF(r) is the
Thomas-Fermi kinetic-energy density (Fermi, 1927; Thomas, 1927), exact for uniform-
density systems, and Q[n] is a switching functional whose role is analogous to that of
S[n] in Equation (7), as described in detail in Jiang, ef al., 2018. It determines the spatial
regions where a one-orbital description should dominate.

Embedding methods provide the most promising route to truly calculate ab-initio
electronic structures of large, complex, molecular systems (Yao, ef al., 2019; Lee, et
al., 2019; Mi&Pavanello, 2020). Although Partition-DFT has been applied so far only
to model systems (Elliot, ef al., 2010), diatomic molecules (Nafziger & Wasserman,
2014) and small hydrogen-bonded clusters (Gomez, et al., 2017; Gomez, et al., 2019), an
ongoing implementation into the Psi4 package (Chavez, et al., 2020) will allow more for
more widespread application. An accurate and explicit functional of the fragment densities
for T4 [n] will make Partition-DFT amenable to linear scaling implementations and, thus,
applicable to systems of ever-larger complexity.

Towards a quantum theory of chemical reactivity

We glossed over one key feature of the PPT of Section III. The minimization of £,[n] is
performed under the constraint that the n,(r) add to n(r) without individual normaliza-
tion constraints for the atomic densities. The n,(r) can integrate to fractional numbers
of electrons N, as long as the total density integrates to the correct number of electrons,
ie., Y, N, = N. A sensible interpretation of fractional number densities is provided by
an ensemble description where the fractional number arises as an ensemble average
over integer-number components. One result of the extension of DFT for fractional
electron numbers (Perdew, ef al., 1982) is that for N, between the integers p,and p,,,,
the minimizing density (for the exact E, ) is given by n,(r) = (1- @,) Tpo(F) + @ 1,5,,(T),
where 0 < w, = 1. The minimization of £, [n] is to be performed over the set of the
{w,} leading to possibly fractional-number densities. One immediate advantage of such
fractional densities is that chemical reactivity indices involving derivatives of various
properties with respect to the electron number become sharply defined for the atoms
(Geerlings, et al., 2003; Geerlings, et al., 2014). For example, Fukui functions are given
directly by

fah () =% =n, ., () =n, (r) (10)

as normally defined (Parr & Yang, 1984), but here the bordering-integer densities include
the polarizing effect of the partition potential which accounts for the detailed environment
of the atom in the molecule. Similarly, the {w,} are those that lead to electronegativity
equalization (Cohen & Wasserman, 2006; Parr, et al., 1978).

Perspective

The approximations of Equations (7) and (9) need to be extended to be applicable to realistic,
complex chemical systems. The roads to robust approximations of general applicability
and to efficient and accurate linear-scaling algorithms will be long and winding. Therefore,
one might wonder whether these roads are worth taking in the first place, especially given
that: (a) As computers get more powerful and machine-learning conquers the quantum-
chemistry landscape, KS-DFT calculations with sophisticated approximations to E, . will
become applicable to an ever-expanding frontier of chemical complexity; (b) several other
fragment-based (Gordon, ef al.,, 2012) and embedding methods (Jacob & Neugebauer,
2014; Lee, et al., 2019; Sun & Chan, 2016) are enabling multi-million atom and multi-
scale calculations where individual fragment densities are of little use, and (c) quantum
computing, when finally here, will allow for the direct calculation of many-electron wave
functions rendering DFT-based methods obsolete.
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Our current take on these three valid concerns is the following: (a) Further improve-
ments of approximate XC functionals will continue via two directions: A non-empirical
approach in which more exact constraints will be incorporated, especially perhaps in the
framework of Generalized-Kohn-Sham (Kummel & Kronik, 2008; Seidl, ef al., 1996),
and an empirical approach exploiting large data sets of chemical information through
machine-learning tools (Seino, ef al., 2018; Snyder, et al.,, 2012). All of these positive
developments can be readily incorporated into the framework described in Section III.
Furthermore, as mentioned toward the end of Section III, the fragments do not need to be
atoms but could be monomers, functional groups, protein backbones, etc., and calcula-
tions will greatly benefit from improved approximations to £, ; (b) there is plenty of room
in quantum chemistry for more than one type of embedding method. When minimizing
the total energy is the only goal, our approach is admittedly not essential. When, however,
besides minimizing the energy one is interested in examining the individual fragment
density distortions or understanding the reactivity of one fragment in a specific chemical
environment, then our approach offers a unique, useful perspective; (¢) yes, someday
quantum computers will be ready to solve the many-electron Schrodinger equation for
large molecules. However, one will always want to understand the results, which involves
determining how individual atoms or fragments in the molecule are distorted due to the
interactions with neighboring atoms or fragments. The tools described here allow us to
accomplish precisely this, regardless of the type of computers employed.
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