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Abstract With the increasing availability of GPS trajectory data, map construction
algorithms have been developed that automatically construct road maps from this
data. In order to assess the quality of such (constructed) road maps, the need
for meaningful road map comparison algorithms becomes increasingly important.
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Indeed, different approaches for map comparison have been recently proposed;
however, most of these approaches assume that the road maps are modeled as
undirected embedded planar graphs.

In this paper, we study map comparison algorithms for more realistic models
of road maps: directed roads as well as weighted roads. In particular, we address
two main questions: how close are the graphs to each other, and how close is
the information presented by the graphs (i.e., traffic times, trajectories, and road
type)? We propose new road network comparisons and give illustrative examples.
Furthermore, our approaches do not only apply to road maps but can be used to
compare other kinds of graphs as well.

1 Introduction

Road maps have traditionally been constructed by performing costly and time-
consuming land surveys. With increasing availability of GPS trajectory data (e.g.,
as in [25]), map construction algorithms have been developed that automatically
construct road maps from such data sources. In order to assess the quality of
such (constructed) road maps, meaningful comparison of different road maps is
important. Indeed, different approaches for map comparison have been recently
proposed in the literature [1, 2, 7, 20]; however, most of these approaches assume
that the road maps are modeled as undirected embedded graphs.

In this paper, we use topology to inform graph comparison. As higher-ordered
topological features are not present in graphs and connectivity of graphs is well-
studied, we focus on the role of one-cycles (i.e., loops) in graphs. One-cycles play
a fundamental role in the combinatorics of the road network (e.g., in defining the
options available for navigation). In some cases, we may focus on the one-cycles
defined by city blocks; that is, loops in planar embedded graphs that contain no
graph edges inside the loop. More generally, we can allow for any set of (directed)
one-cycles.

After presenting related work in Sect. 2, we investigate several suitable filtrations
on graphs in Sect.3, and we present our approach for comparing two different
graphs in Sect. 4. Our goal is to be able to determine how close the graphs are to
each other and to quantify the similarity of information presented in the graphs
(such as traffic times or road type).

2 Related Work

When considering graph comparison from a graph-theoretical point of view,
the obvious approaches to model the problem are NP-hard, such as subgraph
isomorphism or graph edit distance [11, 14, 26]. However, these generally require
one-to-one mappings of the graphs and do not take any geometric embedding into
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account. For comparing road maps, distance measures have been proposed that
generally model the maps as embedded undirected graphs; see [3, 4, 7] for surveys
as well as experimental comparisons and quality assessments. The (directed or
undirected) Hausdorff distance can be used to compare the sets of points covered by
each graph [5], but this does not take any structural information of the graphs into
account. Other distance measures have been proposed that compare random samples
of shortest paths [20, 22] or all paths [2] in the street maps. In order to compare more
general topological information, Biagioni and Eriksson developed a sampling-based
distance measure [7] and Ahmed et al. introduced the local persistent homology
distance [1]. Still, few of these algorithms have theoretical guarantees, and most do
not deal with weighted or directed graphs. This paper fills the gap by proposing
ways we can compare weighted and directed graphs using topological information
found via the intrinsic distance measure in the graph. The information extracted
can be local or global in nature; see the swatch filtration in Sect. 3.1 and the AMD
filtration in Sect. 3.2, respectively.

2.1 Weighted and Directed Graph Comparison

Any graph comparison approach has to map features from one graph to the other in
order to define a distance measure. An example is subgraph isomorphism, which
is NP-hard in general but can be solved in polynomial time for planar graphs
[16]. A connectivity-based dissimilarity measure is used in [30], where the authors
generalize a standard distance metric in graph theory to the context of directed
weighted graphs. In the case where there is a bijection ¥ between the nodes in
the two graphs G| and G2, one can define a metric dependent on ¥ by comparing
the distance between nodes 7, j in G and nodes ¥ (i), ¥(j) in G». Explicitly, this
metric, called the total distortion, is defined as follows:

dy (G, G2) = i jeG,ldG, (i, j) —de, (W (i), ¥ (j))I

To obtain a distance between the graphs not dependent on the bijection, we consider
the minimum distance over all bijections ¥:

v(G1, G2) = mingdy (G, G2)

Since these paths are now taking into account the distance as defined in the directed
weighted graph setting, this metric encodes that data as well.

Another approach is to use random walks, as in [21, 29], where two graphs G|
and G are compared by computing random walks of a fixed length in the product
space G| x G2, and then computing the so-called label sequence kernel (here, labels
are referring to the edge labels), which can formally be expressed as:

K(G1,G2) := )"y k(hi, h2)p(|Gp('|G),
hy  hs

where k (1, h7) is an inner-product kernel between weighted edges i1; and hy in G
and G2, and p(h|G) is the probability of & being a random walk in G.
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2.2 Persistence-Based Comparisons

Persistent homology is a tool that describes the structure of a point cloud at multiple
scales (more generally, of a filtered topological space). Moreover, the persistence
diagram (a multi-set of birth—death pairs) can be computed in matrix multiplication
time using basic linear algebra. Next, we briefly introduce the relevant concepts.
For more details on the fundamentals of persistent homology, we refer the reader
to [8, 10, 15, 17, 23], and to [19, 24] for algebraic topology.

Intuitively, the zero- and one-dimensional homology groups, denoted as Hy(X)
and H; (X), respectively, correspond to path-connected components and loops of X.
(In this paper, we are not interested in two- and higher-dimensional homology, as
the data we consider are graphs). In some examples, we work with the relative
homology groups Hy (X, A) (for A € X), which is equivalent to Hy(¥X/A) when X
is a simplicial complex and A is a subcomplex of X [19, Prop. A5]. The common
setting for persistent homology is when we have a finite sequence of topological
spaces connected by inclusions, called a discrete filtration. If X is embedded in R,
we could, for example, use the height filtration where X; = {(x, y) € X s.t. y < t}.
Here, t is the filtration parameter and is colloquially referred to as time. Applying the
homology functor to this sequence, we obtain a sequence of vector spaces connected
by homomorphisms fkf’j HR GG) — Hk(Xj) fori < j.Persistent homology tracks
the so-called birth and death events of X; as t ranges from —oo to co. These birth
and death times can be paired, resulting in a set of birth—death pairs that can be
plotted in R? in a persistence diagram, or plotted as stacked intervals in a barcode
plot.

For two diagrams D and D, a well-defined and commonly used distance is the
bottleneck distance:

Woo (D1, D7) = ; inf sup ||lx — f ()l (H

H ’Dl—"Dg .YGD]

where f is a bijection between D; and D5 [15, Ch. VII]. This distance between
diagrams is Lipschitz-stable both for general filtrations [9, 13] and for the local
homology filtrations [1, 6]. More generally, one may use the Wasserstein distance
between diagrams, W,’,’(DI.DZ) = infy er’D, |[[x — f(x)||”, under which the
space of persistence diagrams is complete and separable but not a Hilbert space
(which is needed for many machine learning and statistical tools).

For graphs (or any subset of a metric space), one approach is to utilize local
persistent homology to generate a distance metric [1]. The local persistent homology
distance computes bottleneck distance between the local persistence diagrams of G
and G’ over a common finite open cover Y = {U;,Us, ..., Uy} of the domain
of interest (e.g., over disks of a fixed radius centered at lattice points) [1]. Here, the
local persistence diagram over U;, denoted D(G, U; ), corresponds to the persistence
module {Hy(G;, G; — U;)}; and captures the local homology of the road networks
as seen from the set U;. A measure of distance is obtained by taking the weighted
average of local distances over U:
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dipn(G, G') := ) ouWx(D(G,U), DG, V),
Ueld

where @y is a weight function. In Sect. 4.1, we extend this definition to a set of
paired persistence diagrams.

Recently, the TDA community has made progress in using a persistence-based
approach for comparing weighted digraphs. In [28], Turner defined two filtrations
of directed graphs. In particular, geodesic paths are used to define an ordered tuple
(OT) filtration. Persistent homology with the OT filtration has the same persistent
homology as the Rips filtration, when the underlying graph is undirected. In another
setting, directed graph homology introduced in [18] has been extended to the
persistence setting in [12].

For the comparison of weighted graphs, we introduce the idea to use corre-
spondence between cycles. When comparing different data on the same graph,
constructing such correspondences is trivial. In applications that compare road
maps, correspondences may be obtained via mappings between city blocks or
landmarks. While, as a general theoretical problem, constructing the best correspon-
dence might be difficult, this work is motivated by a special setting: detecting and
quantifying changes in road networks. In this case, the graph changes slowly over
time in predictable ways (roads opening / closing is common, but roads moving or
shifting is uncommon); thus, most underlying road network cycles stay the same.

3 Filtrations

In this section, we introduce three different filtrations from which we can compute
persistence diagrams in order to compare two directed and / or weighted graphs in
Sect. 4. Some of the filtrations below require an additional parameter choice (e.g.,
choice of basepoint), which has some choice involved; see Sect. 5.

3.1 Swatch Filtration

Let G = (V, E) be a graph with weight function f: E — R-( defined over the
edges. To define the swatch filtration, we start with a choice of initial vertex (or root)
v € V and define G; = G,(f, v) to be the subgraph of G induced by the set of all
(possibly directed) paths in G with initial vertex v and length less than or equal to 7.
The length of a (directed) path p = (ey, .. ., ey) in G with respect to f is defined to
bels(p) = X f(e;).If G is a directed graph without an accompanying function,
we assume that the unit weights and so the length of a directed path is simply the
number of edges in that path. We note here that these subgraphs G, are the so-called

swatches defined in [27]; we propose using the radius threshold ¢ as a persistence
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(e) (f) (g)

(h)

Fig. 1 Example of a swatch filtration of the directed weighted graph G using v; as the root node.
The faces of the planar graph are labeled with the cycle that bounds the face. Notice that UG, = G
fort = 25, as the set of all paths of length at most 25 covers G. (a) Weighted digraph G. (b) UG,
for2 <t <4.(c) UG, ford <t < 7.(d) UG, for7 <t < 8. (e) UG, for8 <t < 9. (f) UG; for
9 <t < 13.(g) UG, for 13 < t < 25. (h) Resulting barcode for G

parameter in order to define a persistence barcode for each v € V. We note that this
diverges from [27], where histograms of swatches of a fixed radius (called clothes)
were used to compare dynamical processes.

Example 1 (Swatch Filtration) In Fig. 1, we show an example of the swatch
filtration with the choice of vy as the initial vertex. Notice that the homology of
this graph is generated by the following cycles: a1, a2, @3, and a4. These cycles
are minimal in this embedding, as each has an empty interior. In subfigures (a)—(g),
we see the union of paths in G,, denoted by UG,. The first value of ¢ for which the
cycle ) appears is t = 8, so the birth time b(«1) = 8, as shown in the barcode in
Fig. 1h. Notice that since no two-cells are introduced, no one-cycles ever die in this
filtration.

The swatch diagram has two potential use-cases. First, a natural choice for the
initial vertex vy might exist (e.g., the vertex represents a landmark such as the main
train station or a baseball stadium). In this case, the swatch diagram can be used to
compare the road networks from the perspective of the landmark. On the other hand,
a choice of a landmark is not always clear, and different landmarks can create vastly
different swatch filtrations; see Example 2.
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Fig. 2 The swatch filtrations constructed from different initial vertices (basepoints) have different
barcodes. The edges are not drawn to scale. (a) Undirected graph G with edge weights. (b) Barcode
using v| as initial vertex. (¢) Barcode using vy as initial vertex. (d) Barcode using vs as initial vertex

Example 2 (Different Basepoints) The birth times of the cycles depend on the
choice of initial vertex, which means that the distance based on the swatch filtration
is sensitive to choice of basepoint. In this example, we calculate the birth times for
the cycles in Fig. 2, starting at three different vertices: vy, v4, and vs, resulting in
three different barcodes.

3.2 Average Minimum Distance

To avoid the arbitrary choice of an initial vertex as we encountered above, we
consider a second filtration using the average minimum distance (AMD) to each
of the other vertices.

Definition 1 (Average Minimum Distance) The graph geodesic distance (or the
minimum distance) from vertex v; to vertex v; is defined as: d(vi,v;) :=
min,{€(p)}, where p ranges over all possible (directed) paths between v; and v;.
The degree-k AMD, AMDy: V — IR, of vertex v; is the average of the minimum
distances to all of the other vertices:

’ 1 .
AMD;:,(U,’) = m Z: (d(l,',‘, Uj))k.
v F;

We define Gy to be the empty set and G, to be the subgraph of G induced by the set
of all vertices of AMD less than or equal to ¢.
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(a) (b) (c)

Fig. 3 Example of an average minimum distance (AMD) filtration for the graph found in Fig. 1.
We calculate the AMD for vy as (7 + 3 + 3 +4)/4 = 4.25, so v| appears in G, when t > 4.25.
Likewise, we have AMD; (1) = 6.5, AMD;(v3) = 3.0, AMD;(vy) = 3.0, and AMD| (vs) = 4.25.
Notice that G, = G forall t > 6.5. (a) G, for3 <t < 425.(b) G, for4.25 <t < 6.5. (¢)
Resulting barcode

We note here that AMDy, is related to the eccentricity function:

1

ECC(v;) '= ——— max d(v;, v;) = lim AMDg(v;).
(vi) V=1 vy vy (v _1) ko0 k(vi)

In other words, the eccentricity of vertex v; is the maximum geodesic distance from

v; to any other vertex in the graph. On the other hand, the function AMDy (v;) is the

weighted average of the minimum distances to every other vertex in the graph, and

limits to the eccentricity.

Example 3 (AMD Filtration) In Fig.3, we use the AMD filtration of the graph G
from Fig. 1. The AMDs of the vertices in G are AMD|(vy) = 5.25, AMD;(vy) =
5.25, AMD| (v3) = 4.75, AMD(v4) = 7.25, and AMD(vs) = 8.

3.3 Killing Cycles

The filtrations described above do not include higher-dimensional cells; hence,
every cycle lives forever. In order to decrease the complexity of the homology
groups, we need to either delete edges or add two-cells. We construct a cone
vertex ¢ at time zero with an edge connecting it to the initial vertex for the swatch
filtration (or the first vertex added for the AMD filtration). Then, for each edge
e = (vi,vj) € V x V, we add the (unoriented) edges (c, v;) and (c, v;) along
with the triangle A = (c, v;, v;) at the parameter value max{c £y (), appear(e)}, for
some constant ¢ € R-o and where appear(e) is the first parameter containing e in
the filtration. So, the additional simplices we add at parameter ¢ in the filtration are:

C ={c}U{(c,v), (c,w), (c,v,w) | (v,w) € G, and ¢ €s(v, w) < t}.
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Thus, we are considering the filtrations of the form (G, := G, U C,}, where G,
is either the swatch or AMD filtration. The effect of adding these simplices is as
follows: In the swatch filtration, cycles must be longer for larger values of ¢ in
order to be seen from the initial vertex, which intuitively makes sense. In the AMD
filtration, the lengths of the cycles in G, will be at least %

4 Comparing Data on Graphs

Given two road networks as directed graphs, both embedded in a compact subset of
IR2, we want to define a topology-based distance metric between the two networks.
See Sect. 2 for related work and a discussion on the difficulty of this problem. We
start with a simplified problem: to develop a method for measuring distance between
a graph G = (V, E) with two different annotations, such as two different weight
functions on the edges f, g : E — IR or two different directed graphs with the same
underlying undirected graph.

4.1 Paired Analysis

For each v € V, we compute two persistence diagrams D, (f) and D,(g),
corresponding to annotations f and g, respectively. Thus, we can mirror the
approach of [1] for aggregating paired diagrams (see Sect.2) in order to compute a
distance between annotations f and g:

diic (f. 8) =Y _ 0y Woe (Do (). Dy ().

veV

where w, is a weight function on the vertices of G, assumed to be the uniform
weight 1/|V], unless otherwise stated. Since the underlying graphs are exactly the
same, we can construct an even more sensitive distance between filtrations G, ( f, v)
and G, (g, v), which we describe next.

4.2 Birth-Birth Diagrams

Using the swatch and AMD filtrations from the previous section, we notice that
these filtrations depend only on the intrinsic information on the graphs, whether this
information is given by functions (such as f, g) or by direction assignments to the
edges. Furthermore, each complex in the swatch and AMD filtrations is a subgraph
of G, and all one-cycles have infinite persistence. Rather than looking at persistent
homology as the traditional birth-death diagram, we designate a special subset of
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7
bg (br(a), by(ax))

bf

Fig. 4 A birth-birth diagram

cycles A € H (G) of interest (e.g., A could be a set of generating cycles). For
each cycle in A, we have two birth times (one for each filtration). We use the two
birth times of the cycles to develop a distance measure between the two different
annotations, and we visualize this information in a birth-birth diagram; see Fig. 4.

More formally, let G = (V, E) be a directed graph, and let f, g: E — R>( be
two annotations that we wish to compare. We filter the paths p in G by this length
£(p) (or, alternatively, by one of the filtrations defined in the previous section),
and say that the minimum distance necessary to complete a cycle @ = (vy, ..., Uy)
is computed by considering all possible ways to break the cycle into two connected
subpaths. More explicitly, we compute this minimum as:

bf(a) := mi {max{ef(a,-',-),ef(aj,,-)}},

n
vi,vj e

where «; ; is the subpath of & from v; to v;. (Using either the swatch or AMD
filtration, we can define b ¢ () to be the minimum parameter ¢ such that @ € G;.)
We note that by (a) is well-defined.

To compare the intrinsic information on a graph G given two annotations
f.g: E — IR, we begin by choosing a subset of cycles A € H;(G); for example,
we could use a set of generating cycles. For each « € A, we compute the birth
times by (ar) and by (). Thus, we have two paired sets of birth times for each cycle
in A. We visualize this information in what we call the birth-birth diagram, where
the birth for the filtration corresponding to f is the x-coordinate and for g the
y-coordinate; see Fig.4. We then define the distance between the two annotated
graphs to be the total L, -distance between points in the birth-birth diagram and
the diagonal y = x; in other words, we compute

D (G, ), (G,g) = Z [1bf (i) —bgl@i)lloc-

ai €A

We note here that sometimes it may be convenient to first normalize the parameters
so that ¢+ = 1 corresponds to the end of both filtrations.
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e I
L +—+—+
16 m u w 20 0

(c) (d) (e)

Fig. 5 Example of two swatch filtrations derived from two different weights on the same
underlying graph. Here, we use vg as the root vertex to construct both filtrations. The distance
between these two graphs is 10 =3 +0+ 1+ 1 + 5. (a) Weighted graph G. (b) Resulting barcode
for G. (¢) Weighted graph G’. (d) Resulting barcode for G'. (e) Birth-birth diagram

Notice that this construction considers a single graph with two different anno-
tations. These techniques can be extended to analyze two annotations on different
graphs (G, f) and (G’, f’). To do so, rather than starting with A € H;(G), we
start with a correspondence C C H;(G) x H;(G’). Given such a correspondence
between cycles, we proceed as above to plot a point in the birth-birth diagram for
every (o, @) € C.

4.3 Examples

This section provides enhanced examples to clarify some of the concepts presented
above.

Example 4 (Birth—Birth Diagram for Two Weighted Graphs) In Fig.5, we give an
example of two swatch filtrations from the same undirected graph but with different
weight functions, and the corresponding birth-birth diagram. Here, the filtrations
use vg as the root vertex.

Example 5 (Birth—Birth Diagram for Two Directed Graphs) In Fig. 6, we give an
example of two filtrations from the same underlying graph with the direction of one
edge changed, and the corresponding birth-birth diagram.
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(d) (e)

Fig. 6 Example of two swatch filtrations starting at v; on two weighted directed graphs, and the
resulting birth-birth diagram. The graphs G and G’ are identical, except for the direction of the
edge (v, v3). (a) Weighted digraph G. (b) Resulting barcode for G. (¢) Weighted digraph G'. (d)
Resulting barcode for G'. (e) Birth-birth diagram

5 Discussion

In this paper, we present a framework for comparing weighted and directed graphs.
We have introduced new filtrations for directed graphs that capture the complexity
of potential paths in a graph by focusing on cycles in the graph. We note that the
set of filtrations presented is not exhaustive but is a practical starting point for using
topological techniques for comparing weighted directed graphs. Future work will
provide an analysis of these techniques on real data sets.

The swatch filtration presented has a persistence module corresponding to each
vertex. In addition, if we allow for the killing cycles enhancement (as described in
Sect. 3.3), we have an additional parameter ¢ to account for. The parameter ¢ can
be optimally chosen by cross-validation; however, a single vertex might not be able
to reveal all necessary information through its corresponding swatch filtration. So,
we suggest randomly sampling the vertices to have a basepoint set when the set of
vertices is too large to consider all possibilities.

The contribution of this paper that we suspect will have the most impact is the
birth-birth diagram, which can be used in settings outside of directed, weighted
graphs. In fact, it can be applied in any setting where we have multiple functions
defined over the same domain (e.g., temperatures at different times, observations
before and after a stimulus in a scientific experiment, etc.). Of course, in other
settings, the features of interest we wish to match might not be one-cycles.

We note that the theory presented here is not limited to these filtrations. For
example, we ask: what topological properties of a given directed graph embedded
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in R? during the filtration can be uncovered? Can we incorporate the embedding
rather than just the intrinsic distances? Moreover, empirical study of these filtrations
will determine if they can be used in practice to compare different weighted
(directed) graphs. As a first step, we will investigate how these methods can be
used to compare traffic patterns across large timescales, where the road networks
might change over time (bridges added, new exits on highways, etc.). We also note
that the assumptions do not require the graphs to be planar; hence, they provide an
obvious advantage over most of the existing methods to compare road networks.
Analyzing this advantage will be part of our future research.
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