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Highly efficient deoxydehydration and hydrodeoxygenation on MoS,-supported
transition metal atoms through a C-H activation mechanism
Yongjie Xi and Andreas Heyden*
Department of Chemical Engineering, University of South Carolina, 301 South Main Street, Columbia,

South Carolina 29208, United States

Abstract: Deoxydehydration (DODH) is an efficient process for the removal of vicinal OH groups of
a diol or polyol. Conventional DODH reactions usually take place at a single-site MO, (M=Re, Mo, V
etc.) active center, which proceed through a diol condensation step, an alkene extrusion step and a
catalyst regeneration (or reduction) step. Here, we suggest that MoS,-supported transition metal atoms
allow for the DODH reaction to occur through an alternative mechanism, whereby the C-H bond of a
diol is activated first, which facilitates the C-OH bond cleavage on a neighboring carbon. The removal
of the second OH group is also facile over the proposed catalysts. Our kinetic studies suggest that the
DODH of ethylene glycol on Ru,/MoS,, Ir,/MoS, and Rus/MoS, are highly active with predicted
turnover frequencies of over 1/s. Thus, our study suggests a possible approach for the design of highly
active DODH catalysts. Apart from being a DODH catalyst, the proposed MoS,-supported catalysts are

also highly active as hydrodeoxygenation catalyst for the removal of alcohol OH groups.

Keywords: deoxydehydration, MoS,, C-H activation, C-OH cleavage, hydrodeoxygenation, DFT

calculations.
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1. Introduction

Searching for alternative energy sources to fossil fuels is essential to achieve sustainability. The
conversion of biomass into fuels and chemicals have received considerable interest during the past
decade.! However, biomass-derived raw materials are usually oxygen-rich, making it necessary to
develop efficient deoxygenation catalysts.*® Among various deoxygenation processes, there is a surge
of interest in deoxydehydration, which removes vicinal OH groups of a diol and converts it into an
alkene.!*!> Cook and Andrews’ seminal work in 1996 reported a homogeneous Re-catalyzed DODH
reaction.!? To reduce the cost of rhenium compounds, Mo-'¢ and V-based!” homogeneous catalysts have
been developed. The DODH catalyst was heterogenized by supporting ReO, on activated carbon in
2013.'® Ensuing studies suggested that CeO,'! and TiO,!? can better stabilize the ReO, species than
activated carbon. Experimental and computational studies in heterogeneous DODH catalysts have been
abundant in recent years. Among them, most of the reported heterogeneous DODH catalysts feature a
supported single-site MO, (M=Re, Mo, V etc.) catalytic center.'> !> Recently, unsupported rhenium
oxide nanoparticles have been reported as DODH catalyst with 3-octanol as the reductant.!”

Typically, the mechanism of a DODH process involves three steps. First, the two O-H bonds of a
diol are cleaved sequentially, forming a diolate species adsorbed on a catalyst. Accompanied with the
breaking of the O-H bonds, a water molecule is formed by the hydrogen atoms from the diol and the
oxygen atom of the MO, (M=Re, Mo, V et.al) species. Second, the two C-O bonds of the diolate are
broken, forming an alkene. The alkene extrusion step leaves an additional oxygen on the catalyst. Third,
the catalyst is regenerated by a reductant.!®> While PPh; and alcohols are commonly used reductants, H,
is arguably a more economically viable alternative to them.!!- 20 Utilization of H, as the reductant in
DODH requires a co-catalyst which plays the role of H, activation. For example, Pd serves as a co-
catalyst in a ReO,—Pd/CeO, catalyst.'! Since Pd is a hydrogenation catalyst, the formed alkene is
hydrogenated readily over ReO,—Pd/CeO,. Whereas the reduction step may occur prior to the extrusion,
it is well-accepted that all three steps are necessary to complete the DODH catalytic cycle.'3

To design a novel heterogeneous DODH catalyst, we explore if it is possible to remove vicinal OH
groups through a new mechanism different from the above-mentioned three-step mechanism. The
concept of single-atom catalysis has aroused enormous interest in heterogeneous due to the high atom
efficiency, reaction activity and selectivity to desired products.?!-* Atom-pair catalysts, for which two

neighboring single atoms work synergistically, allow for the reaction to occur in a different mechanism
2
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from the single-atom counterpart and opens more possibilities for the design of novel catalysts.?>-3°

In the present study, we apply the concept of atom-pair catalysts to the design of a DODH catalyst.
We examine the DODH reaction pathways on two-dimensional MoS,-supported transition metals.
MoS, was employed since sulfur vacancies, serving as anchoring site of transition metals, can be readily
created on the basal planes of MoS, through hydrogen annealing, electrochemical desulfurization or
H,0, chemical etching.3!-3* The S-vacancy of MoS, can be used to stabilize a single-atom catalyst,
which was explored in experimental and computational studies.’!- 3435 The two-dimensional form of
MoS, is used since it exposes more basal plane sites than its bulk counterpart. In the alkene extrusion
process of the conventional DODH mechanism, the two C-O bonds break in one elementary step after
O-H bond dissociation.'3-'* Here, we explore the possibility of cleaving the C-OH bonds step-by-step
(C1-01 and C2-02 in Figure 1a) on MoS,-supported atom-pair catalysts which leads to the DODH of
a diol. Since transition metals may activate the C-H bond of a diol, we also incorporate the C-H
activation (C1-H3 and C2-H4 in Figure 1a) process in our mechanistic study. The C-H activation is
followed by C-OH bond cleavage at a neighboring carbon atom. To our knowledge, no previous study
explored the DODH reaction through a C-H activation mechanism. Specifically, we show that while
the activity of the ethylene glycol (EG) C-O (or C-OH) bond cleavage on Ru;/MoS, or Ir;/MoS, is
relatively low, Ru,/MoS; or Ir,/MoS,; allows for the DODH reaction to occur with high activity through
a C-H activation mechanism. Since multiple sulfur vacancies can be created on MoS,,’! we also
examined the catalytic DODH reaction on Rus/MoS, and Ir;/MoS,, where three S-vacancies are created
to accommodate Rus or Ir;, which are shown to be active for the removal of EG hydroxyl groups. It
should be mentioned that the MoS,-suppored Ru,, Rus, Ir, and Ir; are significantly more stable than the
corresponding supported single-atoms (see Figure S1). Next, a microkinetic model was developed to gain
further insights into the reaction mechanism and rate controlling steps. To compare the activity of C-
OH bond cleavage occurring after C-H activation and direct C-OH bond cleavage, we also examined

the two processes on Pt,/MoS; and Rh,/MoS,.
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Figure 1. a. Labelling of atoms of a diol. b. Configuration of a (4x4) MoS, supercell with two S
vacancies. ¢. Project density of states for Ru and Ir in Ru,/MoS,, Ir,/MoS,, Rus/MoS, and Ir;/MoS,.

The position of S vacancy is marked by red dashed circle.

2. Computational methods

First-principles calculations were performed using periodic density functional theory (DFT), as
implemented in the Vienna Ab initio Simulation Package (VASP 5.4.4).3%37 The spin-polarized
generalized gradient approximation (GGA) with the PBE functional’® was used to treat
exchange—correlation effects. A plane wave basis set with a cutoff energy of 400 eV was selected to
describe the valence electrons. The electron—ion interactions were described by the projector augmented
wave (PAW)3%-40 method. Brillouin zone integration was performed with a 3x3x1 Monkhorst—Pack*!
(MP) k-mesh and Gaussian smearing (6=0.1 eV). We used Grimme’s DFT-D34? scheme to treat the van
der Waals interactions semi-empirically. The SCF and force convergence criteria for structural
optimization were set to 1x1075 eV and 0.01 eV/A, respectively. The climbing image nudged elastic
band (CI-NEB)* and dimer methods*-*> were used to optimize the transition state structures to achieve
a force criteria of 0.03 eV/A. All transition states have been confirmed with existence of one imaginary
frequency whose corresponding eigenvector points in the direction of the reactant and product state.
Neighboring slabs were separated by at least 15 A vacuum. The adsorption energy of a gas phase

molecule is defined as E,4, = E(surface+adsorbent) - E(surface) - E(adsorbent). The two-dimensional

4
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MoS, is represented by a (4x4) slab (see Figure 1b), where two S-vacancies are created to accommodate
Ru, and Ir,. The calculated lattice parameter of MoS, is 3.17 A which is close to the experimental value
of 3.16 A 4

Harmonic transition state theory was used to calculate all elementary rate constants of surface
processes. Collision theory with a sticking coefficient of 1 was used to estimate the rate constants for
adsorption processes. Details of the calculated rate constants and the microkinetic models are provided

in the supporting information.

3. Results and discussions
3.1 C-O bond cleavage through different mechanisms on Ru;/MoS; and Ir,/MoS,

We first calculated the (dissociative) chemisorption free energies (Table S1) of EG and H, on
MoS,-supported Ru;-Ru;z and Ir;-Ir; at 423K to examine the preference of EG and H, adsorption on
each surface. Ir,/MoS, can accommodate two H, molecules while all other MoS,-supported Ru/Ir
atom(s) can accommodate only one H, molecule. The EG molecule can be chemisorbed on a supported
metal site or physiosorbed on a basal plane site (Figure S2) while the metal site is preferred over the
basal plane site in all cases and the calculated adsorption energy difference is ca. 0.6 eV. The adsorption
free energy of EG is more negative than that of H, in each case, suggesting that catalyst poisoning by
hydrogen is minimal. Next, Figure 2 illustrates that the C-O bond cleavage of EG on Ru,/MoS, and
Ir;/MoS; through direct C-OH cleavage (C1-O1 in Figure 1a) has high barriers of over 1.5 eV, which
are difficult to overcome at typical DODH reaction conditions of around 423 K.!3 15 In the O-H scission
mechanism, the two O-H bonds (O1-H1 and O2-H2 in Figure 1a) of EG are cleaved at the Ru, or Ir;
site, followed by ethylene extrusion (C1-O1 and C2-O2 are broken concurrently). All of these
elementary steps are endergonic and possess high barriers on both Ru;/MoS, and Ir;/MoS,. Initial C-H
activation prior to C-OH bond cleavage (C1-H3 bond cleavage, followed by C2-O2 bond cleavage in
Figure 1a) reduces the effective barrier relative to direct C-OH cleavage, however, the effective barrier
remains relatively high, i.e., it is 1.46 eV for Ru;/MoS; and 1.14 eV for Ir;/MoS,. Therefore, Ru;/MoS,
and Ir;/MoS, are not good candidates as highly active DODH catalysts for EG. We next investigate the

catalytic DODH of EG on MoS,-supported Ru and Ir atom-pairs.
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Figure 2. Free energy profiles of the EG C-O bond cleavage through the direct C-OH cleavage, O-H

cleavage and C-H cleavage mechanism on Ru;/MoS,(a) and Ir;/MoS,(b) at 423 K. The partial pressures

of all gas phase molecules are set to be 1 bar. Each elementary step is also described in Table S2.

3.2 DODH of EG on Ru,/MoS,

To examine the reactivity of the DODH of EG on Ru,/MoS,, we considered the reactions
proceeding through direct C-OH cleavage, O-H scission followed by ethylene extrusion, as well as the
C-H activation pathways. The projected density of states to the Ru atoms suggest that there is a
population of states near the Fermi level (Figure 1¢), which is favorable for electron transfer from Ru,
to the EG molecule, leading to a relatively strong adsorption (E,4, no zero-point energy correction is
applied) of EG of -1.04 eV. This is also true for the cases of Ir,, Ru; and Ir; (Ir,, -1.42 eV; Rus, -1.19
eV; Ir;, -1.31 eV). The free energy profiles of each process were calculated at 423 K and are shown in
Figure 3 and 4. The direct C-OH cleavage (1-Ru,—2-Ru,) can occur on Ruy/MoS, with a moderately
high effective barrier of 1.01 eV. The dissociative adsorption of an H, molecule on 2-Ru, forms 3-Ru,,
which produces a HO molecule (4-Ru,) upon the association of H and OH by overcoming a vanishingly

small free energy barrier. Upon desorption of H,0O, the leftover H atom can form ethanol (5-Ru,—6-
6
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Ru,) or migrate to the other Ru site (5-Ru,—7-Ru,) readily. The dissociation of the ethanol O-H bond
is energetically uphill by 0.23 eV (6-Ru,—24-Ru,), as displayed in Figure S3. The cleavage of another
C-OH bond is concomitant with the formation of H,O (7-Ru,—8-Ru,), which only requires overcoming
a low barrier of 0.04 eV. Meanwhile, the effective barrier of (6-Ru,—5-Ru,—7-Ru,) is calculated to
be 0.72 eV, suggesting that the formed ethanol molecule can be further deoxygenated readily. 8-Ru,—
9-Ru, corresponds to the desorption of the second H,O. The ethylene molecule can desorb
endergonically (9-Ru,—0-Ru,) or undergo a hydrogenation process (9-Ru,—14-Ru,) which includes
the first hydrogen migration step (10-Ru,— 11-Ru,), the first hydrogenation step (11-Ru,—12-Ru,),
the second hydrogen migration step (12-Ru,—13-Ru,) and the second hydrogenation step (13-Ru,—
14-Ru,). The effective barrier of ethylene hydrogenation is calculated to be 0.85 eV. Upon desorption
of ethane, the catalytic cycle through the direct C-OH cleavage pathway is closed. Since the activation
energy of the C-OH bond cleavage can be affected by the presence of H,0,*” we also investigated the
effect of H,O on the kinetics of the C-OH bond cleavage. As shown in Figure S4, the direct C-OH bond
cleavage has a higher effective barrier in the presence H,O than the absence of it. Since the adsorption
of H,O is endergonic and the H,O-participated pathway is energetically uphill, the kinetics of the direct
C-OH is essentially unaffected by H,O.

The cleavage of the first EG O-H bond (1-Ru,— 15-Ru;) on Ruy/MoS,; requires overcoming a
relatively low barrier of 0.69 eV and is exergonic by 0.25 eV (Figure 3b). The cleavage of the second
O-H requires surmounting a barrier of 1.60 eV and the extrusion of ethylene is highly endergonic. The
effective barrier of the reaction along the O-H bond breaking pathway is 2.30 eV, suggesting that the
conventional DODH mechanism is unfavorable for the EG DODH on Ru,/MoS,.

We next examined the DODH of EG through a C-H activation mechanism. Our calculations
suggest that the C-H activation of EG can occur readily on Ru,/MoS, by only overcoming a barrier of
0.59 eV on one Ru atom (1-Ru,—18-Ru, in Figure 3c). The abstracted hydrogen atom can migrate to
the other Ru atom (18-Ru,—19-Ru,) and form readily a H,O molecule with the OH group of EG (19-
Ru,—20-Ru,). The dissociative chemisorption of H, occurs on 21-Ru,, which forms 22-Ru,. Next, one
H atom is added to the a-C of ethenol (22-Ru,—23-Ru,), whose forward free energy barrier is the
endothermicity of the reaction (i.e., the backward energy barrier is vanishingly small). The formed
CH,CH,OH radical (23-Ru,) can migrate towards the Ru atom with the adsorbed hydrogen, which

produces 5-Ru,. The remaining part of the DODH reaction through the C-H activation mechanism is
7
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the same as that through the C-OH scission mechanism. Considering the energy profiles of the three

DODH mechanisms, we conclude that the C-H activation prior to C-OH cleavage can greatly facilitate
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the ensuing C-OH bond cleavage on Ruy/MoS,.
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Figure 3. Free energy profiles of EG DODH on Ru,/MoS, at 423 K. The partial pressures of all gas

phase molecules are set to be 1 bar. The Ru, notation is omitted in the energy diagram for brevity. Each

elementary step is also described in Table S3.
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Figure 4. Structures of intermediate and transition states for the energy profiles in Figure 3.

3.3 DODH of EG on Ir,/MoS,
Next, we investigated the DODH reaction of EG on Ir,/MoS,. The direct cleavage of the C-OH
bond needs to overcome a high barrier of 1.36 eV (1-Ir,—2-Ir,), as displayed in Figure 5 and 6. The
dissociative chemisorption of a H, molecule on 2-Ir; is endergonic by 0.42 eV. Next the formation (3-
Ir,—4-Ir,) and desorption (4-Ir,—5-Ir;) of H,O can occur readily. The atomic hydrogen of 5-Ir, can
migrate to another Ir atom to adopt a more energetically favorable configuration (16-Ir,). Similar to the
case of Ru,/MoS,, the presence of H,O does not facilitate the C-OH bond cleavage (Figure S4).

first and second O-H bond cleavage can readily occur on Ir,/MoS, (1-Ir,—6-Ir, and 6-Ir,—7-Ir,).
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However, the ethylene extrusion is highly unfavorable, similar to the case of Ruy/MoS,. Since the direct
C-OH cleavage or the ethylene extrusion process does not allow for the DODH of EG due to high
energy barriers, we also investigated the C-H activation mechanism on Ir,/MoS,.

C-H activation of EG on Ir,/MoS, has a barrier of 0.78 eV and is endergonic by 0.11 eV. The
transition state energies of the ensuing hydrogen migration (9-Ir,—10-Ir,) and C-OH bond cleavage
(10-Ir,—11-Ir,) are lower than those of the C-H activation. The C-OH bond cleavage is accompanied
by the formation of H,O. Since the energy profile of the first O-H bond cleavage step, which is
energetically downhill by 0.15 eV, is kinetically more favorable than the C-H activation, the effective
barrier of the C-OH cleavage through the C-H activation mechanism is increased by 0.15 eV, being
0.93 eV. Next, a H, molecule is chemisorbed to 12-Ir, so that the reaction can proceed. The ensuing
hydrogen migration (13-Ir,—14-Ir,) and addition (14-Ir,—15-Ir,) steps, as well as the CH,CH,OH
migration step (15-Ir,—16-Ir,) possess relatively low barriers. 16-Ir, can be hydrogenated to form an
ethanol molecule or further deoxygenated by undergoing facile H migration (16-Ir,—18-Ir;) and C-OH
scission steps (18-Ir,—19-Ir;). The dissociation of the ethanol O-H bond is energetically downhill by
0.34 eV (17-Ir,—25-Ir,), rendering the effective barrier of ethanol C-OH bond cleavage to be 0.87 eV
(Figure S3). Upon the desorption of the H,O molecule (19-Ir,—20-Ir,), the catalytic cycle of the EG
DODH process is completed on Ir,/MoS,. The desorption of C,H, (20-Ir,—0-Ir,) is unfavorable while

the hydrogenation of it (21-Ir,—24-Ir,) only requires overcoming an effective barrier of 0.69 eV.
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Figure 6. Structures of intermediate and transition states for the energy profiles in Figure 5.

Along the C-H activation pathways, we found that the effective barriers of the first C-OH cleavage
on Ruy/MoS; and Ir,/MoS, are noticeable lower than those on their single-atom counterparts. Probably,
this originates from the C-H activation and C-OH cleavage occurring on different metal atoms for the
atom-pair catalysts; thus, avoiding the need to reorient the reaction intermediates significantly as
required for the single-atom catalysts after C-H activation (6-Ru; and 6-Ir;) so that the C-OH bond

cleavage can occur.

3.4 DODH of EG on Ru3/MoS, and Ir;/MoS,
12
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After establishing the energy profiles of MoS,-supported atom-pair catalysts for the DODH of EG,
we examined the feasibility of Rusy/MoS; and Ir;/MoS, as DODH catalysts. In other words, we studied
if the activity is unique to atom-pair catalysts or if other small metal clusters on MoS, can also catalyze
the DODH. The cleavage of the EG C-OH bond on Ru3/MoS, requires overcoming a barrier of 1.18 eV
(see Figures 7 and S2), as compared to 0.77 eV for the O-H scission and 1.01 eV for C-H scission. As
shown in Figure 7b, the second O-H cleavage and the extrusion of ethylene requires overcoming high
energy barriers and are both endergonic. Along the C-H activation pathway, the transition state energy
of the C-OH cleavage (TS7-Ru;) is 0.02 eV higher than that of the C-H activation (TS6-Rujs). Unlike
Ru,/MoS, or Ir,/MoS,, the C-OH bond cleavage is not concomitant with the formation of H,O for the
case of Rus/MoS,, probably because OH and H are situated at different Ru atoms for 9-Ruz. The
association of OH and H (9-Ruz—10-Rus;) has a barrier of 0.87 eV. After the chemisorption of a H,
molecule, the migration and addition of a H atom to ethenol (11-Ru; — 14-Ru;), a CH,CH,OH
intermediate is formed. Both the removal of the second OH (14-Ru3;—16-Ru;) and the H addition to
the CH,CH,OH intermediate (14-Ru; — 15-Ru3) can readily occur, with the latter process being
preferred. We mention here that while the dissociation of the ethanol O-H bond is exergonic by 0.44
eV, the energy of 25-Ruj lies above that of the free site 0-Ru; (Figure S3). Therefore, the effective
barrier of the ethanol C-OH bond cleavage is not increased by the O-H bond dissociation. Two H
migration steps (16-Ru;—17-Ru; and 17-Ruz—18-Rus;) occur before the association of H and OH. The
formation of the second H,O (18-Ru3;— 19-Ru;) involves overcoming a 0.74 eV free energy barrier.
Finally, 20-Ru; — 24-Ruj corresponds to the ethylene hydrogenation process, whose effective free

energy barrier was calculated to be 0.79 eV.

13
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Figure 7. Free energy profiles of EG DODH on Ru;/MoS, at 423 K. The partial pressures of all gas
phase molecules are set to be 1 bar. The structures of each intermediate and transition state are presented
in Figure S5. The Ru; notation is omitted in the energy diagram for brevity. Each elementary step is

also described in Table S5.

The reaction mechanism of the EG DODH was also examined on Ir;/MoS,; (see Figures 8 and S3).
The free energy barriers of the C-OH and O-H bond cleavage on Ir;/MoS, are 0.50 and 0.06 eV higher
than those of the C-H activation, respectively. The removal of the first OH group (8-Ir;—9-Ir;) and the
H,O formation (9-Ir;—10-Ir;) are facile after the C-H activation step. After the dissociative
chemisorption of H, on 11-Ir;, one H atom can migrate to the Ir atom where CH,CHOH is adsorbed.
The hydrogen addition on the a-carbon of CH,CHOH (13-Ir;—14-Ir;) has a free energy barrier of 0.72
eV, followed by facile removal of the second OH (14-Ir;—16-Ir;3) or formation of ethanol (14-Ir;—15-
Ir3). Considering that the ethanol O-H bond dissociation is exergonic by 0.32 eV (Figure S3), the

effective barrier of the 15-Ir;—14-Ir;—16-Ir; process was calculated to be 1.08 eV, corresponding to
14
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1
2
3
4 the C-OH bond cleavage of ethanol. The formation of the second H,O (16-Ir;—17-Ir;) needs to
5
6 overcome a free energy barrier of 0.84 eV. Finally, the formed H,O desorbs readily and C,H, can be
7
8 hydrogenated with an effective barrier of 0.70 eV.
: 2.0
10 1 .
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38
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40 218 -2.19
41 -2.5
42
Zi Figure 8. Free energy profiles of EG DODH on Ir;/MoS, at 423 K. The partial pressures of all gas
22 phase molecules are set to be 1 bar. The structures of each intermediate and transition state are presented
j; in Figure S6. The Ir; notation is omitted in the energy diagram for brevity. Each elementary step is also
49 described in Table S6.
50
51
52
53 After presenting the energy profiles of the DODH of EG, we compared the effective free energy
54
55 barriers of the first C-OH cleavage via the direct mechanism and the C-H activation mechanism. It is
56
57 found that the abstraction of an H atom consistently lowers the barrier of the C-OH cleavage, as
58
59 displayed in Figure 9, where we compared the effective barriers of the two mechanisms over MoS,-
60
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supported Ru;-Rus, Ir;-Irs, Pt; and Rh; (see Figure S7 for the free energy profiles of the EG C-H and C-
OH bond dissociation on Pt,/MoS, and Rh,/MoS,). This trend is also consistent with a previous study
showing that a dehydrogenation step facilitates the C-OH bond cleavage on the neighboring carbon

during the hydrodeoxygenation of propanoic acid on a Pd(111) surface.*®

2. I direct C-OH cleavage
‘ I C-H cleavage

18-
15-
g 12
7 0.9
0.6
0.3
0.0-

Ru; Ru, Rug Ir; Ir, Iy Pt, Rh,

Figure 9. Comparison of the effective activation free energies for the C-OH bond cleavage through the

direct bond-cleavage mechanism and the C-H activation mechanism.

Given that we have shown that Ru,/MoS,, Ir,/MoS,, Ru;/MoS, and Ir;/MoS, have favorable energy
profiles for the DODH of EG, it is necessary to examine the stability of the proposed catalysts. While
the calculated formation energies of Ruy/MoS, and Ir,/MoS, are slightly positive with respective to the
bulk metals, the migration of Ru or Ir to a neighboring site are thermodynamically unfavorable and
need to overcome high barriers (Table 1, also see Figure S8 for the configurations for the initial and
final states of atom migration). A high hopping barrier of the metal atoms was used previously to
evaluate the stability of single-atom catalyst.’# 4’ Here, we found that at 473 K (50 K higher than typical
DODH condition), the hopping rate of Ir was calculated to be 1.81x10/s for Ir,/MoS,, suggesting that
the aggregation of Ir is prevented. Table 1 illustrates that Ru,/MoS, and Ru;/MoS, are also stable under
DODH reaction conditions, considering that the Ru migration barriers are even higher than those of

Ir/MoS,. While the Ir migration barrier of Ir;/MoS, is relatively low (1.44 eV), it is energetically uphill
16
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and the formation energy of Ir;/MoS,; is negative. Therefore, the four catalysts are all stable under
practical reaction conditions. To further demonstrate the importance of sulfur vacancies on MoS,, we
show in Figure S9 that metal cluster dissociation and Ru/Ir atom diffusion of pristine MoS,-supported
Ru, and Ir, have low barriers, suggesting that sintering of Ru/Ir atoms can occur readily on pristine

MOSz.

Table 1. Calculated formation energy (in eV) per metal atom (Eg, the reference states are MoS, with
two or three S vacancies and bulk metals), free energy barrier of metal atom migration (G,) and free

energy change of the migration process (AG).

E¢ G, | AG

Ru,/MoS, | 0.58 | 2.24 | 1.91

Ir,/MoS, | 0.37 | 2.04 | 2.01

Rus/MoS, | 0.00 | 4.17 | 3.23

Ir;/MoS, |-0.12 | 1.44 | 0.41

3.5 Microkinetic modelling of EG DODH on Ru,/MoS,, Ir,/MoS,, Ru;/MoS; and Ir;/MoS,

Finally, microkinetic models were developed to understand the DODH reaction kinetics (see Table
S7-S12 for the rate constants of each elementary step). The fugacity and gas phase partial pressure of
EG were estimated using Raoul’s law, the three-parameter Antoine equation (log;o(P5AT)=A — (B /(T
+ C)), A=4.97012, B=1914.951, C=-84.996, PSAT is the partial pressure in bar, T is the temperature in
K),*? and the assumption of a pure liquid EG phase. The fugacities/partial pressures of EG are calculated
at 353, 373 and 423K to be 6.94x103, 0.021 and 0.20 bar, respectively.

In the following, if the partial pressures/fugacities of the fluid phase molecules are not specified,
they are set to 1 bar in the microkinetic models (MKMs). Since the desorption of ethylene is
energetically uphill by more than 0.5 eV at 423 K and the hydrogenation of it can readily occur in the
four cases, our MKMs suggest that ethylene is hydrogenated to ethane. Thus, we set the ethane partial
pressure to 1 bar and the ethylene partial pressure to around 10-'° bar such that the production rate of

ethylene is 0. Such a low concentration of ethylene can be reached quickly during the initial stages of
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the DODH reaction.

The favorable energy profile of the EG DODH over Ruy/MoS, allows the reaction to be operated
at a lower temperature than the typical DODH reaction temperature of 423 K. Specifically, at 353 K
and fluid phase fugacities/partial pressures of EG: 6.94x10-3 bar, C,HsOH: 6.94x10-3 bar, C,H,: 1x10
19 bar, Hy: 1 bar, H,O: 1 bar, and C,H,: 1 bar (the reaction order with respect to ethane and water is zero,
i.e., the specific values have no influence on the rate), the MKM of the DODH reaction over Ru,/MoS,
predicts a turnover frequency (TOF) of EG consumption of 4.02/s, with the formation rates of ethanol
and ethane of 3.87/s and 0.15/s, respectively. In other words, ethanol is the major product at the initial
stage of the reaction and only after most of the EG is consumed, is ethanol converted to ethane. The
reaction mainly proceeds through a C-H activation mechanism while the contribution of the direct C-
OH cleavage pathway is negligible (1.9x10-%/s). We also set the fugacity/partial pressure of EG to a low
value of 1x10-¢ bar (called low EG fugacity case hereafter, here the ethanol fugacity remains at 6.94x10-
3 bar) to simulate the case when EG reaches ~100% conversion to ethanol. Under these conditions, the
consumption rates of ethanol and EG are calculated to be 3.73/s and 0.72/s, respectively. The apparent
activation energies are 0.90 and 0.88 eV for the high (EG fugacity is 6.94x10 bar) and low EG fugacity
cases, respectively (see Figure 10a). Table S13 displays the degrees of rate control (DRC)’! for the most
rate-controlling steps at high and low EG fugacity conditions, which were identified to be 1-Ru,—18-
Ru, (the first C-H activation step of EG, DRC = 0.84) and 11-Ru,—12-Ru, (the first hydrogenation
step of ethylene, DRC = 0.82) at high and low EG fugacity conditions, respectively. At 353 K and
typical H, (1-10 bar) and EG (6.94x10-4-6.94x10-3 bar) fugacities, we predict H, and EG reaction orders
of 0.01 and 0, respectively. We note here that a Ru-based homogeneous DODH catalyst
([Cp*Ru(CO),],, Cp* = 1,2,3.4,5-pentamethylcyclopentadienyl) has previously been proposed
experimentally; however, the TOF for the DODH of 1,2-hexanediol catalyzed by the Ru-based catalyst
is only 3.5%10*/s and the activity for other substrates is even lower.>?

Next, we developed an microkinetic model for the reaction on Ir,/MoS; at 373 K (a slightly higher
temperature than that of Ru,/MoS; is used such that the TOF is over 1/s) and partial pressures of EG,
ethanol, and ethane set to 0.021, 0.020 bar and 1x10-1° bar such that the formation rates of ethanol and
ethylene are 0. We note that if the partial pressure of ethanol is set to a value higher than 0.020 bar
ethanol is consumed. Under such conditions, the TOF of EG consumption is 1.53/s. With partial

pressures of EG and ethanol being set to 10 and 0.02 bar, respectively, the formation rate of ethane
18
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was calculated to be 10.97/s. The rate-determining step at high and low EG fugacities were found to be

1-Ir,—9-Ir; (the first C-H activation step of EG) and 17-Ir,—16-Ir, (the dehydrogenation of step

oNOYTULT D WN =

ethanol), respectively, and the corresponding DRCs are 0.75 and 0.71 (Table S13). The apparent
10 activation energy at high and low EG fugacities were calculated to be 0.95 and 0.84 eV, respectively
(Figure 10b). We also found that the reaction orders of EG (0.0021-0.021 bar) and H, (1-10 bar) are 0

for the reaction on Ir,/MoS,.
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Figure 10. Arrhenius plot of EG deoxydehydration on Ru,/MoS,(a), Ir,/MoS,(b), Rus/MoS,(c) and

Ir;/MoS,(d) at high (Ru,/MoS,, 6.94x10- bar; Ir,/MoS,, 0.021 bar; Ru;/MoS, and Ir;/MoS,, 0.20 bar)
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and low (10 bar in all cases) fugacities/partial pressures of EG. The temperature ranges for the
calculation over Ruy/MoS; and Ir,/MoS, are 323-373 K and 353-403 K, respectively. The TOFs of both

Rui/MoS, and Ir;/MoS, are calculated in the temperature range of 393-443 K.

For Rus/MoS,, our MKM was performed at 423 K with the partial pressure of EG set to be 0.20
bar. We set the ethylene partial pressure to be 8x10- bar so that the production rate of ethylene is 0. We
also found that the conversion rate of EG to ethanol is 0 with an ethanol partial pressure of 0.20 bar.
Compared with the case of Ru,/MoS,, the less favorable formation of ethanol for Ru;/MoS, is due to
TS11-Ru; being energetically higher than TS12-Ru;. With the setup of fugacity/partial pressures so
that the conversion rates to ethanol and ethylene are 0, we found that the TOF of ethane production is
0.63/s at 423 K. By increasing the H, partial pressure from 1 bar to 10 bar, the TOF is increased to
1.96/s, accompanied with a decrease of the 2-Ru; surface coverage from 0.75 to 0.23. We obtained a
reaction order of 0.48 for H, (1-10 bar). A high barrier of the step 1-Ru;—2-Ru; (the direct C-OH bond
cleavage, DRC=-0.79 in Table S13) and a low barrier of the step 3-Ruz;—4-Ru; (the association of H
and OH, DRC=0.74) is favorable for the reaction kinetics at high EG fugacity. Also, the reaction
kinetics is largely affected by the 1-Ru;—8-Ru; (the first C-H activation step of EG) and 8-Ru;—9-
Ru; (a H migration step), whose DRCs are calculated to be 0.37 and 0.59, respectively. At low EG
fugacity (C,HsOH, 0.2 bar; C,H,, 8x10-!! bar), the formation rate of ethane is calculated to be 1.65/s.
The rate-determining step is found to be 15-Ruz—14-Ru; (the dehydrogenation of ethanol) with a DRC
of 0.98 (Table S13). The apparent activation energy at high and low EG fugacities were calculated to
be 0.71 and 0.33 eV, respectively (Figure 10c).

On Ir;/MoS,, we found that the TOF of EG consumption is 0.058/s at 423 K (EG, 0.20 bar; C,HsOH,
0.20 bar; C,H,, 1x107!° bar), with the C,HsOH and C,Hs formation rate being 0.049 and 0.009/s,
respectively. The relatively low TOF, as compared with the case of Ru,, Ru;, and Ir;, can be attributed
to the fact that TS3-Ir; is only 0.06 eV energetically higher than TS6-Ir; while 5-Ir; is 0.58 eV lower
than 8-Ir; (Figure 8). This suggests that the O-H cleavage of EG is competitive with the C-H cleavage
and the formation of 5-Ir; increases the effective barrier of the C-H activation from 0.79 eV to 1.17 eV
(assuming that 5-Ir; is the initial state). When ethanol is formed, we found a relatively high ethanol to
ethane TOF of 1.10/s. Here, we also considered the cleavage of ethanol O-H bond (Figure S3), therefore,

the effective barrier of the ethanol C-OH bond cleavage was calculated to be 1.07 eV. The rate-
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determining step of the DODH reaction on Ir;/MoS; at the high and low EG fugacities were identified
to be 1-Ir;—8-Ir; (the activation of EG C-H bond, DRC= 0.75 in Table S13) and 14-Ir;—16-Ir; (the
second C-OH bond cleavage, DRC= 0.84), whose apparent activation energies were calculated to be
1.20 and 1.15 eV, respectively (see Figure 10d).

To better understand the role of MoS, support, we next examined the DODH of EG on Ru(0001),
Ir(111), and anatase TiO,(101)-supported Ru, and Ir,, as shown in the Supporting discussions of the SI
and Figures S10-S19. We found that the Ru(0001) and Ir(111) surfaces are covered by hydrogen atoms
under reaction conditions and the effective barriers of the C-OH cleavage along the C-H activation
pathway are relatively high, making Ru(0001) and Ir(111) inactive for the DODH of EG. The exergonic
adsorption of H, (greater than that of EG) on Ruy/TiO,(101) and Iry/TiO,(101) is partially responsible
for the high effective barriers of the DODH processes. Overall, the C-H activation pathways are
preferred over the direct C-OH cleavage pathways, which is consistent with the conclusion we obtained
for the MoS,-supported metal clusters (Figure 9). The density of states of Ru atoms for Ru,/TiO,(101)
and Ru(0001) are significantly different to that of Ruy/MoS,(Figure S20), and this is also true for the
Ir, counterparts. In particular, noticeable spin-polarization is observed for Ruy/MoS; and Ir,/MoS, near
the Fermi level, which is likely responsible for the high catalytic activities.

Thus, we have shown that Ru,/MoS,, Ir,/MoS, and Rus/MoS, exhibit a high activity for the DODH
of EG while the activity of Ir;/MoS, is only moderately high and that this high activity is a result of the
interaction of the metal sites with the MoS; support. The calculated TOF of EG consumption on at 443K
on Ir;/MoS, was calculated to be 0.26/s, which is comparable with the experimental TOF (0.083/s) of
the cis-1,4-anhydroerythritol DODH reaction on a ReO,—Pd/CeO, catalyst or the computational value
of 0.42/s.'* The alkene extrusion was identified to be the rate-determining step with an effective barrier
of 1.11 eV for the reaction on ReO,—Pd/CeO,, where the DODH process on ReO, is affected by the Pd
cluster neighboring it.'* In another case of ReO,/CeQ,, for which the Pd co-catalyst is distant from the
ReOy catalytic center and only serves the role of H, dissociation, the rate-determining step of the
reaction was found to be the first O-H cleavage step with an effective barrier of 1.18 eV and a calculated
TOF of 4.33x1073/s.* In our present study, the MoS,-supported Ru,, Ir, and Ru; catalyst allows the
DODH reaction to occur with significantly higher TOF than the conventional heterogeneous DODH
catalyst occurring on a MOj catalytic center. The improved activity is attributed to the fact that Ru’3 or

Ir** can activate the C-H bond readily and that the preliminary C-H activation step makes the ensuing
22
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C-OH readily occur. Also, the exergonic chemisorption of EG on transition metal sites contrasts the
case of the endergonic physisorption of cis-1,4-anhydroerythritol on the ReO; site that increases the
effective barrier for the O-H bond cleavage. Moreover, the ability of activating H, by Ru or Ir atomic
clusters avoids the need of a co-catalyst for H, activation, as in the case of ReO,—Pd/CeO,. Considering
that the conversion rate of ethanol to ethane is over 1/s in all cases, the proposed DODH catalysts are
also highly active as hydrodeoxygenation catalyst for the removal of alcohol OH groups. Finally, we
also compared the activity of the proposed MoS,-supported DODH with conventional homogeneous
DODH catalysts. The effective barrier of a homogeneous methyltrioxorhenium (CH;ReOs3) catalyzed
DODH of 3-ene-1,2-diol was calculated to be 1.05 eV.% Therefore, the activities of the proposed
heterogeneous catalysts in the present study are most likely comparable with conventional

homogeneous catalyst.

4. Conclusions

We performed a first principles study of the ethylene glycol deoxydehydration reaction on MoS,-
supported Ru and Ir atoms. Our calculations suggest that while the activities of Ru;/MoS, and Ir;/MoS,
are relatively low, Ru,/MoS,, Ir,/MoS,, and Ru;/MoS, exhibit high activities for the conversion of
ethylene glycol to ethanol and ethanol to ethane, with a calculated TOF of over 1/s at typical DODH
reaction condition of 423 K or even lower temperatures of 353 K. The higher activity of the reactions
on MoS,-supported atoms underscores the synergistic effect between neighboring Ru or Ir atoms and
to the MoS, support. The activity of the less active Ir;/MoS, is comparable to that of conventional
DODH catalysts with a MO, species as the active center. Importantly, our calculations suggest that an
initial C-H activation step makes the C-OH bond cleavage on the neighboring carbon facile, a
mechanism that was also identified on Pt,/MoS, and Rh,/MoS,. Thus, the improved activity of MoS,-
supported Ru/Ir catalysts relative to conventional DODH catalysts can be attributed to EG adsorption
being exergonic on transition metal sites (while it is endergonic on MO, sites), effectively lowering the
overall barrier, and C-H activation reducing the energy barrier of the subsequent C-OH cleavage process.
To better understand the role of the MoS, support, we examined the DODH of EG on Ru(0001), Ir(111),
anatase TiO,(101)-supported Ru, and Ir,, which are all essentially inactive for the DODH of EG. The
effective barrier for the DODH of EG on these four surfaces are 1.46 eV (Ru,/TiO,) or higher. This

highlights the role of the MoS, support, which is probably related to the unique density of states for Ru
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or Ir atoms of MoS,-supported Ru and Ir clusters. Apart from being a DODH catalyst, the proposed
MoS,-supported catalysts are also highly active as hydrodeoxygenation catalyst for the removal of
alcohol OH groups; and we suggest a new mechanism for the DODH reaction and provide a meaningful

guideline for the design of highly active DODH catalysts.
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