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ABSTRACT

In this paper, we investigate the problem of distributed finite-sum
optimization in presence of malicious attacks from Byzantine work-
ers. Existing Byzantine-resilient algorithms often combine stochas-
tic gradient descent (SGD) with various robust aggregation rules to
handle malicious attacks. However, the large gradient noise of S-
GD brings difficulty to distinguish malicious messages sent by the
Byzantine workers from noisy stochastic gradients sent by the hon-
est workers. This fact motivates us to reduce the gradient noise so as
to achieve better performance than Byzantine-resilient SGD. There-
fore, we propose Byrd-SAGA, a Byzantine-resilient variant of dis-
tributed SAGA to deal with the malicious attacks in the distributed
finite-sum optimization setting. Byrd-SAGA uses geometric median
to aggregate the corrected stochastic gradients sent by the distributed
workers, other than uses mean in distributed SAGA. When less than
half of the workers are Byzantine, the robustness of geometric me-
dian to outliers enables Byrd-SAGA to achieve provable linear con-
vergence to a neighborhood of the optimal solution, where the size
of neighborhood is determined by the number of Byzantine workers.

Index Terms— Byzantine-resilience, distributed finite-sum op-
timization, variance reduction

1. INTRODUCTION

With the fast development of information technologies, the volume
of distributed big data increases explosively. Every day, distributed
devices (e.g., sensors, cellphones, computers, vehicles, etc) generate
a huge amount of data, which are often transmitted to datacenters for
processing and learning. However, collecting the data from the dis-
tributed devices and storing them in the datacenters raise significant
privacy concerns [1–3]. To address this issue, federated learning has
been proposed as a new privacy-preserving distributed data process-
ing and machine learning framework [4]. In federated learning, the
data are kept privately by and the computation is assigned to the dis-
tributed devices. Iteratively, the distributed devices calculate their
local variables (e.g., stochastic gradients, corrected stochastic gradi-
ents, models, etc) using the private data samples, while the datacen-
ter aggregates the local variables and disseminates the aggregated
result to the distributed devices.

Nevertheless, the distributed nature of federated learning makes
it vulnerable to errors and attacks. Some of the distributed devices
can be unreliable in either computation or communication, while
some can be hacked by malicious attackers. These distributed de-
vices may send arbitrary malicious messages to the datacenter, aim-
ing at misleading the learning process [5–7]. We call these arbitrary
malicious attacks as Byzantine attacks [8]. It is crucial to develop ro-
bust federated learning algorithms to handle these Byzantine attacks
for secure processing and learning.

In view of the challenge in Byzantine-resilient federated learn-
ing, various robust aggregation rules have been developed in these
years, mainly focused on improving the distributed stochastic gra-
dient descent (SGD) method. Through aggregating stochastic gradi-
ents with geometric median [9,10], median [11], trimmed mean [12],
iterative filtering [13], Krum [14], or RSA [15], Byzantine-resilient
distributed SGD is able to tolerate the attacks from a small number
of Byzantine devices.

Although these Byzantine-resilient SGD methods are often
guaranteed to reach a neighborhood of the Byzantine-free optimal
solution, the size of the neighborhood can be large under well-
designed Byzantine attacks [16]. Essentially, SGD suffers from
large gradient noise in computing the stochastic gradients. This dis-
advantage leads to the key difficulty in distinguishing the malicious
messages sent by the Byzantine attackers from the noisy stochastic
gradients sent by the honest devices.

Considering the deficiency of Byzantine-resilient distributed S-
GD, we ask: Can we better distinguish the malicious messages from
the stochastic gradients through reducing the gradient noise? Our
answer is affirmative. When the gradient noise is small, the mali-
cious messages are easy to be identified (see the illustrative example
in Section 2). This observation suggests the combination of variance
reduction techniques with robust aggregation rules to handle Byzan-
tine attacks in federated learning.

Existing variance reduction techniques in stochastic optimiza-
tion include mini-batch [17], SAG [18], SVRG [19], SAGA [20],
SDCA [21], SARAH [22], Katyusha [23], to name a few. Among
these algorithms, we are particularly interest in SAGA, which has
been proven to be effective in finite-sum optimization. SAGA can
also be implemented in a distributed manner [24–26], and is hence
fit for the federated learning applications where every distributed de-
vice has a finite number of data samples.

In this paper, we propose Byrd-SAGA, which combines the vari-
ance reduction technique of SAGA with robust aggregation to deal
with the malicious attacks in the distributed finite-sum optimization
setting. In Byrd-SAGA, the datacenter uses geometric median to ag-
gregate the corrected stochastic gradients sent by the distributed de-
vices, other than mean in distributed SAGA. Through reducing the
gradient noise, Byrd-SAGA is able to achieve better performance
than Byzantine-resilient distributed SGD.

2. PROBLEM STATEMENT

Consider a distributed network with one master node (datacenter)
and W workers (devices), among which B workers are Byzantine
but their identities are unknown to the master node. Denote the set
of all workers as W and the set of Byzantine workers as B (hence
|W| = W and |B| = B). The data samples are evenly distributed
across the honest workers w /∈ B. Every honest worker has J data



samples, and we use fw,j(x) to denote the loss function of the j-
th data sample on the honest worker w with respect to the model
x ∈ Rp. We are interested in the finite-sum optimization problem

x∗ = argmin
x

f(x) :=
1

W −B

∑
w/∈B

fw(x), (1)

where fw(x) := 1
J

∑J
j=1 fw,j(x).

Distributed SGD. When all the workers are honest, one of the
most popular algorithms to solve the distributed finite-sum optimiza-
tion problem is SGD [27]. At time k, the master node sends xk to the
workers. Upon receiving xk, every worker w uniformly at random
chooses a local data sample with index ikw to calculate a stochas-
tic gradient f ′

w,ikw
(xk) and sends back to the master node. After

collecting all the stochastic gradients from the workers, the master
node updates the model by xk+1 = xk − γk · 1

W

∑W
w=1 f

′
w,ikw

(xk),

where γk is the non-negative step size.
While the honest workers send true stochastic gradients to the

master node, the Byzantine workers may not do so. The Byzantine
workers can send arbitrary malicious messages to the master node,
aiming at biasing the optimization process. We usemk

w to denote the
message sent from worker w to the master node at time k, such that
mk

w = f ′
w,ikw

(xk) for all w /∈ B and mk
w = ∗ for all w ∈ B, where

∗ represents an arbitrary p-dimensional vector. Then, the distributed
SGD update becomes xk+1 = xk − γk · 1

W

∑W
w=1 m

k
w.

Even when only one Byzantine worker is present, the distributed
SGD may fail. Let wb be the Byzantine worker. It can send to the
master node mk

wb
= −

∑
w ̸=wb

mk
w which makes xk+1 = xk. In

practice, the Byzantine workers can send more tricky messages to
fool the master node, and bias the optimization process.

Byzantine-resilient distributed SGD. Recent works often ro-
bustify the distributed SGD by incorporating the robust aggregation
rules when the master node receives messages from the workers. In
particular, we will focus on the application and analysis of geometric
median, while other robust aggregation rules are also viable [9, 10].

Let {z, z ∈ Z} be a subset in a normed space. The geometric
median of {z, z ∈ Z} is defined as

geomed
z∈Z

{z} = argmin
y

∑
z∈Z

∥y − z∥. (2)

With (2), distributed SGD can be modified to its Byzantine-resilient
form as xk+1 = xk − γk · geomedw∈W{mk

w}. When the number
of Byzantine workers B < W

2
, the geometric median provides a

reasonable approximate to the mean of {mk
w, w /∈ B}. This proper-

ty enables the Byzantine-resilient distributed SGD to converge to a
neighborhood of the optimal solution [9, 10].

Impact of gradient noise on robust aggregation. In distributed
SGD, the stochastic gradients calculated by the honest workers are
noisy because of the randomness in choosing data samples. Due to
the existence of gradient noise, it is not always easy to distinguish the
malicious messages from the stochastic gradients using the robust
aggregation rules, such as geometric median.

Fig. 1 depicts the impact of gradient noise on geometric median-
based robust aggregation. When the variance of the stochastic gra-
dients sent by the honest workers is smaller, the gap between the
true mean and the aggregated value is also smaller. That is to say,
the same Byzantine attacks are less effective. We will theoretically
justify this statement in the theoretical analysis.

Motivated by this fact, we propose to reduce the gradient noise in
Byzantine-resilient SGD so as to achieve better robustness to Byzan-
tine attacks. In the Byzantine-free case, an effective approach to al-
leviate the gradient noise of SGD is variance reduction. Through

gradients with large variance

honest gradient
Byzantine gradient

geometric median
true gradient

gradients with small variance

Fig. 1. Impact of gradient noise on geometric median-based robust
aggregation. Blue dots denote stochastic gradients sent by the honest
workers. Red dots denote malicious messages sent by the Byzantine
workers. Plus signs denote the outputs of geometric median-based
robust aggregation. Pentagrams denote the means of the stochastic
gradients sent by the honest workers.

correcting the noise in the stochastic gradients, variance reduction
techniques enable the algorithms converge faster than SGD. In this
paper, we focus on SAGA, which reduces gradient noise for finite-
sum optimization [20], and will show that this technique effectively
helps robust aggregation against Byzantine attacks.

3. ALGORITHM DEVELOPMENT

Distributed SAGA with mean aggregation. In distributed SAGA,
every worker maintains a table of stochastic gradients for all of its
local data samples [24, 25]. Like the distributed SGD, at time k, the
master node sends xk to the workers and every worker w uniform-
ly at random chooses a local data sample with index ikw to calculate
a stochastic gradient f ′

w,ikw
(xk). However, worker w does not send

back f ′
w,ikw

(xk) to the master node. Instead, it corrects f ′
w,ikw

(xk) by

first subtracting the previously stored stochastic gradient of the ikw-
th data sample, and then adding the average of the stored stochastic
gradients of all the local data samples. Then, workerw sends the cor-
rected stochastic gradient to the master node, and stores f ′

w,ikw
(xk)

as the stochastic gradient of the ikw-th data sample in the table. After
collecting all of the corrected stochastic gradients from the workers,
the master node updates the model xk+1. To better describe dis-
tributed SAGA, define ϕk+1

w,j = ϕk
w,j when j ̸= ikw and ϕk+1

w,j = xk

when j = ikw. Then, f ′
w,j(ϕ

k
w,j) refers to the the previously stored

stochastic gradient of the j-th data sample prior to time k on worker
w, and gkw := f ′

w,ikw
(xk)− f ′

w,ikw
(ϕk

w,ikw
) + 1

J

∑J
j=1 f

′
w,j(ϕ

k
w,j) is

the corrected stochastic gradient of worker w at time k. The model
update of SAGA is hence

xk+1 = xk − γ · 1

W

W∑
w=1

gkw, (3)

where γ > 0 is the constant step size.
Distributed SAGA with geometric median aggregation. A

Byzantine worker may send malicious messages, other than the cor-
rected stochastic gradient, to the master node. We usemk

w to denote



Algorithm 1 Byzantine-Resilient Distributed SAGA

Master node and honest workers initialize x0

for all honest worker w do
for j ∈ {1, . . . , J} do

Initializes gradient storage f ′
w,j(ϕw,j) = f ′

w,j(x
0)

end for
Initializes average gradient ḡ1w = 1

J

∑J
j=1 f

′
w,j(x

0)

Sends ḡ1w to master node
end for
Master node updates x1 = x0 − γ · geomedw∈W{ḡ1w}
for all k = 1, 2, · · · do

Master node broadcasts xk to all workers
for all honest worker node w do

Samples ikw from {1, · · · , J} uniformly at random
Updates mk

w = f ′
w,ikw

(xk)− f ′
w,ikw

(ϕw,ikw
) + ḡkw

Sendsmk
w to master node

Updates ḡk+1
w = ḡkw + 1

J
(f ′

w,ikw
(xk)− f ′

w,ikw
(ϕw,ikw

))

Stores gradient f ′
w,ikw

(ϕw,ikw
) = f ′

w,ikw
(xk)

end for
Master updates xk+1 = xk − γ · geomedw∈W{mk

w}
end for

the message sent from worker w to the master node at time k, as

mk
w =

{
gkw, w /∈ B,
∗, w ∈ B,

(4)

where ∗ is an arbitrary p-dimensional vector. Similar to distribut-
ed SGD, distributed SAGA is also sensitive to Byzantine attacks.
Here we propose to use geometric median as the robust aggregation
rule. Thus, distributed SAGA in (3) can be modified to a Byzantine-
resilient form of

xk+1 = xk − γ · geomed
w∈W

{mk
w}. (5)

The Byzantine-resilient distributed SAGA, abbreviated as Byrd-
SAGA, is outlined in Algorithm 1.

4. THEORETICAL ANALYSIS

Importance of reducing gradient noise. The influence of gradient
noise on the geometric median aggregation can be demonstrated by
the following lemma.

Lemma 1. (Concentration property) Let {z, z ∈ Z} be a subset of
random vectors distributed in a normed vector space. If Z ′ ⊆ Z
and |Z ′| < |Z|

2
, then it holds

E∥geomed
z∈Z

{z} − z̄∥2 (6)

≤2C2
α

∑
z/∈Z′ E∥z − Ez∥2

|Z| − |Z ′| + 2C2
α

∑
z/∈Z′ ∥Ez − z̄∥2

|Z| − |Z ′| ,

where z̄ :=
∑

z/∈Z′ Ez

|Z|−|Z′| , Cα := 2−2α
1−2α

and α := |Z′|
|Z| .

Assume that Z is the set of messages sent by all the workers in
W and Z ′ is the set of malicious messages sent by the Byzantine
workers in B. Then, z̄ denotes the true gradient (averaged expecta-
tion of the stochastic gradients) and the left-hand side of (6) is the

variation of the geometric median with respect to the true gradient.
The upper bound in the right-hand side of (6) consists of two terms.
The first term is determined by the variances of the local stochas-
tic gradients sent by the honest workers (inner variation), while the
second term is determined by the variations of the local gradients at
the honest workers with respect to the true gradient (outer variation).
In Byzantine-resilient SGD, the upper bound can be large due to the
large gradient noise of SGD. Through reducing the gradient noise
in terms of either inner variation or outer variation, we are able to
achieve better accuracy under malicious messages.

Convergence of Byrd-SAGA. Now we show the convergence
property of Byrd-SAGA and demonstrate its robustness to Byzantine
attacks. We begin with several assumptions on the functions {fw,j}.
Assumptions 1 and 2 are standard in convex analysis. Assumptions 3
and 4 bound the variations of stochastic gradients within and across
the honest workers, respectively [28].

Assumption 1. (Strong convexity and Lipschitz continuous gradi-
ents) Each fw,j is µ-strongly convex and has L-Lipschitz continuous
gradients. That is, for any x, y ∈ Rp, we have

fw,j(x) ≥ fw,j(y) + ⟨f ′
w,j(y), x− y⟩+ µ

2
∥x− y∥2,

∥f ′
w,j(x)− f ′

w,j(y)∥ ≤ L∥x− y∥.

Assumption 2. (Bounded gradients) Each fw,j has bounded gradi-
ents. That is, for any x ∈ Rp, we have ∥f ′

w,j(x)∥ ≤ r.

Assumption 3. (Bounded inner variation) For any honest worker w
and any x ∈ Rp, the variation of its stochastic gradients with respec-
t to its aggregated gradient is upper-bounded as Eikw

∥f ′
w,ikw

(x) −
f ′
w(x)∥2 ≤ σ2, ∀w /∈ B.

Assumption 4. (Bounded outer variation) For any x ∈ Rp, the
variation of the aggregated gradients at the honest workers with re-
spect to the overall gradient is upper-bounded as Ew/∈B∥f ′

w(x) −
f ′(x)∥2 ≤ δ2.

The following theorem shows Byrd-SAGA converges to a neigh-
borhood of the optimal solution x∗ at a linear rate, and the size of the
neighborhood is determined by the number of Byzantine workers.

Theorem 1. Under Assumptions 1–4, if the number of Byzantine
workers B < W

2
and the step size γ < min{ 2

nµ+32C2
αL

, 1
8LC2

α
},

then for Byrd-SAGA, it holds

E∥xk − x∗∥2 ≤ (1− γµ

2
)k∆1 +∆2, (7)

where∆1 := ∥x0−x∗∥2+2γJ
[
f(x0)− f(x∗)

]
−∆2 and∆2 :=

8C2
αδ2γ

µ
+ 4

µ2C
2
α(4σ

2 + 16r2 + 2δ2).

5. NUMERICAL EXPERIMENTS

We conduct numerical experiments on convex and nonconvex learn-
ing problems. For each problem, evenly distribute the dataset
into W − B = 50 honest workers. For the case with Byzan-
tine attacks, we additionally launch B = 20 Byzantine worker-
s. We test the performance of the proposed Byrd-SAGA under
three typical Byzantine attacks: Gaussian, max-value and zero-
gradient attacks [15, 29]. With Gaussian attack, every Byzantine
worker w ∈ B generates its mk

w following a Gaussian distribu-
tion with mean 1

W−B

∑
w′ /∈B mk

w′ and variance 30. With max-
value attack, every Byzantine worker w ∈ B sets its message as



Fig. 2. Performance of the distributed SGD, mini-batch SGD (BSGD) and SAGA, with mean and geometric median (geomed) aggregation
rules. Top to Bottom: optimality gap and variance of honest messages. Left to Right: without, Gaussian, max-value and zero-gradient attacks.

mk
w = u · 1

W−B

∑
w′ /∈B mk

w′ , where the magnitude u = 4 is
used in the numerical experiments. With zero-gradient attack, every
Byzantine worker w ∈ B sends mk

w = − 1
B

∑
w′ /∈B mk

w′ such that
the messages received by the master node are summed to zero.

Table 1. Accuracy of SGD, mini-batch SGD (BSGD) and SAGA,
with mean and geometric median (geomed) aggregation rules.

attack algorithm mean acc (%) geomed acc (%)
without SGD 97.0 92.3

BSGD 98.6 98.0
SAGA 96.5 96.3

Gaussian SGD 36.3 92.5
BSGD 36.3 98.0
SAGA 14.5 96.4

max-value SGD 0.11 0.03
BSGD 0.16 90.3
SAGA 0.12 86.4

zero-gradient SGD 9.94 26.2
BSGD 9.89 81.5
SAGA 9.88 92.4

ℓ2-regularized logistic regression. Consider the ℓ2-regularized
logistic regression problem, in which every fw,j(x) is in the form of

fw,j(x) = ln (1 + exp (−bw,j⟨aw,j , x⟩)) +
ρ

2
||x||2,

where aw,j ∈ Rp is the feature vector, bw,j ∈ {−1, 1} is the label,
and ρ = 0.01 is a constant. We use the IJCNN1 dataset, which
contains 49,990 training data samples of p = 22 dimensions.

We compare SGD, mini-batch SGD (BSGD) with batch size 50
and SAGA, using mean and geometric median aggregation rules.
The step sizes are 0.02, 0.01 and 0.02, respectively. Comparing to
SGD, BSGD enjoys smaller gradient noise but suffers from high-
er computational cost. In comparison, SAGA also reduces gradient
noise, but its computational cost is in the same order as that of SGD.
For every algorithm, we use the constant step size, which is tuned to
achieve the best optimality gap f(xk)−f(x∗) for the Byzantine-free
case. The performance of these algorithms on the IJCNN1 dataset is

depicted in Fig. 2. With Byzantine attacks, the three algorithms us-
ing mean aggregation all fail. Among the three algorithms using ge-
ometric median aggregation, Byrd-SAGA remarkably outperforms
the other two, while BSGD is better than SGD. This fact suggest-
s that the importance of variance reduction to handling Byzantine
attacks. To be specific, regarding the variance of honest messages,
Byrd-SAGA, Byzantine-resilient BSGD and Byzantine-resilient S-
GD are in the order of 10−3, 10−2 and 10−1, respectively.

Neural network training. We carry out a set of numerical ex-
periments on a neural network that has one hidden layer of 50 neu-
rons with Tanh activation functions. We use this neural network for
multi-class classification on the MNIST dataset, which has 60, 000
data with dimension p = 784. We compare SGD with step size 0.1,
mini-batch SGD (BSGD) with step size 0.5 and batch size 50, and
SAGA with step size 0.1. We run the algorithms for 15, 000 itera-
tions and record the final accuracy in Table 1. With mean aggrega-
tion, all the algorithms yield low accuracy under Byzantine attacks.
With the help of geometric median aggregation, BSGD and SAGA
are both robust, and outperform SGD. Note that Byrd-SAGA has
much lower per-iteration computational cost relative to Byzantine-
resilient BSGD.

6. CONCLUSIONS

In this paper, we propose Byrd-SAGA, a Byzantine-resilient dis-
tributed SAGA to solve the distributed finite-sum optimization prob-
lem with Byzantine attacks. Similar to SAGA, Byrd-SAGA corrects
the stochastic gradient through variance reduction. At every itera-
tion, distributed workers calculate their corrected stochastic gradi-
ents and send to the master node. But unlike SAGA, in Byrd-SAGA
the master node aggregates the received messages using geometric
median, other than mean. This robust aggregation rule guarantees
the robustness of Byrd-SAGA in presence of Byzantine attacks. Our
future work is to develop and analyze Byzantine-resilient algorithms
over decentralized networks [30, 31].
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