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Abstract—Contemporary power grids are being challenged
by rapid and sizeable voltage fluctuations that are caused by
large-scale deployment of renewable generators, electric vehicles,
and demand response programs. In this context, monitoring the
grid’s operating conditions in real time becomes increasingly
critical. With the emergent large scale and nonconvexity however,
existing power system state estimation (PSSE) schemes become
computationally expensive or often yield suboptimal perfor-
mance. To bypass these hurdles, this paper advocates physics-
inspired deep neural networks (DNNs) for real-time power system
monitoring. By unrolling an iterative solver that was originally
developed using the exact AC model, a novel model-specific DNN
is developed for real-time PSSE requiring only offline training
and minimal tuning effort. To further enable system awareness
even ahead of the time horizon, as well as to endow the DNN-
based estimator with resilience, deep recurrent neural networks
(RNNs) are also pursued for power system state forecasting. Deep
RNNs leverage the long-term nonlinear dependencies present in
the historical voltage time series to enable forecasting, and they
are easy to implement. Numerical tests showcase improved per-
formance of the proposed DNN-based estimation and forecasting
approaches compared with existing alternatives. In real load data
experiments on the IEEE 118-bus benchmark system, the novel
model-specific DNN-based PSSE scheme outperforms nearly by
an order-of-magnitude its competing alternatives, including the
widely adopted Gauss-Newton PSSE solver.

Index Terms—Power system state estimation, forecasting, least-
absolute-value, proximal linear algorithm, recurrent neural net-
works, data validation.

I. INTRODUCTION

Recognized as the most significant engineering achievement
of the twentieth century, the North American power grid is
a complex cyber-physical system with transmission and dis-
tribution infrastructure delivering electricity from generators
to consumers. Due to the growing deployment of distributed
renewable generators, electric vehicles, and demand response
programs, contemporary power grids are facing major chal-
lenges related to unprecedented levels of load peaks and
voltage fluctuations. In this context, real-time monitoring of
the smart power grid becomes increasingly critical, not only
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for detection of system instabilities and protection [31], [8],
but also for energy management [8], [37].

Given the grid parameters and a set of measurements
provided by the supervisory control and data acquisition
(SCADA) system, PSSE aims to retrieve the unknown system
state, that is, complex voltages at all buses [33], [17]. Com-
monly used state estimators include the weighted least-squares
(WLS) and least-absolute-value (LAV) ones, derived based on
(weighted) `1- or `2-loss. To tackle the resultant nonconvex
optimization, different solvers have been proposed; see e.g.
[33], [31], [18]. However, those optimization-oriented PSSE
schemes either require many iterations or are computationally
intensive, and they are further challenged by growing dy-
namics and system size. These considerations motivate novel
approaches for real-time large-scale PSSE.

To that end, PSSE using plain feed-forward neural networks
(FNNs) was studied in [3], [21], [35], [36]. Once trained off-
line using historical data and/or simulated samples, FNNs
can be implemented for real-time PSSE, as the inference
entails only a few matrix-vector multiplications. Related ap-
proaches using FNNs that ‘learn-to-optimize’ emerge in wire-
less communications [27], [26], and outage detection [39].
Unfortunately, past ‘plain-vanilla’ FNN-based PSSE schemes
are model-agnostic, which often require a non-trivial tuning
effort, and yield suboptimal performance. To devise NNs in a
disciplined manner, recent proposals in computer vision [10],
[34] constructed deep (D) NNs by unfolding iterative solvers
tailored to model-based optimization problems.

In this work, we will pursue model-specific DNNs for
PSSE by unrolling existing iterative optimization-based PSSE
solvers. On the other hand, PSSE by itself may be insufficient
for system monitoring when states exhibit large variations (i.e.,
system dynamics) [31]. In addition, PSSE works (well) only if
there are enough measurements achieving system observabil-
ity, and the grid topology along with the link parameters are
precisely known. To address these challenges, power system
state forecasting to aid PSSE [6], [24] is well motivated.

Power system state forecasting has so far been pursued via
(extended) Kalman filtering and moving horizon approaches
in e.g., [5], [19], [11], [17], and also through first-order vector
auto-regressive (VAR) modeling [12]. Nonetheless, all the
aforementioned state predictors, assume linear dynamics; yet
in practice, the dependence of the current state on previ-
ous (estimated) one(s) is nonlinear and cannot be accurately
characterized. To render nonlinear estimators tractable, FNN-
based state prediction has been advocated with the transition
mapping modeled by a single-hidden-layer FNN [6], [7].
Unfortunately, the number of FNN parameters grows linearly
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Fig. 1: Bus n is connected to bus n′ via line (n, n′)

with the length of the input sequences, discouraging FNNs
from capturing long-term dependencies in voltage time series.

Our contribution towards real-time and accurate monitoring
of the smart power grids is two-fold. First, we advocate model-
specific DNNs for PSSE, by unrolling a recently proposed
prox-linear SE solver [29], [30]. Toward this goal, we first de-
velop a reduced-complexity prox-linear solver. Subsequently,
we demonstrate how the unrolled prox-linear solver lends
itself to building blocks (layers) in contemporary DNNs. In
contrast to ‘plain-vanilla’ FNNs, our novel prox-linear nets
require minimal tuning efforts, and come naturally with ‘skip-
connections,’ a critical element in modern successful DNN
architectures (see [13]) that enables efficient training. More-
over, to enhance system observability as well as enable system
awareness ahead of time, we advocate power system state
forecasting via deep recurrent NNs (RNNs). Deep RNNs enjoy
a fixed number of parameters even with variable-length input
sequences, and they are able to capture complex nonlinear
dependencies present in time series data. Finally, we present
numerical tests using real load data on the IEEE 57- and
118-bus benchmark systems to corroborate the merits of the
developed deep prox-linear nets and RNNs relative to existing
alternatives.

The remainder of this paper is organized as follows. Sec-
tion II outlines the basics of PSSE. Section III introduces
our novel reduced-complexity prox-linear solver for PSSE,
and advocates the prox-linear net. Section IV deals with
deep RNN for state forecasting, as well as shows how state
forecasting can aid in turn DNN-based PSSE. Simulated tests
are presented in Section V, while the paper is concluded with
the research outlook in Section VI.

II. LEAST-ABSOLUTE-VALUE ESTIMATION

Consider a power network consisting of N buses that can be
modeled as a graph G := {N ,L}, where N := {1, 2, . . . , N}
comprises all buses, and L := {(n, n′)} ∈ N × N collects
all lines; see Figure 1. For each bus n ∈ N , let Vn := vrn +
jvin denote its corresponding complex voltage with magnitude
|Vn|, and Pn (Qn) denote the (re)active power injection. For
each line (n, n′) ∈ L, let P fnn′ (Qfnn′) denote the (re)active
power flow seen at the ‘forwarding’ end, and P tnn′ (Qtnn′ )
denote the (re)active power flow at the ‘terminal’ end.

To perform PSSE, suppose Mt system variables are mea-
sured at time instant t. For a compact representation, let zt :=

[{|Vn,t|2}n∈N o
t
, {Pn,t}n∈N o

t
, {Qn,t}n∈N o

t
, {P fnn′,t}(n,n′)∈Eot ,

{Qfnn′,t}(n,n′)∈Eot , {P
t
nn′,t}(n,n′)∈Eot , {Q

t
nn′,t}(n,n′)∈Eot ]> be

the measurement vector that collects all measured quantities
at time t, where sets N o

t and Eot indicate the locations where
the corresponding nodal and line quantities are measured.

Per time instant t, PSSE aims to recover the system state
vector vt := [vr1,t v

i
1,t · · · vrN,t viN,t]> ∈ R2N (in rectangular

coordinates) from generally noisy measurement zt. For brevity,
the subscript t of zt and vt will be omitted when discussing
PSSE in Sections II and III. Mathematically, the PSSE task
can be posed as follows.

Given measurements z := {zm}Mm=1 and matrices {Hm ∈
R2N×2N}Mm=1 obeying the following physical model

zm = v>Hmv + εm, ∀m = 1, . . . ,M (1)

our goal is to recover v ∈ R2N , where {εm}Mm=1 account for
the measurement noise and modeling inaccuracies.

Adopting the LAV error criterion that is known to be robust
to outliers, the ensuing LAV estimate is sought (see e.g., [33])

v̂ := arg min
v∈R2N

1

M

M∑
m=1

∣∣zm − v>Hmv
∣∣ (2)

for which various solvers have been developed [2], [16], [17].
In particular, the recent prox-linear solver developed in [29]
has well documented merits, including provably fast (locally
quadratic) convergence, as well as efficiency in coping with
the non-smoothness and nonconvexity in (2). Specifically,
the prox-linear solver starts with some initial vector v0, and
iteratively minimizes the regularized and ‘locally linearized’
(relaxed) cost in (2), to obtain iteratively (see also [4])

vi+1 = arg min
v∈R2N

‖z− Ji(2v − vi)‖1+
M

2µi
‖v − vi‖22 (3)

where i ∈ N is the iteration index, Ji := [v>i Hm]1≤m≤M is
an M ×N matrix whose m-th row is v>i Hm, and {µi > 0}
is a pre-selected step-size sequence.

It is clear that the per-iteration subproblem (3) is a convex
quadratic program, which can be solved by means of standard
convex programming methods. One possible iterative solver of
(3) is based on the alternating direction method of multipliers
(ADMM). Such an ADMM-based inner loop turns out to entail
2M + 2N auxiliary variables, thus requiring the update of
2M + 4N variables per iteration [29].

Aiming at a reduced-complexity solver, in the next section
we will first recast (3) in a Lasso-type form, and subsequently
unroll the resultant double-loop prox-linear iterations (3) that
constitute the key blocks of our DNN-based PSSE solver.

III. THE PROX-LINEAR NET

In this section, we will develop a DNN-based scheme to
approximate the solution of (2) by unrolling the double-loop
prox-linear iterations. Upon defining the vector variable ui :=
Ji(2v − vi)− z, and plugging ui into (3), we arrive at

u∗i = arg min
ui∈RM

‖ui‖1 +
M

4µi
‖Bi(ui + z)− vi‖22 (4)
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Fig. 2: Prox-linear net with K = 3 blocks.

Fig. 3: Plain-vanilla FNN which has the same per-layer number of hidden units as the prox-linear net.

where Bi ∈ R2N×M satisfying BiJi = I2N×2N denotes the
pseudo inverse of Ji. The pseudo inverse Bi exists because
PSSE requires M ≥ 2N to guarantee system observability.

Once the inner optimum variable u∗i is found, the next outer-
loop iterate vi+1 can be readily obtained as

vi+1 = [Bi(u
∗
i + z) + vi]/2 (5)

following the definition of ui. Interestingly, (4) now reduces
to a Lasso problem [22], for which various celebrated solvers
have been put forward, including e.g., the iterative shrinkage
and thresholding algorithm (ISTA) [22].

Specifically, with k denoting the iteration index of the inner-
loop, the ISTA for (4) proceeds across iterations k = 0, 1, . . .
along the following recursion

uk+1
i = Sη

(
uki −

ηM

2µi
B>i

[
Bi

(
uki + z

)
− vi

])
(6)

= Sη
(
Wk

i u
k
i + Aiz + bki

)
where η > 0 is a fixed step size with coefficients

Wk
i := I− ηM

2µi
B>i Bi, ∀k ∈ N (7a)

Ai := −ηM
2µi

B>i Bi (7b)

bki :=
ηM

2µi
B>i vi, ∀k ∈ N (7c)

and Sη(·) is the so-termed soft thresholding operator

Sη(x) :=

 x− η, x > η
0, − η ≤ x ≤ η
x+ η, x < −η

(8)

understood entry-wise when applied to a vector. With regards
to initialization, one can set u0

0 = 0 without loss of generality,
and u0

i = u∗i−1 for i ≥ 1.
A reduced-complexity implementation of the prox-linear

PSSE solver is summarized in Alg. 1. With appropriate step
sizes {µi} and η, the sequence {vi} generated by Alg. 1 con-
verges to a stationary point of (2) [29]. In practice, Alg. 1 often
requires a large number K and I iterations to approximate
the solution of (2). Furthermore, the pseudo-inverse Bi has
to be computed per outer-loop iteration. These challenges can
discourages its use in real-time applications.

Algorithm 1 Reduced-complexity prox-linear solver.

Input: Data {(zm,Hm)}Mm=1, step sizes {µi}, η, and initial-
ization v0 = 1, u0

0 = 0.
1: for i = 0, 1, . . . , I do
2: Evaluate Wk

i , Ai, and bki according to (7).
3: Initialize u0

i .
4: for k = 0, 1, . . . ,K do
5: Update uk+1

i using (6).
6: end for
7: Update vi+1 using (5).
8: end for

Instead of solving the optimization problem with a (large)
number of iterations, recent proposals (e.g., [10], [34]) advo-
cated trainable DNNs constructed by unfolding and truncating
those iterations, to obtain data-driven solutions. Specifically,
matrices {Wk

i } and vectors {bki } are found by learning from
past data via back-propagation rather than set according to
(7). As such, properly trained unrolled DNNs can achieve
competitive performance even with few number of ‘iterations,’
i.e., layers; see also [10], [32], [34]. In Section V, we will
demonstrate that our unrolled prox-linear net achieves a sig-
nificant speedup over conventional optimization-based PSSE
solvers as it only entails few matrix-vector multiplications. In
the following, we illustrate how to unroll Alg. 1 to design
DNNs for real-time PSSE.

Consider first unrolling the outer loop (3) up to, say the (I+
1)-st iteration to obtain vI+1. Leveraging the recursion (6),
each inner loop iteration i refines the initialization u0

i = uKi−1
to yield after K inner iterations uKi . Such an unrolling leads to
a K(I + 1)-layer structured DNN. Suppose that the sequence
{vi}I+1

i=0 has converged, which means ‖vI − vI+1‖ ≤ ε for
some ε > 0. It can then be deduced that vI+1 = Bu

Iu
∗
I +Bz

Iz
with Bu

I := BI and Bz
I := BI .

Our novel DNN architecture, that builds on the physics-
based Alg. 1, is thus a hybrid combining plain-vanilla FNNs
with the conventional iterative solver such as Alg. 1. We
will henceforth term it ‘prox-linear net.’ For illustration, the
prox-linear net with K = 3 is depicted in Fig. 2. The first
inner loop i = 0 is highlighted in a dashed box, where
u1
0 = Sη(A0z + b0) because u0

0 = 0. As with [10], [32],
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Fig. 4: Deep prox-linear net based real-time PSSE.

[34], our prox-linear net can be treated as a trainable regressor
that predicts v from data z, where the coefficients {bki }

1≤k≤3
0≤i≤I ,

{Ai}Ii=0, {Wk
i }

1≤k≤3
0≤i≤I , Bu

I , and Bz
I are typically untied to en-

hance approximation capability and learning flexibility. Given
historical and/or simulated measurement-voltage training pairs
{(zs,vs)}, these coefficients can be learned end-to-end using
backpropagation [25], possibly employing the Huber loss [15]
to endow the state estimates with resilience to outliers.

Relative to the conventional FNN in Fig. 3, our proposed
prox-linear net features: i) ‘skip-connections’ (the bluish lines
in Fig. 2) that directly connect the input z to intermedi-
ate/output layers, and ii) a fixed number (M in this case) of
hidden neurons per layer. It has been shown both analytically
and empirically that these skip-connections help avoid the so-
termed ‘vanishing’ and ‘exploding’ gradient issues, therefore
enabling successful and efficient training of DNNs [13], [14].
The ‘skip-connections’ is also a key enabler of the universal
approximation capability of DNNs with a fixed number of
hidden-neurons per-layer [20].

The only hyper-parameters that must be tuned in our prox-
linear net are I , K, and η, which are also tuning parameters
required by the iterative optimization solver in Alg. 1. It is
also worth pointing out that other than the soft-thresholding
nonlinearity (a.k.a. activation function) used in Figs. 2 and 3,
alternative functions such as the rectified linear unit (ReLU)
can be applied as well [10], [28]. We have observed in our
simulated tests that the prox-linear net with soft thresholding
operators or ReLUs yield similar performance. To understand
how different network architectures affect the performance,
ReLU activation functions are used by default unless otherwise
stated.

The flow chart demonstrating the prox-linear net for real-
time PSSE is depicted in Fig. 4, where the real-time inference
stage is described in the left rounded rectangular box, while
the off-line training stage is on the left. Thanks to the wedding
of the physics in (1) with our DNN architecture design, the
extensive numerical tests in Section V will confirm an impres-
sive boost in performance of our prox-linear nets relative to
competing FNN and Gauss-Newton based PSSE approaches.

IV. DEEP RNNS FOR STATE FORECASTING

Per time slot t, the PSSE scheme we developed in Sec-
tion III estimates the state vector vt ∈ R2N upon receiving
measurements zt. Nevertheless, its performance is challenged
when there are missing entries in zt, which is indeed common

Fig. 5: An unfolded deep RNN with no outputs.

in a SCADA system due for example to meter and/or commu-
nication failures [17]. To enhance our novel PSSE scheme and
obtain system awareness even ahead of time, we are prompted
to pursue power system state forecasting, which for a single
step amounts to predicting the next state vt+1 at time slot t+1
from the available time-series {vτ}tτ=0 [6]. Analytically, the
estimation and prediction steps are as follows

vt+1 = φ(vt,vt−1,vt−2, . . . ,vt−r+1) + ξt (9)
zt+1 = ht+1(vt+1) + εt+1 (10)

where {ξt, εt+1} account for modeling inaccuracies; the tun-
able parameter r ≥ 1 represents the number of lagged (present
included) states used to predict vt+1; and the unknown (non-
linear) function φ captures the state transition, while ht+1(·)
is the measurement function that summarizes equations in (1)
at time slot t+1. To perform state forecasting, function φ must
be estimated or approximated – a task that we will accomplish
using RNN modeling, as we present next.

RNNs are NN models designed to learn from correlated time
series data. Relative to FNNs, RNNs are not only scalable
to long-memory inputs (regressors) that entail sequences of
large r, but are also capable of processing input sequences of
variable length [9]. Given the input sequence {vτ}tτ=t−r+1,
and an initial state st−r, an RNN finds the hidden state1 vector
sequence {sτ}tτ=t−r+1 by repeating

sτ = f(R0vτ + Rsssτ−1 + r0) (11)

where f(·) is a nonlinear activation function (e.g., a ReLU or
sigmoid unit), understood entry-wise when applied to a vector,
whereas the coefficient matrices R0, Rss, and the vector r0

contain time-invariant weights.
Deep RNNs are RNNs of multiple (≥ 3) processing layers,

which can learn compact representations of time series through
hierarchical nonlinear transformations. The state-of-the-art in
numerous sequence processing applications, including music
prediction and machine translation [9], has been significantly
improved with deep RNN models. By stacking up multiple
recurrent hidden layers (cf. (11)) one on top of another, deep
RNNs can be constructed as follows [23]

slτ = f
(
Rl−1sl−1τ + Rss,lslτ−1 + rl−1

)
, l ≥ 1 (12)

1Hidden state is an auxiliary set of vector variables not to be confused with
the power system state v consisting of the nodal voltages as in (1).
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where l is the layer index, slτ denotes the hidden state of the
l-th layer at slot τ having s0τ := vτ , and {Rl,Rss,l, rl} collect
all unknown weights. Fig. 5 (left) depicts the computational
graph representing (12) for l = 2, with the bias vectors rl = 0,
∀l for simplicity in depiction, and the black squares standing
for single-step delay units. Unfolding the graph by breaking
the loops and connecting the arrows to corresponding units
of the next time slot, leads to a deep RNN in Fig. 5 (right),
whose rows represent layers, and columns denote time slots.

The RNN output can come in various forms, including one
output per time step, or, one output after several steps. The
latter matches the rth-order nonlinear regression in (9) when
approximating φ with a deep RNN. Concretely, the output of
our deep RNN is given by

v̌t+1 = Routslt + rout (13)

where v̌t+1 is the forecast of vt+1 at time t, and (Rout, rout)
contain weights of the output layer. Given historical voltage
time series, the weights (Rout, rout) and {Rl,Rss,l, rl} can
be learned end-to-end using backpropagation [9]. Invoking
RNNs for state-space models, the class of nonlinear predictors
discussed in [6] is considerably broadened here to have
memory. As will be demonstrated through extensive numer-
ical tests, the forecasting performance can be significantly
improved through the use of deep RNNs. Although the focus
here is on one-step state forecasting, it is worth stressing that
our proposed approaches with minor modifications, can be
generalized to predict the system states multiple steps ahead.

So far, we have elaborated on how RNNs enable flexible
nonlinear predictors for power system state forecasting. To
predict v̌t+1 at time slot t, the RNN in (12) requires ground-
truth voltages {vτ}tτ=t−r+1 (cf. (9)), which however, may not
be available in practice. Instead we can use the estimated ones
{v̂τ}tτ=t−r+1 provided by our prox-linear net-based estimator
in Section III. In turn, the forecast v̌t+1 can be employed as a
prior to aid PSSE at time slot t+1, by providing the so-termed
virtual measurements žt+1 := ht+1(v̌t+1) that can be readily
accounted for in (2). For example, when there are missing
entries in zt+1, the obtained žt+1 can be used to improve the
PSSE performance by imputing the missing values.

Figure 6 depicts the flow chart of the overall real-time
power system monitoring scheme, consisting of deep prox-
linear net-based PSSE (cf. Fig. 1) and deep RNN-based state
forecasting (cf. Fig. 4) modules, that are implemented at time
t and t + 1. Throughout, RNNs with l = 3 and r = 10 were
used in our experiments. Our novel scheme is reminiscent of
the predictor-corrector-type estimators emerging with dynamic
state estimation problems using Kalman filters [17]. Although
beyond the scope of the present paper, it is worth remarking
that the residuals zt+1 − ht+1(v̂t+1) along with zt+1 − žt+1

can be used to unveil erroneous data, as well as changes in the
grid topology and the link parameters; see [6] for an overview.

V. NUMERICAL TESTS

Performance of our deep prox-linear net based PSSE, and
deep RNN based state forecasting methods was evaluated
using the IEEE 57- and 118-bus benchmark systems. Real

Fig. 6: DNN-based real-time power system monitoring.

load data from the 2012 Global Energy Forecasting Com-
petition (GEFC)2 were used to generate the training and
testing datasets, where the load series were subsampled for
size reduction by a factor of 5 (2) for the IEEE 57-bus
(118-bus) system. Subsequently, the resultant load instances
were normalized to match the scale of power demands in the
simulated system. The MATPOWER toolbox [40] was used
to solve the AC power flow equations with the normalized
load series as inputs, to obtain the ground-truth voltages {vτ},
and produce measurements {zτ} that comprise all forwarding-
end active (reactive) power flows, as well as all voltage
magnitudes. All NNs were trained using ‘TensorFlow’ [1] on
an NVIDIA Titan X GPU with 12GB RAM, with weights
learned by the backpropagation based algorithm ‘Adam’ (with
starting learning rate 10−3) for 200 epochs. To alleviate
randomness in the obtained weights introduced by the training
algorithms, all NNs were trained and tested independently for
20 times, with reported results averaged over 20 runs. For re-
producibility, the ‘Python’-based implementation of our prox-
linear net for PSSE of the 118-bus system is publicly available
at https://github.com/LiangZhangUMN/PSSE-via-DNNs.

A. Prox-linear nets for PSSE

To start, the prox-linear net based PSSE was tested, which
estimates {v̂τ} using {zτ}. For both training and testing
phases, all measurements {zτ} were corrupted by additive
white Gaussian noise, where the standard deviation for power
flows and for voltage magnitudes was 0.02 and 0.01. The
estimation performance of our prox-linear net was assessed
in terms of the normalized root mean-square error (RMSE)
‖v̂−v‖2/N , where v is the ground truth, and v̂ the estimate
obtained by the prox-linear net.

In particular, the prox-linear net was simulated with T = 2
and K = 3. The ‘workhorse’ Gauss-Newton method, a 6-
layer ‘plain-vanilla’ FNN that has the same depth as our prox-
linear net, and an 8-layer ‘plain-vanilla’ FNN that has roughly
the same number of parameters as the prox-linear net, were
simulated as baselines. The number of hidden units per layer
in all NNs was kept equal to the dimension of the input, that
is, 57× 2 = 114 for the 57-bus system and 118× 2 = 236 for
the 118-bus system.

In the first experiment using the 57-bus system, a total of
7, 676 measurement-voltage (zτ ,vτ ) pairs were generated, out
of which the first 6, 176 pairs were used for training, and the
rest were kept for testing. The average performance over 20

2https://www.kaggle.com/c/global-energy-forecasting-competition-2012-
load-forecasting/data.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2019.2926023

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED JUNE 28, 2019)

100 102 104 106 108 110 112 114 116 118 120

0.976

0.978

0.980

0.982

0.984

Vo
lta

ge
 m

ag
. (

p.
u.

)

Voltages for bus 10
Ground truth
Prox-linear net
6-layer FNN
8-layer FNN

100 102 104 106 108 110 112 114 116 118 120
Test instance index

0

5

10

Vo
lta

ge
 a

ng
le

 (d
eg

re
e)

Fig. 7: Estimation errors in voltage magnitudes and angles of
bus 10 of the 57-bus system from test instances 100 to 120.

trials, was evaluated in terms of the average RMSEs over
the 1, 500 testing examples for the prox-linear net, Gauss-
Newton, 6-layer FNN, and 8-layer FNN, are 3.49× 10−4,
3.2×10−4, 6.35×10−4, and 9.02×10−4, respectively. These
numbers showcase competitive performance of the prox-linear
net. Interestingly, when the number of hidden layers of ‘plain-
vanilla’ FNNs increases from 6 to 8, the performance degrades
due partly to the difficulty in training the 8-layer FNN.

As far as the computation time is concerned, the prox-
linear net, Gauss-Newton, 6-layer FNN, and 8-layer FNN
over 1, 500 testing examples are 0.0973s, 14.22s, 0.0944s, and
0.0954s, resulting in an average per-instance estimation time
of 9.0 × 10−5s, 4.9 × 10−2s, 7.8 × 10−5s, and 8.9 × 10−5s,
respectively. These numbers corroborate the speedup advan-
tage of NN-based PSSE over the traditional Gauss-Newton
approach. The ground-truth voltages along with the estimates
found by the prox-linear net, 6-layer FNN, and 8-layer FNN
for bus 10 and bus 27 from test instances 100 to 120, are
shown in Figs. 7 and 8, respectively. The true voltages and
the estimated ones by NNs for all buses on test instance 120
are depicted in Fig. 9. Evidently, our prox-linear net based
PSSE performs the best in all cases.

The second experiment tests our prox-linear net using the
IEEE 118-bus system, where 18, 528 voltage-measurement
pairs were simulated, with 14, 822 pairs employed for training
and 3, 706 kept for testing. The average RMSEs over 3, 706
testing examples for the prox-linear net, Gauss-Newton, 6-
layer FNN and 8-layer FNN, are 2.97× 10−4, 4.71× 10−2,
1.645 × 10−3, and 2.366 × 10−3, respectively. Clearly, our
prox-linear net yields markedly improved performance over
competing alternatives in this case (especially as the system
size grows large). The Gauss-Newton approach performs the
worst due to unbalanced grid parameters of this test system. In-
terestingly, it was frequently observed that the Gauss-Newton
iterations minimize the WLS objective function (resulting a
loss smaller than 10−6), but converge to a stationary point that
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Fig. 8: Estimation errors in voltage magnitudes and angles of
bus 27 of the 57-bus system from test instances 100 to 120.
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Fig. 9: Estimation errors in voltage magnitudes and angles of
all the 57 buses of the 57-bus system at test instance 120.

is far away from the simulated ground-truth voltage. This is
indeed due to the nonconvexity of the WLS function, for which
multiple optimal solutions often exist. Depending critically
on initialization, traditional optimization based solvers can
unfortunately get stuck at any of those points. In sharp
contrast, data-driven NN-based approaches nicely bypass this
hurdle.

In terms of runtime, the prox-linear net, Gauss-Newton, 6-
layer FNN, and 8-layer FNN, over 3, 706 testing examples are
0.3323s, 183.4s, 0.2895s, and 0.3315s, resulting in an average
per-instance estimation time of 6.5 × 10−5s, 9.48 × 10−3s,
6.3× 10−5s, and 6.4× 10−5s, respectively. This corroborates
again the efficiency of NN-based approaches. The ground-truth
voltage along with estimates obtained by the prox-linear net,
6-layer FNN, and 8-layer FNN, for bus 50 and bus 100 at test
instances 1, 000 to 1, 050, are depicted in Figs. 10 and 11,
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Fig. 10: Estimation errors in voltage magnitudes and angles of
bus 50 of the 118-bus system from instances 1, 000 to 1, 050.

respectively. In addition, the actual voltages and their estimates
for the first fifty buses on test instance 1, 000 are depicted
in Fig. 12. In all cases, our prox-linear net yields markedly
improved performance relative to competing alternatives.

1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050

0.9950

0.9975

1.0000

1.0025

1.0050

Vo
lta

ge
 m

ag
. (

p.
u.

)

Voltages for bus 100

1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050
Test instance index

60

70

80

Vo
lta

ge
 a

ng
le

 (d
eg

re
e)

Ground truth
Prox-linear net
6-layer FNN
8-layer FNN

Fig. 11: Estimation errors in voltage magnitudes and angles of
bus 100 of the 118-bus system from instances 1, 000 to 1, 050.

B. Deep RNNs for state forecating

This section examines our RNN based power system state
forecasting scheme. The forecasting performance was evalu-
ated in terms of the normalized RMSE ‖v̌ − v‖2/N of the
forecast v̌ relative to the ground truth v.

Specifically, deep RNNs with l = 3, r = 10, batch size
32, and ReLU activation functions were trained and tested
on the ground-truth voltage time series, and on the estimated
voltage time series from the prox-linear net. We will refer to
the latter as ‘RNNs with estimated voltages’ hereafter. The
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Fig. 12: Estimation errors in voltage magnitudes and angles of
the first 50 buses of the 118-bus system at test instance 1, 000.

number of hidden units per layer in RNNs was kept the same
as the input dimension, namely 57 × 2 = 114 for the 57-
bus system, and 118 × 2 = 236 for the 118-bus system. For
comparison, a single-hidden-layer FNN (2-layer FNN) [7], and
a VAR(1) model [12] based state forecasting approaches were
adopted as benchmarks. The average RMSEs over 20 Monte
Carlo runs for the RNN, RNN with estimated voltages, 2-layer
FNN, and VAR(1) are respectively 2.303×10−3, 2.305×10−3,
3.153×10−3, and 6.772×10−3 for the 57-bus system, as well
as 2.588×10−3, 2.751×10−3, 4.249×10−3, 6.461×10−3 for
the 118-bus system. These numbers demonstrate that our deep
RNN with estimated voltages offers comparable forecasting
performance relative to that with ground-truth voltages. Al-
though both FNN and VAR(1) were trained and tested using
ground-truth voltage time-series, they perform even worse than
our RNN trained with estimated voltages.

The true voltages and their forecasts provided by the deep
RNN, RNN with estimated voltages, 2-layer FNN, and VAR(1)
for bus 30 of the 57-bus system from test instances 100 to 120,
as well as all buses on test instance 100, are reported in Figs.
13 and 14, accordingly. The ground-truth and forecast voltages
for the first 50 buses of the 118-bus system on test instance
1, 000 are depicted in Fig. 15. Curves illustrate that our deep
RNN based approaches perform the best in all cases.

The final experiment tests the efficacy of our real-time
DSSE scheme on the 57-bus system assuming a fraction
of measurements are provided via deep RNN forecasts. For
a fixed number of pseudo measurements, 50 independent
trials were executed. In each trial, locations of the pseudo
measurements were sampled uniformly at random. Fig. 16
presents the sample mean and standard derivation of RMSE
averaged over the 50 trials for different numbers of pseudo
measurements. Two pseudo measurements generation schemes
were compared: i) pseudo measurements postulated with a
deep RNN and ii) pseudo measurement values set the same
with their values at time t − 1. It is observed that the DSSE
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Fig. 13: Forecasting errors in voltage magnitudes and angles
of bus 30 of the 57-bus system from test instances 100 to 120.
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Fig. 14: Forecasting errors in voltage magnitudes and angles
of all the 57 buses of the 57-bus system at test instance 100.

with RNN postulated pseudo measurements offers improved
performance in all cases.

VI. CONCLUSIONS

This paper dealt with real-time power system monitoring
(estimation and forecasting) by building on data-driven DNN
advances. Prox-linear nets were developed for PSSE, that
combine NNs with traditional physics-based optimization ap-
proaches. Deep RNNs were also introduced for power system
state forecasting from historical (estimated) voltages. Our
model-specific prox-linear net based PSSE is easy-to-train, and
computationally inexpensive. The proposed RNN-based fore-
casting accounts for the long-term nonlinear dependencies in
the voltage time-series, enhances PSSE, and offers situational
awareness ahead of time. Numerical tests on the IEEE 57-
and 118-bus benchmark systems using real load data illustrate
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Fig. 15: Forecasting errors in voltage magnitudes and angles
of the first 50 buses of the 118-bus system at instance 1, 000.

Fig. 16: Average RMSE w.r.t. the number of predicted values.

the merits of our developed approaches relative to existing
alternatives.

Our current and future research agenda includes special-
izing the DNN-based estimation and forecasting schemes to
distribution networks. Our agenda also includes ‘on-the-fly’
RNN-based algorithms to account for dynamically changing
environments, and corresponding time dependencies.
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