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Abstract—Small base stations (SBs) of fifth-generation (5G)
cellular networks are envisioned to have storage devices to locally
serve requests for reusable and popular contents by caching
them at the edge of the network, close to the end users. The
ultimate goal is to smartly utilize a limited storage capacity to
serve locally contents that are frequently requested instead of
fetching them from the cloud, contributing to a better overall
network performance and service experience. To enable the
SBs with efficient fetch-cache decision-making schemes operating
in dynamic settings, this paper introduces simple but flexible
generic time-varying fetching and caching costs, which are then
used to formulate a constrained minimization of the aggregate
cost across files and time. Since caching decisions per time
slot influence the content availability in future slots, the novel
formulation for optimal fetch-cache decisions falls into the class
of dynamic programming. Under this generic formulation, first
by considering stationary distributions for the costs as well
as file popularities, an efficient reinforcement learning-based
solver known as value iteration algorithm can be used to solve
the emerging optimization problem. Later, it is shown that
practical limitations on cache capacity can be handled using a
particular instance of this generic dynamic pricing formulation.
Under this setting, to provide a light-weight online solver for
the corresponding optimization, the well-known reinforcement
learning algorithm, ()-learning, is employed to find optimal fetch-
cache decisions. Numerical tests corroborating the merits of the
proposed approach wrap up the paper.

Index Terms—Dynamic Caching, Fetching, Dynamic Program-
ming, Value iteration, (Q-learning.

I. INTRODUCTION

In the era of data deluge, storing “popular”’ contents at
the edge of a content delivery network (CDN) or 5G cellular
network, is a promising technique to satisfy the users’ demand
while alleviating the congestion on the back-haul links [1],
[2], [3]. To this aim, small basestations (SBs) equipped with a
limited local cache capacity, must intelligently store reusable
popular contents on-the-fly, such that highly requested contents
can be locally served at reduced cost. To endow SBs with
the required learning capability, a wide range of learning and
optimization approaches have been adopted (see [1], [2]).
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Prior works: Time-invariant (static) content popularity
caching has been previously investigated using a multi-armed
bandit approach which accounted for the demand history
and under unknown popularities [4]. Coded, convexified, and
distributed extensions of this problem were later studied in
[5], context and trend-aware learning approaches in [6], [7],
and coordinated-distributed extensions in [8]. From a learning
perspective, the trade-off between the “accuracy” of learning
a static popularity, and the corresponding learning “speed” is
investigated [9], [10].

Nevertheless, in reality, popularities exhibit fluctuations,
meaning they are dynamic over a time horizon. For instance,
half of the top 25 requested Wikipedia articles change on
a daily basis [1], [11]. This motivates recent approaches to
designing adaptive caching strategies for dynamic popularity
scenarios [12], [13], [14] [15], [16], [17], with competitive
regret bounds via online solvers [18], [19], [20], [21]. Fur-
thermore, by considering Markovian evolution for popularities,
reinforcement learning-based approaches were studied in [22],
[23], [24]. In particular, global and local popularities were
modeled by different Markov processes, and a tabular -
learning based algorithm was proposed in [22]; while a policy
gradient method was pursued to optimize a parametric policy
in [23]. A network of caching units was considered in [24],
where a deep neural network is used to approximate the so-
called @)-function, and find the optimal caching policy.

To target different objectives such as content-access latency,
energy, storage or bandwidth utilization, corresponding de-
terministic cost parameters are defined, and the aggregated
cost is minimized in [12], [25]. Deterministic cost parameters,
however, may be inaccurate in modeling practical settings,
as spatio-temporal popularity evolutions, network resources
such as bandwidth and cache capacity are random and subject
to change over time and space, due to e.g., time-varying
data traffic over links, previous cache decisions, or channel
fluctuations. Therefore, this necessitates modeling the caching
problem from a stochastic optimization perspective, while
accounting for the inherently random nature of available
resources and file requests.

Contributions: This work aspires to fill this gap by relying
on dual decomposition techniques which transform the limits
on the available resources in the original (primal) optimization
into stochastic prices in the dual problem. Building on this
approach, the goal is to design more flexible caching schemes
by introducing a generic dynamic pricing formulation, while
enabling SBs to learn the optimal fetching-caching decisions
using low-complexity techniques. Our contributions are listed
as follows.
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1) A general formulation of the caching problem by intro-
ducing time-varying and stochastic costs is presented,
in which the fetching and caching decisions are found
through a constrained optimization with the objective
of reducing the overall cost, aggregated across files and
time instants (Section II).

2) Since the caching decision in a given time slot not
only affects the instantaneous cost, but also influences
the cache availability in the future, the problem is
indeed a dynamic programming (DP), and therefore can
be effectively solved by reinforcement learning-based
approaches. By assuming known and stationary distribu-
tions for the costs and popularities, and upon relaxing the
limited cache capacity constraint, the proposed generic
optimization problem is shown to become separable
across files, and thus can be efficiently solved using the
value-iteration algorithm (Section III).

3) Subsequently, it is shown that the particular case where
the cache capacity is limited and the distribution of
the pertinent parameters are unknown can be handled
by the proposed generic formulation. Thus, in order to
address these issues, a dual-decomposition technique is
developed to cope with the coupling constraint associ-
ated with the storage limitation. Finally, an online low
complexity (Q-function based) reinforcement learning
solver is put forth for learning the optimal fetch-cache
decisions on-the-fly (Section IV).

4) The separability of the objective across files together
with the use of marginalized value functions [26] enable
the decomposition of the original problem into smaller-
dimension sub-problems. This in turn leads to circum-
venting the so-called curse of dimensionality, which
commonly arises in reinforcement learning problems
(Sections III and IV).

The effectiveness of the proposed scheme in terms of effi-
ciency as well as scalability is corroborated by various numer-
ical tests. Although our proposed approach enjoys theoretical
guarantees in learning the optimal fetch-cache decisions in
stationary settings, numerical tests also corroborate its merits
in non-stationary scenarios.

The rest of this paper is organized as follows. Section II
provides a generic formulation of the problem, where solvers
adopted from reinforcement learning are developed in Sec-
tion III. Limited storage and back-haul transmission rate set-
tings are discussed in Section I'V. Section V reports numerical
results, and finally section VI provides concluding remarks.

II. OPERATING CONDITIONS AND COSTS

Consider a memory-enabled SB responsible for serving file
(content) requests denoted by f = 1,2, ..., F across time. The
requested contents are transmitted to users either by fetching
through a (costly) back-haul transmission link connecting the
SB to the cloud, or, by utilizing the local storage unit in the SB
where popular contents have been proactively cached ahead of
time. The system is considered to operate in a slotted fashion
with t = 1,2, ... denoting time.

During slot ¢ and given the available cache contents, the SB
receives a number of file requests whose provision incurs cer-
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tain costs. Specifically, for a requested file f, fetching it from
the cloud through the back-haul link gives rise to scheduling,
routing and transmission costs, whereas its availability at the
cache storage in the SB will eliminate such expenses. How-
ever, local caching also incurs a number of (instantaneous)
costs corresponding to memory or energy consumption. This
gives rise to an inherent caching-versus-fetching trade-off,
where one is promoted over the other depending on their
relative costs. The objective here is to propose a simple
yet sufficiently general framework to minimize the sum-
average cost over time by optimizing fetch-cache decisions
while adhering to the constraints inherent to the operation
of the system at hand, and user-specific requirements. The
variables, constraints, and costs involved in this optimization
are described in the ensuing subsections.

A. Variables and constraints

‘Consider the system at time slot ¢, where the binary variable

rg represents the incoming request for file f; that is, r{ =1
if the file f is requested during slot ¢, and rtf = 0, otherwise.
Here, we assume that r; = 1 necessitates serving the file to
the user and dropping requests is not allowed; thus, requests
must be carried out either by fetching the file from the cloud
or by utilizing the content currently available in the cache.
Furthermore, at the end of each slot, the SB will decide if
content f should be stored in the cache for its possible reuse
in a subsequent slot.

To formalize this, let us define the “fetching” decision
variable wl e {0,1} along the “caching” decision variable
a{ € {0,1}. Setting wg = 1 implies “fetching” file f at
time ¢, while w{ = 0 means “no-fetching.” Similarly, atf =1
implies that content f will be stored in cache at the end of
slot ¢ for the next slot, while a{ = ( implies that it will not.
Furthermore, let the storage state variable s{ € {0,1} account
for the availability of files at the local cache. In particular,
s{ = 1 if file f is available in the cache at the beginning of
slot ¢, and stf = 0 otherwise. Since the availability of file f
directly depends on the caching decision at time ¢ — 1, we
have

Cl: sl =al |, v/t (1)

which will be incorporated into our optimization as constraints.

Moreover, since having r{ = 1 implies transmission of file
f to the user(s), it requires either having the file in cache
(stf = 1) or fetching it from the cloud (wtf = 1), giving rise
to the second set of constraints

c2: rl <wl +sf, vit 2)

Finally, the caching decision a{ can be set to 1 only when the
content f is available at time ¢; that is, only if either fetching
is carried out (w,{c = 1) or the current cache state is sf =1
This in turn implies the third set of constraints as

C3: af <sl+w!, Vit 3)
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B. Prices and aggregated costs

To account for the caching and fetching costs let p75 and /\
denote the (generic) costs associated with at =1and w{ =1,
respectively. Focusing for now on the caching cost and with
o¢ denoting the size of content f, a simple form for p{ is

+ (" + ")), )

where the first term is proportional to the file size oy, while
the second one is constant. Note also that we consider file-
dependent costs (via variables p’ { and p” ,{ ), as well as cost
contributions which are common across files (via p’, and p”,).
In most practical setups, the latter will dominate over the
former. For example, the caching cost per bit is likely to be
the same regardless of the particular type of content, so that
p’tf = p f = 0. From a modeling perspective, variables pf
can correspond to actual prices paid to an external entity (e.g.,
if associated with energy consumption costs), marginal utility
or cost functions, congestion indicators, Lagrange multipliers
associated with constraints, or linear combinations of those
(see, e.g., [26], [27], [28], [29] and Section IV). Accordingly,
the corresponding form for the fetching cost is

+ ()\//t

pl =0+ 0]+

M=o+ X)) +2"). 5)

As before, if the transmission link from the cloud to the SB is

the same for all contents, the prices \’; and \"; are expected

to dominate their file-dependent counterparts A’/ and A"/
Upon defining the Corresponding cost for a given file as

cf(af wiof A = A

Tal  wls pl X)) = plal + M w!, the aggregate cost at time

t is given by

F F
ci= > cl(al wlipl M) =" plal +Mwl, (6
f=1 f=1
which is the basis for the DP formulated in the next section.
For future reference, Fig. 1 shows a schematic of the system
model and the notation introduced in this section.

III. OPTIMAL CACHING WITH TIME-VARYING COSTS

Since decisions are coupled across time [cf. constraint (1)],
and the future values of prices as well as state variables are
inherently random, our goal is to sequentially make fetch-
cache decisions to minimize the long-term average discounted
aggregate cost

C:=E ii’y (atvwmptv)‘f) 7

t=0 f=1

where the expectation is taken with respect to (w.r.t.) the
random variables 87 := {r{ A p/}, and 0 < v < 1 is the
discounting factor whose tuning trades off current versus more
uncertain future costs [30, p.44]. To address the optimization,
the following assumptions are considered:

AS1) The values of Gf come from a stationary distribution.

AS2) The distribution of 0 1s known.

AS3) The drawn value of Ht is revealed at the beginning of
each slot ¢, before fetch-cache decisions are made.
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Fig. 1: System model and main notation. The state variables
(dashed lines) are the storage indicator s{ and the content
request r{ , as well as the dynamic caching and fetching prices
p{ and >\ The optimization Varlables (sohd lines) are the
caching and fetchlng de01s1ons af and wt The instantaneous
per-file cost is ct = pt at + )\ wt Per slot ¢, the SB collects
the state variables {s; ,r,{c ; pt , )\f M =1, and decides the values
of {af wl}E f—1 considering not only the cost at time ¢ but
also the cost at time instants ¢’ > ¢.

AS1 and AS2 allow finding the expectations in this section,
and will be relaxed in Section III-E to further generalize our
approach to settings where the distributions are unknown. In
practice, one may estimate these distributions through e.g.,
historical data.

The ultimate goal here is to take real-time fetch-cache
decisions by minimizing the expected current plus future cost
while adhering to operational constraints, giving rise to the
following optimization

F
min C, = Z Z'yk_tE [c{: (ai,w}:;pﬁ,)\i)}

{(w],al)} s r>e

f
s.t. (wg,aﬁ) € X(r,{,aﬁ_l),

(P1)

Vi, k>t
where
X(r}:,ai )= {wa ‘wE{O 1}, a € {0,1},

s,{—ai 1 7“£§U)+8k7 a§5k+w},

and the expectation is taken w.r.t. {0{: ok>tt+1-

The presence of the set X (r,]: ,aifl) in the constraints
demonstrates that the cache state at a given time depends
on previous cache decisions, thus coupling the optimization
variables across time. It also implies that any instantaneous
decision will influence the optimization problem in subsequent
slots, having a long-standing influence on future costs. The
coupling of the optimization variables across time indeed
necessitates utilization of DP tools, motivating the implemen-
tation to reinforcement learning algorithms to design efficient
solvers [30, p. 79].

To find the solution of the DP in (P1) we implement
the following steps: a) identifying the current and expected
future aggregate costs (the latter gives rise to the so-called
value functions); b) expressing the corresponding Bellman
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(wf*,af*) =

(wﬂ)GX(r{,a{_l) k l(wk:ak)eX(Tk’ak 1)

arg min {Eef min
= argmin
(w,a)EX(’r'tf,a{Ll)

{cz’(awpt,A )+ Egy

v (sf, f /\f) min Egs min
(w, a)EX(’r‘t 7at 1) k (wk;ak)ex("'kﬂ'k 1)
VI(sT) :=Eqs min Egyy min
(w,a)EX(rtf,afil) k (wk,ak)EX(r{:,a‘}i_l)

=Egys (w’a)ggf’sf) {cg(a, w; pf M) + ’ny(a)}

(“’Imak)ex(rkvak 1)k t+1

http://dx.doi.org/10.1109/JSAC.2019.2933780

{Z’yk t {ck ak,wk,pk,/\f)‘a{—a wi =w, 6] —Of} }1} (8)

min

S o [t o Mot = a}] } o

{Z’yk t {ck ak,wk,pk,/\f)‘a{—a wt =w, 0] —Bf} }1}

(10)
Z'Vk t{ ak»wk,Pk»Af) _w 0f_9f}}‘| }]
k=t

(11)

equations over the value functions; and c) proposing a method
to estimate the value functions accordingly. This is the subject
of the ensuing subsections, which start by further exploiting
the structure of our problem to reduce the complexity of the
proposed solution.

A. Bellman equations for the per-content problem

Focusing on (P1), one can readily deduce that: (i) consid-
eration of the content-dependent prices renders the objective
in (P1) separable across f, and (ii) the constraints in (Pl) are
also separable across f. Furthermore, the decisions at and wf
for a given f, do not affect the values (distribution) of o/ i for
files f' # f and for times ¢’ > ¢. Thus, (P1) naturally gives

rise to the per-file optimization

C’f = Zﬁyk_tE [c£ (aﬂw,{;p{;,)\i)}
k=t

k>t

P2) min

{(wiwai)}kzt

s.t. (w,]:,ai) € X(r,ﬁ,aifl),

which must be solved for f =1, ..., F'. Indeed, the aggregate
cost associated with (P2) will not depend on variables corre-
sponding to files f’ # f [26]. This is the case if, for instance,
the involved variables are independent of each other (which
is the setup considered here), or when the focus is on a large
system where the contribution of an individual variable to the
aggregate network behavior is practically negligible.

Bellman equations and value function: The DP in (P2) can
be solved with the corresponding Bellman equations, which
require finding the associated value functions [30, p. 68].
To this end, consider the system at time ¢, where the cache
state as well as the file requests and cost parameters are
all given, so that we can write s] = sg and 0] = 0{; .
Then, the optimal fetch-cache decision (w!*, al*) is readily
expressible as the solution to (8). The objective in (8) is
rewritten in (9) as the summation of current and discounted
average future costs. The form of (9) is testament to the

fact that problem (P2) is a DP and the caching decision a
influences not only the current cost c{ (+), but also future
costs through the second term as well. Bellman equations can
be leveraged for tackling such a DP. Under the stationarity
assumption for variables r'tf , pf and )\f , the term accounting
for the future cost can be rewritten in terms of the stationary
value function VI (s?,r/; pf /A7) [30, p. 68]. This function,
formally defined in (10), captures the minimum sum average
cost for the “state” (s7,rf), parametrized by (M, p/), where
for notational convenience, we define 67 := [rf p/ \].

B. Marginalized value-function

If one further assumes that price parameters and requests are
ii.d. across time, it can be shown that the optimal solution
to (P2) can be expressed in terms of the reduced value
function [26]

v (sf) = Egs [Vf (sf,rf;pf,)\f)],

where the expectation is w.r.t 0. Marginalization of the
value function is important not only because it captures the
average future cost of file f for cache state s/ € {0,1}, but
also because V7/(-) is a function of a binary variable, and
therefore its estimation requires only estimating two values.
This is in contrast with the original four-dimensional value
function in (10), whose estimation is more difficult due to its
continuous arguments. By rewriting the proposed alternative
value function V/(-) in a recursive fashion as the summation
of instantaneous cost and discounted future values V/(-), one
readily arrives at the Bellman equation form provided in (11).
Thus, the problem reduces to finding V/(0) and V/(1) for all
f. after which the optimal fetch-cache decisions (w;*,af*)
are easily found as the solution to

(12)

(min +V7 (a)

st (w,a) e X(rf,al ).

(P3) el (a,w; pf A
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Vi = (1 —p)(Eag{l(i){ll} [’7‘70(1 —a)+(p+Vi)a ’8 = 1,7“:0} ) +p(Ea’ér{lg)I’1l} {Wo(l —a)+(p+Vi)a }8 =1r= 1})
- mpr(pzwy)+uz(p+w1\p<wv)pr(p<ww)
Vo = (1—p)(]EaérE(iJr,11} ['y%(l—a)+()\+p+7‘71)a ‘s:O,r:0}) (15)
+ p(]Eaé?(iﬂ} [(A+7Vo)(1—a)+()\+p+'ﬂ71)a‘s:O,rzl]})
— (1—p)(7‘70Pr()\+PZAVV)+E()\+p+’ﬂ71 ‘)\+p<AVA,)Pr()\+p<AVV)) (16)

+ p(EN +1%Pr (p = AV,) +E (p+97 \p <AV, ) Pr(p < AT,) )

If_ the Value—function is known, so that we have access
to V/(0) and V7(1), the corresponding optimal (Bellman)
decisions can be found as

wi =af, of = ]I{A‘—/sz)\{+p{} if (rf,s])=(0,0) (13a)
wl =0, af =T apss,0, if (rf,s))=(0,1) (13b)
wl =1, aof =T zprs,0, if (rf,s])=(1,0) (13¢)
wi =0, of =Lavsspl) if (rf,s])=(1,1) (134d)

where AV,Yf represents the future marginal cost, which is
obtained as AV,Yf =(V/(1)-V/(0)), and I} is an indicator
function that yields value one if the condition in the argument
holds, and zero otherwise.

The next subsection discusses how V¥ (0) and V¥(1) can
be calculated, but first a remark is in order.

Remark 1 (Augmented value functions). The value function
V#(s/) can be redefined to account for extra information
on rtf , p{ or )\{ , if available. For instance, consider the
case where the distribution of r{ can be parametrized by
p/, which measures content “popularity” [31]. In such cases,
the value function can incorporate the popularity parameter
as an additional input to yield V/(s/, p/). Consequently, the
optimal decisions will depend not only on the current requests
and prices, but also on the (current) popularity pf. This indeed
broadens the scope of the proposed approach, as certain types
of non-stationarity in the distribution of th can be handled by
allowing p/ to (slowly) vary with time.

C. Value function in closed form

For notational brevity, we have removed the superscript f in
this subsection, and use Vj and V; in lieu of V(0), and V (1).
Denoting the long-term popularity of the content as p := E[ry],
using the expressions for the optimal actions in (13a)-(13d),
and leveraging the independence among 7, A;, and p;, the
expected cost-to-go function can be readily derived as in (14)-
(16). The expectation in (14) is w.r.t. p, while that in (15) is
w.r.t. both A and p.

Solving the system of equations in (14)-(16) yields the
optimal values for V; and Vj. A simple solver would be to
perform exhaustive search over the range of these values since

Algorithm 1: Value iteration for finding V' (-)
1Set VY=V =0;
Input : v < 1, probability density function of p, A and
r, precision e, in order to stop
Output: V, V;
2 while |V — Vit < ¢ s € {0,1} do
3 for s =0,1 do
4 Vit =Eppa

min

el wip )+

5 end
6 i=1+1
7 end

it is only a two-dimensional search space. However, a better
alternative to solving the given system of equations is to rely
on the well known value iteration algorithm [30, p. 100]. In
short, this is an offline algorithm, which per iteration ¢ updates
the estimates {V; ™', Vi '} by computing the expected cost
using {V¢, V;'}, until the desired accuracy is achieved. This
scheme is tabulated in detail in Algorithm 1, for which the
distributions of 7, p, A are assumed to be known. We refer
to [30, p.100] for a detailed discussion on the value-iteration
algorithm, and its convergence guarantees.

Remark 2 (Finite-horizon approximate policies). In the
proposed algorithms, namely exhaustive search as well as
Algorithm 1, the solver is required to compute an expectation,
which can be burdensome in setups with limited computa-
tional resources. For such scenarios, the class of finite-horizon
policies emerges as a computationally affordable suboptimal
alternative [30, p. 242]. The idea behind such policies is to
truncate the infinite summation in the objective of (P1); thus,
only considering the impact of the current decision on a few
number of future time instants denoted by h, typically referred
to as the horizon. The extreme case of a finite-horizon policy
is that of a myopic policy with h = 0, which ignores any
future impact of current decision, a.k.a. zero-horizon policy,
thus taking the action which minimizes the instantaneous
cost. This is equivalent to setting the future marginal cost to
zero, hence solving (13a)-(13d) with AV7 = AVJ‘:O = 0.
Another commonly used alternative is to consider the impact
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Q(Stﬂ“uwtaat;m,)\t) =E

min
{(wr,ar)€X (rk,an—1)}22, 1,
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k=t

oA [Ck(alwwk;Pm)\k)‘at,wt,@t = 9} H (19)

= ciae, we; pr, Ae) +7E min > Ay {Ck(ak,wk;pk, Ak)[St41 = at} (20)
—_— {(wk,ar)€X (ri,aK—1)} 52, 1 kil
Immediate cost —
Average minimum future cost
it =By, n, [Q (se,7e,we, 08506, M)], V(we, ar) € X(re, ag—1) (21)
= ]Ept,)\t [Ct(ahwt;pta )\t)] + v [Eetﬂ [Q (3t+177"t+1aw;k+17a:+1§Pt+1a )\t+1) ‘0t+173t+1 = at“ .
e =ENw +Elpla+(1—p) Y Q3 Pr (Wi i) = (21, 22)|(s141,7001) = (a,0)
V(21,22)€X(0,a)

Y QP ((Whinain) = ()l (s ) = (@,1)). 23)

V(z1,22)€EX(1,a)

of the current decision for only the next time instant, which
corresponds to the so-called horizon-1 policy. This entails
setting the future cost at h = 1 as AV'=! = (V=0 —1/=0)
with

Vi=t = (1 = p)EPw"=0 + pa"=%s = 0,7 = 0]
+ pEw"=04pa=Cs = 0,7 = 1] = pE[)] (17)
Vh=0 = (1 = p)EPw"=° + pa"=C|s = 1,7 = (]

+ pEAw"0 + pa"Os =1,r=1] =0, (18)

which are then substituted into (13a)-(13d) to yield the actions
w1 and a"=!. The notation w"=° and ¢"=Y in (17) and (18)
is used to denote the actions obtained when (13a)-(13d) are
solved using the future marginal cost at horizon zero AV!=0,
which as already mentioned, is zero; that is, under the myopic
policy in lieu of the original optimal solution. Following an

inductive argument, the future marginal cost at h = 2 is
obtained as AV'"=? = (V=1 — V=) with
Vo=t = (1= p)ED"=" + pa" =" + 4V =05 = 0,7 = 0]

+ pEDw" = 4 pa"=t + 4V =0s = 0,7 = 1],
V=t = (1-p)Ew"™ + pa"=! + 4V =0 s = 1,7 = 0]
+ pEPw"=1 + pa"=t 4 WVah:0|s =1,r=1],

which will allow to obtain the actions w”=2 and a"=2. While
increasing horizons can be used, as h grows large, solving the
associated equations becomes more difficult and computation
of the optimal stationary policies, is preferable.

D. State-action value function (Q-function):

In many practical scenarios, knowing the underlying dis-
tributions for p;, A; and r, may not be possible, which
motivates the introduction of online solvers that can learn the
parameters on-the-fly. As clarified in the ensuing sections, in
such scenarios, the so-called ()-function (or state-action value
function) [30, p.69] becomes helpful, since there are rigorous
theoretical guarantees on the convergence of its stochastic
estimates; see [32] and [33]. Motivated by this fact, instead

of formulating our dynamic program using the value (cost-
to-go) function, we can alternatively formulate it using the
@-function. Aiming at an online solver, let us tackle the DP
through the estimation (learning) of the -function. Equation
(19) defines the Q-function for a specific file under a given
state (s, ), parametrized by cost parameters (p;, A¢). Under
stationarity distribution assumption for {p;, A¢,7+}, the Q-
function Q (s¢, 1, Wy, ag; pr, A¢) accounts for the minimum av-
erage aggregate cost at state (s, 1), and taking specific fetch-
cache decision (w, a;) as for the first decision, while followed
by the best possible decisions in next slots. This function is
parametrized by (p;, A;) since while making the current cache-
fetch decision, the current values for these cost parameters are
assumed to be known. The original Q-function in (19) needs
to be learned over all values of {sq, r¢, we, as, pt, Ae, 7t }, thus
suffering from the curse of dimensionality, especially due to
the fact that p; and \; are continuous variables.

To alleviate this burden, we define the marginalized Q-
function Q(s¢,7¢,ws, ar) in (21). By changing the notation
for clarity of exposition, the marginalized @-function, Q7' )",
can be rewritten in a more compact form as

_7;'1",";? =E /\twt+ptat+7Q:’if11,;ZH1 V(wi,at) € X (re, az—1).
(22)
Note that, while the marginalized value-function is only a
function of the state, the marginalized Q)-function depends on
both the state (r, s) and the immediate action (w, a). The main
reason one prefers to learn the value-function rather than the
@-function is that the latter is computationally more complex.
To see this, note that the input space of Qﬁ‘f;ﬁf is a four-
dimensional binary space, hence the function has 24 = 16
different inputs and one must estimate the corresponding 16
outputs. Each of these possible values are called Q-factors, and
under the stationarity assumption, they can be found using
(23) defined for all (r,s,w,a). In this expression, we have
(21,22) € {0,1}? and the term Pr ((w}, a;,) = (21,22))
stands for the probability of specific action (z1,22) to be
optimal at slot ¢ 4+ 1. This action is random because the
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optimal decision at ¢ + 1 depends on p;y1, A¢+1 and 7441,
which are not known at slot ¢. Although not critical for the
discussion, if needed, one can show that half of the 16 Q-
factors can be discarded, either for being infeasible — recall
that (wy, a;) € X (ry,ar—1) — or suboptimal. This means that
(23) needs to be computed only for 8 of the @)-factors.

From the point of view of offline estimation, working
with the @Q-function is more challenging than working with
the V-function, since more parameters need to be estimated.
In several realistic scenarios however, the distributions of
the state variables are unknown, and one has to resort to
stochastic schemes in order to learn the parameters on-the-fly.
In such scenarios, the (Q-function based approach is preferable,
because it enables learning the optimal decisions in an online
fashion even when the underlying distributions are unknown.

E. Stochastic policies: Reinforcement learning

As discussed in Section III-C, there are scenarios where
obtaining the optimal value function (and, hence, the optimal
stationary policy associated with it) is not computationally
feasible. The closing remark in that section discussed policies
which, upon replacing the optimal value function with approx-
imations easier to compute, trade reduced complexity for loss
in optimality. However, such reduced-complexity methods still
require knowledge of the state distribution [cf. (17) and (18)].
In this section, we discuss stochastic schemes to approximate
the value function under unknown distributions, thus relaxing
assumption AS2 made earlier. The policies resulting from such
stochastic methods offer a number of advantages since they:
(a) incur a reduced complexity; (b) do not require knowledge
of the underlying state distribution; (c) are able to handle
some non-stationary environments; and in some cases, (d) they
come with asymptotic optimality guarantees. To introduce this
scheme, we first start by considering a simple method that
updates stochastic estimates of the value function itself, and
then proceed to a more advanced method which tracks the
value of the @-function. Specifically, the presented method is
an instance of the celebrated ()-learning algorithm [34], which
is the workhorse of stochastic approximation in DP [30, p. 68].

1) Stochastic value function estimates: The first method
rplies on current stochastic estimates of V;, and V7, denoted by
Vo(t) and Vi (t) at time ¢ (to be defined rigorously later). Given
Vo(t) and Vi (t) at time ¢, the (stochastic) actions @, and d are
taken via solving (13a)-(13d) with AV, = y(Vo(t) — Vi(1)).
Then, stochastic estimates of the value functions Vp(t) and
Vi (t) are updated as

o If s, = 0, then Vi(t 4+ 1) = Vi(t) and Vo(t + 1) =

(1= B)Vo(t) + Be(wih + arpr +vVa, (1));
o If s, = 1, then Vo(t+1) = Vo(t) and Vi(t + 1) =
(1= B)Vi(t) + Be(ieAe + arpr +vVa, (t))s
where B; > 0 denotes the stepsize. While easy to implement
(only two recursions are required), this algorithm has no
optimality guarantees.

2) Q-learning algorithm: Alternatively, one can run a
stochastic approximation algorithm on the @Q-function. This
entails replacing the @)-factors ¢ with stochastic estimates
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ﬁf’;“(t). To describe the algorithm, suppose for now that at

time ¢, the estimates QY (¢) are known for all (r,s,w,a).
Then, in a given slot ¢ with (r,s¢), action (wf,ay) is
obtained via either an exploration or an exploitation step.
When exploring, which happens with a small probability €, a
random and feasible action (wy,a;) € X (r,a,—1) is taken.
In contrast, in the exploitation mode, which happens with a
probability 1 — €;, the optimal action according to the current
estimate of QU W (t) s

arg min (24)

w)‘t + ap + ’7 rt En (t)
(w,a)EX (r¢,at—1)

(w7, a7) =

After taking this action, going to next slot ¢+ 1, and observing
Pt+1, Ae+1, and 7441, the Q-function estimate is updated as

it +1) =
nrij’sa(t) it (r,s,w,a) # (14, s¢, 05, ay)
(1=B)Qrt it (1) + Bt( e+ aipe+ ’yQ:):ll’ftt“ (t)) 0.W.,

(25)

where “0.w.” stands for “otherwise”, (W}, ,a;, ) is the opti-
mal action for the next slot and, if needed, the stepsize 3; can
be adapted for each particular state-action pair. This update
rule describes one of the possible implementations of the Q-
learning algorithm, which was originally introduced in [34].
This online algorithm enables making sequential decisions in
an unknown environment, and is guaranteed to learn optimal
decision-making rules under certain conditions specified next
[30, p.148], [33].

Regarding convergence of the Q-learning algorithm, the
following necessary conditions should hold [33], [35]: (cl)
all feasible state (r,s) and action (w,a) pairs should be
continuously updated; and, (c2) the learning rate (; should
be a diminishing step size. Under these conditions, the factors

W@ converge to their optimal value *“,f’, . with probability
1, see [35] for details. To satisfy (cl), various exploration-
exploitation algorithms have been proposed [36, p. 839].
Particularly, any such scheme needs to be greedy in the limit of
infinite exploration, or GLIE [36, p. 840]. A common choice to
meet this property is the e-greedy approach, as considered in
this work, with ¢, = 1/¢, which provides guaranteed yet slow
convergence. In practice however, €; can be set to a small value
for faster convergence [35], [32]. To satisfy the diminishing
step size rule in (c2), let us define ¢”:* as the index of the ¢-th
time when the state-action pair (r, s) and (w, a) is visited, and
updated with the corresponding learning rate 3;».o. Condition
(c2) requires 7%, Bywe = 00, and 377 Bfu.. < 00 to hold
for all feasible state-action pairs, a typical choice for which is
setting 3;w.« = 1/t. Similar to €, a constant but small learning
rate is préferred in practice as it endows the algorithm to
adapt to possible changes of pertinent parameters in dynamic
settings.

The resultant algorithm for the problem at hand is tabulated
in Algorithm 2. It is important to stress that in our particular
case, we expect the algorithm to converge fast. That is the
case because, under the decomposition approach followed in
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Algorithm 2: Q-learning algorithm to estimate Q%3 for
a given file f 7
Input : 0<~,8 <1
Output: Q% (t + 1)
1 Initialize éff(l) =0, s1 =0, {ro, po, Ao} are revealed
2 for t = 1,27.7.. do
3 For the current state (r¢, s¢), choose (W}, a;)

(o7.ai) = {

Solve (23)
random (w, a) € Xy (r¢, s¢)

w.p. 1 —¢
W.p. €

4 Update state s;41 = a;

5 Request and cost parameters, 6,1, are revealed
6

7

Update @ factor by (25)
end

this paper as well as the introduction of the marginalized Q-
function, the state-action space of the resultant ()-function has
very low dimension and hence, only a small number of Q-
factors need to be estimated.

IV. LIMITED STORAGE AND BACK-HAUL TRANSMISSION
RATE VIA DYNAMIC PRICING

So far, we have considered that the prices {p/, A/} are
provided by the system, and we have not assumed any explicit
limits (bounds) neither on the capacity of the local storage
nor on the back-haul transmission link between the SB and
the cloud. In this section, we discuss such limitations, and
describe how by leveraging dual decomposition techniques,
one can redefine the prices {p/, A/} to account for capacity
constraints.

A. Limiting the instantaneous storage rate

In this subsection, practical limitations on the cache storage
capacity are explored. Suppose that the SB is equipped with
a single memory device that can store M files. Clearly, the
cache decisions should then satisfy the following constraint
per time slot

F
C4: Za{of <M, t=1,2,...
f=1

In order to respect such hard capacity limits, the original opti-
mization problem in (P1) can be simply augmented with C4,
giving rise to a new optimization problem which we will refer
to as (P4). Solving (P4) is more challenging than (P1), since
the constraints in C4 must be enforced at each time instant,
which subsequently couples the optimization across files. In
order to deal with this, one can dualize C4 by augmenting the
cost with the primal-dual term Mt(Z?:l o fa{ — M), where p;
denotes the Lagrange multiplier associated with the capacity
constraint C4. The resultant problem is separable across files,
but requires finding p;, the optimal value of the Lagrange
multiplier, at each and every time instant.

If the solution to the original unconstrained problem (P1)
does satisfy C4, then p; = 0 due to complementary slackness.
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On the other hand, if the storage limit is violated, then the
constraint is active, the Lagrange multiplier satisfies puy > 0,
and its exact value must be found using an iterative algorithm.
Once the value of the multiplier is known, the optimal actions
associated with (P4) can be found using the expressions for
the optimal solution to (P1) provided that the original storage
price pf is replaced with the new storage price p{ aug = ,0,]: +
pioy [cf. (4)]. The reason for this will be explained in detail
in the following subsection, after introducing the ensemble
counterpart of C4.

B. Limiting the long-term storage rate

Consider now the following constraint [cf. C4]

9] F
Ch: Z’ykitﬂi Zagaf
k=t f=1

where the expectation is taken w.r.t. all state variables. By
setting M’ = M, one can view C5 as a relaxed version of
C4. That is, while C4 enforces the limit to be respected at
every time instant, C5 only requires it to be respected on
average. From a computational perspective, dealing with C5
is easier than its instantaneous counterpart, since in the former
only one constraint is enforced and, hence, only one Lagrange
multiplier, denoted by p, must be found. This comes at the
price that guaranteeing C5 with M’ = M does not imply that
C4 will always be satisfied. Alternatively, enforcing C5 with
M’ < M, will increase the probability of satisfying C4, since
the solution will guarantee that “on average” there exists free
space on the cache memory. A more formal discussion on this
issue will be provided in the remark closing the subsection.

To describe in detail how accounting for C5 changes the
optimal schemes, let (P5) be the problem obtained after
augmenting (P1) with C5. Suppose now that to solve (P5)
we dualize the single constraint in C5. Rearranging terms, the
augmented objective associated with (P5) is given by

oo F e}
S-S E o (ab wli ol M) + nalo? | = Yt
k=t f=1 k=t

S Z ,katM/ (26)
k=t

27)

Equation (27) demonstrates that after dualization and provided
that the multiplier p is known, decisions can be optimized
separately across files. To be more precise, note that the term
Z;O:t 'yk*tM " in the objective is constant, so that it can be
ignored, and define the modified instantaneous cost as

é£ = c£ (a‘};,w,{;pi,/\i) +uafa£

= (p£ + uot ) al + Muwl. (28)

The last equation not only reflects that the dualization indeed
facilitates separate per-file optimization, but it also reveals
that term pof can be interpreted as an additional storage
cost associated with the long-term caching constraint. More
importantly, by defining the modified (augmented) prices
pii g = pl + pof for all ¢ and f, the optimization of (28)
can be carried out with the schemes presented in the previous
sections, provided that p{ is replaced with p{ aug”
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Note however that in order to run the optimal allocation
algorithm, the value of i needs to be known. Since the dual
problem is always convex, one option is to use an iterative dual
subgradient method, which computes the satisfaction/violation
of the constraint C5 per iteration [37], [38, p.223]. Clearly,
this requires knowledge of the state distribution, since the
constraint involves an expectation. When such knowledge is
not available, or when the computational complexity to carry
out the expectations cannot be afforded, stochastic schemes
are worth considering. For the particular case of estimating
Lagrange multipliers associated with long-term constraints, a
simple but powerful alternative is to resort to stochastic dual
subgradient schemes [37], [38], which for the problem at hand,
estimate the value of the multiplier y at every time instant ¢
using the update rule

+

F
fr = | it + € Zd{*f"f—M’ (29)
f=1
In the last expression, ¢ > 0 is a (small) positive constant,
the update multiplied by ( corresponds to the violation of
the constraint after removing the expectation, the notation []*
stands for the max{0, -}, and &{ * denotes the optimal caching
actions obtained with the policies described in Section III

provided that ,of is replaced by ,6{7 aug = p{ + fizot.

We next introduce another long-term constraint that can
be considered to limit the storage rate. This constraint is
useful not only because it gives rise to alternative novel
caching-fetching schemes, but also because it will allow us to
establish connections with well-known algorithms in the area
of congestion control and queue management. To start, define

the variables O‘zfm = [a] — s/ and oziut,t = [s] —af]T for
all f and t. Clearly, if a{n’t =1, then content f that was not

in the local cache at time ¢ — 1, has been stored at time ¢; and
as a result, less storage space is available. On the other hand,
if af:ut’t = 1, then content f was removed from the cache at
time t, thus freeing up new storage space. With this notation
at hand, we can consider the long term constraint

Cé6: i g >
k=t

F 00 F

f k—t f
D st | SR D agupel |
f=1 k=t f

=1
(30)
which basically ensures the long-term stability of the local-
storage. That is, the amount of data stored in the local memory
is no larger than that taken out from the memory, guaranteeing
that in the long term stored data does not grow unbounded.
To deal with C6 we can follow an approach similar to that of
C5, under which we first dualize C6 and then use a stochastic
dual method to estimate the associated dual variable. With a
slight abuse of notation, supposing that the Lagrange multiplier
associated with stability is by also denoted p, the counterpart
of (29) for the constraint C6 is
+

F
fur = | fu+CY lal* — sl —[s] —al"]t 31
f=1
Note that the update term in the last iteration follows after

removing the expectations in C6 and replacing a{nt, and
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a;’,vutﬁt with their corresponding definitions. The modifications

that the expressions for the optimal policies require to account
for this constraint are a bit more intricate. If s{ = 0, the
problem structure is similar to that of the previous constraints,
and we just need to replace p{ with ﬁiiaug = p{ + fio?.
However, if stf = 1, it turns out that: i) deciding &{ =1
does not require modifying the caching price, but ii) deciding
d{ * = 0 requires considering the negative caching price
fﬂtaf . In other words, while our formulation in Section III
only considers incurring a cost when a{ = 1 (and assumes that
the instantaneous cost is zero for a{ = 0), to fully account for
C6, we would need to modify our original formulation so that
costs can be associated with the decision atf = 0 as well. This
can be done either by considering a new cost term or, simply
by replacing vV 7(0) by vV /(0) — fizo/ in (13a)-(13d), which
are Bellman’s equations describing the optimal policies.

Remark 3 (Role of the stochastic multipliers). It is
well-established that the Lagrange multipliers can be inter-
preted as the marginal price that the system must pay to
(over-)satisfy the constraint they are associated with [38,
p-241]. When using stochastic methods for estimating the
multipliers, further insights on the role of the multipliers can
be obtained [27], [39], [28]. Consider for example the update
in (29). The associated constraint C5 establishes that the long-
term storage rate cannot exceed M’. To guarantee so, the
stochastic scheme updates the estimated price in a way that,
if the constraint for time ¢ is oversatisfied, the price goes
down, while if the constraint is violated, the price goes up.
Intuitively, if the price estimate [i; is far from its optimal
value and the constraint is violated for several consecutive
time instants, the price will keep increasing, and eventually
will take a value sufficiently high so that storage decisions
are penalized/avoided. How quickly the system reacts to this
violation can be controlled via the constant (. Interestingly, by
tuning the values of M’ and ¢, and assuming some regularity
properties on the distribution of the state variables, conditions
under which deterministic short-term limits as those in C4
are satisfied can be rigorously derived; see, e.g., [28] for a
related problem in the context of distributed cloud networks.
A similar analysis can be carried out for the update in (31)
and its associated constraint C6. Every time the instantaneous
version of the constraint is violated because the amount of
data stored in the memory exceeds the amount exiting the
memory, the corresponding price fi; increases, thus rendering
future storage decisions more costly. In fact, if we initialize
the multiplier at ji; = 0 and set ( = 1, then the corresponding
price is the total amount of information stored at time ¢ in the
local memory. In other words, the update in (31) exemplifies
how the dynamic prices considered in this paper can be used
to account for the actual state of the caching storage. Clearly,
additional mappings from the instantaneous storage level to the
instantaneous storage price can be considered. The connections
between stochastic Lagrange multipliers and storing devices
have been thoroughly explored in the context of demand
response, queuing management and congestion control. We
refer the interested readers to, e.g., [27], [39].
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C. Limits on the back-haul transmission rate

The previous two subsections dealt with limited caching
storage, and how some of those limitations could be accounted
for by modifying the caching price p{ . This section addresses
limitations on the back-haul transmission rate between the SB
and the cloud as well as their impact on the fetching price )\{ .

While our focus has been on optimizing the decisions at
the SB, contemporary networks must be designed following
a holistic (cross-layer) approach that accounts for the impact
of local decisions on the rest of the network. Decomposition
techniques (including those presented in this paper) are es-
sential to that end [37]. For the system at hand, suppose that
Xcp includes all variables at the cloud network, Cop(xcp)
denotes the associated cost, and the feasible set X p accounts
for the constraints that cloud variables xcp must satisfy. Sim-
ilarly, let xs5, Csp(xsp), and Xsp denote the corresponding
counterparts for the SB optimization analyzed in this paper.
Clearly, the fetching actions w{ are included in x5, while the
variable b; representing back-haul transmission rate (capacity)
of the connecting link between the cloud and the SB, is
included in x¢p. This transmission rate will depend on the
resources that the cloud chooses to allocate to that particular
link, and will control the communication rate (and hence the
cost of fetching requests) between the SB and the cloud. As in
the previous section, one could consider two types of capacity
constraints

F

Zwtfafgbt, t=1,..., (32a)
Zv’“ tZE i E[bs],  (32b)
k=t k=t

depending on whether the limit is imposed in the short term
or in the long term.
With these notational conventions, one could then consider
the joint resource allocation problem
min Cop(xcp) + Csp(XsB)
XCDXSB

st. xcp € Xop, xsp € Xsp, (C7) (33)

where the constraint C7 — either the instantaneous one in C7a
or the lon-term version in C7b — couples both optimizations.
It is then clear that if one dualizes C7, and the value of the
Lagrange multiplier associated with C7 is known, then two
separate optimizations can be run: one focusing on the cloud
network and the other one on the SB. For this second optimiza-
tion, consider for simplicity that the average constraint in (32b)
is selected and let v denote the Lagrange multiplier associated
with such a constraint. The optimization corresponding to the
SB is then

[e%e] F
in C FUNT Elwlvel] st € Xsp.
min SB(XSB)-FZW Z [wivo’] st. xsp sB

k=t =1

(34

Clearly, solving this problem is equivalent to solving the
original problem in Section III, provided that the original cost
is augmented with the primal-dual term associated with the
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coupling constraint. To address the modified optimization, we
will follow steps similar to those in Section IV-B, defining
first a stochastic estimate of the Lagrange multiplier as

+

D1 = |0+ ZAf* .39

and then obtaining the optimal caching-fetching decisions
running the schemes in Section III after replacing the original
fetching cost )\f with the augmented one )\t aug = )\f + Doy

For simplicity, in this section we will limit our discussion
to the case where 74 corresponds to the value of a Lagrange
multiplier corresponding to a communication constraint. How-
ever, from a more general point of view, 7y represents the
marginal price that the cloud network has to pay to transmit
the information requested by the SB. In that sense, there exists
a broad range of options to set the value of 7y, including
the congestion level at the cloud network (which is also
represented by a Lagrange multiplier), or the rate (power) cost
associated with the back-haul link. While a detailed discussion
on those options is of interest, it goes beyond the scope of the
present work.

D. Modified online solver based on Q-learning

We close this section by providing an online reinforcement-
learning algorithm that modifies the one introduced in Section
IIT to account for the multipliers introduced in Section IV. By
defining per file cost é£ as

o (wlsals o Mssins20) =
(P£ +/lk0f)a£ +

the problem of caching under limited cache capacity and back-
haul link reduces to per file optimization as follows

(M +ono ) w] G6)

(P8)  min
{(wk aak)}k>t k=t

s.t. (wg,aﬁ) € X(T;{’ai—l),

B [ (af wls o AL k)|
Vf, k>t

where the updated dual variables i and 7, are obtained
respectively by iteration (29) and (35). If we plug é£ instead of
cﬁ into the marginalized ()-function in (21), then the solution
for (P8) in current iteration k for a given file f can readily be
found by solving

arg min 0t +w(h + ool +alp + fuo?). 37)
(w,a)EX (r¢,a1—1)
Thus, it suffices to form a marginalized @-function for

each file and solve (37), which can be easily accomplished
through exhaustive search over 8 possible cache-fetch deci-
sions (w, a) € X(r¢, az—1).

To simplify notation and exposition, we focus on the limited
caching capacity constraint, and suppose that the back-haul is
capable of serving any requests, thus 2, = 0, V¢. Modifications
to account also for 2, # 0 are straightforward.

The modified @Q-learning (MQ-learning) algorithm, tabu-
lated in Algorithm 3, essentially learns to make optimal fetch-
cache decisions while accounting for the limited caching
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Algorithm 3: Modified Q)-learning for online caching
Input : O£< 7 P <1, fio,C, e, M
Output: Q;‘};? (t+1)
1 Initialize Set é:f’ff ’saff (1) = 0 for all factors
Set sg — 0 and variables 05 = {r(}; , pg , )\g } are revealed
2 fort=0,1...do

3 | For the current state (r!,s/), choose (w{*,a]™)
Solve (23) wp.1—e€
ofx o fx _ t
(0" ") { random (w,a) e X/ (r{,s]) wp. &
4 Update dual variable
+

F
fre+1 = | it + ¢ Zd{*Uf—M
=1

s | Incurcost & =cf(al wpl A+ pual*o!
6 Apply IIcy(-) to guarantee C4 (if required)

ttea [{(al".af} | - {ul".al"}
f !
7 | Update state s}, , = al*
8 Request and cost parameters, 9{ 11, are revealed
9 | Update all Q factors as
10
2005 % o f* A fx  fx
Q) =18 Q7 (1)
: ) 20l af
+ Bt é{ +y  min QY . (1)
(wf,af)e/\’f+1 Tit1:5t41
11 end

capacity constraint in C4 and/or C5. In particular, to provide
a computationally efficient solver the stochastic updates cor-
responding to C5 are used. Subsequently, if C4 needs to be
enforced, the obtained solution is projected into the feasible set
through projection algorithm ITcy(-). The projection ITcy(.)
takes the obtained solution {w{*,&/*}y;, the file sizes, as
well as the marginalized @)-functions as input, and generates
a feasible solution {w]*,af*}ys satisfying C4 as follows: it
sorts the files with é{ * = 1 in ascending Q-function order,
and caches the files with the lowest ()-values until the cache
capacity is reached. Overall, our modified algorithm performs
a “double” learning: i) by using reinforcement schemes it
learns the optimal policies that map states to actions, and ii) by
using a stochastic dual approach it learns the mechanism that
adapt the prices to the saturation and congestion conditions
in the cache. Given the operating conditions and the design
approach considered in the paper, the proposed algorithm
has moderate complexity, and thanks to the reduced input
dimensionality, it also converges in a moderate number of
iterations.

http://dx.doi.org/10.1109/JSAC.2019.2933780

V. NUMERICAL TESTS

In this section, we numerically assess the performance
of the proposed approaches for learning optimal fetch-cache
decisions. Two sets of numerical tests are provided. In the
first set, summarized in Figs 2-6, the performance of the
value iteration-based scheme in Alg. 1 is evaluated, and in
the second set, summarized in Figs. 7-8, the performance of
the Q-learning solver is investigated. In both sets, the cache
and fetch cost parameters are drawn with equal probability
from a finite number of values, where the mean is [)f and )/,
respectively. Furthermore, the request variable rf is modeled
as a Bernoulli random variable with mean pf , whose value
indicates the popularity of file f.

In the first set, it is assumed that p/ as well as the
distribution of p/, A\f, are known a priori. Simulations are
carried out for a content of unit size, and can be readily
extended to files of different sizes. To help readability, we
drop the superscript f in this section.

Fig. 2 plots the sum average cost C versus p for different val-
ues of \ and p. The fetching cost is set to A € {43, 45, 50, 58}
for two different values of popularity p € {0.3,0.5}. As
depicted, higher values of p, \,p generally lead to a higher
average cost. In particular, when 5 < ), caching is consid-
erably cheaper than fetching, thus setting a; = 1 is optimal
for most ¢. As a consequence, the total cost linearly increases
with p as most requests are met via cached contents rather than
fetching. Interestingly, if p keeps increasing, the aggregate cost
gradually saturates and does not grow anymore. The reason
behind this observation is the fact that, for very high values
of p, fetching becomes the optimal decision for meeting most
file requests and, hence, the aggregate cost no longer depends
on p. While this behavior occurs for the two values of p, we
observe that for the smallest one, the saturation is more abrupt
and takes place at a lower p. The intuition in this case is that
for lower popularity values, the file is requested less frequently,
thus the caching cost aggregated over a (long) period of
time often exceeds the “reward” obtained when (infrequent)
requests are served by the local cache. As a consequence,
fetching in the infrequent case of r; = 1 incurs less cost than
the caching cost aggregated over time.

To corroborate these findings, Fig. 3 depicts the sum average
cost versus p for different values of 5 and A. The results
show that for large values of p, fetching is the optimal action,
resulting in a linear increase in the total cost as p increases.
In contrast, for small values of p, caching is chosen more
frequently, resulting in a sub-linear cost growth.

To investigate the caching-versus-fetching trade-off for a
broader range of p and ), let us define the caching ratio as
the aggregated number of positive caching decisions (those
for which a; = 1) divided by the total number of decisions.
Fig. 4 plots this ratio for different values of (p, \) and fixed
p = 0.5. As the plot demonstrates, when p is small and X is
large, files are cached almost all the time, with the caching
ratio decreasing (non-symmetrically) as p increases and \
decreases. Similarly, the caching ratio is plotted by setting
p = 0.05 in Fig. 5, in which fetching is mostly preferred
over a wide range of storage costs due to the small value of p.
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Interestingly this is true despite high fetching costs as well, and
can be intuitively explained as follows: due to low popularity,
deciding to cache may result in idle storing of the file in cache,
thus entailing an unnecessary aggregated caching cost before
the stored file can be utilized to meet user request, rendering
caching suboptimal. The comparison between Fig. 4 and 5
clearly demonstrates the effect of different values of p on the
performance of the cache-fetch decisions, while the proposed
approach automatically adjusts to the underlying popularities.

Finally, Fig. 6 compares the performance of the proposed
DP-based strategy with that of a myopic one. The myopic
policy sets a; =1 if A\¢ > p; and the content is locally available
(either because w; = 1 or because s; = 1), and sets a; =
0 otherwise. The results indicate that the proposed strategy
outperforms the myopic one for all values of 5, \,p and 7.

In the second set of tests, the performance of the online
Q-learning solvers is investigated. As explained in Section
III, under the assumption that the underlying distributions are
stationary, the performance of the Q-learning solver should
converge to the optimal one found through the value iteration
algorithm. Corroborating this statement, Fig. 7 plots the sum
average cost C versus p of both the marginalized value
iteration and the Q-learning solver, with \ € {29, 36,44} and
p € {0.3,0.5}. The solid lines are obtained when assuming
a priori knowledge of the distributions and then running the
marginalized value iteration algorithm; the results and analysis
are similar to the ones reported for Fig. 2. The dashed curves
however, are found by assuming unknown distributions and
running the Q-learning solver. Sum average cost is reported
after first 1000 iterations. As the plot suggests, despite the
lack of a priori knowledge on the distributions, the Q-learning
solver is able to find the optimal decision making rule. As a
result, it yields the same sum average cost as that of value-
iteration under known distributions.

The last experiment investigates the impact of the instanta-
neous cache capacity constraint in C4 as well as non-stationary

http://dx.doi.org/10.1109/JSAC.2019.2933780

distributions for popularities and costs. To this end, 1,000 dif-
ferent realizations (trajectories) of the random state processes
are drawn, each of length 7' = 600. For every realization, the
cost ¢; [cf. (6)] at each and every time instant is found, and
the cost trajectory is averaged across the 1,000 realizations.
Specifically, let ci denote the ith realization cost at time ¢,
and define the averaged cost trajectory as ¢; := Tloo Z;i(io ct.
Fig. 8 reports the average trajectory of ¢; in a setup where the
total number of files is set to ' = 500, the file sizes are drawn
uniformly at random from the interval [1,100], and the total
cache capacity is set to 40% of the aggregate file size. Adopted
parameters for the MQ-learning solver are set to 3; = 0.3, and
e = 0.01. Three blocks of iterations are shown in the figure,
where in each block a specific distribution of popularities and
costs are considered. For instance, the dashed line shows the
popularity of a specific file in one of the realizations, where
in the fist block p = 0.23, in the second block p = 0.37, and
in the third one p = 0.01. The cost parameters have means
AN=44,p =2, A =40,p = 5, and A = 38,5 = 2 in the
consecutive blocks, respectively.

As Fig. 8, the proposed MQ-learning algorithm incurs large
costs during the first few iterations. Then, it gradually adapts
to the file popularities and cost distributions, and learns how to
make optimal fetch-cache decisions, decreasing progressively
the cost in each of the blocks. To better understand the
behavior of the algorithm and assess its effectiveness, we
compare it with that of Online Gradient Ascent (OGA) [18]
as a representative state-of-the-art method among the class of
online expert algorithms, the myopic policy and the stationary
policy serving as the benchmark, respectively. In contrast to
the OGA method, our decision variables are not continuous,
but binary. Hence, caching decisions in OGA are projected
into the binary feasible set for fair comparison. In general,
since OGA and the myopic caching only use the current
state and requests, their performance is inferior to that of
our proposed method, where knowledge of the underlying
request and price distributions is carefully utilized. During the
first iterations however, when the MQ-learning algorithm has
not adapted to the distribution of pertinent parameters, OGA
and the myopic policy perform better; on the other hand, as
the learning proceeds, the MQ-learning starts to make more
precise decisions and, remarkably, in a couple of hundreds of
iterations it is able to perform very close to the optimal policy.

Furthermore, to investigate the scalability of our proposed
approach, Tables I, II, and III report the run-time (in seconds')
versus the number of files F' as well as the storage capacity
M, set as a ratio of the total aggregated file sizes. Although
the proposed approach has slightly higher run-time due to
the utilized dual-decomposition technique and the solution of
the arising integer DP, all methods scale gracefully (linearly)
as the number of files increases from 1K to 10K. Note
that much faster run-times can be obtained by effectively
utilizing available computation resources in parallel. However,
the aim here is just to assess scalability of proposed approach
compared with the OGA one. Therefore, optimally allocating

'We run these simulations in parallel with 4 pools of workers, utilizing a
machine with Intel(R) Core(TM) i7-4770 CPU @ 3.4 GHz specifications.
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F
Y, 1K | 2K | 3K | 4K | 6K | 8K | 10K
10 % 148 | 240 | 337 | 444 | 662 | 870 | 1089
20 % 141 | 229 | 327 | 435 | 625 | 858 | 1052
40 % 139 | 232 | 326 | 422 | 610 | 815 980
60 % 149 | 251 | 372 | 497 | 699 | 949 | 1086
TABLE I: Run-time of the proposed caching.
Fluk | ok | 3K | 4K | 6K | 8K | 10K
%M
10 % 70 | 120 | 176 | 241 | 411 | 622 | 308
20 % 73 123 | 183 | 250 | 389 | 569 796
40 % 70 122 | 182 | 272 | 406 | 585 779
60 % 92 170 | 254 | 356 | 551 | 736 908
TABLE II: Run-time of OGA caching.
Flak | 2k | 3K | 4K | 6K | 8K | 10K
%M
10 % 70 126 | 205 | 286 | 491 | 721 969
20 % 84 153 | 232 | 317 | 507 | 736 | 1025
40 % 88 157 | 236 | 328 | 575 | 822 | 1105
60 % 87 161 | 240 | 336 | 563 | 834 | 1141

TABLE III: Run-time of Myopic caching.

computation resources for obtaining best run-times is not
investigated at all.

VI. CONCLUSIONS

A generic setup where a caching unit makes sequential
fetch-cache decisions based on dynamic prices and user re-
quests was investigated. Critical constraints were identified,
the aggregated cost across files and time instants was formed,
and the optimal adaptive caching was then formulated as a
stochastic optimization problem. Due to the effects of the
current cache decisions on future costs, the problem was cast
as a dynamic program. To address the inherent functional
estimation problem that arises in this type of programs, while
leveraging the underlying problem structure, several computa-
tionally efficient algorithms were developed, including off-line
(batch) approaches, as well as online (stochastic) approaches
based on Q-learning. The last part of the paper was devoted to
dynamic pricing mechanisms that allowed handling constraints
both in the storage capacity of the cache memory, as well as
on the back-haul transmission link connecting the caching unit
with the cloud.
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