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ABSTRACT

Semi-supervised learning (SSL) of dynamic processes over
graphs is encountered in several applications of network sci-
ence. Most of the existing approaches are unable to handle
graphs with multiple relations, which arise in various real-
world networks. This work deals with SSL of dynamic pro-
cesses over multi-relational graphs (MRGs). Towards this
end, a structured dynamical model is introduced to capture
the spatio-temporal nature of dynamic graph processes, and
incorporate contributions from multiple relations of the graph
in a probabilistic fashion. Given nodal samples over a subset
of nodes and the MRG, the expectation-maximization (EM)
algorithm is adapted to extrapolate nodal features over unob-
served nodes, and infer the contributions from the multiple
relations in the MRG simultaneously. Experiments with real
data showcase the merits of the proposed approach.

Index Terms— Dynamic graph processes, multi-relational
graphs, EM, semi-supervised learning.

1. INTRODUCTION

A number of network science related applications rely on fea-
tures over all nodes in the graph, which cannot be accom-
modated with limited nodal observations, due to privacy con-
cerns or sampling costs. The semi-supervised learning (SSL)
task of reconstructing nodal features over unobserved nodes
can be addressed with the aid of the underlying graph topol-
ogy that captures nodal inter-dependencies [6, 10]. In Face-
book for instance, where nodes and edges represent users and
their friendships, one can infer the income of a specific user
from her/his friends’ income.

Temporal dynamics in the nodal processes further chal-
lenge the SSL task, which has been tackled in several works.
Relying on the so-termed graph bandlimited model, infer-
ence of slow-varying processes over graphs has been pur-
sued in [5, 15]. On the other hand, graph kernel based esti-
mators have been leveraged to reconstruct general dynamic
processes [8, 13]. Most recently, semi-supervised tracking of
dynamic processes over switching graphs has been handled
by an online Bayesian algorithm [11]. However, all these ap-
proaches deal with single-relational graphs per slot.
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In many contemporary applications, multiple types of re-

lations over the same set of nodes coexist, giving rise to a
multi-relational graph (MRG) [9, 12]. In the particular case
of social networks, each relation of the MRG accounts for a
specific form of social interaction, such as friendship, family
bonds, or coworker ties [16]. Generalizing traditional SSL ap-
proaches for single-relational graphs to MRGs is challenging.
While SSL of static attributes over MRGs has been studied
recently [7], SSL of dynamic nodal processes over MRGs has
not been addressed.
Contributions. Alleviating the aforementioned challenges,
the present work deals with SSL of dynamic processes over
MRGs. Specifically, a dynamical model is constructed to cap-
ture the spatio-temporal nature of the dynamic processes per
relation. Using this model, the contributions from multiple
relations of the MRG to the dynamics in the nodal processes
are fused in a probabilistic fashion. A novel EM solver with
convergence guarantees is developed to predict the process
values over the unobserved nodes.

2. MODELING AND PROBLEM FORMULATION

Consider a network with N nodes comprising the vertex set
V := {1,...,N}. In several applications, nodes in the net-
work may be connected via multiple relations. For example,
Facebook users can be also connected through the Linkedin
and Twitter social networks. To account for such multiple
relations of nodes in V, an undirected MRG is defined as
G := {V, A}, where A is the adjacency set A := {A® s =
1,...,5}, and A® isthe N x N symmetric adjacency matrix
associated with relation s. The Laplacian matrix associated
with A® is L := D® — A®, where D® = diag{ A1y} with
1 denoting the NV x 1 all-one column.

A dynamic graph process is defined as the mapping x :
VX T — R, where T := {1,2, ...} denotes the set of time in-
dices representing time-varying nodal features. For instance,
x+(n) may represent the income of person n at year t. The
values over all the nodes at slot ¢ are collected in the vector
x¢ = [2(1),. .. ,xt(N)]T, where T stands for transposition.

Accounting for partially observed nodal samples, the ob-
servation model per slot ¢ is given by

ye = Hix; + e (D



where the time-varying observation matrix H; € {0, 1}*N
samples M, (M; < N) nodes at slot ¢, and e, is the observa-
tion noise that accounts for uncertainties and is modeled as
temporally uncorrelated, and Gaussian distributed with zero
mean and covariance matrix R;. Equivalently, (1) can be
rewritten in the form of the data likelihood as p(y:|x;) =
N (ye; Hixy, Ry).

Given the MRG G and observations over 7 slots collected
inY := [y1...yr], our goal is to estimate X := [x; ...x].
This SSL task faces two challenges. The first is to account
jointly for spatio-temporal dependencies. The second is to
judiciously combine the contributions from the .S relations of
an MRG. Fortunately, the aforementioned two challenges can
be addressed by building structured dynamical models for x;.

2.1. Modeling dynamics of processes over an MRG

To capture the spatio-temporal nature of the dynamic graph
processes for relation s, the evolution from x;_; to x; is
modeled by a first-order Markov process with state transition
probability density function (pdf) given by

P(xe|x—1,8) = N(x¢; Fox—1, K?) ()

where the state transition matrix F* := f (A?®) is a known
function f of the adjacency matrix of relation s, and the co-
variance matrix K® := r(L*) is modeled as a graph Lapla-
cian kernel; see also [14]. While the temporal variation is
accounted for via the transition term F®x;_1, the spatial cor-
relation per slot is modeled by the Laplacian kernel, and thus
(2) takes into account the spatio-temporal nature of the dy-
namic graph processes per relation.

Further, to address the second challenge, the dynamical
models (2) for the S relations of the MRG are fused in a prob-
abilistic fashion, yielding the overall state transition pdf

S
p(Xt\thl; 7Tt) = Z"Tt,sp(xdxtflv 5) (3a)
s=1
S
=Y m N Fx 1, K*)  (3b)
s=1

where 7y = [m.1...m 5] holds the unknown probabilities
mt,s € [0,1] that weighs the contribution from the sth relation

of the MRG at slot ¢, while satisfying Zle s = L.

3. GRAPH-AWARE BATCH SOLVER

Building on (3) and (1), the maximum a posteriori (MAP)
estimate of X and the maximum likelihood (ML) estimate of
II := [mry ... 7] given observations Y, are obtained as

{X, ﬂ} = arg max log p(X|Y;II)
x,II

)
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Fig. 1: Probabilistic graphical model for dynamic processes
over MRGs.

= arg max logp(Y|X) + logp(X;II) (4)
x.IT

where the conditional independence of the variables in (1) and
(3) across slots allows factorization of the batch data likeli-
hood and prior as

T
[INGeHx,R) )
t=1

T
p(Y|X) = HP(}’t‘Xt) =

T
p(XTL) = [ [ p(xelxi—157e) - (6)
t=1

Although the non-convex objective in (4) is solvable using
the gradient-ascent based algorithm, its convergence to local
optima entails judicious selection of step size per iteration.
Also, first-order approaches do not fully leverage the poten-
tial benefits arising from a data generative model. These con-
siderations prompt one to employ the celebrated expectation-
maximization (EM) algorithm [4], which is an iterative opti-
mization technique to find the ML [4] or MAP [17] solutions
for probabilistic models with latent variables [3]. Next, an
EM-based solver is developed to jointly seek the MAP and
ML estimates in (4) with provable convergence at least to a
local maximum.

3.1. EM for joint MAP and ML estimation

Aiming to adapt the EM as a solver of (4), we start by rewrit-
ing the Gaussian mixture prior (3) as

S

P(xelxi—13m) = > Pr(z = s)p(xifxi—1,2 =5) ()
s=1

where the latent variable z; € {1,...,S} that is assumed

independent across slots, has probability mass function (pmf)
. The probabilistic graphical model for random variables
{Xt,¥t, 2} based on (1) and (7), is shown in Fig. 1.

After introducing the hidden variables z := [z ... z7], it
can be verified for any pdf ¢(z) that

log p(X[Y;TI) = KL(q(2)[|p(z[X, Y;1I0)) + £(¢,X,IT) (3)



where

L(q,X,IT) :=Ey(,)[log p(X,Y ,z;IT)| —log p(Y) + H(q(z)).

C))

In (8) and (9), KL(q(2)|[p(2)) := [ q(z) log &2
the Kullback Leibler dlvergence of the pdfs p(z) and ¢(z),
and H(q :=— [ q(z) log q(z)dz is the entropy of ¢(z). It
is ev1dent that (9), whichis a funct10nal of ¢(z) and a function
of X and IT, amounts to a lower bound for log p(X|Y; IT).
As we shall see later, the EM algorithm maximizes the lower
bound (9) iteratively by alternating between E- and M-steps
per iteration.

Let X(™ and II™ denote the estimates of X and II
at the end of iteration n. The E-Step at iteration n + 1
maximizes (9) wrt ¢(z) with X(™) and ﬂ(") fixed, yield-
ing ¢*(z) = p(z|X™,Y;II™) and L(¢g*, X 1IM) =
log p(XM[Y:II™).  Subsequently, w1th q ( ) fixed, the
M-step maximizes £(¢*, X, II) wrt X and II, which boils
down to maximizing the following auxiliary function

Q(X, ILX™ TI™) := E vy log p(X, 2, Y; )] . (10)

Thus, the updates of X and IT at iteration n + 1 are given by

[T~ arg max QUCTEXC) TI0) . (1)
x,IT

Since L(g*, XD II™Y) > £(g*, X, TI™) and
KL(¢*(z )Ilp( X+ v T1" D)) > 0, it holds that

log p(X MDY T D) > 1og p(X ™Y TIM)  (12)

thereby proving convergence of the EM iterates at least to one
of the local maxima of log p(X|Y; II).

Next, we will specialize the solution of (4) using the EM
algorithm outlined so far.

3.2. EM for SSL of dynamic processes over MRGs

Our graph-aware batch solver of (4) entails alternating be-
tween the following E- and M-steps per iteration.

E-Step at iteration n + 1 calls for evaluating ¢*(z) =
p(z|X™ Y1), and further the Q-function (10) with
X () and ITI™ available from iteration n. Since 2 is indepen-
dent across slots (cf. Fig. 1), we have ¢*(z) = Hthl q*(zt),
where ¢* () = p(z|X ™, Y;II™). Invoking Bayes’ rule,
it follows that

wfl) = Pr(zy = o] X, Y; ™)
Pr(z = s; H)p(X ™|z, = s)p(Y|X)
p(X™)p(Y[X™)
~ (”)N(f(i”) -Fs% (”) Ks)

_ . (13)
S AN (R Fs“( MK

Algorithm 1 Find F, and K, based on (18)
1: Input: F°, K*, w; 5,t =1,...,T,s=1,...,S5

Step 1: Obtain C;, Dy, t =1,...,T

Dr = Zf=1 wr, s (K*) ™!

Cr = = 37 wrs(K*)'F*

fort = 1t0T— 1do
Dt*Zé 1wtS(Ks)fl+wt+1,SFsT(Ks)71Fs
Ct — ZSS:I wt,s(KS)_lFs

end for

e A S i

9: Step 2: Obtain F, Kt, t=1,...,T
10: KT =Dr

11: fort =T to 2 do

12: Ft —KtCt

132 K =D, -F/
14: end for

15 F, =

K, 'F,

-K,C;

16: Output: F, K, t =1,...,T

Next, based on the graphical model in Fig. 1, the joint pdf

p(X,Y,z;II) in the Q-function (10) is given by

p(X, Y,z II) = p(X, z; II)p(Y |X) (14)

t=1

T

H <H tszt S)N(xt7F Xt—-1, KS)I(Zf S)>
t=1 \s=1

X N (ye; Hexe, Ry)

where the indicator function I(z; = s) is

I(zt:s):{(l) Z;i . (15)

Thus, the Q-function (10) can be expressed as

Q (X, LX) =By [log (p (X, 2, Y3 TD))]
T S .
" —Fsx,_ 25
(St e+ beE sl
s=1

—H,x;||
n ||Yt 2t t|Rt> +C (16)

where the operator [|x[% := x" A~!x with ~! representing
matrix inversion, ng;) = Eg+(z)[I(2: = )], and C'is a con-

stant unrelated with X and I1.

M-Step yields I+ and X+ updates by maximizing
the @-function (16) wrt IT and X as in (11). Taking the
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Fig. 2: NMSEs over unobserved nodes .

LT,s=1,...,5,yields

A = (17)

As for the update of X, upon reorganizing

T S T

ZZ wy || % — FSXFlH%{s :ZHXt - thtflufzt (18)

t=1s=1 t=1

where the steps to obtain f‘t and Kt are summarized in Alg. 1.
The cost function related to X is then given by

T
Qx =) (Ilyt — Hixil[R, + 1% — ﬁtxt—l“%t) . (19)

t=1

Clearly, the optimal X that maximizes (19) can be obtained
by the well-known Kalman smoother, whose implementation
details can be found in [2] for instance.

The E- and M-steps proceed repeatedly until at least one
of the convergence conditions is met: either the maximum
number of iterations is reached, or, the difference of the
loss between successive iterations drops below a preselected
threshold.

4. EXPERIMENTAL RESULTS

In this section, the performance of our novel approach that
we henceforth abbreviate as “EM-MRG,” is tested on the
temperature dataset [1]. The latter records hourly tem-
perature measurements at N = 109 measuring stations
across the continental United States in 2010. Relying on
the geographical distances of the measuring stations, we con-
structed an MRG with two relations following the approach
in [13], where 7- and 11-nearest neighbors are considered
respectively. In the dynamical model (2) associated with
relation s, F* = 0.05(Iy + A®), and K*® was set to be
a diffusion kernel [14]. The observation matrix was con-
stant across slots and the number of observed nodes was
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Fig. 3: True and estimated temperature values over an
unobserved location.

44. The performance metric is the normalized mean-square
error (NMSE) over unobserved nodes, which is given by
NMSE(t) := ||H (%¢¢ — x¢) [|3/]/H{x||3, where HY is the
sampling matrix for the unobserved nodes. To allevaite the
effect of sampling, the NMSE was averaged over 100 random
sampling realizations.

EM-MRG is compared with two existing algorithms,
namely the adaptive least mean-square (LMS) algorithm [5],
and the distributed least-squares reconstruction (DLSR)
scheme in [15]. Since the competing alternatives are unable
to handle MRGs in a principled manner, their performance
were assessed using the average of the nodal feature estimates
associated with the two relations in the MRG.

The average NMSEs over time slots for the competing ap-
proaches are depicted in Fig. 2. It is evident that EM-MRG
outperforms the competing alternatives in terms of extrapo-
lating unobserved nodal processes, which is also corroborated
by Fig. 3, where the reconstructed temperature values over an
unobserved node is shown. Thus, the proposed EM-MRG ap-
proach can make the best of the relational information for an
MRG to reconstruct missing nodal features.

5. CONCLUSIONS

This contribution dealt with SSL of dynamic processes over
MRGs. It put forth a structured dynamical model that first
accounts for the spatio-temporal dynamics of processes per
relation, and further combines the contributions from multi-
ple relations of an MRG. Given partially observed nodal sam-
ples and relational information from the MRG, the EM al-
gorithm was leveraged to reconstruct graphs signals and also
output the weight that measures the contribution of each rela-
tion. Numerical tests validated the performance of the novel
approach.
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