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Abstract
We extend the sphere theorem of Chang et al. (Publ Math Inst Ht Études Sci 98:105–434,
2003) to give a conformally invariant characterization of (CP2, gFS). In particular, we intro-
duce a conformal invariant β(M4, [g]) ≥ 0 defined on conformal four-manifolds satisfying
a ‘positivity’ condition; it follows from Chang et al. (2003) that if 0 ≤ β(M4, [g]) < 4, then
M4 is diffeomorphic to S4. Our main result of this paper is a ‘gap’ result showing that if
b+
2 (M4) > 0 and 4 ≤ β(M4, [g]) < 4(1 + ε) for ε > 0 small enough, then M4 is diffeo-

morphic to CP
2. The Ricci flow is used in a crucial way to pass from the bounds on β to

pointwise curvature information.

Keywords Bach flat · Ricci flow · Sphere theorem

1 Introduction

In [7], the first two authors with Yang proved a conformally invariant sphere theorem in
dimension four. In this paper we extend the results of [7] to give a characterization of complex
projective space. To state our results we begin by establishing our notation and conventions.

If (M4, g) is a smooth, closed Riemannian four-manifold, we denote the Riemannian
curvature tensor by Rm (or Rmg if we need to specify the metric), the Ricci tensor by Ric,
and the scalar curvature by R. We also denote the Weyl curvature tensor by W , and the
Schouten tensor
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P = 1

2

(
Ric − 1

6
R · g

)
. (1.1)

We remark that the definition of the Schouten tensor in [7] (denoted by A) differed from
the formula in (1.1) by a factor of two; however, in this paper we adopt the more common
convention. In terms of the Weyl and Schouten tensors the Riemannian curvature tensor can
be decomposed as

Rm = W + P ©∧ g, (1.2)

where ©∧ is the Kulkarni–Nomizu product. There are two important consequences of this
identity: First, since the Weyl tensor is conformally invariant, it follows that the behavior of
the curvature tensor under a conformal change of metric is determined by the transformation
of the Schouten tensor. The second consequence is that the splitting induces a splitting of the
Euler form, so that the Chern–Gauss–Bonnet formula can be expressed as

8π2χ(M) =
∫

‖W‖2 dv + 4
∫

σ2(g
−1P) dv, (1.3)

where

• ‖ · ‖ denotes the norm of the Weyl tensor, viewed as an endormorphism of �2(M), the
bundle of two-forms. Note that this differs from the norm of Weyl when viewed as a
four-tensor, and the two norms are related by

‖W‖ = 1

4
|W |2 .

• g−1P denotes the (1, 1)-tensor (interpreted as an endomorphism of the tangent space at
each point) obtained by ‘raising an index’ of the Schouten tensor, and σ2(g−1P) is the
second elementary symmetric polynomial applied to its eigenvalues. To simplify notation
we will henceforth write σ2(P) in place of σ2(g−1P).

It follows from the conformal invariance of the Weyl tensor that both integrals in (1.3) are
conformally invariant. While their sum is a topological invariant, their ratio can be arbitrary.
As we now explain, when the scalar curvature is positive the ratio does carry geometric and
topological information.

Given a Riemannian manifold (Mn, g) of dimension n ≥ 3, let [g] denote the equivalence
class of metrics pointwise conformal to g, and Y (Mn, [g]) denote the Yamabe invariant:

Y
(
Mn, [g]

) = inf
g̃∈[g]

Vol (g̃)−
n−2
n

∫
Rg̃ dvg̃.

We can also express the Yamabe invariant in terms of the first symmetric function of the
Schouten tensor: it follows from (1.1) that

σ1 (P) = R

2 (n − 1)
,

hence

Y
(
Mn, [g]

) = inf
g̃∈[g]

2(n − 1)Vol(g̃)−
n−2
n

∫
σ1(Pg̃) dvg̃.

With this interpretation of the Yamabe invariant, in dimension four we should view the
conformal invariant

∫
σ2(P) dv as a kind of “second Yamabe invariant” (see [15,16,37]). We

therefore define

Y+
1

(
M4) = {

g : Y
(
M4, [g]

)
> 0

}
, (1.4)
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Conformally invariant gap theorem 723

and

Y+
2

(
M4) =

{
g ∈ Y+

1 (M) :
∫

σ2
(
Pg

)
dvg > 0

}
. (1.5)

By a classical result of Lichnerowicz, there are topological obstructions to Y1(M4) being
non-empty [33]. There are also topological implications of Y2(M4) being non-empty: by
[17], if Y+

2 (M4) �= ∅ then the first Betti number b1(M4) = 0. In fact, it follows from [6]
that [g] contains a metric g̃ with positive Ricci curvature.

Returning to the Chern–Gauss–Bonnet formula, for metrics g ∈ Y+
2 (M4) we define the

conformal invariant

β
(
M4, [g]

) =
∫ ∥∥Wg

∥∥2 dVg∫
σ2(Pg) dvg

≥ 0. (1.6)

We also define smooth invariant

β
(
M4) = inf

[g]
β

(
M4, [g]

)
. (1.7)

If Y+
2 (M4) = ∅, we set β(M4) = −∞.
The main results of [7] give a (sharp) range for β that imply the underlying manifold is

the sphere:

Theorem 1 Suppose M4 is oriented. If g ∈ Y+
2 (M4) with

β
(
M4, [g]

)
< 4, (1.8)

then M4 is diffeomorphic to S4. In particular, if M4 satisfies

−∞ < β(M4) < 4,

then the same conclusion holds.
Furthermore, if M4 admits a metric with β(M4, [g]) = 4, then one of the following must

hold:

• M4 is diffeomorphic to S4; or
• M4 is diffeomorphic toCP2 and g ∈ [gFS], where gFS denotes the Fubini–Study metric.
As a corollary we have the following characterization of manifolds for which β(M4) = 0:

Corollary 1 Assume M4 is oriented. Then β(M4) = 0 if and only if M4 is diffeomorphic to
S4. Furthermore, β(M4, [g]) = 0 if and only if g ∈ [g0], where g0 denotes the round metric.
Remarks 1. For the case of equality, we note that if β(M4, [g]) = 0, then the Weyl tensor

Wg ≡ 0 and it follows that (M4, g) is locally conformally flat. By our observations above,
since [g] admits a metric with positive Ricci curvature, by Kuiper’s theorem [28] (M4, g)
is conformally equivalent to (S4, g0) or (RP4, g0), where g0 is the standard metric.

2. There are a number of other sphere-type theorems under integral curvature conditions;
see for example [2–5,10,15,29], and the references in [7].
Our first goal in this paper is initiating the study of four-manifolds with

β
(
M4, [g]

) ≥ 4.

Suppose M4 is oriented, and let b2(M4) denote the second Betti number. Then we can write
b2 = b+

2 + b−
2 , where b±

2 denotes the dimension of the space of self-dual/anti-self-dual
harmonic two-forms. If b2(M4) �= 0, then by changing the orientation if necessary we may
assume b+

2 > 0.
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724 S. A. Chang et al.

Theorem A Suppose M4 is oriented and b+
2 (M4) > 0. There is an ε > 0 such that if M4

admits a metric g ∈ Y+
2 (M4) with

4 ≤ β
(
M4, [g]

)
< 4(1 + ε), (1.9)

then M4 is diffeomorphic to CP2.

This ‘gap’ theorem immediately gives a characterization of manifolds with b2(M4) �= 0
and β(M4) = 4:

Theorem B Suppose M4 is oriented and b+
2 (M4) > 0. If

β
(
M4) = 4, (1.10)

then M4 is diffeomorphic to CP2. Moreover, β(M4, [g]) = 4 if and only if g ∈ [gFS].
The proof of Theorem A is similar in approach to the proof of Theorem 1 in [7]. The first
step is to find a conformal representative satisfying a pointwise curvature condition that
encodes the integral assumptions of the theorem. In [7] this involved solving a modified
version of the σ2-Yamabe problem. However, in the proof of Theorem B it is more natural
to consider a modified version of the Yamabe problem introduced by the second author in
[19]. In particular we show that a metric satisfying the assumptions of Theorem B can be
conformally deformed to a metric that is “almost self-dual Einstein” in an L2-sense, and
whose scalar curvature satisfies a condition similar to the condition satisfied by the scalar
curvature of a Kähler metric.

As in the proof of Theorem 1, the second step involves the Ricci flow. In [7] the weak
pinching result of Margerin [34] played a crucial role. To prove Theorem B, we show that the
Ricci flow with the conformal representative constructed in the first step as the initial metric,
will have uniform bounds on the curvature and the Sobolev constant on a fixed time interval
[0, T0], with T0 > 0 depending on the pinching constant. These estimates together with the
convergence theory of Cheeger–Gromov–Taylor [9] imply the family of Ricci flows g j (T0)
(up to a subsequence) will converge to the Fubini–Study metric.

We remark that the instability of the Fubini–Study metric under the Ricci flow was estab-
lished by Kroencke [27] (see also [26]). As a consequence, one cannot hope to show that the
Ricci flow converges in general to the Fubini–Study metric; this is why we must ultimately
appeal to a compactness result in this part of the argument.

In view of Theorems A and B, we make several conjectures. The first is that Theorem B
remains valid if we drop the assumption on b+

2 (M4):

Conjecture 1.1 If
β

(
M4) = 4, (1.11)

then M4 is diffeomorphic to ±CP
2. Moreover, β(M4, [g]) = 4 if and only if g ∈ [gFS].

It is clear that 4 is a ‘special’ or ‘critical’ value of β, at which the topology of the under-
lying manifold can change. A natural question is the next critical value. As a corollary of
[17], we have the following estimate for manifolds with indefinite intersection form, i.e.,
b+
2 (M4), b−

2 (M4) > 0.

Theorem C Suppose M4 is oriented, b2(M4) �= 0, and the intersection form of M4 is indef-
inite. If Y+

2 (M4) is non-empty, then

β
(
M4) ≥ 8. (1.12)
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Conformally invariant gap theorem 725

Moreover, if M4 admits a metric with β(M4, [g]) = 8, then g ∈ [gp], where gp = gS2 ⊕ gS2
is the product metric on S2 × S2.

Our next conjecture is that we can weaken the condition β(M4) = 4, and characterize the
possible topological types of manifolds admitting metrics with β between 4 and 8:

Conjecture 1.2 If M4 is oriented and admits a metric g ∈ Y+
2 (M4) with

0 ≤ β
(
M4, [g]

)
< 8, (1.13)

then M4 is diffeomorphic to S4 or ±CP
2.

2 Preliminaries

In this section,we state and prove some preliminary results, including the proof of TheoremC.
Several of the results in this section are based on the following result in [17]:

Theorem 2.1 Let M4 be a closed oriented four-manifold with b+
2 (M4) > 0. Then for any

metric g with Y (M4, [g]) ≥ 0,
∫
M

∣∣∣∣W+∣∣∣∣2 dv ≥ 4π2

3

(
2χ

(
M4) + 3τ

(
M4)) , (2.1)

where χ(M4) and τ(M4) denote the Euler characteristic and signature of M4, respectively.
Furthermore:

1. Equality is achieved in (2.1) by some metric g with Y (M4, [g]) > 0 if and only if g is
conformal to a (positive) Kähler–Einstein metric gK E = e2wg.

2. Equality is achieved in (2.1) by some metric g with Y (M, [g]) = 0 if and only if g is
conformal to a Ricci-flat anti-self-dual Kähler–Einstein metric gK E = e2wg.

The following lemma is the first application of this result:

Lemma 2.2 Let M4 be a closed, oriented four-manifold admitting a metric g ∈ Y+
2 (M4)

with

β
(
M4, [g]

)
< 8. (2.2)

If b+
2 (M4) > 0, then the signature of M4 satisfies

τ
(
M4) > 0.

Proof The signature formula implies∫ ∣∣∣∣Wg
∣∣∣∣2 dvg =

∫
M

∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg +

∫ ∣∣∣
∣∣∣W−

g

∣∣∣
∣∣∣2 dvg

= 2
∫ ∣∣∣

∣∣∣W+
g

∣∣∣
∣∣∣2 dvg − 12π2τ(M4). (2.3)

By (2.2), ∫
σ2(Pg) dvg >

1

8

∫ ∥∥Wg
∥∥2 dvg.
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726 S. A. Chang et al.

Substituting this into the Chern–Gauss–Bonnet formula, we have

8π2χ(M4) =
∫ ∣∣∣∣Wg

∣∣∣∣2 dvg + 4
∫

σ2(Pg) dvg >
3

2

∫ ∣∣∣∣Wg
∣∣∣∣2 dvg. (2.4)

Combining (2.3) and (2.4), we get

8π2χ(M4) > 3
∫ ∣∣∣

∣∣∣W+
g

∣∣∣
∣∣∣2 dvg − 18π2τ(M4), (2.5)

and this inequality can be rewritten as∫ ∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg <

4

3
π2(2χ(M4) + 3τ(M4)) + 2π2τ(M4). (2.6)

Since b+
2 (M4) > 0 and Y (M4, [g]) > 0, (2.1) in Theorem 2.1 implies

∫ ∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg ≥ 4

3
π2(2χ(M4) + 3τ(M4)). (2.7)

Therefore, combining (2.6) and (2.7), we conclude

τ
(
M4) > 0.


�

Remark 2.3 This lemma is sharp in the following sense: suppose (M, g) is isometric to
(S2 × S2, gprod). In this case, b+

2 (M4) = b−
2 (M4) = 1, τ(M4) = 0 and

∫ ∣∣∣∣Wg
∣∣∣∣2 dvg = 8

∫
σ2(Pg) dvg = 64

3
π2. (2.8)

Corollary 2.4 Let M4 be a closed, oriented four-manifold admitting a metric g ∈ Y+
2 (M4)

with

β
(
M4, [g]

)
< 8. (2.9)

Then either b2(M4) = 0, or the intersection form is definite.

Proof Suppose b2(M4) �= 0 and b+
2 (M4) ·b−

2 (M4) > 0. Then Lemma 2.2 implies τ(M4) =
b+
2 (M4) − b−

2 (M4) > 0. Since b−
2 (M4) is also non-zero, we can apply Lemma 2.2 to M4

endowed with the opposite orientation to show that the signature is again positive. This is
a contradiction, since changing the orientation changes the sign of the signature. It follows
that b+

2 (M4) · b−
2 (M4) = 0, hence the intersection form is definite. 
�

Combining the two previous results with an a priori upper bound for the total σ2-curvature,
we can prove the following:

Lemma 2.5 Let M4 be a closed, oriented four-manifold admitting a metric g ∈ Y+
2 (M4)

with

β
(
M4, [g]

)
< 8. (2.10)

If b2(M4) > 0, then (after possibly changing the orientation) b+
2 (M4) = 1 and b−

2 (M4) = 0.
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Conformally invariant gap theorem 727

Proof By Corollary 2.4 we may choose an orientation for which the intersection form is
positive definite, so b+

2 (M4) > 0 and b−
2 (M4) = 0. Also, by Corollary F of [17], if g ∈

Y+
2 (M4), b1(M4) = 0. Therefore,

χ(M4) = 2 + b+
2 (M4),

τ (M4) = b+
2 (M4) > 0.

(2.11)

By the Chern–Gauss–Bonnet formula and (2.9),

8π2χ(M4) =
∫ ∥∥Wg

∥∥2 dvg + 4
∫

σ2(Pg) dvg

< 12
∫

σ2(Pg) dvg.

(2.12)

By Theorem B of [18], we have the bound∫
σ2

(
Pg

)
dvg ≤ 4π2, (2.13)

and equality holds if and only if (M4, g) is conformally equivalent to the round sphere. More
generally, since the integral is conformally invariant it is easy to show that∫

σ2
(
Pg

)
dvg ≤ 1

96
Y (M4, [g])2. (2.14)

Since b2(M4) > 0 strict inequality must hold, and substituting this into (2.12) we get

8π2χ(M4) < 12
∫

σ2
(
Pg

)
dvg

< 48π2,

(2.15)

hence χ(M4) < 6. By (2.11), we see that 1 ≤ b+
2 (M4) ≤ 3. It therefore suffices to rule out

the possibilities b+
2 (M4) = 2 and b+

2 (M4) = 3.
If b+

2 (M4) = 2 then χ(M4) = 4, so by the Chern–Gauss–Bonnet formula
∫ ∣∣∣∣Wg

∣∣∣∣2 dvg + 4
∫

σ2
(
Pg

)
dvg = 32π2.

Also, b+
2 (M4) = 2 implies τ(M4) = 2, so the signature formula gives

∫ ∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg =

∫ ∣∣∣
∣∣∣W−

g

∣∣∣
∣∣∣2 dvg + 24π2

≥ 24π2.

It follows that ∫ ∣∣∣∣Wg
∣∣∣∣2 dvg ≥ 24π2,

∫
σ2

(
Pg

)
dvg ≤ 2π2.

Therefore, ∫ ∣∣∣∣Wg
∣∣∣∣2 dvg ≥ 12

∫
σ2

(
Pg

)
dvg,

which contradicts (2.10).
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728 S. A. Chang et al.

If b+
2 (M4) = 3, we can apply the same argument to conclude

∫ ∣∣∣∣Wg
∣∣∣∣2 dvg ≥ 36

∫
σ2(Pg) dvg,

which also contradicts (2.10). Therefore, b+
2 (M4) = 1. 
�

Remark 2.6 The preceding lemma implies that if we take ε ≤ 1 in Theorem A, then
b+
2 (M4) > 0 will show that b+

2 (M4) = 1. Note that the work [13] and [14] of Donald-
son and Freedman will imply that the manifold is homeomorphic to CP

2 in this case.

The Proof of Theorem C We can now combine Theorem 2.1 and Lemma 2.2 to give the
proof of Theorem C. Assuming b+

2 (M4) · b−
2 (M4) > 0, it follows from Lemma 2.2

that β(M4, [g]) ≥ 8 for any metric g ∈ Y+
2 (M4). Moreover, if equality holds, then since

b+
2 (M4) > 0 we can argue as in the proof of Lemma 2.2 to get equality in (2.6):

∫ ∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg = 4

3
π2 (

2χ
(
M4) + 3τ

(
M4)) + 2π2τ

(
M4) . (2.16)

By Theorem 2.1 we conclude that τ(M4) ≥ 0. Reversing orientation and applying the same
argument (since b−

2 (M4) > 0) we also get−τ(M4) ≥ 0, hence τ(M4) = 0. Substituting this
into (2.16) implies thatwe have equality in (2.1). Therefore, g is conformal toKähler–Einstein
metric gK E . By Proposition 2 of [12], ∇W+

gK E
≡ 0.

Applying the same argument with the opposite orientation, we see that g is conformal to
a Kähler–Einstein metric g′

K E . By Obata’s theorem [35], Einstein metrics are unique in their
conformal class (except in the case of the sphere, which is ruled out in this case). Therefore,
gK E = g′

K E , and since equality holds in (2.1) with the opposite orientation it follows that
∇W−

gK E
≡ 0. We conclude that gK E is locally symmetric and Einstein; it follows from the

classification of such spaces (for example, [24]) that (M4, gK E ) is isometric to (S2×S2, gp),
and Theorem C follows. 
�

2.1 A preliminary lemma

We end this section with a technical lemma that will be used in the proof of Theorem A.

Lemma 2.7 Let (M4, g) be a closed, compact oriented Riemannian four-manifold with
b+
2 (M4) > 0 and

β
(
M4, [g]

) = 4 (1 + ε) (2.17)

for some 0 ≤ ε < 1. Then∫
M

∣∣∣∣W−∣∣∣∣2 dv = 6ε

2 + ε
π2, (2.18)

∫ ∣∣∣∣W+∣∣∣∣2 dv = 12π2 +
∫ ∣∣∣∣W−∣∣∣∣2 dv, (2.19)

and

Y
(
M4, [g]

) ≥ 24π√
2 + ε

. (2.20)
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Conformally invariant gap theorem 729

Proof It follows from Lemma 2.5 that b1(M4) = 0, b+
2 (M4) = 1, and b−

2 (M4) = 0.
Therefore,χ(M4) = 3 and τ(M4) = 1.By theChern–Gauss–Bonnet and signature formulas,
we have

24π2 =
∫

||W ||2 dv + 4
∫

σ2(P)dv, (2.21)

12π2 =
∫ ∣∣∣∣W+∣∣∣∣2 dv −

∫ ∣∣∣∣W−∣∣∣∣2 dv. (2.22)

Since β(M4, [g]) = 4(1 + ε), we have

4
∫

σ2(P)dv = 1

1 + ε

∫
‖W‖2 dv. (2.23)

Substituting this into (2.21) we conclude∫
‖W‖2 dv = 24

(
1 + ε

2 + ε

)
π2. (2.24)

By (2.22),

12π2 =
∫ ∣∣∣∣W+∣∣∣∣2 dv −

∫ ∣∣∣∣W−∣∣∣∣2 dv

=
∫

‖W‖2 dv − 2
∫ ∥∥W−∥∥2 dv

= 24

(
1 + ε

2 + ε

)
π2 − 2

∫ ∥∥W−∥∥2 dv,

which implies (2.18). Also, substituting (2.18) into the signature formula (2.22)we get (2.19).
To prove (2.20), we fist observe that (2.23) and (2.24) imply∫

σ2(P)dv =
(

6

2 + ε

)
π2.

Therefore, by (2.25),(
6

2 + ε

)
π2 =

∫
σ2(Pg) dvg ≤ 1

96
Y (M4, [g])2, (2.25)

and (2.20) follows. 
�

3 Modified Yamabemetrics

As mentioned in the Introduction, the proof of Theorems A and B will use the Ricci flow.We
will use the fact that our assumptions are conformally invariant and choose an initial metric
that satisfies certain key estimates. The metric will be a solution of a modified version of the
Yamabe problem introduced in [19], which we now review.

Let (M4, g) be a Riemannian four-manifold. Define

F+
g = Rg − 2

√
6

∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣ , (3.1)

and

Lg = −6	g + Rg − 2
√
6

∣∣∣∣W+∣∣∣∣ . (3.2)
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730 S. A. Chang et al.

Lg is a variant of conformal Laplacian that satisfies the following conformal transformation
law:

Lg̃φ = u−3Lg (φu) , (3.3)

where g̃ = u2g ∈ [g]. In analogy to the Yamabe problem, we define the functional

Ŷg[u] = 〈
u,Lgu

〉
L2 / ||u||2L4 , (3.4)

and the associated conformal invariant

Ŷ
(
M4, [g]

) = inf
u∈W 1,2(M,g)

Ŷg [u] . (3.5)

By the conformal transformation law of Lg , the functional u → Ŷg[u] is equivalent to the
Riemannian functional

g̃ = u2g → vol(g̃)−
1
2

∫
F+
g̃ dvg̃. (3.6)

Themotivation for introducing this invariant is explained in the following result (see Theorem
3.3 and Proposition 3.5 of [19]):

Theorem 3.1 (i) Suppose M4 admits a metric g with F+
g ≥ 0 on M4 and F+

g > 0 some-

where. Then b+
2 (M4) = 0.

(ii) If b+
2 (M4) > 0, then M4 admits a metric g with F+

g ≡ 0 if and only if (M4, g) is a
Kähler manifold with non-negative scalar curvature.

(iii) If Y (M4, [g]) > 0 and b+
2 (M4) > 0, then Ŷ (M4, [g]) ≤ 0 and there is ametric g̃ = u2g

such that

F+
g̃ = Rg̃ − 2

√
6

∣∣∣∣W+∣∣∣∣
g̃ ≡ Ŷ (M, [g]) ≤ 0 (3.7)

and ∫
R2
g̃ dvg̃ ≤ 24

∫ ∣∣∣
∣∣∣W+

g̃

∣∣∣
∣∣∣2 dvg̃. (3.8)

Furthermore, equality is achieved if and only if F+
g̃ ≡ 0 and Rg̃ = 2

√
6||W+

g̃ || ≡ const.

Remark 3.2 Recall that F+
g ≡ 0 on a Kähler manifold (M4, g) with R ≥ 0.

Remark 3.3 In the rest of the paper, we will refer to the metric g̃ in (iii) of Theorem 3.1,
normalized to have unit volume, a modified Yamabe metric, and denote it by gm . To simplify
the notation, we write Ŷ (M, [g]) = −μ+. Then gm satisfies

Rgm − 2
√
6

∣∣∣∣W+∣∣∣∣
gm

= −μ+ ≤ 0 (3.9)

and (3.8).

As a preparation for the proof of Theorem A in next section, in the rest of this section we
will list some preliminary curvature estimates of the modified Yamabe metric gm ∈ [g] with
the assumption b+

2 (M4) > 0 and β(M, [g]) = 4(1 + ε).

Lemma 3.4 Let (M4, g) be a closed, compact oriented Riemannian four-manifold with
b+
2 (M4) > 0 and

β
(
M4, [g]

) = 4 (1 + ε) (3.10)
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for some 0 < ε < 1, then we have for the modified Yamabe metric gm ∈ [g]∫
M

∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm = 6ε

2 + ε
π2, (3.11)

∫ ∣∣∣
∣∣∣W+

gm

∣∣∣
∣∣∣2 dvgm = 12π2 +

∫ ∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm , (3.12)

Y (M, [gm]) ≥ 24π√
2 + ε

(3.13)
∫

|Egm |2dvgm ≤ 6
∫ ∣∣∣

∣∣∣W−
gm

∣∣∣
∣∣∣ dvgm , (3.14)

1

12
μ+Y ≤ 3

∫ ∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm , (3.15)

1

24

∫ (
Rgm − R̄gm

)2
dvgm ≤ 3

∫ ∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm , (3.16)

where R̄gm = ∫
Rgmdvgm .

Proof (3.11), (3.12), (3.13) follow from (2.18), (2.19), (2.20) of Lemma 2.7 and confomal
invariance. The estimates (2.21) and (2.22) imply∫ ∣∣∣∣W+∣∣∣∣2 dv − 4

∫
σ2(Pgm )dvgm = 3

∫ ∣∣∣∣W−∣∣∣∣2
gm

dvgm . (3.17)

Recall the modified Yamabe metric stasfies Rgm + μ+ = 2
√
6||W+

gm ||. Squaring both sides
of this formula and integrating over M4, we have

1

24

∫ (
R2
gm + 2μ+Rgm + μ2+

)
dvgm =

∫ ∣∣∣
∣∣∣W+

gm

∣∣∣
∣∣∣2 dvgm .

With (3.17), we can rewrite this equation in the following way:

1

2

∫
|Egm |2dv + 1

12
μ+

∫
Rgmdvgm + 1

24

∫
μ2+dvgm = 3

∫ ∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm .

Since
∫
Rgmdvgm ≥ Y (M4, [gm]) > 0, (3.14) and (3.15) follow from this equation. To see

(3.16), we have

1

24

∫ (
Rgm − R̄gm

)2
dvgm = 1

24

(∫
R2
gm dvgm − R̄2

gm

)
≤ 1

24

(∫
R2
gm dvgm − Y 2

)

≤
∫ ∣∣∣

∣∣∣W+
gm

∣∣∣
∣∣∣2 dvgm − 4

∫
σ2

(
Pgm

)
dvgm = 3

∫ ∣∣∣
∣∣∣W−

gm

∣∣∣
∣∣∣2 dvgm .


�
We end this section with a conformally invariant characterization of the Fubini–Study

metric:

Lemma 3.5 Let (M4, g) be a closed, compact oriented Riemannian four-manifold whose
metric g is of positive Yamabe type. In addition, assume b1(M4) = b−

2 (M4) = 0 and
b+
2 (M4) = 1. Then ∫

M
σ2(P) dv ≤ 12π2

and equality holds if and only if (M4, g) is conformally equivalent to (CP2, gFS).
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732 S. A. Chang et al.

Proof By our assumptions we have χ(M4) = 3 and τ(M4) = 1. Then the Gauss–Bonnet–
Chern and signature formulas read

24π2 =
∫
M

∣∣∣∣Wg
∣∣∣∣2 dvg + 4

∫
M

σ2
(
Pg

)
dvg, (3.18)

and

12π2 =
∫
M

∣∣∣
∣∣∣W+

g

∣∣∣
∣∣∣2 dvg −

∫
M

∣∣∣
∣∣∣W−

g

∣∣∣
∣∣∣2 dvg. (3.19)

Therefore, ∫
M

σ2(P)dv = 24pi2 −
∫

‖W‖2 dv

≤ 24π2 −
∫
M

∣∣∣∣W+∣∣∣∣2 dv

= 12π2 −
∫
M

∣∣∣∣W−∣∣∣∣2 dv ≤ 12π2.

If equality holds thenW− ≡ 0 and by (3.14) of Lemma 3.4 it immediately follows that Egm =
0. Hence, (M4, gm) is self-dual Einstein with positive scalar curvature and b+

2 (M4) = 1.
It is easy to check that the equality in (2.1) is achieved, and therefore gm is conformal to
a Kähler–Einstein metric. By Obata’s theorem, (M4, gm) must be (Kähler–)Einstein with
positive scalar curvature and b+

2 (M4) = 1.
Now (M4, gm) is a complex surface with a positive Kähler–Einstein metric. For complex

surfaces, (see, p. 81 of [1])

3c2
(
M4) − c1

(
M4)2 = χ

(
M4) − 3τ

(
M4) = 0. (3.20)

Then the uniformlization of Kähler–Einstein manifolds (e.g., Theorem 2.13 in [38]) implies
that the universal cover of (M, gm) is (up to scaling) isometric to (CP2, gFS). Hence, (M, gm)

is conformally equivalent to (CP2, gFS) sinceCP2 does not have nontrivial smooth quotient
space. 
�

4 The proofs of Theorems A and B

Suppose M4 is an oriented four-manifold with b+
2 (M4) > 0 and g is a metric on M4 with

β(M4, [g]) = 4(1+ ε) for ε > 0 small. We want to show that if ε > 0 is small enough, then
M4 is diffeomorphic to CP2. By Lemma 3.4, the modified Yamabe metric gm ∈ [g] is close
to a self-dual Einstein metric in an L2-sense. Using the Ricci flow, we want to ‘smooth’ gm to
obtain smallness of W− and E in a pointwise sense. We do this in two stages: first, we show
that for a small but uniform time, theRicci flow applied to gm gives ametric forwhichW− and
E are small in an L p-sense, for some p > 2. Next, we appeal to a parabolic Moser iteration
estimate of Yang [39] to conclude L∞-smallness. The Bernstein–Bando–Shi estimates for
the Ricci flow then imply bounds for C∞-norms of the curvature. To complete the proof we
apply a contradiction argument using a compactness result of Cheeger–Gromov–Taylor [9].

We begin with some definitions: on (M4, g), define

Gk (g) = |Eg|k + |Rg − R̄g|k +
∣∣∣
∣∣∣W−

g

∣∣∣
∣∣∣k + |

(
F+
g

)
− |k, (4.1)

where (F+
g )− = min(F+

g , 0). We shall suppress the subscript g when there is no confusion.
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Lemma 4.1 Under the conditions of Theorem A, the modified Yamabe metric gm ∈ [g]
satisfies

∫
G2(gm)dvgm < c(ε), where c(ε) → 0 as ε → 0.

Proof This is a direct consequence of Lemma 3.4. 
�
Now recall some basic facts about the Ricci flow:{

∂
∂t g = −2Ric(g)
g(0) = g0

(4.2)

The following short time-time existence result of Ricci flow has been established in [21].

Proposition 4.2 For arbitrary smooth metric g0, there exists T = T (g0) such that (4.2) has
a unique smooth solution for t ∈ [0, T ).

Remark 4.3 In general, the time interval [0, T ) depends on the initial metric g0.

Along the Ricci flow, define Gk(t) = Gk(g(t)). The following estimate is of fundamental
importance for our argument.

Proposition 4.4 Suppose we have a solution of the Ricci flow whose initial metric satisfies∫
M
G2(0)dvg(0) = 1

2
ε0 (4.3)

for some ε0 is sufficiently small. Let

T = inf

{
t :

∫
M
G2 (t) dvg(t) = ε0

}
.

Assume in addition for 0 ≤ t ≤ T

Y (t) = Y
(
M4, [g (t)]

) ≥ b > 0, (4.4)

and

0 < R̄ (t) ≤ a. (4.5)

Then for 0 ≤ t ≤ T , we have

d

dt

∫
M
G2 (t) dvg(t) ≤ ã

∫
M
G2 (t) dvg(t) − b̃

(∫
M
G4 (t)dvg(t)

)1/2

, (4.6)

where ã and b̃ are uniform positive constants independent of ε0. Moreover, there exists T0,
which is independent of ε0 such that T ≥ T0, and we may choose ã = 4

3a and b̃ = 1
12b.

Proof The proof is based on the evolution of the curvature under the Ricci flow in four
dimensions, alongwith several algebraic inequalities.We begin by summarizing the evolution
formulas we will need, most of which can be found in [11]:

Lemma 4.5 Under (4.2) on Riemannnian four-manifolds,

∂

∂t
dv = −Rdv, (4.7)

∂

∂t
|E |2 = 	 |E |2 − 2|∇E |2 + 4WEE − 4tr E3 + 2

3
R |E |2 , (4.8)

∂

∂t

(
R2) = 	

(
R2) − 2|∇R|2 + 4R |E |2 + R3, (4.9)
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∂

∂t

∣∣∣∣W±∣∣∣∣2 = 	
∣∣∣∣W±∣∣∣∣2 − 2

∣∣∣∣∇W±∣∣∣∣2 + 36 detW± + W±EE, (4.10)

∂

∂t

∣∣∣∣W±∣∣∣∣ ≤ 	
∣∣∣∣W±∣∣∣∣ + √

6
∣∣∣∣W±∣∣∣∣2 +

√
6

6
|E |2 , (4.11)

∂

∂t

((
F+) −) ≥ 	

((
F+) −) − ((

F+) −)2 + 2R
(
F+) − (4.12)

where

W±EE := W±
i jkl Eik E jl , F+

g := Rg − 2
√
6

∣∣∣∣W+∣∣∣∣ , (F+)− := min{F+
g , 0}.

Remark 4.6 For the evolution formulas of W± we rely on unpublished notes of Knopf [25].

As a corollary of the formulas above we have in four dimensions:

Corollary 4.7 Under (4.2),

d

dt

∫
dv = −

∫
Rdv, (4.13)

d

dt

∫
|E |2 dv =

∫ (
−2|∇E |2 + 4WEE − 4tr E3 − 1

3
R |E |2

)
dv, (4.14)

d

dt

∫ (
R − R̄

)2
dv =

∫ (
−2|∇R|2 + 4

(
R − R̄

) |E |2 + R̄
(
R − R̄

)2)
dv, (4.15)

d

dt

∫
| (F+)

− |2dv ≤ −2
∫ (

|∇(
F+)

−|2 + R

6
| (F+)

− |2
)
dv

−
∫ ((

F+)
−
)3

dv +
∫ (

4

3
R̄| (F+)

− |2 + 4

3

(
R − R̄

) | (F+)
− |2

)
dv, (4.16)

d

dt

∫ ∣∣∣∣W−∣∣∣∣2 dv ≤ −
∫ (

2|∇ ∣∣∣∣W−∣∣∣∣ |2 + R
∣∣∣∣W−∣∣∣∣2) dv

+
∫ (

2
√
6

∣∣∣∣W−∣∣∣∣3 +
√
6

3

∣∣∣∣W−∣∣∣∣ |E |2
)
dv, (4.17)

where

R̄ =
∫

Rdv
/ ∫

dv, F+
g = Rg − 2

√
6

∣∣∣∣W+∣∣∣∣ , (
F+)

− = min
{
F+
g , 0

}
.

For the proof of Proposition 4.4 we will also need some algebraic inequalities. The first
appears in ([7], Lemma 4.3), and is based on ([34], Lemma 6):

Lemma 4.8

WEE ≤
√
6

3

(∣∣∣∣W+∣∣∣∣ + ∣∣∣∣W−∣∣∣∣) |E |2 (4.18)

Proof Recall the well-known decomposition of Singer-Thorpe:

Riem =
(
W+ + R

12 I d B
B∗ W− + R

12 I d

)
(4.19)

Note the compositions satisfy

BB∗ : �2+ → �2+, B∗B : �2− → �2−.
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Fix a point P ∈ M4, and let λ±
1 ≤ λ±

2 ≤ λ±
3 denote the eigenvalues of W±, where W±

are interpreted as endomorphisms of �2±. Also denote the eigenvalues of BB∗ : �2+ → �2+
by b21 ≤ b22 ≤ b23, where 0 ≤ b1 ≤ b2 ≤ b3. From Lemma 4.3 of [7], we have

WEE ≤ 4

(
3∑

i=1

λ+
i b

2
i +

3∑
i=1

λ−
i b

2
i

)
(4.20)

Recall from Lemma 4.2 of [7] that |E |2 = 4
∑3

i=1 b
2
i . For a trace-free 3 × 3 matrix A, we

have the sharp inequality:

|A(X , X)| ≤
√
6

3
||A|| |X |2. (4.21)

Apply (4.21) to A = diag(λ±
1 , λ±

2 , λ±
3 ) and X = (b1, b2, b3). We derive

4

(
3∑

i=1

λ+
i b

2
i +

3∑
i=1

λ−
i b

2
i

)
≤

√
6

3

(∣∣∣∣W+∣∣∣∣ + ∣∣∣∣W−∣∣∣∣) |E |2 . (4.22)

Combining (4.20) and (4.22), we derive the desired inequality. 
�

Now we turn to the proof of Proposition 4.4. From the definition of Gk , we have

d

dt

∫
G2dv = d

dt

∫
|E |2 dv + d

dt

∫
|R − R̄|2dv

+ d

dt

∫ ∣∣∣∣W−∣∣∣∣2 dv + d

dt

∫
| (F+)

− |2dv. (4.23)

Now estimate each term of the right hand side from formulas in Corollary 4.7.

d

dt

∫
|E |2 dv≤

∫ (
−2|∇E |2 − 1

3
R |E |2 − 4tr E3 + 4

√
6

3
(
∣∣∣∣W+∣∣∣∣ + ∣∣∣∣W−∣∣∣∣) |E |2

)
dv

≤ −Y

3

(∫
|E |4 dv

)1/2

+ 4

(∫
|E |2 dv

)1/2 (∫
|E |4 dv

)1/2

+ 4
√
6

3

(∫ ∣∣∣∣W−∣∣∣∣2 dv

)1/2 (∫
|E |4 dv

)1/2

+ 2

3

(∫
|(F+)−|2dv

)1/2 (∫
|E |4 dv

)1/2

+ 2

3

∫
(R − R̄) |E |2 dv

+ 2

3

∫
R̄ |E |2 dv

≤ −Y

6

(∫
|E |4 dv

)1/2

+ 2

3
R̄

∫
|E |2 dv.

(4.24)

The first inequality follows from Lemma 4.8. The second inequality follows from Cauchy–
Schwartz inequality and the conformally invariant Sobolev inequality:

Y
( ∫

φ4dv
)1/2 ≤

∫ (|∇φ|2 + 1

6
Rφ2)dv.
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The third inequality follows from the smallness assumption of ε0. Next, we esimate

d

dt

∫
(R − R̄)2dv =

∫ (
−2|∇(R − R̄)|2 − 1

3
R(R − R̄)2

)
dv + 1

3

∫
(R − R̄)3dv

+ 4

3

∫
R̄(R − R̄)2dv + 4

∫
(R − R̄) |E |2 dv

≤ −Y

3

(∫
(R − R̄)4dv

)1/2

+ 1

3

(∫
(R − R̄)2dv

)1/2 (∫
(R − R̄)4dv

)1/2

+ 4

3
R̄

∫
(R − R̄)2dv + 4

(∫
(R − R̄)2dv

)1/2 (∫
|E |4 dv

)1/2

≤ −Y

6

(∫
(R − R̄)4dv

)1/2

+ 4

3
R̄

∫
(R − R̄)2dv

+ 4

(∫
(R − R̄)2dv

)1/2 (∫
|E |4 dv

)1/2

. (4.25)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of ε0.

d

dt

∫
| (F+)

− |2dv ≤ −Y

3

(∫
|(F+)−|4dv

)1/2

+
(∫

| (F+)
− |2dv

)1/2 (∫
|(F+)−|4dv

)1/2

+ 4

3
R̄

∫
| (F+)

− |2dv + 4

3

(∫
(R − R̄)2dv

)1/2 (∫
|(F+)−|4dv

)1/2

≤ − Y

6

(∫
| (F+)

− |4dv

)1/2

+ 4

3
R̄

∫
| (F+)

− |2dv (4.26)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of ε0.

d

dt

∫ ∣∣∣∣W−∣∣∣∣2 dv ≤ −Y

3

(∫ ∣∣∣∣W−∣∣∣∣4)1/2

+ 2

3

(∫
(R − R̄)2dv

)1/2 (∫ ∣∣∣∣W−∣∣∣∣4 dv

)1/2

+ 2
√
6

(∫ ∣∣∣∣W−∣∣∣∣2 dv

)1/2 (∫ ∣∣∣∣W−∣∣∣∣4 dv

)1/2

+
√
6

3

(∫ ∣∣∣∣W−∣∣∣∣2 dv

)1/2 (∫
|E |4 dv

)1/2

≤ −Y

6

(∣∣∣∣W−∣∣∣∣4)1/2 +
√
6

3

(∫ ∣∣∣∣W−∣∣∣∣2 dv

)1/2 (∫
|E |4 dv

)1/2

(4.27)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of ε0.

With (4.24), (4.25), (4.26), (4.27), it is now easy to see from the smallness assumption of
ε0

d

dt

∫
M
G2dv ≤ 4

3
a

∫
M
G2dv − 1

12
b

(∫
G4dv

)1/2

. (4.28)

Take ã = 4
3a and b̃ = 1

12b. Clearly, we have proved the desired inequality. Note that the
differential inequality

d

dt

∫
M
G2dv ≤ 4

3
a

∫
M
G2dv
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implies

T ≥ T0 = 3 log 2

4
a.


�
Remark 4.9 The importance of this lemma is that T0 does not depend on ε0, which implies
that we may evolve the Ricci flow on a uniform time interval once we derive uniform bounds
for curvatures.

With Lemma 4.1, it is easy to see that we may choose ε in Theorem A sufficiently small
so that (4.3) is satisfied. To apply Propositions 4.4 and 4.13, we also need establish (4.4) and
(4.5). We now establish these inequalities and prove the following proposition.

Proposition 4.10 Suppose the initial metric of Ricci flow is chosen as the modified Yamabe
metric for sufficiently small ε in Theorem A. Then there exists T̃ which does not depend on
ε such that for 0 ≤ t ≤ T̃ all conditions of Proposition 4.4 are satisfied.

Proof It is clear from Lemma 4.1 that if we choose sufficiently small ε in Theorem A, we
can establish (4.3) for arbitrary small ε0. On 0 ≤ t ≤ T , (4.3) implies that∫

|E |2 dv ≤ 1

2
ε0,

∫ ∣∣∣∣W−∣∣∣∣2 dv ≤ 1

2
ε0,

∫ (
R − R̄

)2
dv ≤ 1

2
ε0. (4.29)

Recall b1(M) = 0, b−
2 (M) = 0, and b+

2 (M) = 1. From signature and Chern–Gauss–Bonnet
formula, we obtain∫ ∣∣∣∣W+∣∣∣∣2 dv = 12π2 +

∫ ∣∣∣∣W−∣∣∣∣2 dv ≤ 12π2 + 1

2
ε0 (4.30)

and thereby

12π2 ≥ 4
∫

σ2(P)dv = 24π2 −
∫

||W ||2 dv ≥ 12π2 − ε0. (4.31)

Now with the same argument in Lemma 2.7, we can derive

1

96
Y (t)2 ≥

∫
σ2

(
Pg(t)

)
dvg(t) ≥ 2π2 (4.32)

if we choose sufficiently small ε0. Since the initial metric is of positive Yamabe type and the
square of Yamabe constant has a strictly positive lower bound, we have established (4.4).

Note that (4.29) and (4.31) imply that for some C > 0

1

C2 ≤
∫

R̄2
g(t)dvg(t) = R̄2

g(t)vol (M, g (t)) ≤ C2,
1

C2 ≤
∫

R2
g(t)dvg(t) ≤ C2. (4.33)

To establish (4.5), it now suffices to derive a uniform lower bound for the volume since∫
R̄2dv.

Lemma 4.11 Under conditions of Proposition 4.10with vol(M, g(0)) = 1, along Ricci flow,
there exists constant T

′
> 0 such that for 0 ≤ t ≤ T

′ ≤ T

9

4
≥ vol (M, g (t)) ≥ 1

4
. (4.34)

In addition, there exists T1 > 0 which does not depend on ε0 such that T
′
> T1.
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Proof Recall the evolution equation for volume under the Ricci flow:

d

dt

∫
dv = −

∫
Rdv. (4.35)

Hence, for 0 ≤ t ≤ T

d

dt

∫
dv ≥ −

∫
|R|dv ≥ −

(∫
R2dv

)1/2 (∫
dv

)1/2

≥ −C

(∫
dv

)1/2

.

Similarly,

d

dt

∫
dv ≤ C

(∫
dv

)1/2

.

It is then easy to derive

|√vol(t) − √
vol(0)| ≤ Ct .

From this inequality, it is easy to choose T
′ = min{ 1

2C , T } such that (4.34) is satisfied. It is
easy to see such a T1 exists since T ≥ T0, where T0 does not depend on ε0. 
�

WithLemma4.11,we establish (4.5) on 0 ≤ t ≤ T ′ ≤ T . If we choose T̃ = T ′, all conditions
of Proposition 4.4 are satisfied on 0 ≤ t ≤ T̃ and clearly T̃ has a positive universal lower
bound. 
�

We now derive integral estimates for G3. For the sake of clearness, we first establish the
estiamtes for

∫ |E |3 dv and then derive a similar evolution inequality for
∫
G3dv as we did

in Lemma 4.4.

Lemma 4.12 Under the conditions of Proposition 4.4, along the Ricci flow, we have
∫

|Eg(t)|3dvg(t) ≤ Cε
3/2
0 t−1,

for any 0 < t ≤ T̃ , where C is a universal constant which does not depend on ε0.

Proof It is clear from (4.24) that

d

dt

∫
|E |2 dv + C

(∫
|E |4 dv

)1/2

≤ C
∫

|E |2 dv, (4.36)

where C is a constant which does not depend on ε0. From (4.8), we can compute

∂

∂t
|E |p = p

2
|E |p−2 ∂

∂t
|E |2

= p

2
|E |p−2

(
	 |E |2 − 2|∇E |2 + 4WEE − 4tr E3 + 2

3
R |E |2

)
, (4.37)

Note that

	 |E |p = p

2
|E |p−2 	 |E |2 + p(p − 2) |E |p−2 |∇ |E ||2 .
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From this identity and (4.37), it is easy to derive for p ≥ 3

d

dt

∫
|E |p dv =

∫ (
∂

∂t
|E |p − R |E |p

)
dv

≤
∫ (−p(p − 2) |E |p−2 |∇|E ||2 + 2p |E |2 WEE

)
dv

+
∫ (

−2p |E |p−2 tr E3 +
( p

3
− 1

)
R |E |p

)
dv

=
∫ (

−4(p − 2)

p
|∇|E | p

2 |2 − 2(p − 2)

3p
R |E |p

)
dv

+
∫ (

2p |E |2 WEE − 2p |E |p−2 tr E3 + CpR |E |p) dv

(4.38)

We now estimate the terms in last line of (4.38)

∫ ∣∣|E |p−2 tr E3
∣∣dv ≤

(∫
|E |2 dv

)1/2 (∫
|E |2p dv

)1/2

(4.39)

∫
|E |p−2 WEEdv ≤

√
6

3

∫ (∣∣∣∣W−∣∣∣∣ + ∣∣∣∣W+∣∣∣∣) |E |p dv

≤
√
6

3

(∫ ∣∣∣∣W−∣∣∣∣2 dv

)1/2 (∫
|E |2p dv

)1/2

+ 1

6

(∫
((F+)−)2dv

)1/2 (∫
|E |2p dv

)1/2

+ 1

6

∫
R |E |pdv (4.40)

∫
|R| |E |pdv ≤

∫
|R − R̄| |E |p dv + R̄

∫
|E |p dv

≤
(∫

(R − R̄)2dv

)1/2 (∫
|E |2p dv

)1/2

+ R̄
∫

|E |p dv (4.41)

From the smallness assumption of ε0, it is now easy to derive

d

dt

∫
|E |p dv + Cp

(∫
|E |2p dv

)1/2

≤ Cp

∫
|E |p dv. (4.42)

In this proof, we shall only need this formula for p = 2, 3. Take two smooth cut-off functions
φ1 and φ2 such that 0 ≤ φi ≤ 1 on [0, T̃ ] for i = 1, 2. Take τ < τ ′ < T̃ . For φ1, we choose
0 ≤ φ1 ≤ 1 on [0, τ ] and φ1 ≡ 1 on [τ, T̃ ]. For φ2, we choose φ2 ≡ 0 on [0, τ ], 0 ≤ φ2 ≤ 1
on [τ, τ ′], and φ1 ≡ 1 on [τ ′, T̃ ]. Also assume |φ′

i |L∞ have appropriate bound. It is now easy
to derive

d

dt

(
φi

∫
|E |p dv

)
+ Cφi

(∫
|E |2p dv

)1/2

≤ C
(
φi + |φ′

i |
) ∫

|E |p dv, (4.43)

for i = 1, 2 and p = 2, 3.
Set p = 2 and i = 1. Integrate (4.43) over [0, t] for some t > τ ′:

∫
|E |2 dv + C

∫ t

τ

(∫
|E |4 dv

)1/2

ds ≤ C

(
1 + 1

τ

) ∫ t

0

(∫
|E |2 dv

)
ds (4.44)
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Set p = 3 and i = 2. Integrate (4.43) over [0, t] for some t > τ ′:
∫

|E |3 dv + C
∫ t

τ ′

(∫
|E |6 dv

)1/2

ds ≤ C

(
1 + 1

τ ′ − τ

) ∫ t

τ

(∫
|E |3 dv

)
ds

(4.45)

Now we have∫ t

τ

(∫
|E |3 dv

)
ds ≤

∫ t

τ

(∫
|E |2 dv

)1/2 (∫
|E |4 dv

)1/2

ds

≤ Cε
1/2
0

∫ t

τ

(∫
|E |4

)1/2

ds

≤ Cε
1/2
0

(
1 + 1

τ

) ∫ t

0

(∫
|E |2 dv

)
ds

where second line follow from taking ε = 1
2ε0 in Lemma 5.5 and third line follows from

(4.44). It then follows∫
|E |3 dv ≤ C

(
1 + 1

τ ′ − τ

) ∫ t

τ

(∫
|E |3 dv

)
ds

≤ Cε
1/2
0

(
1 + 1

τ

) (
1 + 1

τ ′ − τ

) ∫ t

0

(∫
|E |2 dv

)
ds

≤ Cε
3/2
0

(
1 + 1

τ

) (
1 + 1

τ ′ − τ

)
t

Take τ = 1
4 t and τ ′ = 1

2 t andwe get desired estimate. In particular, if we choose t ∈ [ 14 T̃ , T̃ ],
we have

sup
T̃ /4≤t≤T̃

∫
|E |3 dv ≤ Cε

3/2
0 . (4.46)


�
Now we prove an evolution inequality for

∫
G3dv similar as (4.6).

Proposition 4.13 Under the same conditions of Proposition 4.4, for 1
4 T̃ ≤ t ≤ T̃ , we have

d

dt

∫
M
G3 (t) dvg(t) ≤ ã′

∫
M
G3 (t) dvg(t) − b̃′

(∫
M
G6 (t)dvg(t)

)1/2

, (4.47)

where ã′ and b̃′ are uniform positive constants independent of ε0 andwemay choose ã′ = c1a
and b̃′ = c2b, where c1 and c2 are universal positive constants.

Proof The proof is similar to that of (4.6). From the definition of Gk , we have

d

dt

∫
G3dv = d

dt

∫
|E |3 dv + d

dt

∫
|R − R̄|3dv

+ d

dt

∫ ∣∣∣∣W−∣∣∣∣3 dv + d

dt

∫
| (F+)

− |3dv. (4.48)

Note that we shrink the time interval to [ 14 T̃ , T̃ ], so from the previous lemma, we have known
that

∫ |E |3 is bounded by c(ε0), where c(ε0) → 0 as ε0 → 0.
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We now estimate the right hand side of (4.48) term by term

d

dt

∫
|E |3 dv =

∫ (
∂

∂t
|E |3 − R |E |3

)
dv

=
∫ (

3

2
|E | (	 |E |2 − 2|∇E |2 + 4WEE − 4tr E3)) dv

≤ − c2Y

(∫
|E |6 dv

)1/2

+ c1 R̄
∫

|E |3 dv, (4.49)

where the inequality is established similarly to (4.24).

d

dt

∫ ∣∣∣∣W−∣∣∣∣3 dv =
∫ (

∂

∂t

∣∣∣∣W−∣∣∣∣3 − R
∣∣∣∣W−∣∣∣∣3) dv

≤
∫ (

3
∣∣∣∣W−∣∣∣∣2 	

∣∣∣∣W−∣∣∣∣ + 3
√
6

∣∣∣∣W−∣∣∣∣3 +
√
6

2

∣∣∣∣W−∣∣∣∣2 |E |2 − R
∣∣∣∣W−∣∣∣∣3

)
dv

(4.50)

Recall convexity inequality:

ab ≤ a p

p
+ bq

q
(4.51)

for a, b ≥ 0 and 1/p + 1/q = 1. Take p = 3/2, q = 3, a =
(∫ ∣∣∣∣W−∣∣∣∣6 dv

)1/3
and

b = (∫ |E |3 dv
)2/3

. We have

∫ ∣∣∣∣W−∣∣∣∣2 |E |2 dv ≤
(∫ ∣∣∣∣W−∣∣∣∣6 dv

)1/3 (∫
|E |3 dv

)2/3

≤ 2K

3

(∫ ∣∣∣∣W−∣∣∣∣6 dv

)1/2

+ 1

3K

(∫
|E |3 dv

)2

(4.52)

We may take K to be a small multiple of the Yamabe constant and absorb the first term of
(4.52) by the Sobolev inequality. The second term of (4.52) is bounded by a constant multiple
of

∫ |E |3 dv from (4.46) and the smallness assumption of ε0. It is then easy to derive from
Sobolev inequality and Cauchy–Schwartz inequality

d

dt

∫ ∣∣∣∣W−∣∣∣∣3 dv ≤ −c2Y

(∫ ∣∣∣∣W−∣∣∣∣6 dv

)1/2

+ c1 R̄
∫ ∣∣∣∣W−∣∣∣∣3 dv + C

∫
|E |3 dv

(4.53)
d

dt

∫
| (F+)

− |3dv = − d

dt

∫ ((
F+)

−
)3

dv

=
∫ (

−3
((

F+)
−
)2 ∂

∂t

((
F+)

−
)

− R| (F+)
− |3

)
dv

≤ −c2Y

(∫
| (F+)

− |6dv

)1/2

+ c1 R̄
∫

| (F+)
− |3dv

(4.54)

The inequality follows from evolution inequality (4.12), Sobolev inequality and the following
trick:∫

R| (F+)
− |3dv ≤

∫ (
R − R̄

)| (F+)
− |3dv + R̄

∫
| (F+)

− |3dv
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≤
(∫ (

R − R̄
)2)1/2 (∫

| (F+)
− |6dv

)1/2

+ C
∫

| (F+)
− |3dv

(4.55)

Note the first term of the last line can be absorbed by Sobolev inequality with the smallness
asssumption of ε0.

d

dt

∫
|R − R̄|3dv =

∫ (
∂

∂t
|R − R̄|3 − R|R − R̄|3

)
dv

=
∫ (

3

2
|R − R̄| ∂

∂t
(R − R̄)2 − R|R − R̄|3

)
dv (4.56)

∂

∂t
(R − R̄)2 = ∂

∂t
R2 − 2

∂

∂t
(RR̄) + ∂

∂t
R̄2

= 	(R2) − 2|∇R|2 + 4R |E |2 + R3 − 2R
∂

∂t
R̄ − 2R̄

∂

∂t
R + 2R̄

∂

∂t
R̄

= 	(R − R̄)2 − 2|∇(R − R̄)|2 + 4(R − R̄) |E |2

+R2(R − R̄) − 2(R − R̄)
∂

∂t
R̄ (4.57)

Recall the evolution equation of R̄ under Ricci flow:

∂

∂t
R̄ = 1

vol

∫ (
2 |E |2 − 1

2
R2

)
dv + R̄2. (4.58)

Plugging (4.57) and (4.58) into (4.56), we can derive

d

dt

∫
|R − R̄|3dv ≤

∫ (
3

2
|R − R̄|	(R − R̄)2 − R|R − R̄|3

)
dv

+ 6
∫

(R − R̄)2 |E |2 dv + 3

2

∫
|R2 − R̄2|(R − R̄)2dv

+ 3

2

∣∣∣∣∣R̄2 −
∫
R2dv

vol

∣∣∣∣∣
∫

(R − R̄)2dv + 6

vol

∫
|E |2 dv

∫
(R − R̄)2dv.

(4.59)

Now we estimate the terms in second and third line of (4.59):
∫ (

R − R̄
)2 |E |2 dv ≤

(∫
|R − R̄|6dv

)1/3 (∫
|E |3 dv

)2/3

≤ 2K

3

(∫
|R − R̄|6dv

)1/2

+ 1

3K

(∫
|E |3 dv

)2

(4.60)

We may take K to be a small multiple of the Yamabe constant and absorb the first term of
(4.60) by the Sobolev inequality. The second term of (4.60) is bounded by a constant multiple
of

∫ |E |3 dv from (4.46) and the smallness assumption of ε0.
∫

|E |2 dv

∫ (
R − R̄

)2
dv ≤ C

(∫
|E |3 dv

)2/3 (∫
(R − R̄)6dv

)1/3

≤ CK

(∫
(R − R̄)6dv

)1/2

+ C

K

(∫
|E |3 dv

)2

(4.61)

The C in first line just depends on volume. For the second line, we may take K to be a small
multiple of the Yamabe constant and absorb the first term of (4.61) by the Sobolev inequality.
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The second term of (4.61) is bounded by a constant multiple of
∫ |E |3 dv from (4.46) and

the smallness assumption of ε0.∫ ∣∣R2 − R̄2
∣∣ (R − R̄)2dv =

∫ ∣∣R + R̄
∣∣ ∣∣R − R̄

∣∣3 dv

≤ R̄
∫

(R − R̄)3dv +
∫

|R| ∣∣R − R̄
∣∣3 dv

≤ 2R̄
∫

(R − R̄)3dv +
∫ ∣∣R − R̄

∣∣4 dv

≤ 2R̄
∫

(R − R̄)3dv +
(∫

(R − R̄)2dv

)1/2 (∫ ∣∣R − R̄
∣∣6 dv

)1/2

(4.62)

The last term can be absorbed by Sobolev inequality from the smallness assumption of ε0.∣∣∣∣∣R̄2 −
∫
R2dv

vol

∣∣∣∣∣
∫

(R − R̄)2dv = 1

vol

(∫
(R − R̄)2dv

)2

≤ C

(∫
(R − R̄)2dv

)1/2 (∫
(R − R̄)6dv

)1/2

(4.63)

This term can be absorbed by Sobolev inequality from the smallness assumption of ε0.
Combining all these estimates for |R − R̄|, we derive
d

dt

∫
|R − R̄|3dv ≤ −c2Y

(∫
|R − R̄|6dv

)1/2

+ c1 R̄
∫

|R − R̄|3dv + C
∫

|E |3 dv

(4.64)

Now we combine (4.49), (4.50), (4.54), (4.64) to derive 4.47. 
�
Lemma 4.14 With the modified Yamabe metric chosen as initial metric, under the Ricci flow,
we have

sup
T̃ /2≤t≤T̃

∫
G3(t)dvg(t) ≤ Cε

3/2
0 .

Proof The proof is fundamentally the same as that of Lemma 4.12. The only difference is
to replace |E |k by Gk(t) since we have evolution equations of same type as is shown in
Proposition 4.4 and Proposition (4.13). 
�
To derive the L∞-boundedness, we shall apply the following result established by Yang in
[39].

Lemma 4.15 Assume that with respect to the metric g = g(t), 0 ≤ t ≤ T , the following
Sobolev inequality holds:

(∫
|ϕ| 2n

n−2 dv

) n−2
n ≤ CS

[∫
|∇ϕ|2dv +

∫
ϕ2dv

]
, ϕ ∈ W 1,2(Mn). (4.65)

Also, let b ≥ 0 on Mn × [0, T ] satisfy
∂

∂t
dv ≤ bdv. (4.66)
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Let q > n, and suppose u ≥ 0 is a function on Mn × [0, T ] satisfying
∂u

∂t
≤ 	u + bu, (4.67)

and that

sup
0≤t≤T

|b|Lq/2 ≤ β. (4.68)

Given p0 > 1, there exists a constant C = C(n, q, p0,CS, β) such that for 0 ≤ t ≤ T ,

|u(t, ·)|∞ ≤ CeCt t
− n

2p0 |u(0, ·)|p0 . (4.69)

Moreover, given p ≥ p0 > 1, the following inequality holds for 0 ≤ t ≤ T :

d

dt

∫
u pdv +

∫ ∣∣∇ (
u p/2)∣∣2 dv ≤ Cp

2n
q−n

∫
u pdv (4.70)

where C = C(n, q, p0,CS).

Lemma 4.16 With the modified Yamabe metric chosen as the initial metric, we have

sup
3T̃ /4≤t≤T̃

{|E | + |R − R̄| + ∣∣∣∣W−∣∣∣∣ + |F+− |} ≤ Cε0.

Proof Apply Lemma 4.15 to u = G2, q = 6 > n = 4 and p0 = 3/2 on t ∈ [T̃ /2, T̃ ].
Condition (4.68) is satisfied by Lemma 4.14. Hence, we can prove the desired estimate. 
�
Now recall the Bernstein–Bando–Shi estimate (see for example Chapter 7 of [11]).

Lemma 4.17 Let (M4, g(t)) be a solution to the Ricci flow. For every m ∈ N, there exists a
constant Cm depending only on m such that if

sup
x∈M

|Rm(x, t)|g(t) ≤ K , t ∈
[
0,

1

K

]
,

then

sup
x∈M

|∇m Rm(x, t)|g(t) ≤ CmK

tm/2 , t ∈
[
0,

1

K

]
,

Now we are at the position to prove Theorem A.

Proof of Theorem A We argue by contradiction. Suppose there is a sequence of manifolds
(Mj , g j ) satisfying β(Mj , [g j ]) < 4(1 + ε j ) with ε j → 0 and each of them is not diffeo-
morphic to standard CP

2. For each conformal class [g j ], we choose the modified Yamabe
metric (g j )G as initial metric and evolve the metric along Ricci flow. Then Lemma 4.16
and Lemma 4.17 will imply that there is a time T̃ such that the curvatures of g j (T̃ ) are
uniformly bounded in C∞-norm and the Sobolev constants are also uniformly bounded. The
convergence theory [9] established by Cheeger et al. then shows that there is a subsequence
of {(Mj , g j (T̃ ))}which converges smoothly to a manifold (M∞, g∞). As ε j → 0, we obtain
that (M∞, g∞) satisfies ∫

M∞
||W ||2 dv∞ = 4

∫
M∞

σ2dv∞

Note that we also have b1(M∞) = 0, b+
2 (M∞) = 1 and b−

2 (M∞) = 0. Hence, by Chern–
Gauss–Bonnet and signature formula, we can easily derive that (M∞, g∞) is self-dual
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Einstein. The same argument in Lemma 3.5 will show that (M∞, g∞) is conformal equiva-
lent to (CP2, gFS). Since the convergence is smooth, we thereby obtain that (Mj , g j ) must
be diffeomorphic to CP

2 with standard differentiable structure when j is sufficiently large.
This is clearly a contradiction to our assumption. Hence, we have proved the theorem. 
�
Proof of Theorem B To prove Theorem B, suppose M4 is oriented with b+

2 (M4) > 0. If
β(M4) = 4, then by definition we can find a metric g with

β(M4, [g]) < 4(1 + ε/2),

where ε > 0 is from Theorem A. From Theorem A we conclude that M4 is diffeomorphic
to CP

2. In addition, if g is a metric on CP
2 for which β(M4, [g]) = 4, then taking ε = 0

in Lemma 2.7 we see that g is self-dual. It follows, for example, from [36] that (M4, [g]) is
conformally equivalent to (CP2, gFS). 
�
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