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ABSTRACT: Computational catalyst discovery involves the devel-
opment of microkinetic reactor models based on estimated
parameters determined from density functional theory (DFT). For
complex surface chemistries, the number of reaction intermediates
can be very large, and the cost of calculating the adsorption energies
by DFT for all surface intermediates even for one active site model
can become prohibitive. In this paper, we have identified appropriate
descriptors and machine learning models that can be used to predict
a significant part of these adsorption energies given data on the rest
of them. Moreover, our investigations also included the case when
the species data used to train the predictive model are of different
size relative to the species the model tries to predictthis is an
extrapolation in the data space which is typically difficult with regular
machine learning models. Due to the relative size of the available data sets, we have attempted to extrapolate from the larger species
to the smaller ones in the current work. Here, we have developed a neural network based predictive model that combines an
established additive atomic contribution based model with the concepts of a convolutional neural network that, when extrapolating,
achieves a statistically significant improvement over the previous models.

1. INTRODUCTION

Computational catalyst discovery typically requires the
development of a microkinetic model based on parameters
determined by density functional theory (DFT) calculations1

of all reaction intermediates.2 To minimize the cost of
calculating the energies for each reaction intermediate and
transition state on different active site models, linear scaling
relations3−5 have been proposed which use a few easily
computable descriptors, such as the carbon atom adsorption
energy, on different active site models to generate volcano
curves on catalyst activity.6 However, even the DFT
computations for only the intermediate species on a number
of surfaces require, for a large reaction network with many
intermediates, a significant number of expensive calculations.
In this work, our goal was to build a predictive framework that
would train on the energies of some of the surface species and
predict on the rest, which can significantly reduce the
computational overhead when working with a complex
microkinetic model with a large number of surface species.
In addition to that, we also investigated appropriate predictive
models for extrapolation of adsorption energies in terms of the
size of the species, i.e, when the training data and the
prediction set contain different sized molecules. This is
typically challenging because machine learning models, while

performing satisfactorily during interpolation (when training
and testing set come from the same area of the feature space),
do not work as well for extrapolation7 (when training and
testing set come from nonoverlapping regions of the feature
space).
In this paper, we have worked with two data sets of

adsorption energies, both containing reaction intermediates
consisting of carbon, oxygen, and hydrogen atoms. One of
them contains 247 larger C4 species, i.e., molecules with at
least four carbon atoms and variable numbers of oxygen and
hydrogen, obtained from the hydrodeoxygenation of succinic
acid on Pt(111). The other contains 29 smaller C2 and C3
species, i.e, molecules made up of two or three carbon atoms
along with some oxygen and/or hydrogen, obtained from a
reaction network of decarboxylation and decarbonylation
reactions of propionic acid on Pt(111).8 All calculations
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were done using the PBE-D3 functional. Two types of
predictive analysis were performedinterpolation on the
bigger C4 data set, i.e., training on some of the C4 species
and predicting on the rest of them, and extrapolation from the
C4 data set to the C2 and C3 data set, i.e., training on the full
C4 data and predicting the adsorption energies for the C2 and
C3 species. While extrapolation to longer chain molecules is in
principle most relevant, we do not possess a C5 data set, and
the C2 and C3 data sets are too small to be used for
extrapolation to C4 species. Nevertheless, extrapolation from
C4 to C2 and C3 is technically as challenging as extrapolation
to longer chain molecules, and we expect all of our conclusions
to also be valid when extrapolating to longer chain molecules
provided these do not contain any chemical fragment that is
nonexistent in the smaller training molecules.
Predicting properties of some chemical entity using machine

learning9,10 involves solving two related subproblems
discovery of effective features or descriptors and using a
proper machine learning model that, together with the chosen
descriptor, works best for the specific task at hand.11 A high-
level workflow for applying machine learning for this process is
shown in Figure 1. Here, we are trying to predict the
adsorption energies of surface intermediates, and hence the
descriptors are essentially some form of molecular fingerprints.
Many different kinds of fingerprints or fingerprint generation
schemes have been proposed in previous studies Coulomb
matrix12 and bag-of-bonds13 using distance measures between
the atomic coordinates of the species; atom centered radial or
angular symmetry functions;14−17 noncoordinate based finger-
prints that take into account features of a molecule which can
be extracted from the chemical formula or SMILES
notation;18−21 generation of fingerprints from molecular
graph structure22,23 where the atoms and the bonds are
considered as the nodes and edges of a graph, respectively; and
fingerprints corresponding to a target property learned using
back-propagation, etc. Fingerprints based on SMILES or graph
have the desirable property over the coordinate based
descriptors that any DFT or other semiempirical methods
need to be applied only on the training data; for the rest of the
data for which the adsorption energies are unknown, their

molecular notation is all that the predictive model would need
to make the predictions. In contrast, the coordinate based
methods would need reliable atomic coordinates even for the
species on the prediction set which would require some form
of expensive calculationsones we wish to minimize in the
first place. Most commonly used machine learning models
have been kernel based models such as kernel ridge
regression24 and different neural network based models such
as graph convolution,22,23 recurrent neural network,25 3D
convolutional neural network which reads the 3D spatial
coordinates of the molecule,26 or additive atomic contribution
through atomic subnetworks.9,14

In our investigations for interpolation of adsorption energies,
we have studied both the coordinate based and SMILES based
descriptors along with a variety of machine learning models.
Our results indicate that simple molecular descriptors that
capture the nearest-neighbor information across the species
from the SMILES notation, paired with kernel based models,
can perform as good as coordinate based descriptors such as
Coulomb matrix or bag-of-bonds with a mean absolute error
(MAE) of 0.14 eV. However, for extrapolation, the choice of
descriptor is more complexdescriptors based on pairwise or
triplet atomic distances such as Coulomb matrix or bag-of-
bonds have the disadvantage that they are not size extensible.
For data with different sized species, smaller ones have to be
padded with zeros that make the learning difficult. In this case,
constant sized molecular fingerprints27 are more suitable. Our
results, however, suggest that the predictive errors are still
quite high for these descriptors. A different kind of approach,
which is atom centered and where each atom’s neighborhood
information (its pairwise and triplet distances from other
atoms) is treated as the atomic fingerprint and fed to a small
neural network where these subnetworks from each atom share
their weights, and then all of the atoms’ contributions are
added up to get the final energy, is size extensible. We found
this method to work better than the other methods for
extrapolation with MAEs of around 0.4 eV. However, the error
is still large, and we have sought ways to improve upon this
model. One improvement was to include SMILES based
atomic fingerprints over the coordinate based ones, and the

Figure 1. Overview of the application of machine learning for prediction of adsorption energies. Structures of the intermediate species are used to
obtain a suitable fingerprint, which is fed to ML models that learn the adsorption energy as a function of the fingerprint vector.
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second contribution, which helped to get significantly smaller
extrapolation errors, was to treat the small atomic subnetworks
like a filter of a convolution neural network and use multiple of
these filters. This method had extrapolation MAE of 0.23 eV.

2. METHODOLOGY

Molecular fingerprints used in our investigations can be
categorized into three classes: first, coordinate based Coulomb
matrix and bag-of-bonds that use pairwise distances between
the atoms in the molecule to generate the fingerprint; second,
flat fingerprints based on the number of different bond counts
inside the molecule that can be read from the chemical formula
or SMILES notation; third, atom-centered fingerprints that are
based on the local neighborhood around an atom which is
calculated either by distance measures between the atomic
coordinates or by the number of different bond types for the
atom that can be read from the molecular notation. Machine
learning models that we have used can also be divided into
three categories: generalized linear models such as linear
regression, ridge regression (which uses L2 regularizer),
LASSO (which uses L1 regularizer); kernel based models
such as kernel ridge regression (KRR), support vector
regression (SVR), Gaussian processes (GP); and artificial
neural networks (ANN).
2.1. Coulomb Matrix and Bag-of-Bonds. The Coulomb

matrix (CM) method first creates a symmetric matrix where
the off-diagonal element C(i,j) is a function of the distance
measured between the ith and jth atoms and also their atomic
numbers. The diagonal elements are a function of the atomic
number of the corresponding atoms. The sorted eigenvalues of
the matrix form the molecular fingerprint. The bag-of-bond
(BoB) method takes the off-diagonal lower triangle of the
symmetric matrix formed in CM and puts the entries
corresponding to each atom type pair in a bag, sorts the
entries inside each bag, and concatenates the bags to form the

fingerprint vector. We have found these methods to typically
work well for interpolative predictions among the same sized
species. However, for data with variable sized species, one
needs to pad the entries of the matrix for smaller species with
zeros. This limits their usefulness for size-extrapolation
predictions. Detailed methods for building CM and BoB are
described in the Supporting Information.

2.2. Flat Molecular Fingerprint. Fingerprints generated
from the SMILES notation of the adsorbed species encode the
connectivity among the atoms inside the molecule. The
encoding can capture the number of different types of atoms or
bonds by looking into the nearest neighbors of each atom or
up to some specified distance. In our study, we have built a
simple scheme, similar to previous work on constant sized
descriptors,27 that looks into the nearest neighbors of the
atoms and counts the number of different atom types an atom
is connected to and then accumulates the results in a
fingerprint vector. The proposed fingerprint is shown in
Figure 2. Here, atom types are divided into subclasses by the
number of free valencies an atom has, e.g., instead of just
looking at how many carbon−carbon bonds are present, the
fingerprint captures how many saturated carbon atoms are
single bonded to a carbon with one free valence or how many
oxygens are double bonded to a saturated carbon atom, and so
on. This is a constant sized molecular descriptor as the length
of the vector remains the same for smaller or bigger molecules.
As will be discussed later, this method works well for

interpolation and works better than CM or BoB for
extrapolation, but the extrapolation error was still quite large.
Both the flat molecular fingerprint and CM/BoB can be fed to
any regular ML model such as linear model, kernel based
model, or fully connected feed-forward neural network. In each
case, the ML model takes as input the molecular fingerprint
vector and outputs the target real value (in our case,
adsorption energy). We have also tried the extended

Figure 2.Molecular fingerprint for the surface species CH3CHCOO. Here, C0 denotes a saturated carbon (no free valence). C1, C2, and C3 denote
carbon atoms with one, two, and three free valencies, respectively. Similarly, O0 is a saturated oxygen whereas O1 is an oxygen atom with one free
valence. The fingerprint vector (shown at the bottom of the image) contains the number of different saturated or unsaturated atoms and the
number of bonds between them.
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connectivity based fingerprint (ECFP)18 which produces fixed
length vectors from the SMILES notations of the molecules.
2.3. Additive Subnetwork Model. The atomic finger-

print based additive subnetwork model is a size extensible

model. The atomic fingerprint originally used14 for this model
was the symmetry functions calculated from the atomic
coordinates of all the atoms in the molecule. Two commonly
used symmetry functions are one that aggregates the pairwise

Figure 3. Network for the atomic contribution method. First, symmetry functions are calculated from the atomic coordinates of all the atoms in the
molecule. Typically, two symmetry functions are used: one that aggregates the pairwise distance information centered around each atom and the
other that combines the angular distance information from a triplet of atoms. Other symmetry functions can be devised, too. Here, Gi denotes the
vector containing the symmetry function values for the ith atom. For each atom, its corresponding G vector is fed to a neural network (NN). The
networks for all the atoms share weights which make the method work with any ordering of atoms. Each atomic NN learns the energy contribution
of the corresponding atom to the total energy of the species. All the atomic contributions are summed to get the predicted energy. The structure of
the atomic NN can be adjusted as shown in the bubble at the bottom of the figure.

Figure 4. Our proposed noncoordinate based atomic fingerprints for the atomic subnet based method. These fingerprints can be obtained directly
from the SMILES notation of the molecule without the need for any atomic coordinates. Three sample fingerprint vectors for two carbon atoms
and one oxygen atom are shown. The vectors contain the information about the number of different types of bonds for an atom. For example, the
vector item C1 contains the number of single bonds the current atom has with carbon atoms that contain one free valence. The fifth to seventh
positions of the fingerprint vectors have different meaning for carbon and oxygen atoms, e.g, in the seventh position, for carbon, =O denotes how
many oxygen to which the current carbon atom is bonded by double bonds, whereas for oxygen, =C2 encodes the number of carbon with two free
valencies to which the current oxygen atom is connected by double bonds.
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distance information centered around each atom and the other
that combines the angular distance information from a triplet
of atoms (equations for these distance measures are given in
the Supporting Information). Other symmetry functions can
be devised, too. The model is shown in Figure 3.
Fingerprints for each atom are fed to a small neural network.

These subnetworks learn the energy contribution of the
current atom to the total energy as a function of the
fingerprints. Aggregated energy contributions from all the

subnetworks yield the final energy. Subnetworks for all the
atoms of an atom type share their weights. The weights can
also be shared across the atom types. We have found the latter
approach to work better for our case. The weight sharing
ensures that the model is invariant to the ordering of the
atoms. In contrast to other models, this one can only work
with neural networks because it gives the flexibility of a
hierarchical structure through the use of the back-propagation
method to learn the network weights. In order to avoid the

Figure 5. Our proposed model. A species with three carbon and two oxygen atoms is passed through k filters. Each filter is an 8 by 10 by 1 neural
network. For each filter, outputs of networks for each of the three C atoms are summed up, and the same is done for the two O atoms. The
weighted sum of these two sums is the output for one filter. The final output is the weighted sum of all the filter outputs. The parameters of the
network that are learned through back-propagation are W(i)s, WC, WO, and network weights for each filter.
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computation of reliable coordinates for the prediction set, we
prefer the SMILES based fingerprints. We have developed such
an atomic fingerprint, shown in Figure 4, which is similar to the
flat molecular fingerprint described above but is centered on an
atom and encodes the connectivity information for that atom.
We have found this model to work better for extrapolation
compared to CM, BoB, or flat fingerprints, but the errors were
still quite large, which warranted further improvements to the
model.
2.4. Proposed Multiple Filter Based Additive Subnet-

work Model. To make the additive subnetwork based model
generalize better to an unseen testing data, we propose to treat
the shared weights of the atomic subnetworks as a filter in a
convolutional neural network (CNN). This type of deep
learning model is commonly used for image data where
different sets of weights (called convolutional filter) scan
through the image patches and learn to detect various basic
image features such as edges or corners28 which are combined
in subsequent layers to detect higher level objects such as a
face or a car or a digit.29 These filters are analogous to the local
receptive field in biological visual systems.30,31 In CNN, the
filters are usually 2D or 3D matrices of weights. A filter is
placed on a patch of the image, and a cross-correlation
operation between the filter weights and the input plane pixels
is performedthis is the output of that filter for that image
patch. Then, the filter is moved to the next adjacent patch
(which may or may not overlap with the previous patch). A
key observation here is that there is not one but a number of
filters that are used because each filter learns different features
(through back-propagation).32 Moving to our problem and the
atomic subnetworks, we can think of a subnetwork as a filter in
CNN. Since all of the subnetworks share their weights, they
can be considered as one filter scanning each of the atoms in
the molecule one by one. Unlike CNN, however, in our case
the subnetworks compute a nonlinear function of its inputs
instead of the cross-correlation, which makes sense since
predicting adsorption energies is a regression problem and we
want each subnetwork to learn the energy contribution of an
atom. Also, unlike CNN, here we do not need multiple layers
of filters as our learning objective is to find the individual atom
contribution to the total energy. However, the aspect of CNN
that can be incorporated in our networks and that can lend the
additive subnetworks a better representational ability is to use
multiple filters instead of one. Here, we should clarify that
using multiple filters does not mean using separate filters for
different atom types. Whether we use different shared weights
for different atom types or not, by “multiple filters” we are
referring to completely separate sets of filters (in each set, there
may be one filter if all atom types share the weights or more
than one if weights are shared only inside each atom type). In
our proposed model, each of the separate set of filters would
scan each atom of the molecule, and the weighted sum of all
the filtered values should yield the final output energy.
The proposed model is shown in Figure 5. The atomic

fingerprints are the 8-length vectors from Figure 4. During the
training of the network, at each iteration of the gradient
descent, there is a forward pass that starts from the fingerprints
at the left of the figure and moves to the right. The gradient of
the error in the energy obtained at the right-most node is then
back-propagated through the network which makes it learn the
appropriate weights to fit the data. Nonlinearity in the
computation comes from the nonlinear activation functions
used in the hidden layers of the filters. The error function (that

the gradient descent tries to optimize) for neural networks is
nonconvex33there can be many local minima. This means
the output of a neural network is sensitive to the starting points
of its weights; starting from different points in the hyperspace
can result in different ending locations. Since the weights of
each filter are randomly initialized,34,35 each of them is likely to
end up with different weights than others even though all of
them are fed the same set of atomic fingerprints, i.e., each of
them learns different functions of their inputs, just like each
CNN filter learns to detect different image features. Let us
assume there are K filters and the functions that they learn are
denoted as f(1), f(2),..., f(K) and the output of the ith filter (after
combining outputs of that filter for each atom in the species) is
E(i). Then, the overall energy output of the networks, E, is

∑=
=

E E W
i

K
i i

1

( ) ( )

(1)

where W(i) is the weight of the contribution for the ith filter
and

∑=
=

E E Wi

a

T

a
i

a
( )

1

( )

(2)

where T is the number of atom types in the species that have
fingerprints (in our case, it is 2 for C and O; since those two
atom types can describe all the bonds inside the species, we
have not included fingerprints for H), Ea

(i) and Wa are the
summed contribution for all the atoms of atom type a when
passed through filter i and the weight for that atom type which
is shared across the filters, respectively. So

∑=
=

E Ea
i

n

N

a
i( )

1

( )
a

n
(3)

where Ean
(i) is the output when the nth atom of atom type a is

passed through filter i. The last equation means the atomic
contributions of all the atoms for an atom type for a filter are
directly summed and not weighted (which can be treated like a
constant, nonlearnable weight of 1). This ensures that a change
in the relative ordering of the atoms (inside the set of atoms of
an atom type) does not change the overall result. If the atomic
fingerprint for the atom an is Xan, then Ean

(i) is a nonlinear
function of Xan

:

=E f X( )a
i i

a
( ) ( )

n n (4)

Here, the fingerprint is passed to the filter which, in our case, is
a small fully connected feed-forward neural network (NN).
The output of each layer in the NN is computed by
multiplying the weight matrix between the current and the
previous layer with the output vector of the previous layer and
then passing the obtained vector to a nonlinear activation
function.36−38

3. RESULTS AND DISCUSSION
In our investigations, we have used Coulomb matrix, bag-of-
bonds, flat molecular fingerprints (noncoordinate based,
calculated from the SMILES), and additive atomic subnetwork
models for both interpolation and extrapolation. Key results
are shown in Table 1 and Table 2, respectively. The
Supporting Information contains full tables of all results.
Here, the table for interpolation shows that noncoordinate
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based molecular fingerprints with kernel based ML models
perform as well as coordinate based descriptors with the same
ML models. The additive atomic subnetwork based on
SMILES with multiple filter also worked well. For this
model, we also used a coordinate based atomic fingerprint of
length 5aggregated pairwise distance measured from an
atom to each of the four atom types involved (carbon,
hydrogen, oxygen, and top two layers of metal catalyst surface),
plus the triplet distance measure.
For extrapolation, both the Coulomb matrix and bag-of-

bonds performed poorly. This is not unexpected since these
methods are not size extensible and require padded zeros to
make them work for different sized molecules. From this point
of view, the flat molecular fingerprint comes as an attractive
alternative as it is a constant sized descriptor (size of the
molecule does not effect the size of the vector; no zero padding
is required). But our results show that it performs no better
than CM or BoB for extrapolation. However, the method that
we found to be most promising was the additive atomic
subnetwork. Since this method adds up the atomic
contributions to the total energy, it is naturally size extensible.
The initial predictive error obtained using this method (with
the length 5 fingerprint discussed above) was approximately
0.4 eV. As a neural network ends up in a different location of
its parameter hyperspace on different runs (because of
randomly initialized parameters), we ran the model multiple
times, and our final result was an ensemble of these runsfor

each target species, its predicted adsorption energy was the
mean of its predicted values of all the runs. This yielded an
extrapolation error of approximately 0.32 eV. The ensemble
method was used in all of our following models.
The next step was to replace the coordinate based atomic

fingerprints with SMILES based ones (Figure 4). However,
only replacing the atomic fingerprints in the additive
subnetwork model actually increased the predictive errors to
over 0.4 eV. We improved this model by using multiple filters
as discussed before (Figure 5). The predictive errors went
down significantly as more filters were used. The rate of
improvement, however, gradually subsided, and after incorpo-
rating a certain number of filters, the predictive errors change
very little, as can be seen in Figure 6. We used this multifilter
approach with the coordinate based atomic fingerprints as well,
and the extrapolation error there went down to 0.28 eV from
over 0.32 eV.
Here, we should note that the number of filters is essentially

a hyperparameter to our model and needs to be tuned for
specific problems. Tuning of hyperparameters for machine
learning models is typically done by setting aside a portion of
the training set as validation set and choosing the hyper-
parameters for which the model performs best on the
validation set. The chosen model is then used to run on the
testing set. We also used this approach. This works well for
interpolation problems where the training (which includes the
validation set) and testing sets reside in the same region of the
parameter space. But in case of extrapolation, this might not
work.
Through our investigations, we have seen that for

extrapolation, the error on the validation set (which is part
of the training set, containing C4 species) went to an
approximate minimum value when six filters were used and
then remained more or less constant. But the extrapolation

Table 1. Interpolation Resultsa

method
ML
model

MAE
(eV)

SD of AE
(eV)

Coulomb matrix GP 0.230 0.218
bag-of-bonds KRR 0.139 0.136
bag-of-bonds ridge 0.219 0.279
ECFP SVR 0.165 0.179
flat molecular fingerprint (from
SMILES)

SVR 0.148 0.129

flat molecular fingerprint (from
SMILES)

KRR 0.141 0.122

fllat molecular fingerprint (from
SMILES)

ridge 0.196 0.166

additive atomic subnetwork ANN 0.398 0.202
proposed model (from coordinates, 1
filter)

ANN 0.347 0.259

proposed model (from coordinates, 4
filters)

ANN 0.309 0.231

proposed model (from SMILES, 1
filter)

ANN 0.190 0.164

proposed model (from SMILES, 6
filters)

ANN 0.142 0.120

aThe methods used: Coulomb matrix, bag-of-bonds, flat molecular
fingerprint, and additive atomic subnetwork model (see discussions
for details). For the first seven rows, for each of the methods, we ran
the following ML models: ridge regression, LASSO, kernel ridge
regression (KRR), support vector regression (SVR), Gaussian
processes (GP). The rest of the rows used artificial neural networks
(ANN). Some of the results from each category are shown. The first
and second columns show the descriptor method and the ML model
used, respectively. The third column contains the mean absolute error
(MAE) of the predicted adsorption energies, and the fourth column
presents the standard deviations of the absolute errors. Data for the
247 C4 species were randomly permuted, and 215 were used for
training and the rest for testing. The process was repeated 100 times
(data being permuted randomly each time) to obtain an unbiased
estimate of the MAE.

Table 2. Extrapolation Resultsa

method
ML
model

MAE
(eV)

SD of AE
(eV)

Coulomb matrix SVR 2.392 1.015
bag-of-bonds KRR 2.046 0.422
ECFP SVR 2.961 0.760
flat molecular fingerprint (from
SMILES)

KRR 2.342 0.625

additive atomic subnetwork ANN 0.441 0.214
proposed model (from coordinates, 1
filter)

ANN 0.324 0.212

proposed model (from coordinates, 4
filters)

ANN 0.282 0.190

proposed model (from SMILES, 1
filter)

ANN 0.434 0.314

proposed model (from SMILES, 5
filters)

ANN 0.227 0.143

aThe methods used: Coulomb matrix, bag-of-bonds, flat molecular
fingerprint, and additive atomic subnetwork model (see discussions
for details). For the first four rows, for each of the methods, we ran
the following ML models: ridge regression, LASSO, kernel ridge
regression (KRR), support vector regression (SVR), Gaussian
processes (GP). The rest of the rows used artificial neural networks
(ANN). Some of the best results for each method are shown. The first
and second columns show the descriptor method and the ML model
used, respectively. The third column contains the mean absolute error
(MAE) of the predicted adsorption energies, and the fourth column
presents the standard deviations of the absolute errors. Data of 247
C4 species were used for training, and data of 29 C2 and C3 species
were used for testing.
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error on the testing set (containing C2 and C3 species), after
the network was trained with different numbers of filters,
reached minimum with five filters. This can occur for other
“pure extrapolation” settings where a low validation error does
not always correspond to a low test error. In this case, if a small
amount of data from the test space (which, in our case, were
C2 and C3 species) can be obtained, that can be included in
the validation set to tune the hyperparameter more effectively.

The problem setting, however, would no longer be a pure
extrapolation as a small amount of data points from the test
space is included during the training phase.
Figure 7 shows the values of the learned weights between

the input layer and the hidden layer for each filter when eight
filters were used. For each matrix, a row corresponds to the 10
weights going out of one fingerprint value (see Figure 4). A
column corresponds to the eight values going into a hidden
layer unit. There are three key observations here. First, each
filer learns a different function of its inputs. Second, the sixth
and seventh rows contain weights with high absolute values.
This is because the weights were shared across the atom types,
i.e, fingerprints from carbon and oxygen atoms were fed to the
same filters, and according to Figure 4, some of the entries at
the same location of the fingerprint vector for carbon and
oxygen carry a different meaning. According to this, the fifth,
sixth, and seventh entries have to encode more information,
and hence the network learned higher valued weights for some
of those. Finally, the fourth row for each of the filters learned
close-to-zero weights. The fourth entry in the atomic
fingerprint is the count of the number of carbon atoms to
which the current atom is bonded where the carbon atom has
three free valencies. In our training set, there was no such
species. So, the network did not learn any significant value for
those weights. This also signifies that if any species in the target
set contains such a structure, its prediction would be
inaccurate. Indeed, we found that two species, CH2C and
CH3C (not included in the 29 species used as our target set),

Figure 6. Extrapolation errors decreased sharply with the use of more
filters. At one point, however, it reaches a state where adding more
filters does not make any significant improvement. The model used
here is our proposed model shown in Figure 5, and the atomic
fingerprints are the ones shown in Figure 4.

Figure 7.Weight matrices for the eight filters learned by running our proposed model. Each of the eight 8-by-10 matrices contains the values of the
weights that connect each of the 8 atomic fingerprint values (which according to Figure 4 are the number of different bond types to which an atom
is connected) to the 10 hidden units denoted as H1−H10 (the left half of each subnetwork or filter shown in Figure 5).
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both containing this type of structure, had very high prediction
errors (around 1 eV). This observation signifies a fundamental
limitation in machine learning based modelsthe predictions
can be at most as good as the data that are fed to train the
model. The model learns from the training data the adsorption
energy as a function of the basic building blocks or fragments
that make up a chemical species, such as the information on
how many free valencies an atom has or how many unsaturated
carbon atoms an atom is connected to, etc. The effectiveness of
the model, hence, is dependent on how well the encoded
structural information in the fingerprint can describe the
differences between the target property (here, adsorption
energy) among different chemical species. Fragments that are
absent in the training data, such as aromatic rings, are not
learnt by the model, and thus the model will likely fail for
species containing such fragments.

4. CONCLUSION

In this paper, we have performed a detail investigation on a
predictive model for both interpolation and extrapolation of
adsorption energies of hydrocarbon species on Pt(111) catalyst
surface. We have compared the effectiveness of different
fingerprints and ML models. For interpolation, our results
indicate that a simple SMILE based fingerprint calculated from
nearest neighbors with kernel based ML models perform very
well for interpolation of adsorption energies with an MAE of
0.14 eV. However, when predicting adsorption energies of
species of different size from that of the training set
(extrapolation), only an additive atomic contribution based
model works reasonably well. To improve upon this method,
we have developed a multifilter based weighted additive model
that combines the established additive model with the concept
of filters from a convolutional neural network. Our findings
show that this approach is highly generalizable compared to
other models and leads for extrapolation of adsorption energies
to an MAE of 0.23 eV. The proposed model also worked well
when applied to interpolation with no statistically significant
difference with the best models. The model has the potential to
be applicable in other problems if the hyper-parameters of the
model are adjusted according to the task. In the current work,
all species were chain structures and of size between C1 and
C4. The model was able to successfully extrapolate from larger
to smaller species as long as the target species had similar
chemical fragments as those in the training set. However, it
should be noted that for distant extrapolation from small
species to large species such as enzymes and proteins, the
relative number of atoms bonded to the surface might be
different, and the model needs further refinement for such
scenarios.
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