
Garbled Circuits in the Cloud using FPGA Enabled
Nodes

Kai Huang∗, Mehmet Gungor∗, Xin Fang†, Stratis Ioannidis∗, Miriam Leeser∗
∗Dept of ECE, Northeastern University, Boston, MA

huang.kai1@husky.neu.edu, gungor.m@husky.neu.edu, ioannidis@ece.neu.edu, mel@coe.neu.edu
†Qualcomm, Boxborough, MA

xinfang@qti.qualcomm.com

Abstract—Data privacy is an increasing concern in our in-
terconnected world. Garbled circuits is an important approach
used for Secure Function Evaluation (SFE); however it suffers
from long garbling times. In this paper we present garbled
circuits in the cloud using Amazon Web Services, and particularly
Amazon F1 FPGA enabled nodes. We implement both garbler
and evaluator in software, and show how F1 instances can
accelerate the garbling process and rapidly adapt to several
different applications. Experimental results, measured on AWS,
indicate a 15 times speedup for garbling done using an FPGA.
This results in total application speedup, including garbling,
communications and evaluation, of close to three times over a
large range of application sizes.

Index Terms—privacy, FPGA

I. INTRODUCTION

This research addresses two emerging trends in high per-
formance computing, namely data privacy and Field Pro-
grammable Gate Arrays (FPGAs) in the data center.

Data privacy is becoming an increasing concern as our
world becomes more and more connected. It is one year
since the Europe Union introduced the General Data Protection
Regulation (GDPR) and the protection and privacy controls of
personal data remain concerns. Many e-commerce businesses
have felt the heat to upgrade the way they process, store and
analyze personal data. Several US states are following Eu-
rope’s lead; for example Californias Consumer Protection Act
of 2018 goes into effect Jan, 2020. This trend means that cloud
users are increasingly aware of and concerned with sharing
their data with third parties. This research directly addresses
this issue by implementing Garbled Circuits (GC), a technique
that allows encrypted data to be processed without being
decrypted, and hence providing privacy guarantees regarding
user data. However, GC is very computationally expensive and
results in significant slow down in processing. To address this,
we are using FPGAs in data centers to implement GC.

Increasingly, FPGAs are appearing in HPC systems. Xilinx
lists a number of partners in this area including Amazon Web
Services (AWS), Baidu, Nimbix and Tencent [1]. Microsoft
uses Intel FPGAs in their data centers for Bing searches as well
as machine learning applications [2], [3]. The University of
Paderborn has several FPGA based research clusters available,

This material is based upon work supported by the National Science
Foundation under Grant No. SaTC 1717213.

and recently announced that it will be acquiring a system from
Cray computers with FPGAs [4].

This research accelerates GC using FPGAs in the data
center. Specifically, our contributions are:

• An end-to-end implementation of GC on AWS that
includes garbler and evaluator implemented on separate
nodes.

• An FPGA implementation of the garbler on an AWS F1
instance that shows a 15 times speedup over a large range
of sizes of examples.

• End-to-end speedup across a range of size of examples
for garbled circuits that show speedup of about 3 times
by accelerating garbling on an FPGA.

II. BACKGROUND

A. Garbled Circuits

Our research accelerates Secure Function Evaluation (SFE),
specifically Garbled Circuits (GC), using FPGAs. In this
model there are two or more users with data which they wish
to keep private, and a function to be evaluated over that data.
All parties know the function being evaluated and learn the
outcome of the evaluation, but users do not reveal their data.
The threat model we follow is “honest but curious” where an
adversary follows the protocol as specified, but tries to learn
as much as possible. A canonical problem exemplifying SFE
is the “Millionaires’ Problem:” two millionaires wish to know
who is worth more without revealing their personal worth to
each other.

Garbled circuits were initially introduced by Yao [5] for two
users and has been extended to multiple users. They rely on
cryptographic primitives. In the variant we study here (adapted
from [6], [7]), Yao’s protocol runs between (a) a set of private
input owners, (b) an Evaluator, who wishes to evaluate a
function over the private inputs, and (c) a third party called
the Garbler, that facilities and enables the secure computation.

Garbled Circuits work for any problem that can be expressed
as a Boolean circuit. In our and many other implementations,
this function is represented as a circuit made up of AND and
XOR gates.1 The Evaluator wishes to evaluate a function f ,
represented as a Boolean circuit of AND and XOR gates, over

1Recall that AND and XOR gates form a complete basis for Boolean
circuits.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

GARBLER EVALUATOR USERS

TRANSMIT

PROXY OBLIVIOUS TRANSFER
x1, x2, . . . , xn

Private Inputs

G
A

R
B

LE

Keys

Garbled Circuit

EVALUATE

f

f(x1, x2, . . . , xn)

P
H

A
S

E
 I

P
H

A
S

E
 II

P
H

A
S

E
 II

I

Fig. 1: Yao’s Protocol Phases of Operation

private user inputs x1, x2, . . . , xn. We break the problem into
three phases, as shown in Fig. 1. In Phase I, the Garbler
“garbles” each gate of the circuit, outputting (a) a “garbled
circuit,” namely, the garbled representation of every gate
in the circuit representing f , and (b) a set of keys, each
corresponding to a possible value in the string representing the
inputs x1, . . . , xn. These values are shared with the Evaluator.
In Phase II, through proxy oblivious transfer [8], the Evaluator
learns the keys corresponding to the true user inputs. In the
final phase, the Evaluator uses the keys as input to the garbled
circuit to evaluate the circuit, un-garbling the gates. At the
conclusion of Phase III, the Evaluator learns f(x1, . . . , xn).

1) Garbling Phase: A function to be evaluated is repre-
sented as a Boolean circuit consisting of AND and XOR
gates. In the garbling phase, each of these gates is garbled
as described in this section. Each gate is associated with three
wires: two input wires and one output wire. At the beginning of
the garbling phase, the Garbler associates two random strings,
k0wi

and k1wi
, with each wire wi in the circuit. Intuitively, each

kbwi
is an encoding of the bit-value b ∈ {0, 1} that the wire

wi can take.

wi

wj

wk

bi bj g(bi, bj) Garbled value
0 0 0 Enc(k0

wi
,k0

wj
,g)(k

0
wk

)

0 1 0 Enc(k0
wi

,k1
wj

,g)(k
0
wk

)

1 0 0 Enc(k1
wi

,k0
wj

,g)(k
0
wk

)

1 1 1 Enc(k1
wi

,k1
wj

,g)(k
1
wk

)

Fig. 2: A Garbled AND Gate

We describe here how to garble an AND gate. The same
principles can be applied to garble an XOR gate, using its
respective truth table. We note however that, in practice, XOR
gates are handled via the Free XOR optimization [9], discussed
in Section II-A3. A garbled AND gate is shown in Fig. 2. For
each AND gate g, with input wires (wi, wj) and output wire

wk, the Garbler computes the following four ciphertexts, one
for each pair of values bi, bj ∈ {0, 1}:

Enc
(k

bi
wi

,k
bj
wj

,g)
(kg(bi,bj)wk

) = SHA(kbiwi
‖kbjwj

‖g) ⊕ kg(bi,bj)wk

(1)

Here SHA represents the hash function, ‖ indicates con-
catenation, g is an identifier for the gate, and ⊕ is the XOR
operation. Note that each value k on a wire is implemented
with 80 bits in our implementation. The “garbled” gate is
then represented by a random permutation of these four
ciphertexts. Observe that, given the pair of keys (k0wi

, k1wj
) it

is possible to successfully recover the key k1wk
by decrypting

c = Enc(k0
wi

,k1
wj

,g)(k
1
wk

) through:2

Dec(k0
wi

,k1
wj

,g)(c) = SHA(kbiwi
‖kbjwj

‖g) ⊕ c (2)

On the other hand, the other output wire key, namely K0
wk

,
cannot be recovered. More generally, it is worth noting that the
knowledge of (a) the ciphertexts, and (b) keys (kbiwi

, k
bj
wj) for

some inputs bi and bj yields only the value of key k
g(bi,bj)
wk ;

no other input or output keys of gate g can be recovered.
Any Boolean function can be garbled in this manner, by first
representing it with ANDs and XORs, and then garbling each
such gate.

2) Evaluation Phase: The output of the garbling process is
(a) the garbled gates, each comprising a random permutation
of the four ciphertexts representing each gate, and (b) the keys
(k0wi

, k1wi
) for every wire wi in the circuit. At the conclusion

of the first phase, the Garbler sends this information for all
garbled gates to the Evaluator. It also provides the correspon-
dence between the garbled value and the real bit-value for the
circuit-output wires (the outcome of the computation): if wk is
a circuit-output wire, the pairs (k0wk

, 0) and (k1wk
, 1) are given

2Note that the above encryption scheme is symmetric as Enc and Dec are
the same function.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

to the Evaluator. To transfer the garbled values of the input
wires, the Garbler engages in a proxy oblivious transfer with
the Evaluator and the users, so that the Evaluator obliviously
obtains the garbled-circuit input value keys kbwi

corresponding
to the actual bit b of input wire wi.

Having the garbled inputs, the Evaluator can “evaluate” each
gate, by decrypting each ciphertext of a gate in the first layer
of the circuit by applying equation (2): only one of these
decryptions will succeed,3 revealing the key corresponding
to the output of this gate. Each output key revealed can
subsequently be used to evaluate any gate that uses it as an
input. Using the table mapping these keys to bits, the Evaluator
can learn the final output.

3) Optimization: Several improvements over the original
Yao’s protocol have been proposed, that lead to both com-
putational and communication cost reductions. These include
point-and-permute [10], row reduction [11], and Free-XOR [9]
optimizations, all of which we implement in our design. Free-
XOR in particular significantly reduces the computational cost
of garbled XOR gates: XOR gates do not need to be encrypted
and decrypted, as the XOR output wire key is computed
through an XOR of the corresponding input keys. In addition,
the free-XOR optimization fully eliminates communication
between the Garbler and the Evaluator for XOR gates: no
ciphertexts need to be communicated for these gates. Our
implementation takes advantage of all of these optimizations;
as a result, the circuit for computing garbled AND gates differs
slightly from the garbling algorithm outlined above.

B. AWS

Amazon Web Service (AWS) provides cloud computing,
data storage and other data-relevant services for enterprise
development, personal use and academic research. Specifically,
AWS has f1 type instances that use FPGAs from Xilinx to
enable delivery of custom hardware acceleration [12]. We use
the f1.2xlarge with Virtex Ultrascale+ ECVU9p FPGAs. The
FPGA board includes 4x16 GB external DDR memory.

AWS provides several different ways to program their
FPGAs. We use the AWS-FPGA Hardware Development Kit
(HDK) which provides development support and runtime
libraries for their FPGA instances. The SDK supports OpenCL
development; however, since we are developing an overlay
architecture it is not a good match for our design.

AWS-FPGA hardware infrastructure connects the FPGA
board, which includes external DDR memory, to the host
mother board through the PCIe bus. The interconnect with
AXI protocol in the hardware design enables data movement
between host memory, FPGA on-chip memory and external
DDR memory on the FPGA board. Additionally, the software
runtime library provides API interfaces to transfer chunks of
data to DDR memory and interfaces to access on-chip memory
in the FPGA.

3This can be detected, e.g., by appending a prefix of zeros to each key
kbwk

, and checking if this prefix is present upon decryption.

C. Related Work

Acceleration of garbled circuits on FPGAs is an active area
of research. TinyGarble [13] uses techniques from hardware
design to implement GCs as sequential circuits and then opti-
mizes these designs. The circuits can be optimized to reduce
the non-XOR operations using traditional high-level synthesis
tools and simulation. The resulting designs are customized for
each problem; thus for each new problem a new bitstream
must be generated, hence it is not practical for large designs
in a data center setting. We implement as many garbled AND
gates as we can keep busy at the same time, and implement
garbled circuits directly on top of an efficient overlay, which
eliminates the need to recompile the hardware for every new
user problem. In MAXelerator [14] the authors implement
a very efficient garbling of matrix multiplication in FPGAs.
While their design is more efficient for matrix multiplication,
ours is more general purpose and supports any problem that a
user may wish to garble.

In the previous work, we use an FPGA with a local
host for accelerating general garbled circuit problems and
demonstrate orders of magnitude improvement over the soft-
ware version [15]–[17]. The acceleration is achieved via an
FPGA overlay architecture, hybrid memory hierarchy, efficient
data manipulation and fine grained communication patterns
between the host and FPGA. This previous work targets one
FPGA with a Stratix V. It only implements the garbler and not
the evaluator.

There are several FPGA projects that target AWS f1 in-
stances. In [18], the CAOS framework is extended to inte-
grate with SDAccel running on AWS instances to improve
performance. In [19], the authors developed an FPGA-based
ultrasonic propagation imaging system to process real-time
ultrasonic signals. Firesim [20] builds a cycle-exact simulation
platform on large-scale clusters integrated with FPGA accel-
erators to simulate behaviors of data movement among CPU,
caches, DRAM and network switches.

III. METHODOLOGY

A complete GC system includes users with inputs, a garbler,
an evaluator, and transfer of garbling tables between garbler
and evaluator in order for the evaluator to determine the result.
Data inputs are communicated from users in encrypted form
to the evaluator using oblivious transfer. The implementation
described here includes all of these components except for
oblivious transfer, which represents a very small portion of
the overall run time. In particular, we focus on accelerating
the garbler on FPGAs, which is the bottleneck of GC in a
data center setting, and show significant speed up.

The garbler garbles the circuit using private input keys
which are random strings generated to represent each input.
The garbler engages in proxy oblivious transfer with the input
owners to send the private keys for the inputs to the evaluator.
The evaluator, once it has received the input keys and the
garbled tables for the function, can begin to compute the
circuit. Note that only the inputs are communicated with OT
and this represents a very short part of the communications. In

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

our experiments, keys are generated by the host for verification
purposes, so that software and hardware versions generate the
exact same strings. The netlist of the circuit is generated using
FlexSC [21], which generates a netlist of AND and XOR gates.
The XOR gates do not require any cryptographic computation
and are therefore considered “free”. For AND gates we use
SHA-1 cores as described above. The result of garbling is
garble tables for each AND gate in the circuit. These tables
are communicated to the evaluator, which, together with the
input keys, can evaluate the results of the function.

The garbler is much more computationally intensive than the
evaluator because it includes more encryption computations.
Specifically, for each garbling AND gate, the SHA-1 digest
and update functions are computed four times to get the
garbling table, which takes the majority of the execution time.
Since the SHA-1 core is easily mapped to FPGA hardware and
the encryption computations in AND gates can be pipelined
and parallelized, the AND and XOR gate operations in the
garbler are mapped to FPGA hardware.

Our approach implements a coarse-grained overlay archi-
tecture to accelerate GC problems. Garbled AND and XOR
gates are implemented on an FPGA along with memory and
control for support. Software tools support the mapping of
different garbled circuit problems onto this overlay archi-
tecture and leverage the interaction between hardware and
software while maintaining small communication and memory
access overhead. The important aspect of this approach is that
we can support large problems and many different problems
without reprogramming the FPGA, thus supporting the types
of problems to be garbled in a data center setting.

P
C
I
e

CPU

AND

AND

AND

AND

AND

AND
Workload
Dispatcher

&
Data

Controller

DDR
Memory

FPGA
DDR

Memory
Controller
Interface

Main
Memory

BRAM

XOR

XOR XOR

XOR

XOR

XOR

Fig. 3: Hardware Architecture

Fig. 3 shows the hardware architecture for garbled circuit
acceleration. The complete design of the overlay architecture
includes garbled AND and garbled XOR circuits, a Workload
Dispatcher and Data Controller, and a DDR memory interface
for accessing the memory where keys are stored. Our design
supports a flexible number of AND and XOR gates. We are
investigating the optimal number of gates over a wide variety
of designs.

The evaluator requires fewer encryption executions and is
run as a software program on separate node from the garbler.

As soon as the evaluator receives a garbling table from the
garbler, it begins to evaluate the circuit. Note that the transfer
of garble tables is done in the clear over a high speed network
and thus is very fast. When the evaluator is done, it outputs
the result of the function being evaluated.

In this research, we have our own Python implementation
of garbler and evaluator and we separate these two parts of
the system on different nodes and communicate the garble
table, resulting in a more realistic scenario. We can also
easily compare the garbler implemented on an FPGA to the
software implementation. Most importantly, we use FPGAs to
implement garbling in parallel and speedup the computation.

IV. EXPERIMENTS AND RESULTS

We conduct our experiments on Amazon AWS. As de-
scribed above, we run the garbler on F1 instances, while the
evaluator is implemented in software. The garbler runs on one
AWS node and the evaluator runs on a separate node. Since
the computations for the evaluator do not need to be mapped
to FPGAs, the evaluator does not require an f1 instance.
As described in the previous section, the garbled table is
communicated between the garbler and the evaluator using
SCP. Note that oblivious transfer (OT) is required for the input
values and not the garble tables or circuit layout. In the current
implementation we do not implement OT.

For the purpose of validating our designs, we use the same
keys for software and hardware implementations. Thus, the
initial input keys are generated by the host and transferred to
the DDR memory on the FPGA at run time. Intermediate and
final output keys are stored in the DDR memory on the FPGA
card. These values are not needed after garbling and hence are
not communicated beyond the F1 instance.

Our hardware design implements a state machine to handle
data movement from DDR memory to FPGA on-chip memory,
send the data to the garbled gates on the FPGA and collect the
resulting keys and garbling table entries. A GC is composed
of GAND and GXOR gates. In our research, we continue to
experiment with choosing the optimal number of these gates.
Our current design therefore provides a script to generate the
state machine and the hardware design for an arbitrary number
of garbled AND and XOR gates. In this paper, we set the
GAND gate number to 2 and GXOR gate number to 2 in
the hardware design. In the future, we will explore the design
space and find the optimal one.

We use FlexSC [21] to generate the execution netlist of
a circuit, which is a plain text that records all the executed
garbled operations consisting of GAND and GXOR gates. We
write our own circuit scheduler to distinguish the circuit inputs
and determine the layer number for each garbling operation.
These operations are performed in a breadth first manner.
We then apply a greedy algorithm to schedule the garbled
operations (GAND, GXOR) according to the number of gates
instantiated on the FPGA and to automatically generate the
source C code for netlist mapping and FPGA run time control.
The initial memory layout is generated at the same time.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Timing for total system with python (unit:ms)

applications Total garbler evaluator gt transfer
16Bit Adder 4.933 3.14 1.793 4.8× 10−4

30Bit Ham 18.032 11.686 6.341 4.8× 10−3

50Bit Ham 27.811 19.370 8.433 8× 10−3

8Bit a*b 30.361 20.473 9.792 9.6× 10−3

16Bit a*b 126.366 85.389 40.937 0.0397
32Bit a*b 515.867 349.713 165.993 0.161
64Bit a*b 2066.394 1393.873 671.871 0.650
4Bit Sort10 Number 287.957 182.825 105.065 0.067
4Bit 5x5 Mat Mult 978.663 659.079 319.272 0.312
8Bit 5x5 Mat Mult 4003.290 2684.033 1317.993 1.264
4Bit 10x10 Mat Mult 7984.151 5391.426 2592.123 0.602
8Bit 10x10 Mat Mult 32587.864 22031.146 10546.542 10.176
4Bit 20x20 Mat Mult 65173.249 43868.833 21284.064 20.352

TABLE II: Timing comparing garbler in SW and on FPGA in ms

Application num. of gates Garbler(SW) Garbler(FPGA) Speed up
16Bit Adder 80 3.140 0.253 12.411
30Bit Ham 330 11.686 0.944 12.379
50Bit Ham 550 19.370 1.550 12.497
8Bit a*b 472 20.473 1.442 14.198
16Bit a*b 1968 85.389 5.840 14.621
32Bit a*b 8032 349.713 23.756 14.721
64Bit a*b 32448 1393.873 95.662 14.571
4Bit Sort10 Number 5531 182.825 15.467 11.820
4Bit 5x5 Mat Mult 15500 659.079 45.479 14.492
8Bit 5x5 Mat Mult 63000 2684.033 184.228 14.569
4Bit 10x10 Mat Mult 126000 5391.426 368.216 14.642
8Bit 10x10 Mat Mult 508000 22031.146 1487.210 14.814
4Bit 20x20 Mat Mult 1016000 43868.833 2966.650 14.787

TABLE III: Timing for total system with software garbler and FPGA garbler in ms

applications Total(garbler sw) Total(garbler FPGA) Speed Up
16Bit Adder 4.933 2.406 2.41
30Bit Ham 18.032 7.290 2.47
50Bit Ham 27.811 9.991 2.78
8Bit a*b 30.361 11.33 2.68
16Bit a*b 126.366 46.817 2.70
32Bit a*b 515.867 189.910 2.72
64Bit a*b 2066.394 768.183 2.69
4Bit Sort10 Number 287.957 120.599 2.39
4Bit 5x5 Mat Mult 978.663 365.063 2.68
8Bit 5x5 Mat Mult 4003.290 1503.485 2.66
4Bit 10x10 Mat Mult 7984.151 2960.941 2.70
8Bit 10x10 Mat Mult 32587.864 12043.928 2.71
4Bit 20x20 Mat Mult 65173.249 24271.066 2.69

We build the hardware implementation for garbled circuit
on top of AWS architecture, which provides the basic DMA
hardware architecture for data movement among host, FPGA
and DDR memory. We report results of timing for different
benchmarks built using our versions of the garbler running on
an f1.2xlarge instance. We compare the garbling time on an
FPGA to the garbling time in Python. The results are shown
in Table II. All times are in msecs.

For FPGA garble table generation, we use an overlay archi-
tecture consisting of 2 GAND and 2 GXOR gates configured
on an AWS f1 large instance. We measure the time from the

host CPU including CPU writing to address registers on the
FPGA to identify where gates should find their inputs, gates
fetching data from DDR memory according to these address
registers, processing the data and writing garble table results
back to DDR memory. We measure each netlist mapping
example 3 times and calculate the average.

Our total run time includes garbling, evaluation and tansfer
time over the network. Since it is difficult to measure transfer
time on AWS, we estimate it using the network bandwidth of
10 Gbps and assume that we achieve 30% bandwidth.

Consider the system as a whole, where the garbler runs on

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

one node and the evaluator runs on another after it receives the
garbling table. The estimate total time is a simple addition of
the garbling and evaluation times. The garbling table transfer
time is very short compared to the garbling and evaluating
time, and does not contribute to the total. In this system, we
assume that we see 30% bandwidth to estimate the garbling
table transfer delay. If we replace the software garbler by the
garbler with FPGA, the garbling time will be shortened while
the evaluating time remain as the same. Table III shows the
overall time for several examples and the breakdown between
garbler and evaluator.

Table II shows the speedup for the Garbler implemented
on the FPGA. We are achieving close to 15 times speedup
independent of the number of gates in the application. Table III
shows total system speedup using the FPGA implementation
of the garbler, again with a consistent speedup of around 2.7x.
This is end-to-end application speedup that we achieve as
circuit examples grow large.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we are mapping the garbling circuit garbler to
FPGAs because it is more computationally expensive and the
encryptions can be more efficiently executed with parallelism
on FPGAs. We can generate our hardware design with an
arbitrary number of GAND and GXOR gates on top of AWS’s
DRAM-DMA architecture and schedule the gate operations to
these FPGAs. Our experiments show that we achieve a speed
up of close to 15x for the garbler and 2.7x for the whole
system. These speedups are consistent over a wide range of
application sizes.

We have several enhancements planned for the future. We
will add oblivious transfer and all communications times to
our experiments, and thus provide more realistic timing for
the bottlenecks of the system. We plan to improve on our
garbled implementation design by making more efficient use
of the memory hierarchy and storing intermediate values in
BlockRAM on chip, including intermediate keys that are
generated. Finally, our goal is to solve large problems to
demonstrate scalability. Thus, we plan to map the garbler
to a cluster of hosts integrated with FPGAs and to explore
multiple degrees of parallelism in clusters with FPGAs in the
data center.

ACKNOWLEDGEMENTS

This research was supported in part by a grant from Amazon
Web Services.

REFERENCES

[1] “Reconfigurable acceleration in the cloud,” 2019.
[Online]. Available: https://www.xilinx.com/products/design-tools/
cloud-based-acceleration.html

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. IEEE, 2014, pp. 13–24.

[3] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman et al., “Serving
dnns in real time at datacenter scale with project brainwave,” IEEE
Micro, vol. 38, no. 2, pp. 8–20, 2018.

[4] “Cray to build FPGA-accelerated supercomputer for paderborn
university,” 2019. [Online]. Available: https://insidehpc.com/2018/04/
cray-build-fpga-accelerated-supercomputer-paderborn-university/

[5] A. Yao, “How to generate and exchange secrets,” in IEEE Symposium
on Foundations of Computer Science (FOCS), 1986.

[6] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in 1st ACM Conference on Electronic Commerce,
1999.

[7] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in ACM CCS, 2013.

[8] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2001, pp.
448–457.

[9] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[10] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing. ACM, 1990, pp. 503–513.

[11] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT, 2009.

[12] Amazon, “Amazon ec2 f1 instances,” 2017. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[13] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in IEEE S & P, 2015.

[14] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushan-
far, “Maxelerator: Fpga accelerator for privacy preserving multiply-
accumulate (mac) on cloud servers,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 33.

[15] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using
an fpga overlay architecture,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2017, pp. 257–266.

[16] X. Fang, “Privacy preserving computations accelerated using fpga over-
lays,” Ph.D. dissertation, Northeastern University, 2017.

[17] X. Fang, S. Ioannidis, and M. Leeser, “Garbled circuits for preserving
privacy in the datacenter,” in International Workshop on Heterogeneous
High-performance Reconfigurable Computing, 2016.

[18] L. Di Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio, “The
role of cad frameworks in heterogeneous fpga-based cloud systems,”
in 2017 IEEE International Conference on Computer Design (ICCD).
IEEE, 2017, pp. 423–426.

[19] S. H. Abbas, J.-R. Lee, and Z. Kim, “Fpga-based design and implemen-
tation of data acquisition and real-time processing for laser ultrasound
propagation,” International Journal of Aeronautical and Space Sciences,
vol. 17, no. 4, pp. 467–475, 2016.

[20] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim:
Fpga-accelerated cycle-exact scale-out system simulation in the public
cloud,” in Proceedings of the 45th Annual International Symposium on
Computer Architecture. IEEE Press, 2018, pp. 29–42.

[21] X. Wang and K. Nayak, “FlexSC,” 2014. [Online]. Available:
https://github.com/wangxiao1254/FlexSC

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:50:31 UTC from IEEE Xplore. Restrictions apply.

