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A B S T R A C T

One major source of uncertainty in accurately estimating human exposure to air pollution is that human subjects
move spatiotemporally, and such mobility is usually not considered in exposure estimation. How such mobility
impacts exposure estimates at the population and individual level, particularly for subjects with different levels
of mobility, remains under-investigated. In addition, a wide range of methods have been used in the past to
develop air pollutant concentration fields for related health studies. How the choices of methods impact results
of exposure estimation, especially when detailed mobility information is considered, is still largely unknown. In
this study, by using a publicly available large cell phone location dataset containing over 35 million location
records collected from 310,989 subjects, we investigated the impact of individual subjects’ mobility on their
estimated exposures for five chosen ambient pollutants (CO, NO2, SO2, O3 and PM2.5). We also estimated ex-
posures separately for 10 groups of subjects with different levels of mobility to explore how increased mobility
impacted their exposure estimates. Further, we applied and compared two methods to develop concentration
fields for exposure estimation, including one based on Community Multiscale Air Quality (CMAQ) model out-
puts, and the other based on the interpolated observed pollutant concentrations using the inverse distance
weighting (IDW) method. Our results suggest that detailed mobility information does not have a significant
influence on mean population exposure estimate in our sample population, although impacts can be substantial
at the individual level. Additionally, exposure classification error due to the use of home-location data increased
for subjects that exhibited higher levels of mobility. Omitting mobility could result in underestimation of ex-
posures to traffic-related pollutants particularly during afternoon rush-hour, and overestimate exposures to
ozone especially during mid-afternoon. Between CMAQ and IDW, we found that the IDW method generates
smooth concentration fields that were not suitable for exposure estimation with detailed mobility data.
Therefore, the method for developing air pollution concentration fields when detailed mobility data were to be
applied should be chosen carefully. Our findings have important implications for future air pollution health
studies.

1. Introduction

Exposure to air pollution is the second leading cause of non-com-
municable disease worldwide (Neira et al., 2018). It is also associated

with more than 4 million premature deaths annually (Burnett et al.,
2018; Cohen et al., 2017) and numerous other negative health con-
sequences (Gakidou et al., 2016; Kampa and Castanas, 2008; Pope and
Dockery, 2006; Bernstein et al., 2004; Kim, 2004; de Zwart et al., 2018;
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Münzefl et afl., 2017). An accurate estfimatfion off human exposure to afir

poflflutfion fis crfitficafl ffor assessfing the potentfiafl connectfions between afir

poflflutfion exposure and certafin heaflth outcomes, and ffor quantfiffyfing the

heaflth fimpacts off afir poflflutfion (Zhang et afl., 2018a; Fann et afl., 2017;

Maflfley et afl., 2017; Chen et afl., 2018). In many prfior afir poflflutfion

heaflth studfies, human exposure to afir poflflutfion was estfimated usfing

concentratfion data coflflected or sfimuflated at the flocatfion off subjects’

home addresses (Refis et afl., 2018; Zhang et afl., 2018b), or even at

ffurther aggregated zones such as census tract (Gray et afl., 2013) or ZIP

code flevefl (Cao et afl., 2011). Detafifled spatfiotemporafl movements off

subjects, fi.e. human mobfiflfity, were usuaflfly omfitted due to flack off data.

Thfis home-based exposure (herefin refferred to as HBE), coufld fintroduce

consfiderabfle amount off exposure cflassfificatfion errors (Gurram et afl.,

2015; Shaffran-Nathan et afl., 2017; Park and Kwan, 2017; Yoo et afl.,

2015; Yu et afl., 2018a; Gurram et afl., 2019), whfich coufld potentfiaflfly

bfias subsequent statfistficafl anaflyses (Setton et afl., 2011; Pennfington

et afl., 2017).

To address thfis fissue, a varfiety off methods have been adopted, fin-

cfludfing utfiflfizfing travefl surveys and dfiarfies (Gurram et afl., 2015; Kflepefis

et afl., 2001); personafl measurements (Dons et afl., 2011; Buonanno

et afl., 2014), accountfing ffor mufltfipfle addresses (e.g., resfidentfiafl or

work address) or ffuflfl-day travefl data (Gurram et afl., 2015; Gurram

et afl., 2019) durfing the temporafl wfindow off exposure (Refis et afl., 2018;

Setton et afl., 2011; Beflfl et afl., 2018; Chen et afl., 2010), trackfing subjects

usfing GPS-enabfled surveys (Yoo et afl., 2015; Nfieuwenhufijsen et afl.,

2015), and empfloyfing a varfiety off modeflfing toofls and technfiques to

account ffor mobfiflfity (Park and Kwan, 2017; Tang et afl., 2018). Though

prfior resuflts suggest exposure estfimatfion errors due to the omfissfion off

mobfiflfity coufld dfiffer among findfivfiduafls wfith dfifferent mobfiflfity patterns

(Gurram et afl., 2015; Gurram et afl., 2019), the dfirectfion and magnfitude

off such errors remafins under-finvestfigated. Further, numerous methods

have been used fin the past to deveflop poflflutant concentratfion fieflds ffor

afir poflflutfion heaflth studfies, and the devefloped fieflds vary substantfiaflfly

spatfiaflfly and temporaflfly (Yu et afl., 2018b; Ivey et afl., 2015; Bates et afl.,

2018). How the chofices off method fimpact exposure estfimates when

human mobfiflfity fis consfidered fis stfiflfl flargefly unknown.

In our expfloratory study (Yu et afl., 2018a), we demonstrated the

ffeasfibfiflfity off usfing ceflfl phone flocatfion dataset fin afir poflflutfion exposure

estfimatfion usfing a reflatfivefly smaflfl sampfle popuflatfion (n = 9,886) wfith

dfifferent mobfiflfity flevefls. Here, bufifldfing upon our prevfious work, we: 1)

appflfied two methods to deveflop poflflutfion concentratfion fieflds, and

finvestfigated the fimpact off dfifferent methods on exposure estfimates

when detafifled mobfiflfity finfformatfion were consfidered; 2) fincfluded a

substantfiaflfly flarger sampfle popuflatfion (n = 310,989), dfivfided the en-

tfire popuflatfion finto 10 groups wfith varyfing mobfiflfity flevefls, and fin-

vestfigated how dfifferent mobfiflfity fimpact exposure estfimates; 3) fin-

vestfigated the temporafl varfiabfiflfity off exposure estfimates among groups

wfith dfifferent mobfiflfity flevefls; 4) finvestfigated how exposure cflassfifica-

tfion errors change due to mobfiflfity; and 5) quantfified the fimpact off

exposure cflassfificatfion errors on subsequent heaflth effect estfimatfions.

Detafifls on the methods used fin thfis study are presented fin the next

sectfion, ffoflflowed by the resuflts off the study and a dfiscussfion off the

potentfiafl off the methods and data, as weflfl as assocfiated flfimfitatfions.

2. Materfiafl and methods

2.1. Data descrfiptfion and study area

The ceflfl phone flocatfion data appflfied here are Caflfl Detafifl Record

(CDR) data coflflected by mobfifle network operators. CDR data are cofl-

flected ffrom ceflflphones when the phone communficates wfith a nearby

ceflfl towers, specfificaflfly, when a network subscrfiber’s ceflfl phone com-

munficates wfith a nearby ceflfl tower (such as phone caflfl, text messagfing,

or mobfifle data request), a sufite off finfformatfion fis generated and ar-

chfived ffor bfiflflfing purposes (Zhao et afl., 2016; Zhang et afl., 2015; Zhang

et afl., 2014). The archfived finfformatfion contafins the fidentfitfies off ceflfl

towers that handfle the communficatfion, and the tower flocatfions are

aflready known. CDR data contafins tremendous amount off dfigfitafl

ffootprfints ffor vfirtuaflfly aflfl subscrfibers off the network, and fit has been

extensfivefly used fin crfimfinafl finvestfigatfion (McMfiflflan et afl., 2013;

Kumar et afl., 2017), the study off human mobfiflfity (Zhang et afl., 2014;

Becker et afl., 2013; Gonzaflez et afl., 2008), and urban and transporta-

tfion pflannfing (Becker et afl., 2011; Wang et afl., 2010; Iqbafl et afl, 2014).

It’s worth notfing that flocatfion finfformatfion contafined fin CDR data are

not the flocatfions off ceflflphone users, rather they are the flocatfions off

nearby ceflflphone tower that handfled the user’s wfirefless communfica-

tfion.

In thfis study, we obtafined a pubflficfly avafiflabfle CDR dataset ffor

Shenzhen, Chfina (Zhang et afl., 2015; Zhang, 2020). Shenzhen fis a

major cfity flocated fin the Guangdong Provfince (Ffig. 1). It has an area off

Ffig. 1.The study area off Shenzhen, Chfina.
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1,991 km2 and over 12 million residents, making it one of the most
populated cities worldwide. The original CDR dataset contains over 38
million location records collected from 414,271 anonymized Subscriber
Identification Module (SIM) cards on one typical weekday in October
2013. We excluded SIM cards with no location data available at night
(here defined as after 8 pm and before 7 am), which is required to infer
potential home addresses. The filtered CDR dataset applied here has
35.6 million location records for 310,989 unique SIM cards (herein
referred to as subjects), with an average of approximately 115 records
per subject per day. All identifiers contained in the original CDR data
were removed from this database, leaving only a randomized SIM card
ID, a time stamp, and latitude and longitude. This information was used
to construct daily mobility patterns for each subject.

2.2. Exposure estimation

Five pollutants were selected for this study, including carbon
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ground-
level ozone (O3), and particulate matter with aerodynamic diameter
equal or less than 2.5 µm (PM2.5). All of these pollutants are important
air pollutants regulated in both the United States (National Ambient Air
Quality Standards) and China (GB3095-2012), and they are considered
to pose harmful effects to human health and the environment, not only
for the US and China, but also worldwide.

Similar to our previous study (Yu et al., 2018a), we estimated all
subjects’ exposures to the five chosen pollutants using two methods: a
static, home-based exposure (HBE) calculated by assuming all subjects
stay at their corresponding home locations throughout the entire day;
and a dynamic, CDR-based exposure (CDRE) calculated by matching
detailed CDR location data with modeled pollutant concentrations at
the corresponding locations. Specifically, HBE and CDRE are estimated
as:
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where Ch,g is pollutant concentration in hour h at the grid cell g where
the corresponding subject’ home is located; n is the total amount of
hours in the study period (n = 24); Ch,m is pollutant concentration in
hour h at grid cell m where the subject is located within the corre-
sponding hour. The subject may be located in k (k > = 1) grid cells in
hour h. In the static method, each subject’s home location was assumed
to be their most frequent location at night (between 8 pm and 7 am),
and we used modeled pollutant concentration data at their corre-
sponding home location to estimate their exposures. In the dynamic
method, the CDRE was estimated by arithmetically weighting con-
centrations at different locations where the subject visited based on the
time (in hours) the subject spent at each location. If no location data
was available for one specific hour, we assumed the subject stayed at
the same location as in the previous hour. If location data was missing
for the first hour (12 am – 1 am), the subject was assumed to be at their
estimated home locations. For hours with multiple location records
available, we used averaged concentration from all locations in the
corresponding hour. We estimated HBE and CDRE for each subject se-
parately.

Different from our previous study (Yu et al., 2018a), we applied two
approaches to develop spatiotemporal concentration fields of the five
chosen pollutants: one based on outputs from the Community Multi-
scale Air Quality (CMAQ) model (Byun and Schere, 2006) for the cor-
responding day, and the other using the Inverse Distance Weighting
(IDW) method. Detailed information on CMAQ model configurations is
available elsewhere (Che et al., 2011). To correct for potential model
biases and errors, we fused hourly measurement data collected from 12

monitoring stations inside the CMAQ modeling domain (Fig. 1) into
CMAQ output by multiplying gridded hourly CMAQ fields with ad-
justment factors. The factors were calculated as the ratio between
measured and modeled concentrations at the locations of each mon-
itoring station, and then spatially interpolated to the center points of all
CMAQ grid cells using kriging (Yu et al., 2018b). For the IDW method,
we spatially interpolated hourly measurements from all monitoring
stations inside the study area using inversed and squared distance as the
weight. The spatial and temporal resolution of the concentration fields
for both methods are 3 km and 1 hour, respectively. We acknowledge
that an individual’s exposure to air pollution occur at finer scales, we
nonetheless still applied the aforementioned CMAQ and IDW fields
mainly for two reasons: 1) Developing higher resolution pollution fields
are not feasible in this study due to the limited availability of mea-
surement data in the study area (Fig. 1), and computational burden
involved in running higher resolution CMAQ simulations; and 2) the
location information in CDR are the locations of cellphone towers close
to the corresponding cellphone user. In addition, it’s important to note
that the aforementioned CMAQ and IDW methods are fundamentally
different, and the results of exposure assessment are expected to be
impacted substantially by the choice of methods.

To understand how different degrees of mobility impact exposure
estimation, we further subdivided all subjects into 10 groups based on
the number of unique CMAQ grid cells each individual subject visited
during the day. The number of grid cells each subject visited in group 1
through 9 correspond to their respective group number, while all sub-
jects that visited 10 or more unique grid cells were collectively assigned
into group 10. Subjects in groups with larger group numbers are ex-
pected to have a high degree of mobility. We estimated HBE and CDRE
separately for all 10 groups. While metrics, such as distance between
home and work location (Setton et al., 2011), have been used in past
studies, however, such information is not available in this study.

In epidemiological studies related to air pollution, subjects are fre-
quently assigned to different groups based on their exposure levels
(such as quartiles) (Chen et al., 2010; Clark et al., 2009; Dugandzic
et al., 2006; Mitchell and Popham, 2008; Gauderman et al., 2007).
Statistical comparisons are then performed among these groups to in-
vestigate whether higher exposure levels are associated with a higher
incidence of certain health outcomes. The statistical analysis could be
biased or confounded if subjects were misclassified into the wrong ex-
posure group. To explore the impact of including detailed mobility data
on exposure misclassification, we compared how subjects were assigned
to four quartiles based on their CDRE and HBE. We define “mis-
classification” as the assignment of one subject, based on HBE, into a
quartile that is different from CDRE-based quartile.

We performed the Wilcoxon rank sum test to examine whether the
medians of CDRE and HBE exposure estimates are statistically different.
We chose this test because the samples in this study are not normally
distributed. Furthermore, we also calculated the expected bias factors
to quantify potential biases in relative risk estimates when HBE was
used (Setton et al., 2011; Nyhan et al., 2018). According to the classical
error theory, exposure estimated using the home-based method may be
expressed as:

= +Z X E (1)

In Eq. (1), Z is exposure estimated using HBE; X is the true exposure
value; and E is the error associated with the corresponding HBE. In this
study, we use CDRE to represent X, and, based on our previous results, E
is correlated with X (Yu et al., 2018a). Therefore, the following equa-
tion can be applied to calculate a bias factor (Setton et al., 2011; Nyhan
et al., 2018; Wacholder, 1995):

= +
+ +

B
2

2

2 2 (2)

In Eq. (2), B is the calculated bias factor; σ2 is the variance of CDRE
of all subjects; φ is the covariance between CDRE and errors in exposure
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estfimatfion (caflcuflated based on HBE-CDRE); andω2fis the varfiance off

the errors fin exposure estfimatfion. The ffactorBrepresents the expected

bfias fin reflatfive rfisk estfimates when the home-based method fis appflfied.

For exampfle, a B ffactor off 0.75 suggests that appflyfing the home-based

method woufld flead to the reflatfive rfisk befing underestfimated by 25%.

It’s aflso worth notfing that the Wfiflcoxon rank sum test fis a dfifferent

statfistficafl measure compared to the coeficfient off determfinatfion (R2).

The fformer fintends to test equaflfity, whfifle the flatter quantfifies the

proportfion off varfiance contafined fin the dependent varfiabfle that can be

predficted by the findependent varfiabfle.

3. Resuflts

3.1. Concentratfion fieflds

The spatfiafl concentratfion fieflds off the five chosen poflflutants sfimu-

flated by the CMAQ and IDW methods dfiffer consfiderabfly (Ffig. 2),

especfiaflfly ffor O3, NO2, and PM2.5, where the flatter two poflflutants are

known to have substantfiafl prfimary contrfibutfions ffrom transportatfion

sectors. Due to the sparseness off monfitor network, the IDW method

generaflfly resuflts fin smoother fieflds that flack spatfiafl varfiabfiflfitfies

compared wfith the CMAQ method. The flocatfions off monfitorfing statfions

can aflso be observed on the concentratfion fieflds as sfimuflated by the

IDW method (Ffig. S1).

3.2. Overaflfl correflatfions between HBE and CDRE

Mean CMAQ-based HBE and CDRE estfimates ffor aflfl subjects were

hfighfly correflated wfith each other (Ffig. 3). The coeficfient off determfi-

natfion (R2) ranged ffrom 0.95 (NO2) to 0.98 (SO2), wfith the sflopes off

flfinear regressfion cflose to 1, and fintercepts were cflose to 0 ffor aflfl pofl-

flutants. The estfimated regressfion parameters are consfiderabfly dfifferent

comparfing wfith our prevfious study (Yu et afl., 2018a) (e.g: R2ranged

between 0.65 and 0.76 fin the prevfious study). We aflso observed many

vertficaflfly aflfigned data pofints, suggestfing many subjects had fidentficafl

HBE but thefir CDRE was consfiderabfly dfifferent when findfivfiduafl mo-

bfiflfity was consfidered. Addfitfionaflfly, a flarge number off data pofints were

cflustered near the 1:1 flfine, suggestfing that a substantfiafl portfion off the

subjects had sfimfiflar HBE and CDRE.

Sfimfiflar findfings were aflso observed ffor IDW-based exposures

(Ffig. 3), fincfludfing the cflustered data pofints aflong the 1:1 flfine, the hfigh

overaflfl correflatfions between HBE and CDRE, and the varyfing CDRE

Ffig. 2.Spatfiafl fieflds off concentratfions off the five chosen poflflutants as sfimuflated by the CMAQ (a-e) and IDW (ff-j) methods.
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estfimates ffor many subjects wfith fidentficafl HBE estfimates. However, the

range off estfimates ffor both HBE and CDRE were much smaflfler ffor the

IDW exposures, partficuflarfly ffor NO2, O3and PM2.5, where the vast

majorfity off data pofints were cflustered wfithfin smaflfl concentratfion

ranges. It’s aflso worth notfing that resuflts off Wfiflcoxon rank sum tests

show HBE and CDRE are overaflfl statfistficaflfly dfifferent ffor aflfl poflflutants.

3.3. The fimpact off mobfiflfity on exposure estfimates

We ffound that the correflatfions between HBE and CDRE estfimates

shrfink wfith an fincreased degree off mobfiflfity (NO2presented finTabfle 1,

other poflflutants finTabfles S2 through S5). Compared wfith CMAQ, the

decreasfing correflatfions between CDRE and HBE were smaflfler when

IDW fieflds were used, wfith consfiderabfly smaflfler RMSE, MNB and MNE.

For PM2.5, as shown by the numbers presented finTabfle S5, the RMSE,

MNB and MNE ffor the group wfith the hfighest degree off mobfiflfity (group

10) was onfly 5.4%, 6.7%, and 4.6%, respectfivefly, off those when CMAQ

fieflds were used. For exampfle, the MNE ffor group 10 fis 3.23% when

CMAQ fieflds were used, but onfly 0.15% when IDW fieflds were used.

The onfly exceptfion fis SO2(Tabfle S3), ffor whfich the RMSE and MNE

changed sfimfiflarfly between the CMAQ and IDW methods, though MNB

fis onfly 0.9% when the IDW method was appflfied.

In thfis dataset, over haflff (54%) off aflfl subjects stayed fin the same

3 km grfid ceflfl throughout the entfire day, and the majorfity (94%) off aflfl

subjects vfisfited 4 or ffewer grfid ceflfls (Tabfle 1). Aflthough subjects that

were hfighfly mobfifle (especfiaflfly those who vfisfited 6 and more grfid ceflfls)

accounted ffor a reflatfivefly smaflfl ffractfion off the entfire popuflatfion, the

sampfle sfizes off aflfl groups were stfiflfl consfiderabfle due to the flarge overaflfl

sampfle popuflatfion (sampfle sfize = 916 ffor the smaflflest group, group 9).

The fimpacts off mobfiflfity on exposure estfimates dfiffer by poflflutant

and by concentratfion fieflds used. Between CMAQ and IDW methods,

the range off varfiabfiflfity was consfiderabfly smaflfler when the IDW method

was appflfied, partficuflarfly ffor NO2, O3and PM2.5. SO2agafin was the

exceptfion where exposure varfiabfiflfity was sfimfiflar between the two

methods. Mobfiflfity had the greatest fimpact ffor NO2and O3. When

CMAQ concentratfion fieflds were appflfied, the observed dfifferences were

more negatfive (hfigher CDRE than HBE) ffor CO, NO2and PM2.5, but

were more posfitfive (flower CDRE than HBE) ffor O3. Such observatfions

are not cflearfly vfisfibfle when the IDW concentratfion fieflds were appflfied.

The fimpacts off mobfiflfity on exposures aflso dfiffered by tfime off the

day (Ffig. 4), wfith flarger dfifferences ffound durfing daytfime ffor aflfl

groups, though the bfiggest dfifference occurred at dfifferent hours ffor

dfifferent poflflutants. When CMAQ concentratfion fieflds were appflfied,

CO, NO2and PM2.5exhfibfited the flargest dfifferences near the affternoon

rush hour, though these dfifferences dfissfipates qufickfly thereaffter. For

O3, the flargest dfifferences occurred around mfid-affternoon at 4 pm

around when the hfighest ambfient O3concentratfions are expected. For

SO2, we observed a sflfight peak fin dfifferences between HBE and CDRE at

around 10 am. Addfitfionaflfly, the observed dfifferences were mostfly ne-

gatfive durfing daytfime ffor CO, NO2and PM2.5, suggestfing the home-

based method resuflted fin flower exposure estfimates, aflthough the dfiff-

fferences changed to sflfightfly posfitfive toward mfid-nfight. However, the

exposure dfifferences are mostfly posfitfive ffor O3, findficatfing hfigher ex-

posure estfimates when the home-based method fis used. When CMAQ

Ffig. 3.Lfinear correflatfions between HBE and CDRE estfimates off the five chosen poflflutants ffor aflfl subjects based on CMAQ (a,c,e,g,fi) and IDW (b,d,ff,h,j) concentratfion

fieflds. Pfixefls are coflor coded by sampfle sfize. The soflfid bflack flfine shown fis the 1:1 flfine.

X. Yu, et afl. Envfironment Internatfionafl 141 (2020) 105772

5



concentratfion fieflds were appflfied, the bfiggest exposure dfifferences

were not observed ffor the group wfith the hfighest mobfiflfity (group 10),

rather fit was observed ffor subjects wfith moderate to hfigh degree off

mobfiflfity (group 7 ffor SO2, and group 5 and 6 ffor other poflflutants).

The temporafl varfiatfions off exposure dfifferences, however, were

mostfly not observed when IDW concentratfion fieflds were appflfied

(Ffig. 4). We stfiflfl observed generaflfly flarger dfifferences durfing daytfime

(though smaflfler magnfitude), but the consfistent patterns off fluctuatfions

as seen among CO, NO2and PM2.5finFfig. 4were not observed when

IDW fieflds were appflfied. The bfiggest dfifferences were observed at dfiff-

fferent hours ffor dfifferent poflflutants and wfith no consfistent dfirectfions.

Exposure dfifferences generaflfly showed a consfistent fincreasfing trend

wfith fincreased mobfiflfity.

We perfformed Wfiflcoxon rank sum tests to evafluate the dfifferences

between HBE and CDRE estfimates ffor each mobfiflfity group. When

CMAQ concentratfion fieflds were appflfied, most dfifferences fin HBE and

CDRE estfimates were statfistficaflfly sfignfificant (p < 0.05) durfing normafl

busfiness hours (9 am to 5 pm). The onfly exceptfion fis SO2, ffor whfich

HBE and CDRE estfimates are statfistficaflfly dfifferent between 1 pm and

10 pm. When IDW concentratfion fieflds were appflfied, HBE and CDRE

estfimates are stfiflfl generaflfly statfistficaflfly dfifferent between 10 am to

5 pm, aflthough wfith consfiderabfly greater varfiabfiflfity.

3.4. The fimpact off mobfiflfity on exposure cflassfificatfions and effect estfimates

To finvestfigate potentfiafl exposure mfiscflassfificatfions assocfiated wfith

Tabfle 1

Comparfison between HBE and CDRE estfimate off NO2ffor aflfl ten groups wfith dfifferent mobfiflfity.

Group number

1 2 3 4 5 6 7 8 9 10

CMAQ CDRE mean (ppbv) 16.1 16.6 16.7 16.8 16.7 16.3 15.9 15.9 15.6 15.6

HBE mean (ppbv) 16.1 16.5 16.3 16.2 15.8 15.5 15.2 15.2 15.0 15.1
aRMSE (ppbv) 0.00 1.16 1.79 2.16 2.50 2.60 2.62 2.74 2.78 3.02
bMNB (%) 0.0% −0.8% −2.3% −3.8% −5.0% −4.9% −4.3% −4.1% −3.5% −2.8%
cMNE (%) 0.0% 3.6% 6.2% 8.1% 9.8% 10.5% 10.6% 10.8% 11.2% 11.9%
dR2 1.00 0.95 0.88 0.83 0.76 0.72 0.70 0.67 0.66 0.64

IDW CDRE mean (ppbv) 19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0

HBE mean (ppbv) 19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0
aRMSE 0.00 0.23 0.35 0.43 0.49 0.56 0.62 0.62 0.67 0.72
bMNB (%) 0.0% 0.0% −0.1% −0.1% −0.2% −0.1% 0.0% 0.0% 0.2% 0.4%
cMNE (%) 0.0% 0.4% 0.8% 1.1% 1.4% 1.7% 1.9% 2.0% 2.3% 2.4%
dR2 1.00 0.98 0.94 0.92 0.88 0.85 0.81 0.81 0.78 0.75

Sampfle sfize 167,570 75,313 32,177 16,350 8354 4617 2700 1562 916 1430

a
=
HBE CDRE[ ( ) ]

N fi

N
fi fi

1

1
2 1/2RMSE: root mean squared error. Caflcuflated as , where CDRE and HBE fis the estfimated exposures based on CDR and home-based

method ffor thefith subject.
b

=
( )

N fi

N HBEfi CDREfi
CDREfi

1
1MNB: mean normaflfized bfias. Caflcuflated as .

c
=N fi

N HBEfi CDREfi
CDREfi

1
1MNE: mean normaflfized error. Caflcuflated as .

dR2: coeficfient off determfinatfion between HBE and CDRE estfimates fin the correspondfing group.

Ffig. 4.Temporafl varfiatfions off exposure dfifferences ffor aflfl 10 mobfiflfity groups between HBE and CDRE when CMAQ and IDW concentratfion fiefld were appflfied.

Exposure dfifferences were caflcuflated as HBE-CDRE.
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omfittfing subject mobfiflfity, we finvestfigated how subjects were assfigned

to dfifferent quartfifles based on thefir HBE and CDRE estfimates. Resuflts

ffor PM2.5are presented finFfigs. 5 and 6, and resuflts ffor other poflflutants

are presented finFfigs. S2-S9.

We observed that a hfigh percentage off the sampfle popuflatfion was

potentfiaflfly mfiscflassfified finto other quartfifles, especfiaflfly ffor groups wfith

hfigher degrees off mobfiflfity. When CMAQ concentratfion fieflds were

appflfied ffor PM2.5(Ffig. 5), more than haflff off the sampfle popuflatfion fin

the mfiddfle quartfifles (Q2 and Q3) were cflassfified finto dfifferent quartfifles

ffor groups 4 through 10 when findfivfiduafl mobfiflfity was omfitted. The

mfiscflassfificatfion fis especfiaflfly promfinent ffor the 2nd quartfifle off group 6

(Ffig. 5), ffor whfich 71% off subjects were mfiscflassfified finto other quar-

tfifles when the home-based method was used. Thfis findfing was aflso

observed when IDW fieflds were used, aflthough the potentfiafl mfis-

cflassfificatfions were fless severe, but stfiflfl substantfiafl (Ffig. 6). Sfimfiflar

findfings can be observed ffor both CMAQ and IDW concentratfion fieflds

ffor aflfl other poflflutants (Ffigs. S2-S9). For subjects wfith moderate ex-

posure flevefls (Q2 and Q3), generaflfly more subjects were assfigned to

quartfifles wfith hfigher exposures when the home-based method was used

ffor CO (Ffigs. S2, S6) and NO2(Ffigs. S3, S7). Thfis resuflt was fless con-

sfistent ffor SO2(Ffigs. S4, S8) and somewhat reversed ffor O3(Ffigs. S5,

S9).

The estfimated bfias ffactors ffor groups wfith dfifferent mobfiflfity flevefls

are presented finFfig. 7. Wfith fincreased mobfiflfity, the estfimated bfias

ffactors generaflfly decrease regardfless off concentratfion fieflds used. The

smaflfler bfias ffactor, a vaflue off 0.67, fis observed ffor NO2and ffor group

10. Thfis vaflue suggests that the estfimated reflatfive rfisk ffor NO2wfiflfl be

underestfimated by 33% when mobfiflfity was fignored durfing exposure

estfimatfion. Between CMAQ and IDW, the estfimated bfias ffactors are

reflatfivefly sfimfiflar ffor NO2, but are consfiderabfly dfifferent ffor other

poflflutants, especfiaflfly ffor PM2.5. For group 10, the bfias ffor PM2.5fis 0.70

when CMAQ fieflds are used, and 0.94 when IDW fieflds are used.

Ffig. 5.The dfirectfions off potentfiafl PM2.5exposure mfiscflassfificatfions when the home-based exposure estfimatfion method was used and when CMAQ fieflds were used.

For sfimpflfificatfion purposes onfly resuflts ffor groups 2, 6 and 10 are presented. Subjects fin quartfifle 1 has the flowest exposures, and subjects fin quartfifle 4 has the hfighest

exposures.

Ffig. 6.The dfirectfions off potentfiafl PM2.5exposure mfiscflassfificatfions when the home-based exposure estfimatfion method was used and when IDW fieflds were used. For

sfimpflfificatfion purposes onfly resuflts ffor groups 2, 6 and 10 are presented. Subjects fin quartfifle 1 has the flowest exposures, and subjects fin quartfifle 4 has the hfighest

exposures.
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4. Dfiscussfion

4.1. The fimpact off method chofices on exposure estfimatfion

An approprfiate characterfizatfion off spatfiafl concentratfion dfistrfibu-

tfions off afir poflflutants fis ffundamentafl ffor afir poflflutfion exposure estfi-

matfion. In thfis study, we appflfied two methods to deveflop afir poflflutant

concentratfion fieflds: one based on outputs ffrom the CMAQ modefl, and

the other based on the IDW finterpoflatfion method. Spatfiafl concentratfion

fieflds devefloped usfing the two methods were consfiderabfly dfifferent

ffrom each other (Ffig. 2). Thfis fis expected because, as descrfibed pre-

vfiousfly, the two methods are ffundamentaflfly dfifferent, and both

methods have thefir own strengths and weaknesses (Yu et afl., 2018b).

Consequentfly, the estfimated popuflatfion average exposures (Tabfle 1),

the dfistrfibutfions off findfivfiduafl exposure estfimates (Ffig. 3), partficuflarfly

among groups wfith dfifferent degrees off mobfiflfity (Ffig. 4), and the fim-

pact off negflectfing mobfiflfity on exposure estfimates (Ffigs. 5–6), was dfiff-

fferent between the two methods. Such resuflts were expected due to the

dfifferent nature off the two methods. CMAQ fis a mechanfistfic modefl that

caflcuflates ambfient concentratfions off afir poflflutants based on finput

emfissfions and meteoroflogficafl data. IDW fis an empfirficafl spatfiafl finter-

poflatfion method that reflfies soflefly on avafiflabfle poflflutant concentratfions

measured at dfiscrete flocatfions (Yu et afl., 2018b). Poflflutfion hotspots

that are not captured by monfitorfing networks cannot be captured by

the IDW method but may possfibfly be captured by the CMAQ modefl fiff

approprfiate emfissfions data are suppflfied. In thfis study, the monfitorfing

network fis sparse, and onfly 1 out off 12 monfitor fis flocated finsfide

Shenzhen area (Ffig. 1). As a resuflt, poflflutant concentratfion fieflds de-

vefloped usfing the IDW method were smooth and flacked the spatfiafl

concentratfion varfiabfiflfitfies as observed fin the CMAQ fieflds. Thereffore,

fit’s fimportant to careffuflfly seflect an approprfiate method ffor deveflopfing

poflflutant concentratfion fieflds, partficuflarfly when the monfitorfing net-

work fis sparse.

When detafifled mobfiflfity data were fincfluded, naturaflfly, the appro-

prfiate characterfizatfion off spatfiafl poflflutant varfiabfiflfity became even

more fimportant. In such appflficatfions, purefly spatfiafl finterpoflatfion

methods, e.g., IDW, tesseflflatfion, or krfigfing, are aflso not fideafl chofices

ffor deveflopfing poflflutant concentratfion fieflds ffor study regfions wfithout

an extensfive monfitorfing network avafiflabfle (Yu et afl., 2018b). These

resuflts hfighflfighted the fimportance off choosfing an approprfiate method

ffor deveflopfing poflflutant concentratfion fieflds ffor exposure estfimatfion

purposes, partficuflarfly when detafifled mobfiflfity data were fincfluded.

Wfithout an approprfiate characterfizatfion off spatfiafl poflflutant

concentratfion varfiatfions, exposure assessment may not sfignfificantfly

benefit ffrom the fincflusfion off detafifled mobfiflfity data at urban scafle.

Subsequentfly, we wfiflfl ffocus our dfiscussfion on resuflts as obtafined

usfing the CMAQ concentratfion fieflds.

4.2. The fimpact off mobfiflfity on exposure estfimatfion

In thfis study, the estfimated regressfion parameters are consfiderabfly

dfifferent ffrom our prevfious study (Yu et afl., 2018a). For exampfle, the

estfimated R2ranged between 0.95 and 0.98 vs 0.65 to 0.76 fin the

prevfious study; and the sflope ranged between 0.97 and 1.02 vs 0.60 to

0.72 prevfiousfly. The seemfingfly contradfictory findfings can be expflafined

by the dfifference fin sampfle popuflatfion. In our prevfious study, 9,886

subjects wfith the most amount off CDR data avafiflabfle were seflected to

expflore the potentfiafl benefits off usfing CDR data fin exposure estfimatfion.

The subjects were not randomfly sampfled, and wfith an average off ap-

proxfimatefly 463 records per subject per day (vs 115 records per subject

per day fin thfis study). The sampfle popuflatfion fin our prevfious study are

reflatfivefly more mobfifle, and the subjects vfisfited on average 2.3 grfid

ceflfls over the study perfiod (vs 1.9 grfid ceflfls fin thfis study).

At the popuflatfion flevefl, we dfid not find substantfiafl dfifferences be-

tween HBE and CDRE exposures, consfistent wfith our prevfious study (Yu

et afl., 2018a) and other studfies (Nyhan et afl., 2018; Dewuflff et afl., 2016;

Pficorneflfl et afl., 2018; Nyhan et afl., 2016; Garfiazzo et afl., 2016). The

findfing maybe partfiaflfly expflafined by the ffact that most subjects spent

most off thefir tfime wfithfin the same grfid, as findficated by the flarge

number off data pofints cflustered near the 1:1 flfine (Ffig. 3). Our resuflts

suggested that the home-based method ffor exposure estfimatfion fis stfiflfl

finfformatfive fin the study regfion when onfly average exposure estfimates

ffor a suficfientfly flarge popuflatfion are off finterest (Nfikkfiflä et afl., 2018).

However, fit’s worth notfing that severafl studfies conducted fin other cfitfies

(Sfingh et afl., 2019; Smfith et afl., 2016) have ffound that the popuflatfion

flevefl exposure estfimates are flower when findfivfiduafl mobfiflfity data were

fincfluded fin exposure estfimatfion. The dfifferences fin findfings may be

partfiaflfly due to the potentfiaflfly dfifferent popuflatfion mobfiflfity patterns

among cfitfies. Further studfies are needed to finvestfigate how our findfings

may vary among cfitfies.

One off the mafin ffocus off thfis manuscrfipt fis on how dfifferent flevefls

off mobfiflfity fimpact afir poflflutfion exposures. We ffound that the fimpact off

mobfiflfity on exposure estfimates dfiffered by tfime off day and by poflflu-

tants (such anaflyses were not perfformed fin our prevfious study,Yu et afl.,

2018a). Generaflfly, the dfifferences between HBE and CDRE were the

smaflflest durfing earfly mornfing and mfidnfight, a tfime when many

Ffig. 7.The fimpact off mobfiflfity on bfias ffactors when CMAQ and IDW concentratfion fieflds were appflfied.
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subjects are expected to be at home. For traffic-related pollutants in-
cluding CO, NO2, and PM2.5, we found that the home-based method
likely underestimated subject exposures during daytime, especially near
afternoon rush hour, when CMAQ concentration fields were used
(Fig. 4). Meanwhile, subject exposures to ozone may be over-estimated
during daytime using HBE, with the highest error observed at around
4 pm, near the time when the highest ambient ozone concentrations are
expected (Fig. 4). The temporal differences in impacts of mobility on
exposure have also been noted previously (Picornell et al., 2018). In-
terestingly, during peak hours, the most significant differences between
HBE and CDRE were not observed for the group with the highest degree
of mobility, rather the largest differences were observed on subjects
with moderate to high degree of mobility (groups 5–7).

Our results showed that the impact of mobility on exposure could be
substantial at the individual level, particularly for subjects that are
highly mobile. Applying the home-based method yielded similar esti-
mates for those who live close to where they travel throughout the day,
although their actual exposure could be drastically different when in-
dividual mobility is considered. With an increased degree of mobility,
we found that the correlations between HBE and CDRE decreased
monotonically (Table 1), suggesting that the home-based method cap-
tured less exposure variability among individuals with increased mo-
bility (Chen et al., 2010). Therefore, we expect larger exposure classi-
fication errors for subjects that are highly mobile, which is supported by
our analysis on the potential exposure misclassifications based on HBE
and CDRE (Figs. 5–6). It is also worth mentioning again that 71% of
subjects (Fig. 5) in the second quartile of group 6 were misclassified
into different quartiles using HBE. These results suggest that the impact
of traffic-related pollutants on human health may be larger than pre-
viously documented, and these findings may have significant implica-
tions for studies that rely on air pollution exposure estimation.

We found that ignoring mobility in exposure assessment could lead
to up to 33% in underestimation of relative risk, though the magnitude
of underestimation differs among pollutants (Fig. 7). Between CMAQ
and IDW, the results are also different, especially for PM2.5, for which
the largest estimated bias factor is only 0.94 when the IDW fields were
applied (vs 0.70 for CMAQ field). These finding again demonstrated
that the benefit of including detailed mobility data in exposure as-
sessment may be reduced when the spatial variability of pollutant
concentrations were not captured, and the method for developing
pollution field need to be selected carefully when mobility data were to
be included. The finding also have implications for future air pollution
health studies.

4.3. Limitations

There are inherent limitations associated with this study. First, as
with many CDR databases, the location data used in this study are not
the exact location of the corresponding cell phone user, rather, they are
the locations of the cell phone tower that handled the wireless com-
munication, which are most likely the nearest tower to the cell phone
user. However, we do not expect this limitation to substantially impact
the findings for two reasons. 1) The study area is one of the most po-
pulated cities in the world with a well-known, densely distributed cell
tower network. The CDR dataset contains over 1,000 locations of cell
phone towers spread out across the study area. 2) We applied 3-km
resolution concentration fields in exposure estimation. The retrieved
concentration values are identical within one 3-km grid cell, and one
cell phone user in Shenzhen is highly likely to have at least one cell
tower within 3 km (see https://www.opencellid.org for more in-
formation on cell tower coverage in Shenzhen, China). Therefore, we do
not expect the findings to change considerably even when the exact
locations of all cell phone users are applied.

Second, CDR data comprise an “event-triggered” database. Location
data are only collected when a cell phone communicates with nearby
towers. Hence, CDR are temporally sparse in nature (Zhao et al., 2016),

and may not accurately capture the full spectrum of individual move-
ments, especially for individuals who only use cell phones occasionally.
Hence, exposures estimated using CDR may deviate from those esti-
mated using a more complete location dataset such as those collected
using dedicated applications (e.g. Dynamica (Fan et al., 2015), or other
momentarily collected data such as Google Maps Location History data
(Yu et al., 2019). However, in this study, our purpose is to compare the
differences between exposure estimates with and without detailed
mobility data applied. Given the large sample population in all 10
groups with different degrees of mobility, we do not expect the results
to change even with an ideally complete mobility database.

Third, despite the relatively large population (N = 310,989) and
number of location records (35.6 million), the CDR data used here are a
randomly sampled subset from all cell phone users within the entire city
of Shenzhen for one typical work day within a typical week. Therefore,
the spatiotemporal mobility patterns as represented in this CDR data-
base represent the unique characteristics of the study region. We do
expect the patterns of population mobility, the spatiotemporally
variability of air pollution concentrations, pollutant emissions, and
meteorology conditions to vary across different cities. Further studies
are needed to better understand how the findings from this study may
change in another city.

Fourth, as described previously, due to the nature of CDR data, the
availability of observations, and resources constrains, we applied air
pollution concentration fields with 3 km spatial resolution and 1 h
temporal resolution for estimating pollution exposures. We recognize
that such coarse resolution may introduce uncertainties into related
analyses and may also partially impact the findings, such as the impact
of mobility on population-level exposure estimates (Fig. 3) (Singh et al.,
2019; Smith et al., 2016). Here, we performed an additional analysis to
explore the impact of grid resolution on the classification of mobility
levels. We split all 3 km CMAQ grid cells into 1.5 km grid cells and
counted the number of unique grid cells each subject visited (Table 2).
With increased grid resolution, a considerably higher fraction of po-
pulation were assigned to higher mobility groups, especially for groups
with the highest mobility levels (Groups 6 through 10). Such result
exemplifies the need for fine-scale modeling, and further studies are
needed to investigate how grid resolution impacts the results of ex-
posure estimation with detailed mobility data. In addition, both CDR
data and pollution fields are expected to contain uncertainties. What
dataset contain greater amount of uncertainty remain unclear. Further
studies are also needed to determine the impact of uncertainties on
exposure outcomes.

Finally, the exposure estimates presented in this study are calcu-
lated using ambient pollutant concentrations. A subject’s exposure to
indoor pollution was not considered here. Estimating indoor pollution
exposure would require expanded datasets (e.g., type of micro-en-
vironments) and models of pollution infiltration to indoor). In addition,
due to the nature of CDR data, it is difficult to precisely determine the
location of micro-environment for each subject. For example, if one
subject’s CDR data is located in close proximity to a major roadway, the

Table 2
Subject population in each mobility group at 3 km and 1.5 km grid resolutions.

3 km grids 1.5 km grids Change (%)

Group 1 167,570 132,847 −20.7%
Group 2 75,313 72,821 −3.3%
Group 3 32,177 39,341 22.3%
Group 4 16,350 22,689 38.8%
Group 5 8354 13,918 66.6%
Group 6 4617 8845 91.6%
Group 7 2700 5886 118%
Group 8 1562 4105 163%
Group 9 916 2755 201%
Group 10 1430 7782 444%
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investigator may not be able to determine whether the subject is driving
on the roadway, or walking along the roadway, or even sitting inside a
building next to the roadway.

5. Conclusion

In this study, we applied a large cell phone location database con-
sisting of over 35 million location records from 310,989 subjects to
investigate the impact of individual mobility on estimated ambient
exposures for five chosen pollutants (CO, NO2, SO2, O3, and PM2.5). We
further divided our sample population into ten groups with different
degrees of mobility and compared exposures estimates for each group.
We also applied and compared two methods to develop concentration
fields for exposure estimation, including one based on output from the
CMAQ model that was fused with observational data, and the other
based on the spatial interpolation of observations using the inverse
distance weighting method.

We found no substantial differences between population-averaged
exposures as estimated with and without detailed mobility data (e.g.:
exposure estimates differ by up to 5.4% for NO2, Table 1). Thus, the
traditional home-based exposure estimation method is still informative
when only averaged exposures on a large population are needed. We
observed generally increased variabilities in exposure estimates at the
individual level with increased mobility. Exposure classification errors
are also likely to increase with higher degrees of mobility, and could be
substantial for groups of individuals that are highly mobile. We also
examined the temporal variability of the differences between exposures
as estimated with and without mobility data. We found the home-based
method will likely under-estimate exposure to traffic-related pollutants
(CO, NO2 and PM2.5) during day-time particularly during afternoon
rush-hour, but also will likely over-estimate exposures to ground level
ozone during mid-afternoon near the time when ambient ozone con-
centrations are expected to be the highest. These results suggest that
mobility could be important for air pollution health studies for which
obtaining accurate exposure estimates at individual level are critical,
such as case-control studies or studies with a small sample size.

We found that the concentration fields developed using the IDW
method failed to capture pollution hotspot as can be seen from the
CMAQ fields, due primarily to the sparse monitoring network, and
consequently limited measurement data available in the study domain.
Therefore, the IDW method may not suitable for air pollution exposure
estimations when detailed mobility data are considered, if a dense
measurement network is not available. When detailed mobility data
were to be applied in exposure estimation, the method for developing
air pollution concentration fields should be selected carefully.

We also acknowledge that the CDR data applied in this study re-
present the unique characteristics of the study region, and further stu-
dies are needed to investigate how our findings could change among
regions with different spatiotemporal patterns of population and pol-
lution concentrations. Despite the limitation, overall, our results have
significant implications for future air pollution health studies in which
subject mobility is important.
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