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ABSTRACT: Computational catalyst discovery involves identification of a meaningful
model and suitable descriptors that determine the catalyst properties. We study the impact
of combining various descriptors (e.g., reaction energies, metal descriptors, and bond
counts) for modeling transition-state energies (TS) based on a database of adsorption and
TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of
propionic acid, a chemistry characteristic for biomass conversion. Results of different
machine learning models for more than 1572 descriptor combinations suggest that there is
no statistically significant difference between linear and nonlinear models when using the
right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not
including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals,
conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly
robust.

■ INTRODUCTION

Computational catalyst screening typically involves developing
a microkinetic reaction model whose parameters are
determined from transition-state theory with the (free)
energies of all adsorbates and transition states can, in principle,
be determined from density functional theory (DFT)
calculations.1,2 The computational effort can become very
large when the goal is screening of tens or hundreds of possible
active-site structures. A particular burden is the computation of
transition-state energies given that the identification of
transition states is computationally about 1 order of magnitude
more time intensive than the computation of ground states and
that a reaction network generally consists of many more
reactions (i.e., transition states) than surface intermediates
(i.e., ground states). Particularly for biomass conversion
reactions, the reaction network is often very complex and it
is challenging to priori identify dominant reaction pathways
and key reaction states.
To reduce the computational cost in transition-state

calculations, linear scaling relations such as Bronsted−
Evans−Polanyi (BEP)3 and transition-state scaling (TSS)
relations have been developed to correlate the activation
energy and transition-state energy to the reaction energy and
product energy, respectively.4−7 Despite the great success of
these linear relations in predicting transition-state energies of
methane and methanol dissociation on different single metal
and bimetallic surfaces,8,9 ammonia decomposition on various
mono- and bimetallic transition-metal surfaces,10,11 synthesis

gas conversion on fcc(111) transition-metal surfaces12 and
other hydrocarbon dehydrogenation, C−C and C−O bond
scission reactions on close-packed transition-metal surfa-
ces,13−15 the applicability of these relations in more complex
systems, such as biomass hydrodeoxygenation, is still
unknown.5,16−20

In this paper, we study various descriptors for modeling
transition-state energies (TS) including conventional descrip-
tors such as reaction energies and dissociated product energies
as well as adsorption energies of other surface intermediates
and information related to the chemical bonding in the surface
species that are the reactants and products of elementary
surface reactions. We consider a database consisting of the
most-stable ground-state adsorption energies (Gibbs free
energies computed within the harmonic approximation at a
temperature of 473 K) of a group of intermediate species and
transition states from the hydrodeoxygenation of propionic
acid on six different close-packed metal surfaces (Ni, Pt, Pd,
Ru, Rh, and Cu).21−25 We analyzed more than 1572 descriptor
combinations with a linear model to see if there is a specific
combination that can achieve a significant difference to the
commonly used descriptors in BEP and transition-state
scaling.26−28 Also, we compare these linear models with and
without regularizations (L2 norm)29 with the best descriptors
to nonlinear models. Following previous studies30−32 on
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predicting thermodynamic properties of a chemical compound,
we considered nonlinear kernel regression models such as
support vector regression (SVR),33 Gaussian process (GP),34

and kernel ridge regression (KRR).35 In this way, we study if
there is a significant difference between different regression
models. Furthermore, there are different ways to train these
models based on grouping the reaction steps: either train a
model per reaction step, i.e., no data grouping, train a model
per cleavage, which groups the reaction steps based on their
cleavage type, or train one model for all reaction steps, i.e., one
group. Therefore, we analyzed if there is a significant difference
between various data grouping approaches. Finally, we studied
the robustness of all of these models when removing
information about some elementary steps from the training
dataset, which will be very useful for reactions involving a very
large reaction network where we cannot have information for
all elementary reactions.

■ METHODOLOGY
All of the DFT calculations for adsorption and transition states
of the six metal surfaces (Ni111, Pt111, Pd111, Ru0001,
Rh111, and Cu111) were performed using the Vienna Ab
Initio Simulation Package (VASP) with the projector
augmented wave (PAW) method.36 The generalized gradient
approximation (GGA) with the Perdew−Wang 1991 func-
tional (PW91) was used to describe the exchange-correlation
effects.37,38 A combination of climbing image nudged elastic
band (CI-NEB) and dimer method was used to locate the
transition states.39−41 For all of the calculations, we used a 3 ×
2√3 surface slab with four metal atom layers separated
perpendicularly by a 15 Å vacuum space. An energy cutoff of
400 eV and the energy convergence criterion of 10−7 eV were
set to all calculations. All structures were relaxed until the
Hellmann−Feynman force on each atom was smaller than 0.01
and 0.02 eV Å−1 for the optimization of the surface
intermediates and transition states, respectively. Except for
the calculations on the Ni (111) surface, all calculations were
not spin-polarized. The Brillouin zone integration was sampled
by 4 × 4 × 1 k-points for the surface using the Monkhorst−
Pack scheme.42 With the DFT calculations from the above six
metals, we first calculate the corresponding adsorption energies
for various species on different metal surfaces according to the
following equations

E E0.5H H2
=

E E E2C CH H4 2
= − ×

E E EO H O H2 2
= −

E E E yE zE Exi itotal, C O H slab= − − − −

where x, y, and z are the numbers of C, H, and O atoms that
the surface species is made up of. Then, we calculate all
reaction step-related descriptor values for our analysis based on
a dissociation reaction form reactant → product1 + product2.
Next, we split the data into training and test sets to model the
transition-state energies and evaluate our trained model−
descriptor pairs. We use five of the metals for training and test
on the sixth one. To get stable results, we applied the 6-fold
cross-validation technique where we evaluate one metal given
the other five metals as training. Then, we calculate the mean
absolute error (MAE) and standard deviation (STD) over all
metals. As we predicted all of the TS energies for all tested

metals (6 metals × 39 testing reactions), we calculate the STD
over all absolute errors (234 testing reactions) between the
predicted energies and true-referenced DFT energies.
In our experiments, we evaluated different nonlinear models

such as the Gaussian process (GP),34 which is a nonparametric
statistical model that compactly describes distributions over
functions with continuous domains. A GP models a collection
of random variables as a multivariate normal distribution with
mean μ and covariance function K(X*, X). The covariance
function or the kernel defines the relation between any pair of
data points. Given that the Gaussian process prior is zero mean
with a valid covariance function k, the posterior mean μp and
the posterior variance ∑p can be calculated as

K X X K X X I Y( , )( ( , ) )np
2 1μ σ= * + −

K X X K X X K X X I

K X X

( , ) ( , )( ( , ) )

( , )

n
p

2 1∑ σ= * * − * +

*

−

where σn
2 is the noise variance. The covariance matrix K is an N

× N matrix where N is the number of training data points.
Each element in the covariance matrix can be evaluated using
the kernel function. In this work, we examined different kernel
functions such as radial basis function (RBF) and Matern,
Linear, and Polynomial functions. Also, we used support vector
regression (SVR),33 which is also a kernel method. As with GP,
there is a choice of kernels that depends on the prediction task
at hand. In our experiments, we evaluated the linear and RBF
kernels for SVR, as shown in the Supporting Information
Tables. In addition, kernel ridge regression (KRR)35 uses a
different loss function than SVR and its estimation can be done
in a closed form. We tested the linear and Gaussian kernels for
KRR.
In the missing data experiments, we use 6-fold cross-

validation between metals, i.e., we use five metals for training
and the sixth one for testing. Then, we iterate over all
combinations. For the training metal data, we randomly
remove n% of the TS energies from each metal; then, we train
the models on the remaining data. After that, we test these
models to predict all of the TS energies for the test metal.
Because we remove the data randomly, we repeat these
experiments 10 times such that we get the MAE and STD over
all of the absolute errors of the TS energies.

■ RESULTS AND DISCUSSION
One-Step Approach (No Grouping). Similar to the most

common approach, we apply various predictive models based
on linear and nonlinear techniques to model the transition-
state energy of each step. Given six metals and 39 TS steps for
each metal shown in Table S1, we use one predictive model
per TS step to be trained on five metals and tested to predict
the TS energy of the sixth metal. Similar to the work by
Chowdhury et al.,43 we use metal descriptors (such as EH, EC,
EO, EOH, ECH3CH, and ECHCHCO) and bond counts of species
(such as the bond count of reactant Br) to describe the
variabilities of the transition-state (TS) energies. In addition,
we consider other descriptors such as the adsorption energy of
the reactant (Er), the sum of adsorption energies of the
products (sP = Ep1 + Ep2), and reaction energies (Er − sP)
(see the Supporting Information for more details). We note
that electronic structure descriptors have recently been
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introduced as metal descriptors.44,45 While such metal
descriptors might be beneficial for large-scale screening studies,
we refrained from using such metal descriptors but rather focus
this paper on comparing conventional scaling relations that are
based on adsorption energies with various machine learning
models that utilize similar adsorption energy information (both
as metal descriptors and reaction descriptors) and other bond
count information that is freely available when having
determined the thermodynamics of surface reactions. Except
when otherwise specified, the TS energies we aim to predict in
this work are free energies calculated at a temperature of 473 K
such that the results can directly be used in a microkinetic
model. Then, we calculate the mean absolute error (MAE) and
its standard deviation (STD) over all steps and metals. We
found that the best model is linear with L2 regularization using
Er, Ep1, Ep2, Br − Bp1, EOH, ECH3CH as descriptors with MAE
= 0.179 eV and STD = 0.157 eV where Br is the reactant bond
count and Bp1 is the bond count of the bigger product species,
as shown in Table 1 (more details are shown in Tables S2, S6,
S7, S23−S28 and Figure S3 in the Supporting Information).

We have looked at all of the models that lead to no
statistically significant difference in results than the best ones
(using p-value < 0.05). There are 835 different linear/
nonlinear models that are not significantly different from the
best ones. Among these best models, linear models can achieve
this with the smallest number of descriptors. Only two
descriptors, the adsorption energy of the reactant Er and the
adsorption energy of CH3CH as metal descriptors, are needed
for a regularized linear model to achieve MAE = 0.201 eV and
STD = 0.169 eV. On the other hand, all of these best models
are significantly different from the linear scaling method with
Er as the descriptor, which achieves MAE = 0.298 eV and STD
= 0.344 eV (shown in Table S8 in the Supporting

Information), and the linear scaling method with sP as the
descriptor, which achieves MAE = 0.276 eV and STD = 0.240
eV (shown in Table S9 in the Supporting Information). We
also trained the data using the BEP model (Er − sP), and the
results show MAE and STD of 0.244 and 0.241 eV,
respectively, which demonstrates that BEP has inferior
performance in this context although it appears superior to
TSS with sP as the descriptor.
The conclusion from the per-step approach is that the linear

model needs at least a metal descriptor (such as ECH3CH) in
addition to the reactant energy Er to achieve results that are
not statistically different from the best results, as shown in
Figure 1. Also, regularized linear models can easily compete
with advanced machine learning models such as SVR with
polynomial kernel given suitable descriptors, as shown in Table
S7 in the Supporting Information.
Even though it is very common to use one-model per step,

we also extended our analysis to one-model per cleavage and
one model for all of the steps. In this way, we find the best
model/descriptor per elementary reaction grouping method.

Per-Cleavage Grouping Approach. Instead of having 39
predictive models to learn about 39 TS steps separately as we
did in the previous approach, here we split the TS data based
on the cleavages (C−OH, C−H, C−C, and O−H bond
cleavages). We used different cleavages: C−OH with six
reaction steps, C−C with 11 reaction steps, C−H with 17
reaction steps, and O−H with five reaction steps per metal
surface. Then, we train one predictive model for each cleavage
group.6,7 Given six metals and cleavage groups, we use one
predictive model to be trained on all TS steps within a cleavage
group from five metals and tested to predict the TS energies
within the same cleavage group from the sixth metal. Then, we
calculate the MAE with STD over all steps and metals. We also
studied all of the linear and nonlinear techniques that we used
in the previous approach and we found that the GP-Matern
using Ep1, Br, Bp2, EC, EO, EH can achieve the best results
among all of the models in this case with MAE = 0.176 eV and
STD = 0.162 eV. Also, we found 1801 models that are not
statistically significantly different from the best ones. The
lowest number of descriptors among these models is three
descriptors, which can be achieved only by nonlinear models
such as GP-RBF, which only uses sP, Br, ECHCHCO with MAE
=0.201 eV and STD = 0.178 eV. However, for linear models, at
least four different descriptors are needed to give predictions as
good as the best model. Among all of these models, we found
that the linear models have no significant difference from the
nonlinear models when using the right descriptors. Samples of
these models are shown in Tables S10−S12 and Figure S4 in
the Supporting Information. The results show that using
simple descriptors such as Er or sP will always lead to high
MAE regardless of the model used; however, adding bond
counts and/or metal descriptors yields better TS predictions.

One-Model Grouping Approach. In contrast to the
previous two approaches, here, we use one predictive model to
learn all of the TS energies together. Given six metals and a
predictive model, we trained the model on all TS steps from
five metals and tested to predict all of the TS energies of the
sixth metal. By using all of the linear and nonlinear techniques,
we found that the GP-Matern-ard with sP, Bp1, Bp2, EC, EO as
descriptors achieved the best MAE of 0.169 eV and STD =
0.145 eV. These descriptors include all three different types of
descriptors studied, i.e., reactant/product energies, bond

Table 1. Average MAE (in eV), Standard Deviation for All
Absolute Errors (SD-AE) of Tested Reactions, and Standard
Deviation of MAEs (SD-MAE) over Six Testing Metals for
Different Models and Groupings of Data (Predicting Data
on the Sixth Metal from Data of the Other Five)

app. model desc. MAE SD-AE
SD-
MAE

one-
step

ridge Er, Ep1, Ep2, Br − Bp1,
EOH, ECH3CH

0.179 0.157 0.039

one-
step

ridge Er, ECH3CH 0.201 0.169 0.028

one-
step

linear Er 0.298 0.344 0.095

one-
step

linear sP 0.276 0.239 0.080

one-
step

BEP Er − sP 0.244 0.241 0.093

per-clvg GP-
Matern

Ep1, Br, Bp2, EC, EO, EH 0.176 0.162 0.077

per-clvg GP-RBF sP, Br, ECHCHCO 0.201 0.178 0.045
one-
model

BEP Er − sP 0.267 0.184 0.037

one-
model

GP-
Matern-
ard

sP, Bp1, Bp2, EC, EO 0.169 0.145 0.030

one-
model

ridge Er 0.322 0.278 0.077

one-
model

linear Er, Ep1, Ep2, Br, Bp1,
ECH3CH

0.189 0.165 0.040
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counts, and metal descriptors. Also, there is no significant
difference between 713 different models and the best ones.
The lowest number of descriptors among these models is four
descriptors, which can only be achieved by nonlinear models,
as shown in Table S13 in the Supporting Information.
However, the linear models are not significantly different
than the best nonlinear model when at least 5 different
descriptors are used, as shown in Table S13 in the Supporting
Information. In these two cases, all of the linear and nonlinear
models are using Er, the reactant energy. In addition, each one
of these models has one metal descriptor, which reflects the

importance of including the metal descriptors for more
variability when including multiple metals for training. The
best descriptors for each model are shown in Figure S5 and
Table S14 in the Supporting Information. On the other hand,
using one model with simple descriptors such as Er or sP leads
to high MAE. For instance, the Ridge model with Er as the
descriptor gets MAE = 0.322 eV and STD = 0.278 eV, as
shown in Tables S15 and S16 in the Supporting Information.
The main conclusion of this descriptor analysis over the

three grouping methods is that the number of descriptors
required to achieve the best results depends on the grouping

Figure 1. Predicted energy (after referencing) vs actual energy (after referencing) for modeling the TS energy using the one-step approach for the
prediction of the TS energies on Ni(111). (a−c) Show how linear scaling models behave with simple descriptors such as Er (energy of reactant), sP
(energy of sum of products), or Er − sP, respectively. (d) Illustrates how the regularization reduces the MAE from 0.311 eV in (a) to 0.221 eV. The
addition of a metal descriptor such as ECH3CH improves the results, as shown in (e). (f) Shows the best model (lowest MAE) using the one-step
approach.
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method. For one-model per step, only two descriptors with the
regularized linear model can give good results. However, at
least five descriptors are needed for a linear model in the case
of the one-model grouping approach. Note that to achieve a
lower MAE with linear/nonlinear models, the descriptor set
should include at least the adsorption energy of the reactant/
product and a metal descriptor. However, to achieve higher
accuracy, bond counts should also be considered. Interestingly,
the nonlinear complex models cannot achieve significantly
different results from the linear ones when the right descriptors
are used for the linear models.

Comparison of Elementary Reactions’ Grouping.
Finally, we study if there is a significant difference between
various types of groupings of elementary reactions such as one-
model per step, one-model per cleavage, and one model for all
reaction steps. Here, we found that with the right model and
descriptors, there will be no statistically significant difference
between these types of groupings, as shown in Figure S6 in the
Supporting Information. For example, linear scaling, which is a
per-step linear model with Er as a descriptor, gives worse
results than the linear one-model grouping approach with Er,
Ep1, Ep2, Br, Bp1, ECH3CH as descriptors, as shown in Table 1

Figure 2. Significant difference between different models from the three different grouping approaches. It is noticed here that the linear scaling
models with simple descriptors and per-step approach are significantly different from the best models of all approaches. No significant difference is
observed between the one-model grouping approach and the per-step approach given the best regression model and descriptors.

Figure 3. MAE in eV for a small number of models across various missing data scenarios. (a) It is noticed here that linear models with simple
descriptors such as reaction energy, Er, or sP give higher MAE and have a significant difference from the models with multiple descriptors. The
MAE for the linear models such as BEP and TSS are above 0.26 eV regardless of the percentage of the missing data. This can be explained as Er or
sP is a linear component and can be easily modeled by linear functions. So with a lower number of data points, we can still fit the linear model with
similar performance. (b) When we consider more features from bond counts and metal descriptors, e.g., a linear model with Er, Br, Bp2, ECH3CH, we
can get lower MAE with a significant difference from simple descriptors such as Er only. Considering more descriptors with a regularized linear
model leads to improved model accuracy, e.g., Ridge Er, Ep1, Ep2, Br, Bp2, ECH3CH. (c) In addition to linear models, the advanced machine learning
models with complex kernels such as GP with Matern kernel can give slightly lower MAE but with no significant difference from the linear model
that has more descriptors. (d) Also, the linear and nonlinear models with the same descriptors perform similarly such as Ridge and GP with RBF
kernel and Er, Ep1, Ep2, Br, Bp2, ECH3CH as descriptors.
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and Figure 2. The conclusion that the best models in the one-
model approach are not statistically different from the best
models in the other two approaches is very useful because the
one-model approach has a high potential to be used in the case
of missing various reaction steps as described in the next
experiment.
Missing Reaction Steps. In the case of missing transition-

state steps on all metal surfaces, the one-step approach will not
be applicable and presumably the per-cleavage also not, given
that very few reactions might be in a specific bond cleavage
grouping. Therefore, we examine only the one-model grouping
approach in various missing data situations to identify the most
stable model/descriptors in these different scenarios. We study
the data with n% missing steps where n = 0, 10, 20, 30, 40, 50,
60. We found that the linear models are very stable when five
descriptors are used from combinations of adsorbate energies
(Er, Ep1 or Er, Ep1, Ep2), bond counts (combinations of Br,
Bp1, Bp2), and ECH3CH as the metal descriptor. However, the
nonlinear models can achieve nonsignificantly different results
with the same descriptors in addition to others including
product energies (sP) and metal descriptors (EC, EO, EH).
Figure 3 shows the same descriptors for linear and nonlinear
models in different missing data scenarios.

■ CONCLUSIONS

In conclusion, we compared linear models versus advanced
machine learning models using more than 1572 descriptor
combinations. The analysis shows that considering bond
counts and metal descriptors can help to achieve lower MAE
for both linear and nonlinear models. Besides, the nonlinear
complex models cannot achieve statistically significantly better
results than the best linear ones. In addition, we discuss various
elementary reaction grouping approaches, which show that the
one-model approach can perform similarly to the one-step
approach, which might be a benefit when reaction data on
various metals are missing. The same conclusion has been
reached in the missing data study, which demonstrated that
conventional descriptors (product or reactant energy) will give
higher MAE compared to the ones that also use bond count
information and metal descriptors. This is shown in the ridge/
GP_RBF models for descriptors Er, Ep1, Ep2, Br, Bp2, ECH3CH

that perform very well. Finally, we highlight that while our best
models possess an MAE that is only 0.1 eV smaller than
traditional BEP correlations for predicting transition-state
energies, a difference in an activation barrier of 0.1 eV leads
to a reaction rate constant that changes by a factor 12 at typical
biomass conversion temperatures of 473 K. Thus, these
differences can become important when correlating computa-
tional predictions with experimental data such as turnover
frequencies, selectivity, reaction orders, etc.
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