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Abstract

We extend the sphere theorem of Chang et al. (Publ Math Inst Ht Etudes Sci 98:105-434,
2003) to give a conformally invariant characterization of (CP?, grs). In particular, we intro-
duce a conformal invariant 8 (M 4 [¢]) = O defined on conformal four-manifolds satisfying
a ‘positivity’ condition; it follows from Chang et al. (2003) that if 0 < B(M*, [g]) < 4, then
M* is diffeomorphic to S*. Our main result of this paper is a ‘gap’ result showing that if
b;(M“) > (0and 4 < /3(M4, [gD) < 4(1 + €) for € > 0 small enough, then M* is diffeo-
morphic to CPP2. The Ricci flow is used in a crucial way to pass from the bounds on 8 to
pointwise curvature information.

Keywords Bach flat - Ricci flow - Sphere theorem

1 Introduction

In [7], the first two authors with Yang proved a conformally invariant sphere theorem in
dimension four. In this paper we extend the results of [7] to give a characterization of complex
projective space. To state our results we begin by establishing our notation and conventions.

If (M*, g) is a smooth, closed Riemannian four-manifold, we denote the Riemannian
curvature tensor by Rm (or Rmy if we need to specify the metric), the Ricci tensor by Ric,
and the scalar curvature by R. We also denote the Weyl curvature tensor by W, and the
Schouten tensor
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1 |
P=—-|Ric——-R-g). 1.1
(e La) "
We remark that the definition of the Schouten tensor in [7] (denoted by A) differed from
the formula in (1.1) by a factor of two; however, in this paper we adopt the more common
convention. In terms of the Weyl and Schouten tensors the Riemannian curvature tensor can
be decomposed as

Rm=W+PQg. (1.2)

where (® is the Kulkarni—-Nomizu product. There are two important consequences of this
identity: First, since the Weyl tensor is conformally invariant, it follows that the behavior of
the curvature tensor under a conformal change of metric is determined by the transformation
of the Schouten tensor. The second consequence is that the splitting induces a splitting of the
Euler form, so that the Chern—Gauss—Bonnet formula can be expressed as

872y (M) = / Iw1? dv+4/02(g_1P)dv, (1.3)

where

e | - || denotes the norm of the Weyl tensor, viewed as an endormorphism of Q2(M), the
bundle of two-forms. Note that this differs from the norm of Weyl when viewed as a
four-tensor, and the two norms are related by

wi= L wp
= Liwe.

e g~ ! P denotes the (1, 1)-tensor (interpreted as an endomorphism of the tangent space at
each point) obtained by ‘raising an index’ of the Schouten tensor, and o> (g ~! P) is the
second elementary symmetric polynomial applied to its eigenvalues. To simplify notation
we will henceforth write o5 (P) in place of o7 (g~ 'P).

It follows from the conformal invariance of the Weyl tensor that both integrals in (1.3) are
conformally invariant. While their sum is a topological invariant, their ratio can be arbitrary.
As we now explain, when the scalar curvature is positive the ratio does carry geometric and
topological information.

Given a Riemannian manifold (M", g) of dimension n > 3, let [g] denote the equivalence
class of metrics pointwise conformal to g, and Y (M", [g]) denote the Yamabe invariant:

n=2
Y (M", [g]) :gien[g] Vol (§)” n /Rgdvg.

We can also express the Yamabe invariant in terms of the first symmetric function of the
Schouten tensor: it follows from (1.1) that

(P) R

o = —,
! 2(n—1)
hence

Y (M".1g1) = inf 200~ DVol(3) 7 /Gl(Pg)dvg.

With this interpretation of the Yamabe invariant, in dimension four we should view the
conformal invariant f 07 (P) dv as akind of “second Yamabe invariant” (see [15,16,37]). We
therefore define

Vi (M) ={g : v (M* [g]) > 0}, (1.4)
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Conformally invariant gap theorem 723

and
Vi (m*) = {g ey ) : /02 (Pg) dvg > 0}. (1.5)

By a classical result of Lichnerowicz, there are topological obstructions to Y; (M*) being
non-empty [33]. There are also topological implications of }»(M*) being non-empty: by
[17], if y; (M4) # () then the first Betti number bl(M4) = 0. In fact, it follows from [6]
that [g] contains a metric g with positive Ricci curvature.

Returning to the Chern—Gauss—Bonnet formula, for metrics g € y; (M*) we define the
conformal invariant

W, av,
B( [g]) 7/02(Pg)dvg > (1.6)
We also define smooth invariant
B (M) = i[g]f B (M*,[g]). (1.7)

If Vi (M*) = @, we set B(M*) = —cc.
The main results of [7] give a (sharp) range for 8 that imply the underlying manifold is
the sphere:

Theorem 1 Suppose M* is oriented. If g € y; (M*) with
B (M*,[g]) <4, (1.8)
then M* is diffeomorphic to S*. In particular, if M* satisfies
—00 < B(M*) < 4,

then the same conclusion holds.
Furthermore, if M* admits a metric with B(M*, [g]) = 4, then one of the following must
hold:
o M* is diffeomorphic to §*; or
o M* is diffeomorphic to CP? and g € [grs), where grs denotes the Fubini—Study metric.

As a corollary we have the following characterization of manifolds for which g(M*) = 0:

Corollary 1 Assume M* is oriented. Then B(M*) = 0 if and only if M* is diffeomorphic to
S*. Furthermore, B(M*, [g]) = 0 ifand only if g € [go], where go denotes the round metric.

Remarks 1. For the case of equality, we note that if 8(M 4 [g]) = O, then the Weyl tensor
W, = 0 and it follows that (M 4, g)islocally conformally flat. By our observations above,
since [g] admits a metric with positive Ricci curvature, by Kuiper’s theorem [28] (M 4. g)
is conformally equivalent to ($%, go) or (RIF"‘, 80), where go is the standard metric.

2. There are a number of other sphere-type theorems under integral curvature conditions;
see for example [2-5,10,15,29], and the references in [7].
Our first goal in this paper is initiating the study of four-manifolds with

B (M*,[g]) > 4.

Suppose M 4 is oriented, and let by (M*) denote the second Betti number. Then we can write
by = b;r + b, , where l)2i denotes the dimension of the space of self-dual/anti-self-dual
harmonic two-forms. If by (M*) # 0, then by changing the orientation if necessary we may
assume b;r > 0.
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724 S.A.Chang et al.

Theorem A Suppose M* is oriented and b;‘(M“) > 0. There is an € > O such that if M*
admits a metric g € J)ZJF(M4) with
4< B (M*[g]) <4 +e), (1.9)

then M* is diffeomorphic to CP?.

This ‘gap’ theorem immediately gives a characterization of manifolds with by (M*) # 0
and B(M*) = 4:

Theorem B Suppose M* is oriented and b;r(M“) > 0. If
B (M*) =4, (1.10)

then M* is diffeomorphic to CP%. Moreover, B(M*,[g]) =4 ifand only if g € [gFs].

The proof of Theorem A is similar in approach to the proof of Theorem 1 in [7]. The first
step is to find a conformal representative satisfying a pointwise curvature condition that
encodes the integral assumptions of the theorem. In [7] this involved solving a modified
version of the o,-Yamabe problem. However, in the proof of Theorem B it is more natural
to consider a modified version of the Yamabe problem introduced by the second author in
[19]. In particular we show that a metric satisfying the assumptions of Theorem B can be
conformally deformed to a metric that is “almost self-dual Einstein” in an L?%-sense, and
whose scalar curvature satisfies a condition similar to the condition satisfied by the scalar
curvature of a Kéhler metric.

As in the proof of Theorem 1, the second step involves the Ricci flow. In [7] the weak
pinching result of Margerin [34] played a crucial role. To prove Theorem B, we show that the
Ricci flow with the conformal representative constructed in the first step as the initial metric,
will have uniform bounds on the curvature and the Sobolev constant on a fixed time interval
[0, Tp], with Ty > 0 depending on the pinching constant. These estimates together with the
convergence theory of Cheeger—-Gromov—Taylor [9] imply the family of Ricci flows g;(7p)
(up to a subsequence) will converge to the Fubini—Study metric.

We remark that the instability of the Fubini—Study metric under the Ricci flow was estab-
lished by Kroencke [27] (see also [26]). As a consequence, one cannot hope to show that the
Ricci flow converges in general to the Fubini—Study metric; this is why we must ultimately
appeal to a compactness result in this part of the argument.

In view of Theorems A and B, we make several conjectures. The first is that Theorem B
remains valid if we drop the assumption on b;r (M*:

Conjecture 1.1 If
B (M*) =4, (1.11)

then M* is diffeomorphic to +CP?. Moreover, B(M*, [g]) =4 ifand only if g € [gFs].

It is clear that 4 is a ‘special’ or ‘critical’ value of B, at which the topology of the under-
lying manifold can change. A natural question is the next critical value. As a corollary of
[17], we have the following estimate for manifolds with indefinite intersection form, i.e.,
by (M%), by (M*) > 0.

Theorem C Suppose M* is oriented, by(M*) # 0, and the intersection form of M* is indef-
inite. If y2+ (M*) is non-empty, then

B (M*) = 8. (1.12)
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Conformally invariant gap theorem 725

Moreover, if M* admits a metric with B(M*, [g]) = 8, then g € [gpl, where g, = g2 ® gs2
is the product metric on % x S2.

Our next conjecture is that we can weaken the condition g (M 4) = 4, and characterize the
possible topological types of manifolds admitting metrics with 8 between 4 and 8:

Conjecture 1.2 If M* is oriented and admits a metric g € y2+ (M*) with
0=<p(M* Ig]) <8, (1.13)

then M* is diffeomorphic to S* or +CP?.

2 Preliminaries

In this section, we state and prove some preliminary results, including the proof of Theorem C.
Several of the results in this section are based on the following result in [17]:

Theorem 2.1 Let M* be a closed oriented four-manifold with b;‘ (M*) > 0. Then for any
metric g with Y (M*, [g]) > 0,

[ Raw = T () 43¢ 0), e

where x (M*) and t(M*) denote the Euler characteristic and signature of M*, respectively.
Furthermore:

1. Equality is achieved in (2.1) by some metric g with Y (M*,[g]) > 0 if and only if g is

conformal to a (positive) Kiihler—Einstein metric gx g = e* g.

2. Equality is achieved in (2.1) by some metric g with Y(M, [g]) = 0 if and only if g is
conformal to a Ricci-flat anti-self-dual Kdhler—Einstein metric ggg = e“"g.

The following lemma is the first application of this result:

Lemma2.2 Let M* be a closed, oriented four-manifold admitting a metric g € y; (M*)
with

B (M*,[g]) <8 2.2)
If b;‘ (M*) > 0, then the signature of M* satisfies
T (M4) > 0.

Proof The signature formula implies

2 2
Ul ave= [ [Jwe [ v+ [ [[we][" av

2
— 2/ Wit || ave — 1227 ot. (2.3)

1
/az(Pg)dvg > gf HW

By (2.2),

2
dvg.
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726 S.A.Chang et al.

Substituting this into the Chern—Gauss—Bonnet formula, we have
872 (M) = / |[Wel|* dvg +4/02(Pg)dvg > %/ ([We||” dvg. 24
Combining (2.3) and (2.4), we get
82y (M) > 3/ HW;HZ dvg — 1872 (M*), 2.5)
and this inequality can be rewritten as
f HW;szvg < gnz(Zx(M“) +30(M*Y) + 2n2 T (M. (2.6)
Since b3 (M*) > 0 and Y (M*, [g]) > 0, (2.1) in Theorem 2.1 implies
2 4
/HW;H dvg = S QM) + 3t (M), 2.7)
Therefore, combining (2.6) and (2.7), we conclude
T (M*) > 0.
O
Remark 2.3 This lemma is sharp in the following sense: suppose (M, g) is isometric to

(82 x 82, gproa). In this case, b (M*) = by (M*) = 1, 1(M*) = 0 and

64
/ || We|* dvg = S/GQ(Pg)dvg = (2.8)

Corollary 2.4 Let M* be a closed, oriented four-manifold admitting a metric g € y; (M*)
with

B (M*,[g]) <8. (2.9)
Then either by(M*) = 0, or the intersection form is definite.

Proof Suppose by(M*) # 0and by (M*)-b, (M*) > 0. Then Lemma 2.2 implies t(M*) =
b;r(M4) —by (M*) > 0. Since by (M*) is also non-zero, we can apply Lemma 2.2 to M*
endowed with the opposite orientation to show that the signature is again positive. This is
a contradiction, since changing the orientation changes the sign of the signature. It follows
that b;’ (M%) - by (M*) = 0, hence the intersection form is definite. m}

Combining the two previous results with an a priori upper bound for the total o5 -curvature,
we can prove the following:

Lemma 2.5 Let M* be a closed, oriented four-manifold admitting a metric g € y; (M%)
with

B (M*, [g]) <8. (2.10)

Ifbry(M*) > 0, then (after possibly changing the orientation) b; (M* = land by (M* =0.
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Conformally invariant gap theorem 727

Proof By Corollary 2.4 we may choose an orientation for which the intersection form is
positive definite, so b;r(M4) > 0 and b, (M*) = 0. Also, by Corollary F of [17], if g €
Vi (M*), by (M*) = 0. Therefore,

x(M*) =2+ b (M%),

2.11)
t(M*) = bf (M*) > 0.
By the Chern—Gauss—Bonnet formula and (2.9),
2 4 2
8 x (M*) = / [Well™ dvg + 4/02(Pg)dug
(2.12)
<12 f 02(Pg) dvg.
By Theorem B of [18], we have the bound
/02 (P,) dvg < 4n?, (2.13)

and equality holds if and only if (M*, g) is conformally equivalent to the round sphere. More
generally, since the integral is conformally invariant it is easy to show that

1 4 2
02 (Py) dvg = 5=Y (M, [g])*. (2.14)
Since by (M*) > 0 strict inequality must hold, and substituting this into (2.12) we get

8712)((M4) < 12/02 (Pg) dvg

< 4872,

(2.15)

hence x (M%) < 6. By (2.11), we see that 1 < b;(M“) < 3. It therefore suffices to rule out
the possibilities b (M*) = 2 and b; (M%) = 3.
If b;r (M*) =2 then x(M*) = 4, so by the Chern—Gauss—Bonnet formula

/||WgH2 dvg+4/az (P,) dvg = 3272

Also, b;r MY =2 implies (M%) =2, so the signature formula gives

+[)? -1 2
[ ave= [ [[w | avy +207
> 2472,

It follows that

/ HW8||2 dvg > 24712, /02 (Pg) dvg < 272,

Therefore,

[l ave =12 [ o (r,) au.

which contradicts (2.10).
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728 S.A.Chang et al.

If b;r (M*) = 3, we can apply the same argument to conclude

/nguz dv, > 36/02(Pg)dvg,
which also contradicts (2.10). Therefore, b2+ (M%) = 1. ]

Remark 2.6 The preceding lemma implies that if we take € < 1 in Theorem A, then
b;r(M4) > (0 will show that b;(M‘*) = 1. Note that the work [13] and [14] of Donald-
son and Freedman will imply that the manifold is homeomorphic to CP? in this case.

The Proof of Theorem C We can now combine Theorem 2.1 and Lemma 2.2 to give the
proof of Theorem C. Assuming by (M*) - by (M*) > 0, it follows from Lemma 2.2
that 8(M 4 [¢]) > 8 for any metric g € y; (M4). Moreover, if equality holds, then since
b; (M*) > 0 we can argue as in the proof of Lemma 2.2 to get equality in (2.6):

/ HW;_HZdUg - gnz (2x (M*) + 31 (M*)) + 2777 (M?). 2.16)

By Theorem 2.1 we conclude that 7(M*) > 0. Reversing orientation and applying the same
argument (since b;(M“) > () we also get —7(M*) > 0, hence t(M*) = 0. Substituting this
into (2.16) implies that we have equality in (2.1). Therefore, g is conformal to Kdhler—Einstein
metric gk g By Proposition 2 of [12], VW, . = 0.

Applying the same argument with the opposite orientation, we see that g is conformal to
a Kéhler—Einstein metric g’ ... By Obata’s theorem [35], Einstein metrics are unique in their
conformal class (except in the case of the sphere, which is ruled out in this case). Therefore,
8KE = &k - and since equality holds in (2.1) with the opposite orientation it follows that

VW, = 0. We conclude that gk g is locally symmetric and Einstein; it follows from the

classification of such spaces (for example, [24]) that (M*, gk E) is isometric to (52 x 82, &p)
and Theorem C follows. O

2.1 A preliminary lemma
We end this section with a technical lemma that will be used in the proof of Theorem A.

Lemma2.7 Let (M*, g) be a closed, compact oriented Riemannian four-manifold with
by (M*) > 0 and

B(M*[gl) =41 +e) (2.17)
for some 0 <€ < 1. Then
112 _ 6¢ 2
/MHW I dv = 5——=* (2.18)
/||W+||2dv = 12n2+/}|w—}|2dv, (2.19)
and
24
Y (M*, . 2.20
(M*,[g]) = N (2.20)
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Conformally invariant gap theorem 729

Proof 1t follows from Lemma 2.5 that by(M*) = 0, b5 (M*) = 1, and by (M*) = 0.
Therefore, y (M 4y =3andt(M*) = 1. By the Chern—Gauss—Bonnet and signature formulas,
we have

2472 = f ||W||2dv+4/02(P)dv, (2.21)
202 = [ ||w|Pav = [ ||we|P v, 2.22)
Since B(M*, [g]) = 4(1 + €), we have

_ 1 2
4/02(P)dv - m/nwn dv. (2.23)

Substituting this into (2.21) we conclude

/IIWII dv —24<;j:> 7. (2.24)

12712:/||W+||2dv—/HW_H2dv
/||W|| dv — /”w 12 dv
_24<1+6> /HW | dv,

which implies (2.18). Also, substituting (2.18) into the signature formula (2.22) we get (2.19).
To prove (2.20), we fist observe that (2.23) and (2.24) imply

6
/UQ(P)dU = (m) 2.

6 2 _ [ R
7 = [ oa(Po)dvg < g Y (M (), (2.25)

By (2.22),

Therefore, by (2.25),

2+4¢€
and (2.20) follows. m]

3 Modified Yamabe metrics

As mentioned in the Introduction, the proof of Theorems A and B will use the Ricci flow. We
will use the fact that our assumptions are conformally invariant and choose an initial metric
that satisfies certain key estimates. The metric will be a solution of a modified version of the
Yamabe problem introduced in [19], which we now review.

Let (M*, g) be a Riemannian four-manifold. Define

+_ +
Ff =R, —2v6 || W,

3.1
and

Ly =—6A, + Ry — 26 ||[WH]|. (3.2)
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730 S.A.Chang et al.

Ly is a variant of conformal Laplacian that satisfies the following conformal transformation
law:

Lz =u>Lg (pu), (3.3)
where g = u?g € [g]. In analogy to the Yamabe problem, we define the functional
Yolul = {u, Lou)o / llull7s. (3.4)
and the associated conformal invariant

Y (M* [g])= inf  Y,[u]. (3.5)
( § ) ueWl2(M,g) &
By the conformal transformation law of L, the functional u — ?g[u] is equivalent to the
Riemannian functional

T=u’g > vol(g")_% / Fg dvg. (3.6)

The motivation for introducing this invariant is explained in the following result (see Theorem
3.3 and Proposition 3.5 of [19]):

Theorem 3.1 (i) Suppose M* admits a metric g with F;
where. Then b;‘ (M* =0.

(ii) Ifb;'(M‘L) > 0, then M* admits a metric g with Fg+ = 0 if and only if (M*, g) is a
Kdihler manifold with non-negative scalar curvature.

(iii) IfY(M4, [g]D) > Oandb;(M“) > 0, then ?(M“, [¢]D) < Oandthereisametricg = uzg
such that

v

0 on M* and F;r > 0 some-

Ff = Ry —2V6[|W*||. =Y (M,[g) <0 3.7)

and
5 2
/Rgdvg < 24/ W[ avz. (3.8)
Furthermore, equality is achieved if and only ing' =0and Ry = 2./6]| W§+|| = const.
Remark 3.2 Recall that F' ;‘ = 0 on a Kéhler manifold (M 4 g) with R > 0.

Remark 3.3 1In the rest of the paper, we will refer to the metric g in (iii) of Theorem 3.1,
normalized to have unit volume, a modified Yamabe metric, and denote it by g,,. To simplify
the notation, we write Y (M, [g]) = —u4. Then g, satisfies

Rg, —2V6||WF||, =—ps <0 3.9)
and (3.8).

As a preparation for the proof of Theorem A in next section, in the rest of this section we
will list some preliminary curvature estimates of the modified Yamabe metric g, € [g] with
the assumption b2+ (M*) > 0and (M, [g]) = 4(1 + ¢).

Lemma3.4 Let (M*, g) be a closed, compact oriented Riemannian four-manifold with
by (M*) > 0 and

B(M* [gl) =41 +e) (3.10)
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Conformally invariant gap theorem 731

for some 0 < € < 1, then we have for the modified Yamabe metric g, € [g]

2 6
/ [we || dvg, = 52—, G.11)
M " 2+€

2 2 2
/HWQH dvg, = 127 +/HW8—H dvg, . (3.12)
VM, [gn]) = (3.13)

’ gm - \/m .

/lEgm|2dvgm < 6/ HW; ’dvgm, (3.14)
—M+Y < 3/ HW (3.15)
1 _ 2
i [ (Rew = R v, <3 [ || || v, (3.16)

where R, = [ Ry, dvg,.

Proof (3.11), (3.12), (3.13) follow from (2.18), (2.19), (2.20) of Lemma 2.7 and confomal
invariance. The estimates (2.21) and (2.22) imply

/||W+||2dv—4/az(Pgm)dvgm =3/ W2 dv,,. 3.17)

Recall the modified Yamabe metric stasfies R, + py = 2«@||W;1 ||. Squaring both sides
of this formula and integrating over M*, we have

1 2
24 (R + 2M+Rgm + /'L+> dvgm / H 8m

With (3.17), we can rewrite this equation in the following way:

1
/'Egm 2dU+*M+/‘R8mdv8m 24/I‘L+dvgm _3/)‘W H dvgm

Since f Rg, dvg, > Y(M*, [gm]) > 0, (3.14) and (3.15) follow from this equation. To see
(3.16), we have

1

5 \2 1 - 1 )
ﬂ / (Rg"l - Rgm) dvgm = ﬁ (/ gmdvgm R ) —= 24 (/ gmdvgm -Y

dvgm N

We end this section with a conformally invariant characterization of the Fubini—Study
metric:

Lemma3.5 Let (M*, g) be a closed, compact oriented Riemannian four-manifold whose
metric g is of positive Yamabe type. In addition, assume by(M*) = by (M*) = 0 and
by (M*) = 1. Then
/ o2(P)dv < 12772
M

and equality holds if and only if (M*, g) is conformally equivalent to (CP?, 8Fs).
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732 S.A.Chang et al.

Proof By our assumptions we have x(M*) = 3 and T(M*) = 1. Then the Gauss—Bonnet—
Chern and signature formulas read

2472 :/ ||WgH2 dvg+4/ 02 (Pg) dvg, (3.18)
M M

and

127-[2=/MHW;H2dvg—/MHWg_szvg. (3.19)

Therefore,
/ az(P)dv:24pi2—/||W||2dv
M
524712—/ 1w dv
M
:12n2_/ W= |Pdv < 1222
M

If equality holds then W™ = 0 and by (3.14) of Lemma 3.4 itimmediately follows that £, =
0. Hence, (M*, g,,) is self-dual Einstein with positive scalar curvature and b;’ (M%) = 1.
It is easy to check that the equality in (2.1) is achieved, and therefore g,, is conformal to
a Kihler-Einstein metric. By Obata’s theorem, (M 4 gm) must be (Kihler—)Einstein with
positive scalar curvature and b; (M%) = 1.

Now (M*, gm) 1s a complex surface with a positive Kéhler—Einstein metric. For complex
surfaces, (see, p. 81 of [1])

3¢, (M) — e (MY)” = x (M*) = 37 (M*) = 0. (3.20)

Then the uniformlization of Kdhler—Einstein manifolds (e.g., Theorem 2.13 in [38]) implies
that the universal cover of (M, g,,) is (up to scaling) isometric to ((CIF’Z, grs)-Hence, (M, g,;;)
is conformally equivalent to (CPP?, grs) since CP? does not have nontrivial smooth quotient
space. O

4 The proofs of Theorems A and B

Suppose M* is an oriented four-manifold with b; (M%) > 0 and g is a metric on M* with
ﬂ(M4, [g]) = 4(1 4 ¢€) for € > 0 small. We want to show that if € > 0 is small enough, then
M* is diffeomorphic to CP2. By Lemma 3.4, the modified Yamabe metric g, € [g] is close
to a self-dual Einstein metric in an L?-sense. Using the Ricci flow, we want to ‘smooth’ g, to
obtain smallness of W™ and E in a pointwise sense. We do this in two stages: first, we show
that for a small but uniform time, the Ricci flow applied to g, gives a metric for which W™ and
E are small in an L”-sense, for some p > 2. Next, we appeal to a parabolic Moser iteration
estimate of Yang [39] to conclude L°°-smallness. The Bernstein—-Bando-Shi estimates for
the Ricci flow then imply bounds for C*°-norms of the curvature. To complete the proof we
apply a contradiction argument using a compactness result of Cheeger—Gromov—Taylor [9].
We begin with some definitions: on (M 4, g), define

- k
Gic(9) = |Eel“ + IRy — Rl + || wi || +1(F) 1~ .1

where (F' gj" )— = min(F' ;‘ , 0). We shall suppress the subscript g when there is no confusion.
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Conformally invariant gap theorem 733

Lemma 4.1 Under the conditions of Theorem A, the modified Yamabe metric g, € [g]
satisfies f Ga(gm)dvg, < c(€), where c(e€) — Oase — 0.

Proof This is a direct consequence of Lemma 3.4. O

Now recall some basic facts about the Ricci flow:

9 ,
318 = —2Ric(g)
i =

The following short time-time existence result of Ricci flow has been established in [21].

Proposition 4.2 For arbitrary smooth metric g, there exists T = T (go) such that (4.2) has
a unique smooth solution for t € [0, T).

Remark 4.3 In general, the time interval [0, 7') depends on the initial metric go.

Along the Ricci flow, define G (1) = G (g(t)). The following estimate is of fundamental
importance for our argument.

Proposition 4.4 Suppose we have a solution of the Ricci flow whose initial metric satisfies

1
/ G2(0)dvg0) = 50 (4.3)
M

for some € is sufficiently small. Let

T = inf {t : f G () dvgy = eo} .
M
Assume in addition for0 <t < T
Y1) =Y (M* [g®)])=b>0, 4.4)
and
0<R(@) <a. 4.5)

Then for0 <t < T, we have

d B N 1/2
d—/ Gy (t)dvgy < a/ Gy (t)dvgsy — b (/ Gy (t)dvg(t)> , (4.6)
tJm M M

where @ and b are uniform positive constants independent of €y. Moreover, there exists To,
which is independent of €y such that T > Ty, and we may choose a = %a and b = I]—Zb.

Proof The proof is based on the evolution of the curvature under the Ricci flow in four
dimensions, along with several algebraic inequalities. We begin by summarizing the evolution
formulas we will need, most of which can be found in [11]:

Lemma 4.5 Under (4.2) on Riemannnian four-manifolds,

3
—dv = —Rdv, 4.7
at

3 2
a|E|2=A|E|2—2|VE|2+4WEE—4er3+§R|E|2, (4.8)
3

5, (R?) = A(R?) —2IVRP® +4R|E* + R, (4.9)
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%HWin = A|WE[]P —2||[VWE|]? +36det WE+ WEEE,  (4.10)
3 6

21wl = & flw )+ 8w P+ X e @i
a

) ) = AP )~ (7)) 2R () - 12

where
WFEE := Wi ExEji, Ff =Ry —2V6||W*||, (F")_ :=min{F],0).
Remark 4.6 For the evolution formulas of W* we rely on unpublished notes of Knopf [25].
As a corollary of the formulas above we have in four dimensions:

Corollary 4.7 Under (4.2),

d
— dv:—/Rdv, (4.13)

dt

d 1

E/ |E|>dv = / (—2|VE|2 +4WEE — 4rE> — 3R |E|2> dv, (4.14)
d

dt
d

7 | (FT)_*dv < —2/ <|V(F+)_|2+§|(F+)_ |2) do
_/ ((F+)_)3dv+/ <gl§| (FF)_ P+ g (R—R)|(F*)_ |2> dv. (4.16)

d _ _ _
& [P av == [ (o lwl 7+ R |w=|P) do

- (R—R)zdu:f(—2|VR|2+4(R—1§)|E|2+R(R—1é)2)du, (4.15)

+/<2J6|\W—|\3+JfHW—WEF)dv, (4.17)
where

R:/Rdv//dv, Ff =Ry —2V6||w

, (F+)_ :min{F;,O}.

For the proof of Proposition 4.4 we will also need some algebraic inequalities. The first
appears in ([7], Lemma 4.3), and is based on ([34], Lemma 6):

Lemma 4.8
6
WEE < g(HWJFH +||w=)) IE]? (4.18)

Proof Recall the well-known decomposition of Singer-Thorpe:

wt+ Bra B
Ri = 12 4.1
iem < L .19)

Note the compositions satisfy

BB*: A% — A%, B*B:A% — A%
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Fix a point P € M*, and let )Lli < }Lf < )\3i denote the eigenvalues of W=, where W*
are interpreted as endomorphisms of Ai. Also denote the eigenvalues of BB* : Ai — Aﬁ
by b]2 < b% < b%, where 0 < by < by < b3. From Lemma 4.3 of [7], we have

3 3
WEE < 4 (Z ATb? + Z A;bf) (4.20)
i=1 i=1

Recall from Lemma 4.2 of [7] that |E |2 =4 Z?: 1 biZ. For a trace-free 3 x 3 matrix A, we
have the sharp inequality:

6
lACX, X)| = g LAINIX 2. 4.21)

Apply (4.21) to A = diag(A, 25, A3) and X = (by, by, b3). We derive

3 3 \@
(e ) < Sawlls v per. aa
i=1 i=1
Combining (4.20) and (4.22), we derive the desired inequality. ]

Now we turn to the proof of Proposition 4.4. From the definition of G, we have

d d s d =
E/szv_fh/'El dv+d7[\/‘|R R| dv
5 /IIW‘IIzdv+—d /I(F+) v (4.23)
dt dt - ' ’

Now estimate each term of the right hand side from formulas in Corollary 4.7.

%/lElzdvsf (—2|VE|2—;R|E|2—4trE3+4“3%(\|W+\|+||W—||)|E|2> dv

y 1/2 1/2 1/2
=-3 </|E|4dv) +4<f|E|2dv> </|E|4dv>
1/2 1/2
—l—m(/HW_szv) </|E|4dv>
3 (4.24)
) 1/2 12 5 ~
+§</|(F+)_|2dv) (/|E|4dv> +§/(R—R)|E|2dv

2 _
+§/R|E|2dv

Y 1/2 2 _
. (/|E|4dv) +§R/|E|2dv.

The first inequality follows from Lemma 4.8. The second inequality follows from Cauchy—
Schwartz inequality and the conformally invariant Sobolev inequality:

Y</¢4dv)l/2 < / (IVeP* + éRd)z)dv.
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The third inequality follows from the smallness assumption of €p. Next, we esimate
d _ _ 1 _ 1 _
- /(R — R)dv = / (—2|V(R —R))? - gR(R - R)2> dv + 3 /(R —R)3dv

4 D 2 D 2
+§fR(R—R) dv—|—4/(R—R)|E| dv

y B 12 _ 12 B 1/2
-3 (/(R - R)4dv> +3 </(R - R)zdv) (/(R - R)4dv>
4 _ B _ 1/2 1/2
+ 5R/(R —R)dv+4 (/(R - R)zdv> (/ |E|4dv>
1/2
5—% (/(R—R)4dv> +§1§/(R—1§)2du
_ 1/2 1/2
+4 (/(R - R)2dv) (/ |E|4dv> ) (4.25)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of €g.

d 1/2 1/2 172
- NF)_Pdv < =5 ( f I(FF)- |4dv) +( / L(FF)_1 2dv> ( ((FH)- |4dv)
4 _ 4 _ 1/2 1/2
+ gR/ |(F*)_ Pdv+ 3 </(R - R)zdv) (/ |(F+)_\4dv>

Y 2 4
<= (fren ra) 3R [1) fa (426)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of €.

& [t =<2 (L) "2 (e rra) " (fiwra)”
e ([IweiPas) ([ weifa)”
+?<fHW‘H2dv)l/2 </|E|“dv>l/2

f—g(l\ I (/IIW | dv) " (/|E|“dv)l/2 .27)

The first inequality is from Sobolev inequality and Cauchy-Schwartz inequality and the
second inequality is from the smallness assumption of €.
With (4.24), (4.25), (4.26), (4.27), it is now easy to see from the smallness assumption of

d 4 1 172
G dv < Gordv— —b Gud . 4.28
dt 2dv 3a/ 2dV 2 (/ 4 U) ( )

Take d = %a and b = ﬁb. Clearly, we have proved the desired inequality. Note that the
differential inequality

€0

d

4
7 szv < 3a/ Gadv
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implies

3log2
= a.

[}

Remark 4.9 The importance of this lemma is that Ty does not depend on €y, which implies
that we may evolve the Ricci flow on a uniform time interval once we derive uniform bounds
for curvatures.

With Lemma 4.1, it is easy to see that we may choose € in Theorem A sufficiently small
so that (4.3) is satisfied. To apply Propositions 4.4 and 4.13, we also need establish (4.4) and
(4.5). We now establish these inequalities and prove the following proposition.

Proposition 4.10 Suppose the initial metric of Ricci flow is chosen as the modified Yamabe
metric for sufficiently small € in Theorem A. Then there exists T which does not depend on
€ such that for 0 <t < T all conditions of Proposition 4.4 are satisfied.

Proof Tt is clear from Lemma 4.1 that if we choose sufficiently small € in Theorem A, we
can establish (4.3) for arbitrary small €. On 0 <t < T, (4.3) implies that

/|E|2dv < %60, / W= | dv < %eo, /(R —R)’dv < %eo. (4.29)

Recall b1(M) =0, b, (M) = 0, and b;‘ (M) = 1. From signature and Chern—Gauss—Bonnet
formula, we obtain

1
f}|W+}|2dv=127T2+/||W_||2dv§1271'2+560 (4.30)
and thereby
1272 > 4/02(P)dv =247% — / IW|1>dv > 1272 — €. 4.31)
Now with the same argument in Lemma 2.7, we can derive
1 2
%Y (t) > o) (Pg(t))dvg(t) > 2 (4.32)

if we choose sufficiently small €. Since the initial metric is of positive Yamabe type and the
square of Yamabe constant has a strictly positive lower bound, we have established (4.4).
Note that (4.29) and (4.31) imply that for some C > 0

1 1
o </ g(,)dvg(r) = g(z)U"l (M, g (1) < C?, 2 </ g(z)d”g(t) < C?.(433)

To_establish (4.5), it now suffices to derive a uniform lower bound for the volume since
[ R2dv.

Lemma 4.11 Under condmons of Proposition 4.10 wzth vol(M, g(0)) = 1, along Ricci flow,
there exists constant T > 0 such that for0 <t < T <T

9 1
1 >vol (M, g (1)) > h (4.34)

In addition, there exists T1 > 0 which does not depend on €y such that T > T;.
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Proof Recall the evolution equation for volume under the Ricci flow:

d
— [ dv=— [ Rdv. 4.
’r v / dv (4.35)

Hence, forO0 <t <T

d 1/2 1/2 1/2
E/dvz—/mldvz—(/dev) (/dv) z—C(/dv) )
Similarly,
d 1/2
E/dv <C </ dv) .

[V vol(t) — +/vol(0)| < Ct.

From this inequality, it is easy to choose T = min{%, T} such that (4.34) is satisfied. It is
easy to see such a 7T exists since T > Tp, where Tp does not depend on €. m]

It is then easy to derive

With Lemma4.11, weestablish (4.5)on0 <t < T’ <T. Ifwe choose T = T’, all conditions
of Proposition 4.4 are satisfied on 0 < r < T and clearly T has a positive universal lower
bound. O

We now derive integral estimates for G3. For the sake of clearness, we first establish the
estiamtes for [ |E I dv and then derive a similar evolution inequality for [ G3dv as we did
in Lemma 4.4.

Lemma 4.12 Under the conditions of Proposition 4.4, along the Ricci flow, we have
3/2,—
/|Eg<r>|3dvg<t) <cqr,

forany 0 <t < T, where C is a universal constant which does not depend on €.

Proof 1t is clear from (4.24) that

d 1/2
E/lElzdv+C<f|E|4dv> §C/|E|2dv, (4.36)

where C is a constant which does not depend on €g. From (4.8), we can compute

d 0
ZEp = g2 2 EP
t 2 ot

2
g |E|P~2 <A |EP ~2VEP +4WEE —4rE> + IR |E|2> . 437

Note that

P _ _
MEW=§WW2AWF+MP—DWW2WWW.
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From this identity and (4.37), it is easy to derive for p > 3

/IEIpdv =

d
|E|P — R|E|P>dv
ot
/ p(p—2)|EIP2|V|E|* +2p|E|* WEE) dv

/(G
(-
/( 2p |EP- ztrE3+<§ 1)R|E|P)du (4.38)
-/ (-

4 2 2(p —2
(P - )|V|E|%|2—%R|E|f’)d
P

+ / (2p |E|2 WEE —2p|E|P2trE* + C,R |E|") dv

We now estimate the terms in last line of (4.38)

1/2 1/2
/||E|P—2 trE3|dv < </|E|2dv> (/|E|2Pdv) (4.39)

/|E|P 2WEEdv<—/ W[+ ||[WT]]) IEI” dv

2 172
< V6 (f ||W*||2dv> </|E|2”dv>
1 12 12
+ ¢ (/((F+)_)2dv) (/ |E|?P dv) + E/RlElpdv (4.40)

/|R||E|”dv§/|R—R||E|Pdv+R/|E|Pdv

B 1/2 12
< (/(R—R)zdv> </|E|2”dv> —I—R/lEl”dv (4.41)

From the smallness assumption of €, it is now easy to derive

d 1/2
Ef|E|Pdu+c,, (/IEldev> < C,,/lElpdv. (4.42)

In this proof, we shall only need this formula for p = 2, 3. Take two smooth cut-off functions
¢1 and ¢ such that 0 < ¢; < 1 on [0, T] fori =1,2.Taket <1’ < T. For ¢1, we choose
0<¢y<1lon[0,t]andp; = 1on]7, f]. For ¢, we choose ¢pp =0on [0,7],0 < ¢ <1
on[t,7'],and ¢; = 1 on[7/, T]. Also assume |¢!| > have appropriate bound. It is now easy
to derive

1/2
%(@/IElpdv) + Coi (/lElzpdv) < C(¢i +|¢f|)/ |E|" dv, (4.43)

fori =1,2and p =2, 3.
Set p =2 and i = 1. Integrate (4.43) over [0, 7] for some t > t’:

/|E|2dv+c/ </|E|4dv>1/2ds <c(1+ )/ </|E|2dv>ds (4.44)
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Set p = 3 and i = 2. Integrate (4.43) over [0, 7] for some t > t’:

3 ' 6 2 1 ' 3
|E|”dv+ C |E|° dv ds<C|1+ - |E]”dv |ds
14 T T T

(4.45)

Now we have

/Tt </|E|3dv>ds 5/; (/|E|2dv)1/21(2/|E|4dv>1/2ds
SCeo‘/zf: <f|E|4> s
e (14 ) [ (e

where second line follow from taking € = %eo in Lemma 5.5 and third line follows from
(4.44). It then follows

] t
/|E|3dv§C<1+ ; )/ </|E|3dv>ds
v—1) J;
12 1 1 ! 2
< C¢, I+ )1+ |E|*dv |ds
T v—=1) Jo
1 1
5Ce§/2<1+—)(1+ , )r
T T —7

Taket = let and 7’ = %t and we get desired estimate. In particular, if we choose r € [% T.7),
we have

sup / |EP dv < Ce)”. (4.46)
T/a<t<T
Now we prove an evolution inequality for [ G3dv similar as (4.6).

Proposition 4.13 Under the same conditions of Proposition 4.4, for %T <t < T, we have

d ~ N 12
- / G3 (1) dvg(,) < a’/ G3 (1) dvg(,) - (/ Gg (t)dvg(,)> s (4.47)
dt Ju M M

where d' and b’ are uniform positive constants independent of €y and we may choosed' = cja
and b’ = cyb, where ¢ and ¢y are universal positive constants.

Proof The proof is similar to that of (4.6). From the definition of G, we have

d d d _
— = — E3 R_R3
dr/G3dU dt/' ldv+dt/| v
4 /HW‘H3dv+—d /I(F+) Pdv. (4.48)
dt dt -

Note that we shrink the time interval to [% T, T], so from the previous lemma, we have known
that f |E|3 is bounded by c(€p), where c(€p) — 0 as eg — 0.
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We now estimate the right hand side of (4.48) term by term

d 9
—/|E|3dv =/ —EP = R|E)P ) dv
dt at

3
N / (E |E|(A|E] =2IVE]® +4WEE —4trE3)> dv

1/2 ~
— Y </|E|6dv) +c1R/|E|3dv, (4.49)

where the inequality is established similarly to (4.24).
d —13 0 13 13
[P ao= [ (G I = rlw ) ao
—112 — —113 \/6 112 13
< [ (30w Al v i - ] )

(4.50)

IA

Recall convexity inequality:

aP b4
ab < — + — (4.51)
p q

13
fora,b > Oand 1/p+1/g = 1. Take p = 3/2, ¢ = 3, a = <f||W’||6dv> and

b= (f1E] dv)””. We have
1/3 2/3
() (e

JAEQIRLERT
1K s 12 1 ; 2
T</||W I dv) +§</|E| dv) (4.52)

We may take K to be a small multiple of the Yamabe constant and absorb the first term of
(4.52) by the Sobolev inequality. The second term of (4.52) is bounded by a constant multiple
of f |E |3 dv from (4.46) and the smallness assumption of €. It is then easy to derive from
Sobolev inequality and Cauchy—Schwartz inequality

d 3 6 1/2 = 3
9w dvs—czY</HW_H dv) ek [P av+c [ 127
(4.53)

IA

IA

d

AL +)_|3dv:—%/<(F+)_)3du
— (=) 5 () =R P sy
< —aY </|(F+)|6dv>1/2+61R/|(F+) Pdv

The inequality follows from evolution inequality (4.12), Sobolev inequality and the following
trick:

/m (F) Pdv < / (R = R)| (F*)_Pdv+ zéf |(F*)_ Pdv
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< (/ (R— 1%)2)1/2 (/ |(F*)_ |6dv)1/2+Cf |(F*)_Pdv

(4.55)

Note the first term of the last line can be absorbed by Sobolev inequality with the smallness
asssumption of €.

d . 9 _ _
—/|R—R|3dv:/ —|R =R = R|R — R)? ) dv
dt ot

3 _ 9 _ .
=/ ZIR—R|—(R—R)?>—RIR—R) ) dv (4.56)
2 ot
9 I I I Ry
—(R—R?>=—R>-2—(RR)+ —R
or ¢ = or BB+ 35,

- -9 _ 9 -
= A(R*) —2|VR|> +4R|E* + R — 2RR—2R--R+2R-R
=AR—-R?>=2IV(R-=R)|>*+4(R—-R)|E)?

_ _ 0 -
+R*(R—R) —2(R — R)Z-R (4.57)
Recall the evolution equation of R under Ricci flow:
d - 1 1 _
—R=— | (21E> = =R? ) dv + R>. 4.58
ot vol(||2)v+ (4.58)

Plugging (4.57) and (4.58) into (4.56), we can derive
d 513 3 5 52 513
Z [ IR=RPdv< | (ZIR-RIARR-R)?—RIR — R )dv
dt 2
_ 3 _ _
- 6f(R—R>2|E|2dv+§/|R2—R2|<R—R>2dv (4.59)
512 6 2 512
/(R—R) dv+—/|E| dv[(R—R) dv.
vol
Now we estimate the terms in second and third line of (4.59):
., B 1/3 2/3
/(R—R) |EI*dv < </|R—R|6dv> </ |E|3dv)
K . 1/2 1 \ 2
— R — R|°d — E|I°d 4.60
E () (o)

We may take K to be a small multiple of the Yamabe constant and absorb the first term of
(4.60) by the Sobolev inequality. The second term of (4.60) is bounded by a constant multiple
of f |E|? dv from (4.46) and the smallness assumption of €g.

o 2/3 B 1/3
/lElzdvf(R—R) dv§C</|E|3dU> (/(R—R)6dv>
B 12 2
<CK (/(R - R)6dv> + (/ |E|3du> 4.61)

The C in first line just depends on volume. For the second line, we may take K to be a small
multiple of the Yamabe constant and absorb the first term of (4.61) by the Sobolev inequality.

R fRZdv

+ vol

3
2

IA
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The second term of (4.61) is bounded by a constant multiple of f |E|? dv from (4.46) and
the smallness assumption of €.

/sz ~ R (R - RYdv = f IR+ R||R— & dv

IA

R/(R—R)3du+/|R||R—1§|3du

IA

2R/(R—R)3dv+/|R—R|4du

1/2 1/2
< zR/(R—R)3dv+</(R—R)2du> </|R—R\6dv>

(4.62)

The last term can be absorbed by Sobolev inequality from the smallness assumption of €.

2 2
R? — % /(R—R)Zdu % (/(R—R)Zdv>

~ 1/2 ~ 1/2
<C </(R - R)Zdv) </(R - R)%)

(4.63)

A

This term can be absorbed by Sobolev inequality from the smallness assumption of €.
Combining all these estimates for |[R — R|, we derive

d B B 1/2 B B
E/|R—R|3dv§—czY </|R—R|6dv> +c1R/|R—R|3dv+C/|E|3dv

(4.64)
Now we combine (4.49), (4.50), (4.54), (4.64) to derive 4.47. O

Lemma 4.14 With the modified Yamabe metric chosen as initial metric, under the Ricci flow,
we have

sup /G3(t)dvg(,) < Ceg/z.
T2<t<T

Proof The proof is fundamentally the same as that of Lemma 4.12. The only difference is
to replace |E |k by G (t) since we have evolution equations of same type as is shown in
Proposition 4.4 and Proposition (4.13). O

To derive the L°°-boundedness, we shall apply the following result established by Yang in
[39].

Lemma 4.15 Assume that with respect to the metric g = g(t), 0 <t < T, the following
Sobolev inequality holds:

n—2
(/ |<p|%du) < Cy [/|V¢|2dv+/¢2dv],¢ e Whmm. (4.65)

Also, let b > 0 on M" x [0, T] satisfy

a
Zdv < bav. (4.66)
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Let g > n, and suppose u > 0 is a function on M" x [0, T] satisfying

du
— < Au + bu, (4.67)
at
and that
sup |blpqan < B. (4.68)
0<t<T

Given po > 1, there exists a constant C = C(n, q, po, Cs, B) such that forQ <t < T,

u(t. Yoo < CeC'17 2 u(0, )] - (4.69)

Moreover, given p > po > 1, the following inequality holds for 0 <t < T:

%/u”dv—l—/ |V () dv < Cpq%/updv (4.70)

where C = C(n, q, po, Cs).
Lemma 4.16 With the modified Yamabe metric chosen as the initial metric, we have

sup  {IE|+|R— R+ ||W~|| +|FF]} < Ceo.
3T j4<t<T

Proof Apply Lemma 4.15tou = G, g =6 >n =4 and pp = 3/2ont € [?/2, T1.
Condition (4.68) is satisfied by Lemma 4.14. Hence, we can prove the desired estimate. O

Now recall the Bernstein-Bando—Shi estimate (see for example Chapter 7 of [11]).

Lemma 4.17 Ler (M*, g(1)) be a solution to the Ricci flow. For every m € N, there exists a
constant Cy, depending only on m such that if

1
sup [Rm(x,t)lgi) < K, 1€ [0, —} ,
xeM K
then

CnK 1
sup [V Rm(x, 1)|g() < #/2, te [07 *i|»
xXeM ! K

Now we are at the position to prove Theorem A.

Proof of Theorem A We argue by contradiction. Suppose there is a sequence of manifolds
(M, gj) satisfying /3(M2j, [g;]) < 4(1 + €;) with €; — 0 and each of them is not diffeo-
morphic to standard CIP~. For each conformal class [g;], we choose the modified Yamabe
metric (g;)¢ as initial metric and evolve the metric along Ricci flow. Then Lemma 4.16
and Lemma 4.17 will imply that there is a time T such that the curvatures of g j(f) are
uniformly bounded in C*°-norm and the Sobolev constants are also uniformly bounded. The
convergence theory [9] established by Cheeger et al. then shows that there is a subsequence
of {(M;, g; (f))} which converges smoothly to a manifold (M, goo). As €; — 0, we obtain

that (Mo, g0o) satisfies
f W11 dveo =4/ 02dvsg

Note that we also have b (My,) = 0, 192+ (M) = 1 and b, (M) = 0. Hence, by Chern—
Gauss—Bonnet and signature formula, we can easily derive that (M, goo) is self-dual
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Einstein. The same argument in Lemma 3.5 will show that (M, gxo) is conformal equiva-
lent to ((CIP’Z, grs)- Since the convergence is smooth, we thereby obtain that (M, g;) must
be diffeomorphic to CP? with standard differentiable structure when Jj is sufficiently large.
This is clearly a contradiction to our assumption. Hence, we have proved the theorem. 0O

Proof of Theorem B To prove Theorem B, suppose M* is oriented with b;r (M%) > 0.If
B(M*) = 4, then by definition we can find a metric g with

BM*,[g]) < 4(1 +¢€/2),

where € > 0 is from Theorem A. From Theorem A we conclude that M* is diffeomorphic
to CP2. In addition, if g is a metric on CP? for which B(M*, [g]) = 4, then taking e = 0
in Lemma 2.7 we see that g is self-dual. It follows, for example, from [36] that (M 4, [g]) is
conformally equivalent to (CP?, gFS)- O
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