614

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 2, FEBRUARY 2020

Y )

¥ S

Inadequacy of Third-Order Elastic Coefficients
for Predicting Nonlinearity in Highly
n-Type-Doped Silicon Resonators

Beheshte Khazaeili

Abstract—Third-order nonlinear elastic coefficients of
silicon have been assumed to be the dominant factor in
describing the nonlinear behavior of silicon-based res-
onators in literature. In this article, it is postulated that
in spite of the common belief, third-order elastic coef-
ficients may not be adequate to explain the nonlinear
elastic behavior of silicon micro-resonators at high n-type
doping concentrations. The nonlinear behavior observed
in degenerately n-type-doped bulk-extensional mode res-
onators aligned to (100) orientation is carefully studied
in which a spring-hardening effect is observed at large
vibration amplitudes. It is shown that the existing analyt-
ical/numerical calculations and a proposed finite element
model that are based on the utilization of third-order elastic
(TOE) coefficients will all predict spring-softening in such
resonators, thus suggesting insufficiency of the nonlinear
model.

Index Terms—Duffing nonlinearity, nonlinearity, res-
onators.

|. INTRODUCTION

ILICON-BASED microelectromechanical systems

(MEMS) oscillators, which have become widely available
in recent years, offer a cost and package-size advantage
over the historically dominant quartz technology. However,
reducing the resonator size results in higher energy density,
and consequently, lower power handling capability. On the
other hand, while a small size is essential in today’s
applications, any compromise in performance, such as
signal to noise ratio, cannot be tolerated. In order to satisfy
such demanding specifications, the resonators should be
excited at relatively large vibration amplitudes, and hence,
operation outside the linear regime is expected. For example,
in modern data and wireless communication applications,
it is challenging to obtain sufficient phase noise performance
using the micro-resonator-based oscillators due to their
limited linear dynamic range [1], [2]. Therefore, to increase
their energy storage, and consequently, the signal to noise
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ratio, these resonators should be run near to their nonlinear
operational area [2], [3]. In addition, when micro-resonators
are used as high-resolution sensors, such as Atto-Newton
force sensor [4], electronic spin detector [5], or zepto-scale
mass sensor [6], large signal to noise ratio [7] and low
phase noise [8] are critical requirements. For meeting these
criteria, the MEMS oscillator amplitude should be set to
large values while avoiding excessive nonlinearity [9]. As a
specific example, in a MEMS gyroscope, the sensitivity of
the device is directly proportional to the resonator amplitude
of vibration, which, in turn, is limited by nonlinearity [10].

Herewith, nonlinear models that could comprehensively
capture the behavior of silicon micro-resonators are sought-
after. Nonlinearity in silicon-based resonators has been studied
in the past. Material nonlinearity [2], [11], [12], geometric
nonlinearity [2], [11]-[13], and electrostatic nonlinearity [2],
[9], [12] are some of the underlying mechanisms identi-
fied for explaining the nonlinear behavior depending on the
regime of operation and the transduction mechanism utilized.
Design techniques to reduce the nonlinear behavior of sil-
icon resonators have also been widely explored [14]-[17].
Regardless of the resonator type, an accurate estimation of
the nonlinear elastic coefficients of silicon is essential for
developing a model that estimates the nonlinear behavior in
this kind of device. Recent experimental studies have revealed
that nonlinearity in silicon resonators is a sensitive function
of the doping type and concentration [12], [17]. However,
a direct connection between nonlinear elastic properties of
doped silicon and resonator nonlinearity is yet to be estab-
lished. It is currently believed in the MEMS community that
the third-order nonlinear elastic coefficients are sufficient for
predicting the nonlinearity of silicon [2], [11], [18], [19]. Both
numerical [11] and closed-form analytical [18] methods for
finding nonlinear Young’s modulus and consequently nonlin-
ear amplitude-frequency coefficient have been proposed based
on the third-order nonlinear constitutive equation of silicon
assuming that the effect of higher order nonlinearities are
negligible. In this article, this assumption is put to the test
for the specific case of highly doped n-type (100) silicon, and
it is postulated that nonlinear coefficients beyond third-order
are required.

Il. THEORY OF NONLINEARITY

A modified equation of motion for a nonlinear lumped mass-
spring-damper system can be used to represent a nonlinear
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MEMS resonator response
mX + cx + k(x)x = F cos(wt) )

in which x, ¢, m, F, and w represent modal displacement,
linear damping coefficient, effective mass, amplitude, and
frequency of the external force applied to the system,
respectively. k(x) is the amplitude-dependent stiffness
coefficient, which is usually represented by a second-order
polynomial as (2)

k(x) = ko + kix + kox? )

where kg, ki, and kp are the linear, first- and second-order
nonlinear spring constants. The resonance frequency of such a
system is a function of vibration amplitude (a) as follows [12]:
3ky 5k}
=8, g 9
0 0
where fop is the initial resonance frequency, and K is the
amplitude-frequency (A-f) coefficient. For a silicon-based
resonator with lateral-extensional (i.e., contour) mode shape,
linear/nonlinear spring stiffness coefficients are a function of
resonator dimensions and nonlinear Young’s modulus [20],
as shown in (4)

2 2 4

ko = bid 2EoA(), ki = 4z E;Ao’ )= 3 E§A() @)
L 3L 8L

in which Ag and L are the undeformed cross-sectional area

and dimension (either length or width) of the resonator

along which the lateral-extensional mode shape happens.

In addition, Ey, E;, and E; are the linear, first-, and second-

order nonlinear Young’s modulus coefficients in the nonlinear

equation of Young’s modulus, which is defined as the ratio

of engineering stress (7) to engineering strain (.S)

f = fo(l +Ka?),

T
E=§=EO+E15+E2S2. (6))

Nonlinear Young’s modulus coefficients are typically calcu-
lated based on second-order linear and third-order nonlinear
elastic stiffness constants starting from the nonlinear stress-
strain constitutive equation for silicon. Equation (6) shows the
Cauchy stress (o) as a function of Lagrangian strain (#) when
both geometric and material nonlinearity is considered [11]

px 0X; 0X;
Pa Oag Oog

oij(X) = (Cijxinia + Cijkimn Mk timn) — (6)
where px and p, represent the deformed and undeformed
densities. In addition, X is the particle coordinate at the
finite deformation, and « is the undeformed state. Cjji; and
Cijkimn are the second- and third-order elastic (TOE) stiffness
coefficients of an anisotropic material (silicon in our case),
respectively.

[1I. NONLINEARITY MODELING IN
A SILICON RESONATOR

Using the methods described below, we attempt to
predict the nonlinear behavior of a bulk-extensional silicon-
based resonator fabricated on a highly doped n-type
substrate (n~5¢19 cm™3). The resonator is a thin-film
piezoelectric on silicon (TPoS) resonator [21] fabricated on a

Fig. 1. (a) Schema of TPoS resonator and (b) SEM image of the device.

silicon-on-insulator (SOI) wafer with an 8-xm thick (100)
silicon device layer. The piezoelectric material in this device
is a 0.5-um thick aluminum nitride (AIN) layer sandwiched
between two 100-nm thick molybdenum layers used as top
and bottom electrodes. Fig. 1(a) and (b) show the schematic
and the scanning electron micrograph (SEM) of the device,
respectively.

Resonators are designed and fabricated to be aligned
to either (100) or (110) planes. The fundamental lateral-
extensional (i.e., contour) resonance mode of the block res-
onators is actuated using a two-port electrode configuration,
as seen in Fig. 1.

By using both methods described in [11] and [18], the linear
and nonlinear Young’s modulus coefficients and A-f coeffi-
cient (K) are calculated for the (100)-aligned bulk-extensional
resonator with dimensions of 231 x 154 x 8 (um)® shown
in Fig. 1. The second- and TOE coefficients for highly doped
n-type silicon (n~2e19 cm™3) found in [22] are used for the
calculations presented in the next sections.

A. Numerical Method to Find Nonlinear Young’s Modulus

For finding nonlinear Young’s modulus, one method is to
solve (6) based on numerical solutions as a function of applied
stress and then convert Cauchy stress and Lagrangian strain
to engineering stress and strain as follows [11]:

T_——ai2 §i= X (7)
y Xi\oooog 0%
123 aal 1) 11 aal
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By fitting the obtained engineering stress and strain values
to (5), nonlinear Young’s modulus coefficients are found as
Eo = 127.3 GPa, E1 = 221.7 GPa, and E; = —602.2 GPa.

Now, by substituting these values along with L = 154 um
and Ag = 231 x 8 (,um)2 in (4), linear and nonlin-
ear spring stiffness constants of our device are found as
ko = 7.53e6 Pa-m, k; = 2.27el1 Pa, k = —1.1e16 Pa-m™".

Therefore, the A-f coefficient K is calculated using (3)

As seen, a negative K is obtained. According to amplitude-
dependent resonance frequency (3), the negative sign of K
means that the resonance frequency of the device decreases by
increasing the amplitude of vibration a (i.e., spring softening).

B. Closed-Form Equation to Find Nonlinear Young’s
Modulus

Besides the  numerical solution  proposed by
Kaajakari et al. [11] and Kim and Sachse [18] have
proposed a closed-form equation for nonlinear Young’s
modulus coefficients as a complicated function of linear and
nonlinear elastic stiffness constants. For notational simplicity,
some unit-less parameters are defined as follows [18]:

12

Vo= ——— 3
c12 + 1
€112 c112 + €123 c111 + 3ci12
hy = — = 3= 9
2c12 ci1 + e 2(c11 + c12)
g1 = h1 — ha +vohs3 (10)
2 Eh%—h1h2+voh3(2h1 —3h2)+2l)8h% (11)
Ey = c11 —2vocy2 (12)
e;1 = Eo(1 +2v9) + 612(1)0_1/13 — 3h1 — 6vohy + 3vohy
— 2v3h3) (13)
_ 2 -1
e = E()(ZV() +4vy + 2v081 — 0.5) + C12[(U0 + 2)
x (h3 — 3vohy — 6v3hi + 3v3ha — 2v3h3)
—2v0(2h1g1 — hag1 + g2)]- (14)

At a stress-free natural state, Eog and vy represent Young’s
modulus and Poisson’s ratio of a cubic material. Nonlinear
engineering Young’s modulus coefficients in (5) can be calcu-
lated as [18]

5)
(16)

1
E = EEO —2v9Ep + e
Er> = —2v9Eg — 2vpg1Ep + €1 — 2vpe1 + e3.

Using the elastic coefficients in [22], Young’s modulus
coefficients and consequently spring stiffness constants and
A-f coefficient are calculated as Ey = 127.3 GPa,
E{ = 237.3 GPa, E) = —656.8 GPa, ky = 7.5¢6 Pa - m,
ki =2.4ell Pa, ky = —1.2e16 Pa-m™!, K = —1.038¢9 m~2.

In both numerical and closed-form equation methods,
second-order linear and third-order nonlinear elastic stiffness
coefficients are considered assuming that higher order nonlin-
ear elastic constants are negligible in silicon.

As calculated above, a negative E», and consequently,
a negative K (i.e., spring-softening) is predicted using

both numerical and closed-form methods. This predicted
trend for the lateral extensional mode of a (100)-aligned
silicon-based resonator is exactly the opposite of the
observed spring-hardening measured by our group and
others [12], [17].

One can argue that the discrepancy might be due to using
elastic constants of phosphorus-doped silicon with a doping
concentration of n~2e19 cm ™3, while the measurement results
are for phosphorus-doped silicon with a doping concentration
of n~5e19 cm~3. It should be noted that among all available
reported silicon elastic constants in literature, 2¢19 cm ™ is the
closest doping concentration to our experiment. In addition,
error in measuring the elastic constants of silicon reported
in [22] could possibly be assumed as another cause of the
discrepancy. In order to investigate the possibility of this
source of error, different tolerance ranges of +400%, £250%,
and +120% each with 700 steps were considered for the
reported elastic constants Cy11, C112, and Ci23. Then, K was
recalculated for each combination of those values using closed-
form equations for Young’s modulus. However, none of the
altered elastic constants resulted in a positive K, therefore,
this possible source of error was eliminated.

In addition, self-heating of the resonator was ruled out
as the source of the observed spring-hardening effect in
measurement, as the temperature coefficient of resonance
frequency (TCF) of these devices are either close to zero (the
device was checked at turnover temperature) or negative where
any thermal shift would result in softening.

This discrepancy may also reasonably be associated with the
approximations made for simplification of the analysis, such
as a 2-D stress approximation (the stress is assumed to be
uniform along the length). To investigate this possible source
of error and validate the previous calculations, a novel finite
element 3-D model to predict nonlinearity of the resonator is
developed and presented in the next section.

C. Proposed 3-D Numerical Model to Predict Nonlinearity

In this model, the anisotropic material elasticity matrix
is modified to be strain-dependent. The nonlinear relation
between second Piola-Kirchhoff stress (z) and Lagrangian
strain () is described as [11], [18]

1
tij = Cijitiki + = Cijkimn Mki Tmn -

17
2 a7
Equation (17) can be rewritten as follows:
1
tij = (Cijr + Ecijklmn”mn)”kl- (18)

The expression in parentheses is then redefined as a new
elastic stiffness tensor

1 .
Cl/jkl = Cljkl + _Cijklmnrlmn L, J’ ka laman = 1’29 3 (19)

2
In fact, the linear second-order elastic (SOE) stiffness tensor
can be modified so that it is strain-dependent with the coeffi-
cient of nonlinear elastic constants. Voigt notation is then used
to convert the equation from tensor to matrix format. The same
relationship presented in (18) and (19) is shown in (20) but in
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a matrix format
1
T = (Cij + Ecijk”lk) nj
1
Cl(j = Cij + ECijknk i,j,k=1,2,3,4,5,6. (20)

Now using Einstein notation and considering cubic symme-
try for a silicon crystalline structure, the above equation can
be expanded to find all of 36 components of the new modified
stiffness matrix C;;.

Silicon has cubic symmetry which requires three indepen-
dent SOE constants

Ci11 = Cypp = C33 = 163.94 GPa
Cip = Ci3 = Cy3 =64.77 GPa

Cyq4 = Cs55 = Cg6 = 79.19 GPa 21)

and six independent TOE constants [18]

Ci11 = Copp = C333 = —658 GPa

Ci12 = C23 = Ci133 = C113 = C122 = C233 = —511 GPa
Ci44 = Cas55 = C366 = 65 GPa

Ci1s5 = Caaq = C344 = C166 = Ca66 = C355 = —336 GPa
C123 = 60 GPa

Cy456 = —86 GPa. (22)

Values of second and third-order stiffness constants for
highly doped n-type (n~2e19 cm~3) silicon are found in the
literature [22].

Considering this symmetry and (20), linear elasticity matrix
C (or sometimes noted as D) for silicon can be modified as
follows in COMSOL.:

Ch Cn

/
C16

(23)

! /
| Co1 Ces

where C; j is the modified strain-dependent elastic constant that
can be calculated as

1 1 1
Ciy = Cii+=Cinim + =Criam + =Cri3ms

2 2 2
L=C —|—1C —|—1C +1C
12 =0C1n2 2 12171 > 1227712 7 12313

1
Cly = §C144'74

1 1 1
Cgs = Ceo + §C1667]1 + §C266772 + §C366713. (24)

Strain #; = 1,2,3,4,5, 6 mentioned in the above equation
is defined as elastic strain tensor (solid.eelijj i, j = 1, 2, 3)
in COMSOL. Voigt notation is used for this conversion
as, #1 = solid.eelll, #, = solid.eel22, #3 = solid.eel33,
na = solid.eel23, »5 = solid.eell3, ¢ = solid.eell12.

It should be noted that in order to correctly model the
nonlinear behavior of the device, both geometric and material
nonlinearities should be considered. Geometric nonlinearity is

a predefined option in COMSOL and can be easily included.
Once chosen, engineering stress and strain definitions are
not valid as small deformation approximations lose accuracy,
and they will be replaced by second Piola-Kirchhoff stress
and Lagrangian strain definitions. More details regarding
geometric nonlinearity can be found in [13]. For verifying
the effectiveness of the predefined geometric nonlinearity
option in COMSOL, the nonlinear behavior of the fundamental
flexural-mode of a clamped-clamped beam is simulated using
the proposed 3-D model (Fig. 2). It is known in the litera-
ture that for this mode, geometric nonlinearity is dominant
and causes spring hardening amplitude-frequency nonlinear
behavior [23], [24]. Fig. 2(a) shows the first in-plane mode-
shape of the fixed-fixed beam made from highly doped n-type
silicon when material nonlinearity of silicon was defined as
explained above and predefined geometric nonlinearity option
in COMSOL was also included.

In order to characterize the amplitude-frequency nonlinear-
ity of the beam, a ringdown test [9] is simulated. The beam
is excited with an alternating force signal for a set period of
time in time-domain, and the decaying vibration amplitude is
analyzed after the signal is ceased. The decaying waveform is
divided into several bins, and fast Fourier transform (FFT)
is applied to find the change of resonance frequency with
amplitude. This concept is shown in Fig. 2. The COMSOL
model of the beam, which is excited with the pulse modulated
sinusoidal force at resonance, is depicted in Fig. 2(a). The
simulated decaying signal is shown in Fig. 2(b) and the
zoomed-in view of some of the bins in the decaying signal
and their corresponding FFT are shown in Fig. 2(c) and (d)
to demonstrate how the resonance frequency is shifting with
the amplitude of vibration. As seen, the resonance frequency
of the beam is maximum for the first bin with the maximum
amplitude of vibration and starts to decrease over the decaying
signal. This hardening behavior is best represented by the
so-called backbone curve, which is the normalized resonance
frequency shift for different amplitudes of vibration, as shown
in Fig. 2(e). The predicted hardening nonlinearity for the
beam agrees with theory and confirms the effectiveness of the
predefined geometric nonlinearity option in COMSOL.

After confirming that both geometric and material non-
linearity could be properly defined in our finite element
model (FEM), simulation of the nonlinear behavior in the
extensional-mode (100) silicon resonator is now attempted.
In order to do so, the same ringdown method that was
explained above for the beam simulation is employed.

The resonator is simply modeled as a block of silicon
with the same dimensions as the fabricated device shown in
Fig. 3(a). The ringdown signal and backbone curve for the
simulated resonator are shown in Fig. 3(b) and (c), respec-
tively. As seen, our proposed 3-D model also predicts spring
softening for this device which is consistent with previous
numerical and analytical solutions.

It is worth noting that in modeling nonlinearity of the
resonator in Fig. 3(a) with a pure silicon block, the assumption
is that the silicon body dominates the nonlinear properties
of the TPOS resonator under study. The justification for the
validity of this assumption is twofold. First, devices with the
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Fig. 2. Proposed FEM model and ringdown method for simulation of
amplitude-frequency nonlinearity. (a) Clamped-clamped beam COMSOL
model, (b) ringdown response, (c) zoomed-in view of some of the
bins in the ringdown response, (d) corresponding FFTs of these bins,
and (e) obtained backbone curve for the simulated beam. Predicted
hardening for the clamped-clamped beam confirms the effectiveness of
the predefined geometric nonlinearity option in COMSOL.

exact same design fabricated on the same wafer but aligned to
(110) crystalline orientation of silicon show completely dif-
ferent nonlinear behavior compared to those aligned to (100)
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Fig. 3. (a) COMSOL model, (b) simulation results for the ringdown
response, and (c) corresponding backbone curve for the resonator under
study. Spring softening is predicted.

(softening behavior for resonators aligned to (110) versus
hardening behavior for those aligned to (100)) [17], [25].
If the dominant layer in determining the amplitude-frequency
nonlinearity of our device was any layer other than silicon,
the same nonlinear behavior should have been observed for
both orientations since all other layers (i.e., sputtered AIN
and molybdenum) are isotropic in the XY plane. Second, other
groups have also reported similar spring hardening/softening
behavior for their pure-silicon capacitive lateral extensional
resonators fabricated on degenerately n-type-doped silicon and
aligned to (100)/(110), respectively [12].

IV. MEASUREMENT RESULTS

The frequency response of the resonator under study for
varying input powers is presented in Fig. 4(a). As seen, spring
hardening is observed for the device from which a positive
A-f coefficient could be concluded opposing the presented
analytical and simulated results earlier. In order to estimate K
for the measured resonator, a method previously developed in
our group is utilized [25], [33]. S-parameters of the device for
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tudes applied to a TPoS resonator with 8-um silicon and 0.5-um AIN
aligned to the <100> silicon crystalline plane and (b) backbone curve
derived from the measurement. Spring hardening is observed.

several input powers are measured using a network analyzer
and imported to Advanced Design Systems (ADS) software,
and the amplitude of vibration for each specific input voltage
is calculated. In this approach, the resonator is modeled
by a two-port network in which S-parameters of the res-
onator are embedded. In addition, the network analyzer 50-Q
terminations and the input voltage source are also modeled in
ADS. By using this equivalent circuit, the phase and magnitude
of the input and output current/voltage of the resonator are
extracted. With this information, energy stored in the device,
and consequently, the amplitude of vibration is calculated for
each input power.

The normalized resonance frequency shift of the device
measured by the network analyzer for each input power is
then plotted versus the corresponding calculated amplitude of
vibration. The obtained backbone curve is then fit with (3) to
estimate K = 6.548¢9 m™2 [Fig. 4(b)]. The results attained
from the frequency response measurement presented above are
then further confirmed with the same ringdown measurement
method explained in the simulation section. The measured
decaying signal and the backbone curve in volts are shown
in Fig. 5(a) and (b). As seen, spring hardening behavior is
clearly observed in this case again.

V. DISCUSSION

It was shown that all the existing and proposed models
fail to predict the measured mechanical nonlinearity in highly
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Fig. 5. (a) Measurement results for the ringdown response and
(b) corresponding backbone curve in volts for the resonator under study.
Spring hardening is observed.

TABLE |
AMPLITUDE-FREQUENCY COEFFICIENT K

Ey E; E; A-f coefficient K
(GPa) (GPa) (GPa) (1/m?)
Experiment NA NA NA +6.548¢9
Proposed FEM | NA | NA | NA ~6.949¢8
model
Method in [11] 1273 | 221.7 | -602.2 -9.332e8
Method in [18] 127.3 | 237.3 | -656.8 -1.038¢9

doped n-type bulk-extensional resonators. Table I shows the
calculated K values for the resonator under study obtained
from different methods explained in the previous sections.
As seen, all existing and proposed models predict a negative
K (spring softening), which is completely opposite to the pos-
itive K (spring hardening) obtained from measurement. This
indicates a fundamental insufficiency in all the above methods,
including the numerical solution, closed-form equation, and
presented a 3-D simulation model.

We believe that this discrepancy is due to the assumption
that fourth-order stiffness elastic constants of silicon have a
negligible effect. Considering that the TOE constants do not
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appear to be the dominant factor in the nonlinear behavior of
the studied resonators, this hypothesis is plausible.

Unfortunately, there is no data on such higher order stift-
ness elastic constants of silicon, so we cannot take them
into account in the above-mentioned models to confirm our
hypothesis.

However, there are some prior publications studying the
material properties of silicon at high pressures that support
our hypothesis about the insufficiency of TOE constants of
silicon for predicting its nonlinear behavior. For example,
in [26], the phase transition of cubic-to-tetragonal for group IV
semiconductors at high pressures is studied based on Landau
theory. The utilized theoretical approach in this article to effec-
tively explain such phenomena is equivalent to considering a
higher order (at least fourth-order) elastic nonlinearity [26].

In addition, it is worth noting that the most common method
used in literature to measure nonlinear TOE constants of a
material is through measuring the phase velocity of a sound
wave, exposed to the stressed targeted media. The measured
velocities at different applied stresses are then fit by the
theoretical formulas that were developed to predict the sound
wave velocity in the nonlinear media where only up to TOE
constants are taken into account [27]-[31].

It is concluded in [19] that the measured precursor velocity
in (110) and (111) silicon is in good agreement with third-
order theory proposed by Holt and Ford [27] and Holt [30]
confirming negligibility of fourth-order elastic constants for
these orientations. However, for (100) silicon, the measure-
ment results do not completely match with the third-order
theory, which suggests the inadequacy of TOE constants in
predicting the nonlinear behavior of silicon in (100) orienta-
tion. This is also the case for quartz, where [32] showed that
it is necessary to consider the fourth-order elastic nonlinearity
for quartz. In this article, we argue that the same situation
exists for silicon at least for (100) crystalline plane.

VI. CONCLUSION

In this article, it is demonstrated that the two existing
theoretical methods and the proposed FEM, cannot correctly
predict amplitude-frequency nonlinear behavior of a lateral-
extensional highly doped n-type silicon block resonator.
Several common possibilities, such as 2-D approximation and
self-heating, are ruled out as the cause of this discrepancy, and
higher order (fourth and higher) nonlinearities in silicon are
postulated as the most probable cause. Considering technology
improvements in the last decades, the authors believe that
accurate measurement of higher order material nonlinearities,
including third- and fourth-order elastic constants of silicon
at different doping types and concentrations, will definitely
assist researchers in a variety of disciplines, and specifically,
the MEMS community.
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