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ABSTRACT

Federated learning enables training a shared machine learn-
ing model while keeping data distributed in several locations,
typically with a central server coordinating all agents. In this
paper, we focus on improving the communication efficiency
of decentralized federated learning based on alternating di-
rection method of multipliers (ADMM). We propose a lo-
cal aggregation based ADMM that enjoys faster convergence
thus less communication rounds. Moreover, with quantization
we can further reduce the communication complexity without
comprising the accuracy too much. We test our algorithm on
real world applications to showcase the merits.

Index Terms— decentralized federated learning, ADMM,
quantization, communication efficient

1. INTRODUCTION

With the recent explosion of deep learning techniques for un-
precedented pattern recognition and predictive modeling, re-
searchers are continually looking for ways to gather together
datasets from disparate sources to provide sufficient training
data for these complex models. In health care industry, for
example, due to the fundamental privacy concerns, there is a
great risk to store health care records in a centralized location.
Typically, institutes only have access to the records of their
own patients, making learning a challenging task on this small
dataset. Moreover, the data could be unevenly distributed,
posing further difficulties for building a proper model.
Federated learning (FL) was proposed to deal with such
scenarios. In federated settings, multiple agents collabora-
tively learn a shared model while keeping all training data
private. Existing federated learning strategies typically re-
quire the presence of central server that is connected to ev-
ery agents. The locally trained model parameters are shared
with the central server, which aggregates to produce a global
model that is sent back to agents. By repeating this process, a
global model is effectively trained on all agents’ private data.
The communication overhead per round scales linearly with
the number of agents and size of model parameters. This
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paradigm is challenged by the increasing number of agents
and growing complexity of machine learning models.

Another potential difficulty facing federated learning is
privacy. The fact that the central server has access to informa-
tion from all agents might raise severe concerns of violating
regulations. For instance, patient-level data exchange among
stakeholder such as insurance companies and treating facili-
ties is prohibited by law [1].

1.1. Problem formulation

The training of a machine learning model is often formulated
in finite sum form [2]. Suppose that we have a dataset consist-
ing of N data samples, {x;, y; }},, and a proper loss function
l; : RP x R — R. Then the training process boils down to
minimizing the overall objective

in f(w)

N
with f(w):=) fi(w), (D
i=1
where f; is the local objective of agent i, which is the sum of
loss on all samples, i.e., fi(w) = 1/[Si] Y ;cs, 1(Xi, yis w).
We use S; C {1,...,N} to denote the set of data sample
index of agent ¢, and n; = |S;| the size of dataset. Notice that
the sizes different agent are not necessarily equal.

1.2. Related work

The basic algorithm for solving finite sum problem is gradient
descent (GD) for smooth f and subgradient for nonsmooth
functions, which at iteration ¢ performs

wlt) = w® — v f(wh), )

where 7 is the step size or learning rate. The computation of
the gradient V f(x*)) involves iterating through every sam-
ple, so the complexity scales linearly with N. When the num-
ber of samples is too large, this quickly becomes too expen-
sive. A common approach is the stochastic gradient descent
(SGD), which per iteration performs update w using partial
gradient. In federated setting, this could be realized by ran-
domly selecting a few agents who compute local stochastic



gradient and send to central server to obtain the aggregated
global model.

SGD is a simple yet effective method for real world appli-
cations [2,3]. The distributed variant, DSGD, is also a popular
choice for federated learning [4]. Variance reduce methods,
such as SVRG, SARAH, etc., perform better than SGD with
some nice properties. As a results, variance reduction meth-
ods adaptive to federated setting are also proposed, see [2]
and reference therein. To enhance the privacy of federated
learning, various ways has been employed to make it difficult
to infer identify information, see e.g., [5, 6]. Conventional
federated learning may experience severe performance degra-
dation when data are distributed evenly [7].

1.3. Our contribution

In order to comply restrictive privacy regulations, we pro-
pose to a decentralized federated learning using ADMM,
which forgoes the central server and only allow agent to
agent communication. The objective function f can be
non-differentiable. We propose to use a locally aggregated
ADMM, which converges faster than vanilla ADMM, thus
requires less round of communications. Moreover, we can
further reduce the communication overhead by transfer quan-
tized values. Finally, we test our algorithm on real datasets to
demonstrate its merits.

2. DECENTRALIZED FEDERATED LEARNING
USING ADMM

We model communication constraints in the decentralized set-
ting as an undirected graph G := (V, ), with each vertex
i € V corresponding to one agent, and edge (i, j) € £ denot-
ing that agents ¢ and j can share information.

The finite sum form (1) can be formulated into consensus
form and solved by ADMM. Each agent maintains a local
model while a central server updates the global model [§].
Let w; be the local model parameter of agent ¢, and w the
global model. Then finite sum problem can be formulated as

N
{vrgu}nw ; filw;) s.to w; =w,Vi. 3)
The constrained minimization problem turns out to be separa-
ble while solved using ADMM, i.e., each agent can only train
its local model and the central server is responsible for ag-
gregating all local models and then broadcasting back global
model to each agent. This paradigm, however, shares the
same issues with GD-based federated learning due to the pres-
ence of a central server.

Vanilla ADMM for decentralized FL. To accommodate
the privacy regulations, a decentralized ADMM algorithm has
been proposed to solve (1), which does not need the cen-
tral server and only allows information sharing between two
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Fig. 1. An example network and its communication graphs.
Each circle denotes a agent and each square denotes a server
where aggregation of local models is performed.

trusted neighbors [9]. Mathematically, this translates to

N
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where z;; is an auxiliary variable created for edge (7, j). With
some algebra, one can show that the ADMM steps can be
carried out without z;; [9,10].

Locally aggregated ADMM for decentralized FL. It
has been observed that decentralized ADMM performs much
worse than its centralized counterpart, because the aggrega-
tion of local models are performed locally between neighbors
instead of globally [11]. This pairwise aggregation could
yield a much slower convergence speed once the network
becomes so large that it takes too many rounds of communi-
cation for information to propagate between remote agents.
Motivated by this, we propose to do local aggregations to
accelerate the convergence speed of ADMM.

The idea is to deploy multiple local servers, each of which
is connected to a subset of agents and responsible for aggre-
gating their local models. As long as the network is con-
nected, the information of each agent can eventually propa-
gate to the whole network and consensus could be achieved.
Figure 1 illustrates this idea, where (a) is an example net-
work of four agents, (b)(c)(d) are the communication graphs
of ADMM corresponding to the cases with a central server,
without a central server, and with local servers, respectively.

Suppose there are M local servers. Let z; be the local
model at server j, then we need to ensure w; = z; if agent
¢ is connected to server j. Denote T' the number of agent-
server connections. Take Fig. 1(d) for example, N = 4, M =
3,T = 5. If we stack all w; and z; as rows of matrices W
and Z, then (1) is equivalent to

min  f(W) = Z fi(ws)

W,Z

s.to AW =BZ

(&)

where A € {0,1}7*N and B € {0,1}7*M are matrices
that select the proper agents and servers so that each row of
AW = BZ reduces to w; = z; for some 7, j. Given a com-
munication graph like Fig. 1(d), one can build these matrices



row by row: each row of A (B) is a canonical vector that has
one at its i-th (j-th) entry for the connection between agent
and server j. The labels of agents and servers can be arbitrary.

Let d; (e;) be the degree of agent 7 (server j), i.e., the
number of connections attached to it. One can prove that
by constructing A and B this way, it holds that D =
A'A,E = B'B, and C = A'B [12, Lemma 1],
where D = diag(dy,...,dy), E = diag(ey,...,en), and
C € {0,1}V*M g the incidence matrix that has one at its
(4, j)-th entry if agent ¢ is connected to server j.

Let {\;}]_, be the Lagrangian multipliers, A € RT*P
the matrix by stacking all A; as rows, and Y = AT A whose
i-th row is y; € RP. With some simple manipulations, we
can show that the iterations of ADMM with local aggregation
reduces to

d.;
Wit = argmin fi(wi) + G wl + (vl = pvi)
yEHl) _ ygt) + p(diWZ(-tJrl) . Vz('Hl)) (6)

(t+1)
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where vl(-t) = Z;Lil cijzg-t) and zg-t“) = é SN ew
See [12] for detailed derivation. Notice that agent ¢ can com-
pute v; by receiving all local models from its connected
servers, which is basically what the summation says. Sim-
ilarly, server j can update local z; by aggregate all local
models from connected agents. Thus every step can be im-
plemented using neighbor-wise communication only.

Various experiments have shown that local aggregation
can help speed up the convergence of ADMM for solving fi-
nite sum problems in a decentralized manner [12], thus reduc-
ing the required number of communication rounds and con-
sequently less communication cost.

3. QUANTIZED LOCALLY AGGREGATED ADMM

So far, we have assumed infinite accuracy for communica-
tion and computation step in all the discussions. In reality,
however, it is rarely this case. Computers can only afford cer-
tain bits for each number, and communication links are often
subject to noise. To further reduce communication cost, we
consider quantized communication in federated setting.

Quantization is the process of mapping an arbitrary real
number to some discrete values that can be represented by a
finite number of bits. These discrete values are often referred
as quantization lattice. In fact, this is how modern comput-
ers store numbers internally, typically using 32 or 64 bits to
represent an integer. These discrete values do not need to
be equally spaced, but we only consider the equal case for
simplicity in the sequel. The space between two consecutive
values is called quantization resolution.

Let A > 0 be some quantization resolution. A quantizer
is a function @) that maps a real value to some quantized lat-
tice. This mapping can be deterministic or probabilistic. We

consider only probabilistic quantization in this paper. In par-
ticular, for a real number = € [kA, (k + 1)A), a probabilistic
quantized is the function

kA with probability £ + 1 — z/A,
Qx) = PO /%)
(k 4+ 1)A  with probability z/A — k.

We adopt the convention that quantizing a vector or matrix
means quantizing each elements independently. It immedi-
ately follows that the quantization error |Q(z) — z| < A. For
a given resolution A and a real value z, it’s easy to prove that
the probabilistic quantization satisfies

E[Q(z)] =z, var(Q(z)) < A?/4.

Intuitively, the smaller the resolution is, the less commu-
nication overhead is needed, and the less accuracy is achieved.
One extreme case would be using only 1 bit information [13].
In such cases, a real value x is quantized to

xmar

with probability w’;%w’”, ®)
with probability —Fmez=%_

maz —Tmin

where A = X020 — Tmin. This quantization can immedi-
ately achieve 32x or 64x communication efficiency on a typ-
ical computer. We gained this efficiency by sacrificing the
accuracy of solution, as we show in numerical experiments.
So there is a fundamental trade-off between communication
cost and solution accuracy.

Quantization has been employed to reduce communica-
tion cost of ADMM, see [14] and reference therein. As dis-
cussed before, the iterations (6) can be implemented based on
neighbor-wise communication only. Values sent and received
are subject to quantization before transferred.

. pd;
w, T = argmin fi(wi) + S w3 + (w1 = pvi?)
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where V,Et) = Ej:l CijQ(Zy)) and Zg.t) = e%- Zi:l CijQ(WEt)).
Notice the update of w; does not rely on quantized y, be-
cause it is also maintained by agent i. The same reason for

not quantizing w(**1) in the update of y(*+1),

Theorem 1. If V f; is linear in w;, f is strongly convex and
has Lipschitz continuous gradient, and the minimization (5)
admits at least one solution, then iterations (6) converge lin-
early in the mean sense, i.e., E[Wgt)] , E[y(-t)

;| converge to their
optimal solutions with linear rate.

The linear convergence of ADMM with local aggregation
has been established [12]. If the assumption of Theorem 1
holds, then taking expectation of [12, Algorithm 1], then the

proof carries over to E[wgt)], E[ygt)].
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Fig. 2. Test results of ADMM for decentralized federated learning on two datasets: MNIST and Alzheimer Disease.

4. NUMERICAL EXPERIMENTS

In this section, we test our algorithm on some datasets. To
demonstrate its merits, we also test vanilla ADMM for de-
centralized federated learning, as discussed in Section 2. We
use the standard linear SVM classifier. As a result, the local
objective function is defined as

1 -
filwi) = Sllwill5 + C ) max{w] %,,0}
2 SES;

(10)

where X [x],1]"T and we include the bias term in w;.
Each iteration, we need to solve a subproblem to update
w;, which is essentially fitting a small SVM model on local
data of agent ¢, with a quadratic offset [8]. The dual of this
problem turns out to be a constrained quadratic programming
that can be solved efficiently, for example, by interior point
method.

The first experiment is carried out on the MNIST dataset,
which consists of 70,000 images of handwritten digits. We
extract all digits 2 and 5 to form a new dataset for binary
classification, which consists of 13,303 images of size 28 x
28. The results is shown in top row of Fig. 2. The left, (a),
plots the average classification error of all agents against the
number of communication rounds. Since both methods in-
cur the same amount of communication overhead, locally ag-
gregated ADMM achieves much better efficiency. Also, our
method shows a much smooth curve than vanilla ADMM,

meaning agents achieve consensus faster and better. Fig. 2(b)
shows the effects of quantization bits. Using 8 bits we can
achieve comparable performance to those without quantiza-
tion. Figure 2 shows the effects of quantization resolution.
With enough quantization bits, the resolution does not have
too much effect.

The algorithm was also tested by a classification task on
a proprietary clinical dataset consisting of 3,820 patients di-
agnosed with Alzheimer’s Disease (AD) and 14,580 patients
diagnosed with mild cognitive impairment (MCI), an early
stage symptom of AD. The electronic health records from
Jan., 2015 to May 2019 of all patients were collected from
23 hospitals. We obtain similar results, as is shown in bottom
row of Fig. 2. Figure 2(d) compares the convergence speed,
Fig. 2(e) the effect of quantization bits, and Fig. 2(f) the ef-
fects of quantization resolution.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed decentralized federated learning
using locally aggregated ADMM, in order to satisfy privacy
regulations. We use quantization to improve the communica-
tion efficiency. Future work includes to characterize the re-
lation between solution accuracy and quantization resolution.
Plus, using adaptive quantization, not equally spaced lattice,
could further improve communication efficiency while main-
taining the same accuracy.
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