2019 IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC)

Accelerating Large Garbled Circuits
on an FPGA-enabled Cloud

Miriam Leeser Mehmet Gungor

Dept of ECE Dept of ECE
Northeastern University Northeastern University
Boston, MA Boston, MA

mel @coe.neu.edu gungor.m @husky.neu.edu

Abstract—Garbled Circuits (GC) is a technique for ensuring
the privacy of inputs from users and is particularly well suited
for FPGA implementations in the cloud where data analytics is
frequently run. Secure Function Evaluation, such as that enabled
by GC, is orders of magnitude slower than processing in the
clear. We present our best implementation of GC on Amazon
Web Services (AWS) that implements garbling on Amazon’s
FPGA enabled F1 instances. In this paper we present the largest
problems garbled to date on FPGA instances, which includes
problems that are represented by over four million gates. Our
implementation speeds up garbling 20 times over software over
a range of different circuit sizes.

Index Terms—privacy, garbled circuits, high performance
computing, FPGAs

I. INTRODUCTION

Privacy has become an increasing concern among users of
computer systems and services. Secure Function Evaluation
(SFE) is an approach then ensures users data privacy. However,
such assurances require a significant increase in processing
requirements and latency. The two main techniques used
for SFE are homomorphic encryption and garbled circuits
(GC). This research focuses on accelerating GC, which is an
excellent match for FPGAs in the data center. In particular,
this research targets FPGAs in the data center, and processing
large problems.

Previous approaches to accelerating GC with FPGAs have
focused on embedded systems and small problems, especially
those where all intermediate data fits in on-chip memory [1],
[2]. Our recent research accelerates FPGAs in the cloud,
specifically with AWS F1 instances [3]. In a recent paper [4],
we describe our first results accelerating GC in the cloud. In
this paper, we discuss improvements to those initial results and
how we handle larger circuits.

One of the distinguishing features of this research is to make
use of large data sets that do not entirely fit in on-chip memory
and that require random access. To improve on our previously
published research, we introduce a hybrid design that makes
use of both on-chip and off-chip memory. We use the on-
chip memory as a managed cache that keeps as much data as
possible close to the processing for acceleration. The memory

This research is funded by NSF under award SaTC 1717213.

978-1-7281-5999-7/19/$31.00 ©2019 IEEE
DOI 10.1109/H2RC49586.2019.00008

Kai Huang Stratis loannidis

Dept of ECE Dept of ECE
Northeastern University Northeastern University

Boston, MA Boston, MA

huang.kail @husky.neu.edu ioannidis @ece.neu.edu

management technique presented is also applicable to other
big data problems that make use of FPGAs.

In this paper we describe approaches and experiments to im-
prove on previous implementations in order to obtain improved
speedup as well as support larger examples. Specifically, the
main contribution of this paper is to use the memory available
on an FPGA more efficiently in order to support large data
sets on FPGA instances and improve the speed up obtained
from running applications on FPGAs in the cloud.

The rest of this paper is organized as follows. Section II
provides background on garbled circuits and AWS as well
as presenting related work. In section III we discuss our
implementation of the garbler and highlight the improvements
presented here over previously published results. Section IV
presents experimental results. Finally, we conclude and present
plans for future work.

II. BACKGROUND

A. Garbled Circuits

Our research accelerates Secure Function Evaluation (SFE),
specifically Garbled Circuits (GC), using FPGAs. In this
model there are two or more users with data which they wish
to keep private, and a function to be evaluated over that data.
All parties know the function being evaluated and learn the
outcome of the evaluation, but users do not reveal their data.
The threat model we follow is “honest but curious”, where an
adversary follows the protocol as specified, but tries to learn
as much as possible. A canonical problem exemplifying SFE
is the “Millionaires’ Problem:” two millionaires wish to know
who is worth more without revealing their personal worth to
each other.

Garbled circuits were initially introduced by Yao [5] for
two users and have been extended to multiple users. They
rely on cryptographic primitives. In the variant we study here
(adapted from [6], [7]), Yao’s protocol runs between (a) a set of
private input owners, (b) an Evaluator, who wishes to evaluate
a function over the private inputs, and (c) a third party called
the Garbler, that facilities and enables the secure computation.

Garbled Circuits work for any problem that can be expressed
as a Boolean circuit. In our and many other implementations,
this function is represented as a circuit made up of AND and

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

GARBLER

=0

w o
2 Garbled Circuit
I n
= R a

e TRANSMIT

<

]

Keys

é PROXY OBLIVIOUS TRANSFER Private Inputs
T L1,L2,...,Tp
o
o EVALUATE
9]
£
o f(xl,xg,...,xn)

Fig. 1. Yao’s Protocol Phases of Operation

XOR gates.1 The Evaluator wishes to evaluate a function f,
represented as a Boolean circuit of AND and XOR gates, over
private user inputs x1, Ts,. .., T,. We break the problem into
three phases, as shown in Fig. 1. In Phase I, the Garbler
“garbles” each gate of the circuit, outputting (a) a “garbled
circuit,” namely, the garbled representation of every gate
in the circuit representing f, and (b) a set of keys, each
corresponding to a possible value in the string representing the
inputs 1, ..., z,. These values are shared with the Evaluator.
In Phase II, through proxy oblivious transfer [8], the Evaluator
learns the keys corresponding to the true user inputs. In the
final phase, the Evaluator uses the keys as input to the garbled
circuit to evaluate the circuit, un-garbling the gates. At the
conclusion of Phase III, the Evaluator learns f(x1,...,x,).

1) Garbling Phase: A function to be evaluated is repre-
sented as a Boolean circuit consisting of AND and XOR
gates. In the garbling phase, each of these gates is garbled
as described in this section. Each gate is associated with three
wires: two input wires and one output wire. At the beginning of
the garbling phase, the Garbler associates two random strings,
kgj and kj, , with each wire w; in the circuit. Intuitively, each
kb, is an encoding of the bit-value b € {0,1} that the wire
w; can take.

bi b; g(bi,b;) Garbled value
w, " 0 0 0 Enc(kg’i’k%j ’q)(kgjk)
0 1 0 Encgo s g (kS,)
w; ’ ’IHJ' ’
10 0 Bneg, k0, g) (k)
1 1 Encg, 1,9 (ks)

Fig. 2. A Garbled AND Gate

We describe here how to garble an AND gate. The same
principles can be applied to garble an XOR gate, using its

IRecall that AND and XOR gates form a complete basis for Boolean
circuits.

20

respective truth table. We note however that, in practice, XOR
gates are handled via the Free XOR optimization [9], discussed
in Section II-A3. A garbled AND gate is shown in Fig. 2. For
each AND gate g, with input wires (w;,w;) and output wire
wg, the Garbler computes the following four ciphertexts, one
for each pair of values b;,b; € {0,1}:

Enc 9ty = SHA(KY:,

ki llg) @ kgt
(1)

Here SHA represents the hash function, || indicates con-
catenation, g is an identifier for the gate, and @ is the XOR
operation. Note that each value £ on a wire is implemented
with 80 bits in our implementation. The “garbled” gate is
then represented by a random permutation of these four
ciphertexts. Observe that, given the pair of keys (kg , &y,) it
is possible to successfully recover the key k7, . by decrypting

b; b
(ki ks 19) (

_ 2
¢ =Encug, k. o) (K,) through:
Decqrg, k1, q)(c) = SHA(ky kg, llg) & ¢ @)
On the other hand, the other output wire key, namely ng,

cannot be recovered. More generally, it is worth noting that the
knowledge of (a) the ciphertexts, and (b) keys (kf’ul, /4;537) for
some inputs b; and b; yields only the value of key k{’u(kbi’b");
no other input or output keys of gate g can be recovered.
Any Boolean function can be garbled in this manner, by first
representing it with ANDs and XORs, and then garbling each
such gate.

Our implementation makes use of SHA cores for encryption
and decryption. Although SHA has been found to be vulnera-
ble in general, since we re-encrypt for every new input value,
this implementation is secure. We compare our results, both

2Note that the above encryption scheme is symmetric as Enc and Dec are
the same function.

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

values and run times to FlexSC [10] which also makes use of
SHA. We plan to update the cores to AES. As the core speed
and area is not currently a bottleneck in our design, we do not
expect this to effect the result presented here.

2) Evaluation Phase: The output of the garbling process is
(a) the garbled gates, each comprising a random permutation
of the four ciphertexts representing each gate, and (b) the keys
(kg)i, kllu) for every wire w; in the circuit. At the conclusion
of the first phase, the Garbler sends this information for all
garbled gates to the Evaluator. It also provides the correspon-
dence between the garbled value and the real bit-value for the
circuit-output wires (the outcome of the computation): if wy, is
a circuit-output wire, the pairs (k9 ,0) and (k, , 1) are given
to the Evaluator. To transfer the garbled values of the input
wires, the Garbler engages in a proxy oblivious transfer with
the Evaluator and the users, so that the Evaluator obliviously
obtains the garbled-circuit input value keys kz}i corresponding
to the actual bit b of input wire w;.

Having the garbled inputs, the Evaluator can “evaluate” each
gate, by decrypting each ciphertext of a gate in the first layer
of the circuit by applying equation (2): only one of these
decryptions will succeed,® revealing the key corresponding
to the output of this gate. Each output key revealed can
subsequently be used to evaluate any gate that uses it as an
input. Using the table mapping these keys to bits, the Evaluator
can learn the final output.

3) Optimization: Several improvements over the original
Yao’s protocol have been proposed, that lead to both com-
putational and communication cost reductions. These include
point-and-permute [11], row reduction [12], and Free-XOR [9]
optimizations, all of which we implement in our design. Free-
XOR in particular significantly reduces the computational cost
of garbled XOR gates: XOR gates do not need to be encrypted
and decrypted, as the XOR output wire key is computed
through an XOR of the corresponding input keys. In addition,
the free-XOR optimization fully eliminates communication
between the Garbler and the Evaluator for XOR gates: no
ciphertexts need to be communicated for these gates. Our
implementation takes advantage of all of these optimizations;
as a result, the circuit for computing garbled AND gates differs
slightly from the garbling algorithm outlined above.

B. AWS

Amazon Web Service (AWS) provides cloud computing,
data storage and other data-relevant services for enterprise
development, personal use and academic research. Specifically,
AWS has fl type instances that use FPGAs from Xilinx to
enable delivery of custom hardware acceleration [3]. We use
the fl.2xlarge with Virtex Ultrascale+ ECVU9p FPGAs. The
FPGA board includes 4x16 GB external DDR memory.

AWS provides several different ways to program their
FPGAs. We use the AWS-FPGA Hardware Development Kit
(HDK) which provides development support and runtime

3This can be detected, e.g., by appending a prefix of zeros to each key
k;fu »» and checking if this prefix is present upon decryption.

21

libraries for their FPGA instances. The SDK supports OpenCL
development; however, since we are developing an overlay
architecture it is not a good match for our design.

AWS-FPGA hardware infrastructure connects the FPGA
board, which includes external DDR memory, to the host
mother board through the PCIe bus. The interconnect with
AXI protocol in the hardware design enables data movement
between host memory, FPGA on-chip memory and external
DDR memory on the FPGA board. Additionally, the software
runtime library provides API interfaces to transfer chunks of
data to DDR memory and interfaces to access on-chip memory
in the FPGA.

C. Related Work

Acceleration of garbled circuits on FPGAs is an active area
of research. TinyGarble [13] uses techniques from hardware
design to implement GCs as sequential circuits and then
optimizes these designs. The circuits can be optimized to
reduce the non-XOR operations using traditional high-level
synthesis tools. The resulting designs are customized for each
problem; thus for each new problem a new bitstream must
be generated, hence it is not practical for large designs in
a data center setting. We implement as many garbled AND
gates as we can keep busy at the same time, and implement
garbled circuits directly on top of an efficient overlay, which
eliminates the need to recompile the hardware for every new
user problem. In MAXelerator [14] the authors implement an
efficient garbling of matrix multiplication in FPGAs. With
RedCrypt [15], the same authors use their design to garble
larger examples. Their approach differs from ours in that the
FPGA is used as a streaming accelerator and intermediate
results are not stored in memory on the FPGA. Hence, their
design requires a very high bandwidth for host to FPGA
communications. The results presented do not include the time
required for this communication. Also, they generate random
values local to the FPGA, while we generate them on the
host. There are two advantages for using the host for this.
One is the ability to compare software and hardware results
for validation. The second is that random input strings must
be sent to the evaluator so the host requires this information.

In previous work, we use an FPGA with a local host
for accelerating general garbled circuit problems and demon-
strate orders of magnitude improvement over the software
version [1], [16], [17]. The acceleration is achieved via an
FPGA overlay architecture, hybrid memory hierarchy, efficient
data manipulation and fine grained communication patterns
between the host and FPGA. This previous work targets one
FPGA with a Stratix V. It only implements the garbler and not
the evaluator.

There are several FPGA projects that target AWS fl in-
stances. In [18], the CAOS framework is extended to inte-
grate with SDAccel running on AWS instances to improve
performance. In [19], the authors developed an FPGA-based
ultrasonic propagation imaging system to process real-time
ultrasonic signals. Firesim [20] builds a cycle-exact simulation
platform on large-scale clusters integrated with FPGA accel-

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

erators to simulate behaviors of data movement among CPU,
caches, DRAM and network switches.

AND | | AND | XOR | | XOR DDR
Memory DDR
-
AND | | AND | | xOR | | XOR Controller Memory
Interface
-
AND @ ‘xoa L4
L] []
< | BRAM
AND | ® [xor| ©
5
®
|
e
Main
CPU Memory

Fig. 3. Overlay Architecture implemented on FPGA

Garbled
Garbled Circuit Workflow\
FlexsC
and
System architecture

Layer Extraction, wire
addresses translation,

Parameterized
Hardware Auto-
generation

HW design

(@wssss) Custom Logic

workload scheduling

I

PCIE

CPU
AWS

memory ‘

interconnect
On-chip

Memory
FPGA j

Fig. 4. Workflow of our design

Off-chip

\wemm

)|

III. IMPROVEMENTS TO SUPPORT GC IN THE DATACENTER

In a recent paper we presented initial experiments for
using AWS F1 instances for accelerating garbled circuits [4].
This previous paper looks at the entire system of garbling,
transferring data and evaluating a function using garbling. In
our system, the garbler is implemented with an F1 instance
while the evaluator is implemented on an independent node in
software. In this paper we focus on the garbler implementation
and discuss improvements to the base design specifically for
supporting large circuits with large memory footprints.

Our design makes use of a coarse grained overlay architec-
ture as shown in Fig. 3. This architecture implements a sea of
garbling AND and garbling XOR gates on the FPGA fabric.
For a particular set of experiments the number of implemented
gates is fixed; we discuss this in the results section of this
paper. Individual problems are mapped onto the implemented
architecture. Note that the design supports the use of both
BRAM and DDR memory, an important feature for this paper.
This is an overlay architecture because the implementation is

22

fixed and many different user problems can be mapped to
it. Thus the FPGA does not need to be redesigned for each
problem instance. Because of its coarse grained nature, there
is very little overhead incurred.

Fig. 4 gives an overview of the software and hardware used
to garble a problem instance. We use FlexSC [10] as a front
end to generate the circuit netlist, which is shared between
the garbler and evaluator. We do preprocessing on the host
to generate layers (garbling is done in breadth-first order) and
assign wires to memory locations on the FPGA. The hardware
design on the FPGA is generated once for a set of experiments.
We also use FlexSC to validate our designs.

The flow of the garbler works as follows. Two types of
data are generated on the host PC and communicated to the
FPGA over PCle: keys that correspond to the inputs and
addresses that correspond to wire locations in the garbled
circuit. Intermediate keys are generated on the FPGA. These
are required for the garbling process, but do not need to be
communicated to the evaluator. The evaluator does require the
garble tables; one such table is generated for each garbled
AND gate in the circuit.

The circuits we are interested in garbling can grow to
well over a million gates. In the design reported in [4] all
intermediate keys are stored in DDR memory, which is off
chip, and has a latency of between 30 and 55 clock cycles for
each access. Note that memory access of these intermediate
keys is random so we cannot take advantage of burst mode to
reduce latency. In the hybrid design reported in this paper,
we make use of both off chip DDR memory and on-chip
Block RAM (BRAM). Accessing BRAM on the FPGA is
30 times or more faster than accessing DDR memory. In the
hybrid design, initial keys are stored in DDR memory, while
intermediate results are stored in BRAM as long as they fit.
Using preprocessing on the host, we keep track of lifetimes of
intermediate values. When we pre-process the netlist, we can
have a 'reference count’ for each wire and we will reduce the
count in execution. When the count reaches zero, it means
this BRAM location can be reused. When an intermediate
value is no longer needed, we set a flag to show that the
BRAM location can be over-written and reused. All our results
for circuits whose intermediate designs do not completely fit
into memory reuse BRAM locations. In our previous results,
writing intermediate results to DDR took approximately 30%
of the total runtime. This has been significantly reduced in the
results reported here.

We use DDR for initial input keys, which are generated
on the host and sent directly to DDR. As noted above, these
input keys are also needed by the evaluator, so it makes
sense to generate them on the host. We use DDR for the
garble tables generated, which also need to be transferred to
the evaluator. Intermediate values generated during garbling
are not transmitted. We use BRAM for when these values
fit and DDR when the amount of BRAM on the FPGA is
not sufficient. On AWS hardware, a DDR Read takes slightly
more than 50 cycles, while a DDR write takes more than 30
clock cycles. In most cases, since accesses are random, the

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

efficiencies of burst mode access cannot be taken advantage
of. In comparison, a BRAM read can be achieved in 1 clock
cycle.

Accessing off chip memory in random order can incur long
latencies. We minimize memory accesses by storing interme-
diate values generated during garbling in BRAM. BRAM is
organized as 10000 512 bit wide locations. We continue to
investigate different organizations of BRAM to maximize use.
We assign values to BRAM using a greedy algorithm, and
continue to store data in BRAM as locations are available.
We reuse locations when an intermediate value is no longer
needed. If currently all BRAM locations are occupied, the data
will be stored to DDR. Others are investigating algorithms for
random access of BRAM [21]. We plan to investigate this
approach further.

We generate the FPGA design from Python, which allows
us to easily change the number of Garbled AND (gAND) and
Garbled XOR (gXOR) cores implemented in hardware. We
show results for two different designs: four gAND and four
gXOR cores, and eight gAND and eight gXOR cores. Note
that these values can easily be changed and that the number
of AND cores does not need to be the same as the number of
XOR cores.

IV. RESULTS
A. Experimental Setup

We run all our designs on one Amazon F1 instance with
attached processors. We use the fl.2xlarge with Virtex Ultra-
scale+ ECVU9p FPGAs. The FPGA board includes 4x16 GB
external DDR memory. DDR memory, as well as registers on
the FPGA can be directly written by the host using the AWS
HDK and SDK frameworks.

Input values and address locations are stored in FPGA
registers by the host processor. The output of garbling is the
garble tables which are stored in DDR memory by the FPGA
and transferred back to the host. Times are measured from
the time between setting up registers for all gates and writing
all garble tables for all gates in the netlist to DDR. Therefore
it represents end-to-end run times for FPGA processing of
garbling of the circuit.

B. Experimental Results

In this paper we are focusing on accelerating time for gar-
bling, which is longer than the time required for evaluation [4].
We show run times for FlexSC to garble circuits in software,
run times for running on the FPGA using only DDR memory
to store intermediate results, and the hybrid design introduced
in this paper that uses both BRAM and DDR memory. The
circuit examples are all examples of different sizes of matrix-
matrix multiply (labeled MM). Matrix multiplication is useful
to see how results scale for different sizes of problem. Our
approach is general and can handle any problem that can
be represented as a Boolean circuit. We vary the size of
the matrices being multiplied and the number of bits to
represent data in order to generate different sizes of problem.

23

The problems presented here range from 15,000 to over four
million gates.

In Table I, we compare run times across these problem
sizes for using DDR memory only and the hybrid design that
uses both DDR and BRAM memory. We also show results
comparing two different overlays, one with four garbled AND
and four garbled OR circuits and the other with eight garbled
AND and eight garbled OR circuits. Note that an arbitrary
number of garbled gates can be generated for a specific
overlay, but once it has been designed the number of gates is
fixed. Also, we chose the same number of gAND and gXOR
gates in these experiments, but this is not required.

garbler time vs total gates

= only ddr 4and4xor + hybrid 4and4xor e hybrid 8and8xor

15000

10000

e (ms)

£ s000

Fig. 5. Time vs total number of gates on the FPGA

Results in Table I show that there is a consistent improve-
ment in using BRAM compared to the designs that use DDR
alone. The speedup is greatest for the smaller designs (5 X 5
Matrix Multiply) where all intermediate results can be stored
in Block RAM. Even in cases where both types of memory
are required, we consistently get about a 25% increase in
performance by using local memory. Table I also shows that
the overlay containing 8 gAND and 8 gXOR gates consistently
outperforms the overlay with fewer cores instantiated by about
an additional 10% improvement. The number of cores and
organization of the memory hierarchy are linked. We continue
to experiment with different numbers of garbled ANDs and
garbled XOR gates as well as different organizations of BRAM
to determine the optimal architecture. Figure 5 summarizes the
different FPGA versions as a function of size of the circuit.
the hybrid memory design consistently improves over the DDR
only design, and the increased number of cores provides the
best results across all sizes of circuit.

Table II shows the results for the same examples with a
comparison between software run times, and the best per-
forming design from Table I, i.e., the hybrid memory design
with 8 gAND and 8 gXOR cores. Once again, the speedup
across all different circuit sizes is pretty consistent at about
20 times improvement. The speedup diminishes as the circuit
gets larger. This is likely due to the fact that the percent
of DDR fetches increases for larger circuit sizes. We are
investigating the optimal number of cores as well as the best
way to assign intermediate values to BRAM vs. DDR RAM.

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I
GARBLER TIMING DDR VS HYBRID MEMORY DESIGN. ALL UNITS ARE MS.

total gates | 4 AND 4 XOR DDR | 4 AND 4 XOR hybrid | speedup | 8 AND 8 XOR | speedup
(over 4 and 4)
4bit 5 x 5 MM 15500 45.48 29.47 1.54 26.42 1.12
8bit 5 X 5 MM 63000 184.23 111.74 1.65 96.61 1.16
4bit 10 x 10 MM 126000 368.22 283.86 1.30 242.55 1.17
8bit 10 x 10 MM 508000 1487.21 1180.49 1.26 1067.35 1.11
12bit 10 x 10 MM 1146000 3234.93 2570.84 1.26 2356.41 1.09
16bit 10 x 10 MM | 2040000 5636.27 4606.83 1.22 4185.36 1.10
4bit 20 x 20 MM 1016000 3153.26 2571.50 1.23 2346.86 1.10
8bit 20 x 20 MM 4080000 12638.08 10226.60 1.24 9378.26 1.09
TABLE II and management of BRAM as well as the best number of

SOFTWARE VS BEST FPGA IMPLEMENTATION. ALL UNITS ARE MS

software 8 AND 8 XOR | speedup
4bit 5 x 5 MM 659.08 26.42 24.95
8bit 5 X 5 MM 2684.03 96.61 27.78
4bit 10 x 10 MM 5391.43 242.55 22.23
8bit 10 x 10 MM 22031.15 1067.35 20.7
12bit 10 x 10 MM | 49906.86 2356.41 21.18
16bit 10 x 10 MM | 89392.44 4185.36 21.35
4bit 20 x 20 MM 44466.74 2346.86 18.95
8bit 20 x 20 MM | 179168.64 9378.26 19.10

We will continue to investigate how to handle larger and larger
circuits as we accelerate GC in the data center.

The next optimization we plan to target is to improve
memory usage by using a separate DDR bank and memory
channel for writing back the garble tables. This design will
benefit from pipeline of these two parallel data channels. In
the current hybrid design, the state machine needs extra states
to write back the garbling table, which slows down processing.
We also will continue to investigate techniques for BRAM
usage and increasing the number of logic gates, as well as the
use of URAM in these designs.

Many problems that target FPGAs in the data center will
include large data sets that may be accessed in random order.
Reorganizing or reordering the data layout with better tem-
poral and spatial locality, and making reuse more efficient, is
essential to processing memory bound problems. The lessons
learned from these experiments go beyond the particular
problem of secure function evaluation and can be applied to
other such problems. Getting data to the processing efficiently
is a continuing challenge in such systems.

V. CONCLUSIONS AND FUTURE WORK

We have presented the garbling of very large circuits on
FPGAs in the data center. Our results, including problem
sizes over four million gates, show significant improvement
in latency over recently published results. This improvement
is due to the use of BRAM to store intermediate results.
The techniques developed apply to many problems over large
datasets that may not access the data sequentially, and thus
must use the BRAM as a user managed cache.

In the future, we plan to investigate how to even more
efficiently use the memory hierarchy on an FPGA to support
larger problems. We will investigate the optimal organization

24

garbled cores to instantiate. We plan to garble even larger
problems using multiple AWS nodes enabled FPGAs. We
also plan to consider how to efficiently use multiple different
types of memory avaiable on FPGAs including UltraRAM,
which was introduced in Xilinx Ultrascale+ FPGAs. The
memory management solutions will apply to problems with
large datasets that are not accessed sequentially and that wish
to exploit FPGAs in the data center.

ACKNOWLEDGEMENTS

We would like to thank Xin Fang for his contributions to
this research. This research was supported by NSF grant CNS-
1717213, and in part by a grant from Amazon Web Services,
which supported our experimentation.

REFERENCES

[1] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using
an fpga overlay architecture,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2017, pp. 257-266.

S. U. Hussain and F. Koushanfar, “Fase: Fpga acceleration of secure
function evaluation,” in 2019 IEEE 27th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2019, pp. 280-288.

Amazon, “Amazon ec2 fl1 instances,” 2017.
https://aws.amazon.com/ec2/instance-types/f1/
M. Gungor, K. Huang, X. Fang, S. Ioannidis, and M. Leeser, “Garbled
circuits in the cloud using fpga enabled nodes,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2019,
pp. 1-6.

A. Yao, “How to generate and exchange secrets,” in I[EEE Symposium
on Foundations of Computer Science (FOCS), 1986.

M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in 1st ACM Conference on Electronic Commerce,
1999.

V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in ACM CCS, 2013.
M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2001, pp.
448-457.

V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

X. Wang and K. Nayak, “FlexSC,” 2014.
https://github.com/wangxiao1254/FlexSC

D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing. ACM, 1990, pp. 503-513.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASTACRYPT, 2009.

[2]

[Online]. Available:

[5]
[6]

[7]
[8]

[9]

[10] [Online]. Available:

(11]

[12]

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

[13] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in IEEE S & P, 2015.

[14] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushan-
far, “Maxelerator: Fpga accelerator for privacy preserving multiply-
accumulate (mac) on cloud servers,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 33.

[15] B. D. Rouhani, S. U. Hussain, K. Lauter, and F. Koushanfar, “Redcrypt:
Real-time privacy-preserving deep learning inference in clouds using
fpgas,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 11, no. 3, p. 21, 2018.

[16] X. Fang, “Privacy preserving computations accelerated using fpga over-
lays,” Ph.D. dissertation, Northeastern University, 2017.

[17] X. Fang, S. Ioannidis, and M. Leeser, “Garbled circuits for preserving
privacy in the datacenter,” in International Workshop on Heterogeneous
High-performance Reconfigurable Computing, 2016.

[18] L. Di Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio, “The
role of cad frameworks in heterogeneous fpga-based cloud systems,”
in 2017 IEEE International Conference on Computer Design (ICCD).
IEEE, 2017, pp. 423-426.

[19] S. H. Abbas, J.-R. Lee, and Z. Kim, “Fpga-based design and implemen-
tation of data acquisition and real-time processing for laser ultrasound
propagation,” International Journal of Aeronautical and Space Sciences,
vol. 17, no. 4, pp. 467-475, 2016.

[20] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim:
Fpga-accelerated cycle-exact scale-out system simulation in the public
cloud,” in Proceedings of the 45th Annual International Symposium on
Computer Architecture. 1EEE Press, 2018, pp. 29-42.

[21] M. Asiatici and P. Ienne, “Stop crying over your cache miss rate:
Handling efficiently thousands of outstanding misses in fpgas,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2019, pp. 310-319.

25

Authorized licensed use limited to: Northeastern University. Downloaded on August 08,2020 at 11:56:45 UTC from IEEE Xplore. Restrictions apply.

